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ABSTRACT
Presented work focuses on the importance of unconformity that separates the Neogene infill
from older Palaeozoic and Mesozoic rocks in the Croatian part of Pannonian Basin. Structure
map of this horizon nearly represents the thickness map of the Neogene and Quaternary
basin fill. Rock formations just below the unconformity are significantly weathered, which
results in favourable petrophysical properties, making them interesting from the aspect of
geoenergy potential. The pre-Neogene surface was constructed in 1:400,000 scale using
publicly available subsurface maps of different scale and different level of detail.
Harmonization and compilation of these maps enabled construction of a structured surface
with near-vertical fault planes. Supplemental maps were constructed via basin modelling,
showing the temperature distribution in the subsurface, potential source rock maturity near
the mapped horizon, surface heat flow and geothermal gradient distribution. Constructed
maps illustrate the importance of the mapped interval for regional planning of future
geoenergy-related research..
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1. Introduction

Geoenergy today is not anymore related to fossil fuels
and exploration for oil and gas. It is more and more
oriented to using the developed methods for investi-
gating the deep subsurface rock formations in order
to map other resources – deep geothermal, shallow
geothermal, CO2 geological storage and energy storage.
Some of these resources, like geothermal, have already
emerged and are being hastily developed, while others,
CO2 geological storage and energy storage are still
investigated throughout the World, and not only in
the economically developed countries. When evaluat-
ing the geoenergy potential of a certain area, it is of
utmost importance to understand its subsurface
geology and thicknesses of the most important pro-
spective formations. This kind of insight can only be
obtained by a construction of a geological model
from a set of maps that define the subsurface volume.

Study area covers the Croatian part of the Panno-
nian Basin (CPB, Main Map) which spreads over the
entire northern part of Croatia. Commonly, publicly
available subsurface maps of the study area are made
either in a large scale, showing only a small portion
of the area, naturally in greater detail (e. g. Baketarić
& Cvetković, 2015; Novak Zelenika, Cvetković, Malvić,
Velić, & Sremac, 2013; Špelić, Malvić, Saraf, & Zalović,
2016) or cover the whole study area but lack in detail,

illustrating only the major features (e.g. Saftić, Velić,
Sztanó, Juhász, & Ivković, 2003; Velić, Weisser, Saftić,
Vrbanac, & Ivković, 2002). To create a regional scale
map with sufficient detail necessary for evaluation of
the subsurface potential, a compilation of both groups
of maps is needed.

In this work, the constructed map (Main Map)
shows the depth of the pre-Neogene basement, which
is overlain by a thick succession of dominantly Neo-
gene sediments (up to 7000 m thick in the Drava
Depression; according to Saftić et al., 2003 and Velić,
2007) that are in most parts of the CPB covered with
locally thick Quaternary deposits (>400 m thick;
Brkić, 2017; Hernitz, Kovačević, Velić, & Urli, 1981;
Prelogović & Velić, 1992). Pre-Neogene basement sur-
face represents one of the most important correlation
horizons in CPB. In contrast to other horizons within
the Neogene sedimentary succession, it can be recog-
nized on most of the well and seismic data as it
marks a strong unconformity (Saftić et al., 2003;
Velić, 2007).

Since the mapped unconformity surface presents the
depth of a base of an interval comprising the Neogene–
Quaternary basin infill in which majority of the Croa-
tian hydrocarbon reserves are found, it also represents
an isopach map on a regional scale. It marks an
interesting horizon underneath which hydrocarbon
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accumulations and geothermal reservoirs can occur in
the fractured and weathered basement rocks. The sedi-
ments of the Neogene age basin fill, situated just above
or near the unconformity, can contain source rocks
whose maturity level depends on the depth, age and
temperature distribution in the subsurface. Several the-
matic supplemental maps were constructed that are
important from the aspect of geoenergy potential.
These present the surface heat flow distribution
(mW/m2), averaged geothermal gradient (°C/100 m),
temperature distribution along the pre-Neogene
unconformity (°C) and maturity of the source rocks
near the pre-Neogene unconformity based on vitrinite
reflectance values (%Ro). The maps were constructed
by means of basin modelling. The Main Map, together
with supplemental maps enables the general inferences
on geoenergy potential of the study area.

2. Geological setting

Pannonian Basin (PB) is the largest Miocene-Quatern-
ary basin within the Alpine-Carpathian-Dinaridic oro-
genic system (Figure 1; e.g. Prelogović et al., 1998;
Lučić et al., 2001; Saftić et al., 2003). Only a small por-
tion of this large regional tectonostratigraphic domain
belongs to Croatia (CPB), more specifically, it’s south-
western part (Figure 1 and Main Map). The tectonic
evolution of the PB started by the Cretaceous–Paleo-
gene collision of Adria Microplate and European fore-
land, and eastward lateral extrusion of ALCAPA
crustal block and rotation of the TISZA crustal block
along the major transcurrent fault zones (e.g. Csontos
& Nagymarosy, 1998; Ratschbacher, Frisch, Linzer, &
Merle, 1991; Ustaszewski et al., 2008). In the Early to
Late Miocene, European plate roll-back subduction
induced lithospheric extension and back-arc-type
extension in the PB area (e.g. Cloetingh et al., 2006;
Schmid et al., 2008 with references). Extension
occurred before cca 20 Ma along extensional detach-
ments i.e. NNW-striking listric faults that created
deep half-grabens i.e. depressions (Fodor, Csontos,
Bada, Györfi, & Benkovics, 1999; Schmid et al., 2008;
Tari, Horváth, & Rumpler, 1992). In the Oligocene to
Middle Miocene, especially along the southwestern
margin of PB, E-W extension conveyed exhumation
of Pre-Neogene footwall complexes, i.e. metamorphic
rocks overlain by nonmetamorphic Paleozoic and
Mesozoic units (Balázs, Granjeon, Matenco, Sztanó,
& Cloetingh, 2017; Ustaszewski et al., 2010). In the
southwestern part of PB, i.e. CPB, extension reached
the peak of its development during the Badenian,
(Pavelić, 2001). This extension is characterized with
sin-rift deposition along the NW-striking normal
faults, i.e. ‘marginal faults’ or ‘depression faults’ (e.g.
Pavelić, 2001; Tomljenović & Csontos, 2001) that
locally probably reactivated older pre-Neogene thrust
contacts (Balázs et al., 2017; Tari et al., 1992). End of

the sin-rift phase, characterized by shortening and
uplift in Sarmatian, commenced along inherited nor-
mal faults that were reversely reactivated, whereas
strike-slip faults maintained transpressional move-
ments. As a result of tectonic activity, Sarmatian depos-
its in the basement hanging wall were both
overthrusted or intensively eroded (Horváth, 1995;
Horváth & Tari, 1999; Pavelić, 2001; Tomljenović &
Csontos, 2001 with references). The Pannonian post-
rift tectonic phase is characterized by deepening of
the PB and its rapid thermal subsidence due to litho-
spheric cooling (Horváth et al., 2006). The Pliocene
and Quaternary tectonic evolution of the CPB is
characterized by the gradual replacement of post-rift
thermal subsidence processes with a basin-scale con-
traction, tectonic reactivation and intensive inversion
(Matoš, 2014; Tomljenović & Csontos, 2001 with refer-
ences, Pavelić, 2001 with references).

In the CPB, the pre-Neogene basement rocks incor-
porate carbonate, igneous and metamorphic rock units
of Mesozoic and Palaeozoic age that are occasionally
overprinted by Early Cretaceous metamorphism
(Matoš, 2014 with references). These rocks are found
on the surface, on inselbergs in the western and central
part of continental Croatia (Figure 1), but also in
nearby mountains in northern Bosnia, north-western
Serbia and southern Hungary (Pamić, 1998).

Sedimentary rocks of Palaeozoic and Mesozoic age
are characterized by numerous lithotypes, which are
associated with changes in paleogeographical environ-
ments from Devonian to Cretaceous time (Jamičić,
Vragović, & Matičec, 1989). Palaeozoic and Mesozoic
sedimentary successions are proven hydrocarbon
reservoirs within a predominantly Neogene petroleum
system in the southern part of PB. Triassic dolomites
are known reservoirs in the Mura Depression, whereas
mixed Palaeozoic–Mesozoic tectonized carbonates and
breccia–conglomerates are the most important reser-
voirs in the western part of Drava Depression (Tadej,
2011; Velić, 2007). Mesozoic dolomite massif is the
principal source of clastic material in certain reservoirs
in the eastern part of Drava Depression, whereas
Palaeozoic to Mesozoic sandstones, limestones and
schists are known petroleum reservoirs in the Slavo-
nia-Srijem Depression (Tišljar, 1993; Velić, 2007).
Also, the reservoir of the Velika Ciglena geothermal
field is situated in fractured Triassic carbonates in the
area between Sava and Drava Depression.

Neogene sedimentary succession in the PB area
commenced with synrift sedimentation in Early Mio-
cene (Royden, 1988) and continued through the entire
Miocene and Pliocene within different paleogeographic
environments of Central Paratethys and its remnants
(Lučić et al., 2001; Pavelić & Kovačić, 2018; Royden
& Horvath, 1988; Saftić et al., 2003). The onset of mar-
ine sedimentation related to PB embayment and exten-
sion of the pre-Neogene basement was not
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simultaneous within CPB (Lučić et al., 2001; Saftić et al.,
2003). The Middle Badenian marine transgression
encompassed the majority of Depressions in CPB,
except the Mura Depression and Zagorje Basin, where
marine environments existed even prior to Badenian,
presumably in Eggenburgian (Lučić et al., 2001). Bade-
nian sediments show a high variation in lithological
composition from lagoon marls (Zečević, Velić, Sremac,
Troskot-Čorbić, & Garašić, 2010), variety of limestones
deposited in various depths and facies (Kováč et al.,
2007; Pavelić, 2001), to clastic lithofacies originating
from erosion of uplifted crystalline basement (Pavelić,
2001). Sarmatian sediments dominated by marls were
deposited in shallower ‘caspi-brackish’ depositional
environment that eventually turned into a lake environ-
ment (Rögl, 1996; 1998; Vrbanac, 1996; Zečević et al.,
2010). Sedimentation in Pannonian continued in a
large lake environment with the continuous decrease
of salinity to the end of Pannonian with dominant litho-
facies of sandstone and marls (Pavelić & Kovačić, 2018).
In Pliocene lake environments further decreased and
evolved into shallow lake/marsh environments with

deposition of clastic succession, i.e. mixture of sands,
clay and gravel with occasional coal layers (Cvetković,
2016; Kurečić, 2017; Mandić, Kurečić, Neubauer, &
Harzhauser, 2015).

3. Materials and methods

Construction of a structured subsurface map and sup-
plemental maps showing the geoenergy potential
requires several steps. These include preparation of
input data, simple surface construction, construction
of a structured surface and basin modelling. ArcMap
10.1 (input data preparation, legacy data digitaliza-
tion), Schlumberger Petrel (simple and structured sur-
face construction) and Schlumberger PetroMod (basin
modelling) software were used in process of construc-
tion of the Main Map and supplemental maps.

3.1. Input data

Within this work, an extensive input dataset was com-
piled from different sources, then evaluated and in part

Figure 1. Map of principal tectonic and geographic units of the Alps, Carpathians, Dinarides, and the PB with its subbasins and
depocentres (after Dolton, 2006 with references; Schmid et al., 2008). The Neogene Pannonian basin boundary is shown in red
line, while CPB is shown with a polygon.
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interpreted in order to construct the Main Map and the
supplemental maps that are related to the characteriz-
ation of the geoenergy potential.

3.1.1. Input data for the Main Map
Input data for the pre-Neogene basement surface con-
struction can be divided into the dataset for the con-
struction of simple, non-faulted surface and fault
geometry information for the construction of a struc-
tured surface. Data for simple surface construction
was gathered from various published sources, which
differ greatly in quality in respect of the input data
available in time of construction of these previous
maps. Regarding the data quality, four categories can
be defined (Figure 2).

First category of the input data relates to the regions
where the information about the surface geometry was
extracted directly from geological models which were
constructed based on the interpretation of the seismic
data acquired by recent exploration. These represent
the most accurate and reliable data for the construction
of a regional surface as the data points are densely
spaced and the interpretation is based on the most
up-to-date data augmented with some vintage data
(interpreted seismic sections acquired from 1960 to
2000). This data were extracted from Matoš (2014),
Rukavina (2015) and Rukavina, Matoš, Tomljenović,
and Saftić (2016).

Second category input data were obtained from digi-
tized legacy subsurface maps (Hernitz, 1980; Kisovar,
1979; Velić, 1980) showing structured surfaces includ-
ing fault traces. Part of the maps was digitized in sub-
sequent works (Baketarić, 2015; Jarić, 2016; Podbojec,
2015; Stopar, 2015; Vuić, 2015 and Paškov, 2016)
while the remaining were digitized within this work.
Areas covered with the second category data are also
shown in Figure 2.

Third category data (Figure 2) were derived from
interpreted profiles and maps in regional scale (e.g. Saf-
tić et al., 2003; Tomljenović & Csontos, 2001).

Fourth category data are related to surface survey
derived data on pre-Neogene surface from geological
maps covering the exploration area (Aničić & Juriša,
1984; Basch, 1981; Brkić, Kalović, & Buzaljko, 1989;
Galović & Marković, 1979; Jamičić, 1989; Jamičić &
Brkić, 1987; Jovanović, 1986; Korolija & Crnko, 1985;
Korolija & Jamičić, 1989; Magaš, 1987; Mioč &Marko-
vić, 1998; Pikija, 1987; Šikić et al.1977; Šimunić, Pikija,
& Hećimović, 1982; Šparica, Juriša, Crnko, & Šimunić,
1979, 1983, 1986) in conjunction with values from digi-
tal elevation models (DEM) obtained from open
sources (EUDEM, 2013). This type of data was
unavoidably incorporated into the construction of the
surface to avoid geologically inconsistent relations
that can occur because of the nature of the mapping
algorithm in the interpolated and extrapolated areas,

Figure 2. Spatial distribution of the quality of input data for the pre-Neogene surface construction.
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especially in areas near outcrops of the pre-Neogene
basement rocks.

For subsequent structured surface construction,
fault geometry information was extracted from all
four category data sources. As previously mentioned,
sources differ greatly in resolution and quality, thus
the extracted fault geometry was reduced to relatively
simple polylines representing the intersection of the
fault plane with the Pre-Neogene basement surface.

3.1.2. Input data for the supplemental maps
Main objective of the supplemental maps’ construction
was to enable outlining of the prospective areas along
the pre-Neogene basement unconformity that should
be further explored for geoenergy potential. For the con-
struction of supplemental data, a basin modelling pro-
cess has been applied (Hantschel & Kauerauf, 2009),
which requires additional input for subsurface charac-
terization. Crucial input data for such a task consist of
stratigraphic and lithological properties of the pre-Neo-
gene basement and Neogene–Quaternary infill, thermal
settings of the exploration area (heat flow distribution)
and calibration data for the basin modelling.

Stratigraphic and lithological outline was obtained
from Lučić et al., 2001; Saftić et al., 2003 and Pavelić
& Kovačić, 2018, in which the main stratigraphic con-
tacts are defined with their corresponding ages and
lithological composition of stratigraphic units. For

estimation of the heat flow, the input data were obtained
from works that are of regional coverage (Békési et al.,
2017; Lenkey, Dövényi, Horváth, & Cloething, 2002)
with local corrections from Cvetković, Emanović,
Stopar, and Slavinić (2018) and calibration data from
wells acquired from published sources (Energy Institute
Hrvoje Požar & Orkustofnun, 2017; Kolenković, 2012;
Kurevija & Vulin, 2011; Kurevija, Kljaić, & Vulin,
2010; Kurevija, Vulin, &Macenić, 2014; Macenić&Kur-
evija, 2018; Novak Zelenika, 2005). Input data regarding
paleo-water depth (PWD) values were taken from
regional studies (Ćorić et al., 2009; Krijgsman, Stoica,
Vasiliev, & Popov, 2010; Lučić et al., 2001; Magyar,
Geary, & Müller, 1999; Pavelić, 2001; Pavelić & Kovačić,
2018; Rögl, 1996, 1998). Vitrinite reflectance data for
calibration of paleo-heat flow was obtained from
Vulama (1994), Troskot-Čorbić, Velić, and Malvić
(2009) and Cvetković et al. (2018).

3.2. Workflow

After the preparation of the legacy input data in Arc-
Map 10.1 software, modelling was performed as a
three-step process. The simple surface construction,
structured surface construction and preparation of
the basin model were performed in Schlumberger Pet-
rel, while basin model simulation and calibration were
performed in Schlumberger PetroMod.

Figure 3. Downscaling of the high-resolution data from initial surfaces (a) to polylines (b) and point data in the end (c).

Figure 4. Representation of the overlapping area of different input data for surface construction before (left) and after corrections
(right).
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3.2.1. Simple surface construction
For the construction of the simple pre-Neogene sur-
face, only the information about the surface geometry
was regarded, without the incorporation of the fault
trace information. Data were organized separately
according to its origin/source and georeferenced to
the same coordinate system, which is in this case
WGS84 projected in UTM 33N zone. As the data
were gathered from different sources, the spatial data
overlapping and differences in the quality/resolution
of the input data were emphasized. So, the data had
to be harmonized. High-resolution data (first and
second category data) were downscaled from modelled
surface (Figure 3(a)) firstly to polyline data – by extrac-
tion of the contour lines with 100 m increment (Figure
3(b)) with node spacing of 500 m along the polyline
and subsequently reduced to point data (Figure 3(c)).

In the marginal parts of the areas covered by differ-
ent data sources, certain differences occurred, resulting
from different input datasets used in original interpret-
ations and the fact that marginal parts are usually
characterized by the uncertainty of interpretation due
to the lower data density. Since surface morphology
became erratic when both datasets in the marginal/
overlapping parts of two neighbouring data sources
were included (Figure 4), one input dataset had to be
deleted (Figure 4) to achieve more consistent resulting
surface. Relevancy of input data for describing the sur-
face morphology in the overlapping area was defined
with respect to the data category, under the presump-
tion that the higher category data provides better qual-
ity input.

Area representing outcrops of pre-Neogene base-
ment rocks were subtracted from publicly available
DEM models and used as an additional input in the
surface generation to avoid surface inconsistencies in
the marginal part of the PB or near outcrops of pre-
Neogene rocks. Area within the polygons that describe
the pre-Neogene outcrops were later removed in the
final phase of the map construction as they represent
the topographic relief rather than the contact of pre-
Neogene basement with younger sediments but were
necessary for the map construction.

3.2.2. Structured surface construction
After the completion of the simple surface, the next
step included the construction of the fault planes
from fault traces in order to generate displacement of
the surface along the fault planes. As the presentation
of pre-Neogene structured surface was the principal
aim of the research and mapping is of regional scale,
the fault planes geometry was considerably simplified.
This means that the fault planes were modelled as sub-
vertical planes from polylines representing the fault
intersection with the pre-Neogene surface. Plane geo-
metry was extrapolated vertically so the fault could
cover the vertical extent of the modelled surface for
computation of the displacement within the structural
modelling process. In some instances, the physical
aspects of fault intersections/displacements from
legacy data could not be honoured due to the subsur-
face volumes that needed to be displaced. This was
only the case in non-model derived data, i.e. 2nd to
4th category data. Once the faults are modelled without
volume errors, the simple surface that was constructed
in the previous step could now be re-constructed hon-
ouring displacements in the near-fault areas, thus
resulting in a valid structured surface (Figure 5).

3.2.3. Basin modelling
As geothermal gradient can differ in vertical scale due
to the differences in conductivity of the rocks (Eppel-
baum, Kutasov, & Pilchin, 2014), simple estimation
of temperature at depth using averaged geothermal
gradient values can yield significant errors. In order
to determine the subsurface temperature values, 3D
basin modelling procedure has been used. 3D basin
modelling was also necessary to provide the infor-
mation about the possible maturity, presented as poss-
ible vitrinite reflectance (%Ro) values, of the source
rocks situated near the pre-Neogene unconformity.
For this process, the subsurface rock formations were
grouped into four layers representing four distinct
stratigraphic and lithological intervals. The first layer
represents the pre-Neogene basement rocks consti-
tuted of magmatic and metamorphic rocks (domi-
nantly) or Palaeozoic and Mesozoic sedimentary

Figure 5. Difference between the simple surface and fault trace polyline (left) and their integration in the structured surface (right).
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rocks (subordinate). Neogene infill was subdivided in
three layers which represent sediments belonging to
Lower/Middle Miocene, Upper Miocene and Pliocene,
Pleistocene and Holocene. Thickness of each layer was
approximated based on the assumed share of each layer
in the thickness of the Neogene–Quaternary sequence.
The percentage itself was determined from spatial
analysis of thickness distribution of each interval
from Saftić et al. (2003). After the input of all par-
ameters, including average lithological composition
per layer, heat flow (HF) values, PWD values and sedi-
ment-water interference temperature (SWIT, Wygrala,
1989), the model was calibrated based on temperatures
obtained from drill-stem-tests (DST), bottom hole sta-
tic temperatures (BHST) and %Ro values. Three values
– the temperature on pre-Neogene surface, vitrinite
reflectance and surface heat flow corrected after cali-
bration process were extracted from the basin model,
while the geothermal gradient was calculated. All of
them are generalized and presented as supplemental
maps below the Main Map.

4. Discussion and conclusion

Constructed map shows a structured surface of the pre-
Neogene unconformity representing the depth to the
base of the interval in which most of northern Croatia’s
geoenergy potential is located. The Map depicts com-
plex fault systems and associated map-scale structures
(i.e. depressions and structural highs) within the CPB
that were formed during the Neogene–Quaternary tec-
tonic evolution of the study area. Constructed surface
indicates inherited pre-Neogene paleorelief that is the
result of Late Cretaceous-Paleogene compressional/
transpressional tectonic features (Csontos & Nagy-
marosy, 1998; Ratschbacher et al., 1991; Ustaszewski
et al., 2010 with references). Majority of the NW–SE
and NE–SW striking faults mapped both parallel and
perpendicular to CPB depressions are normal faults
with listric geometries that have accommodated an
E–W extension, i.e. opening and deepening of the
CPB depressions during Early to Middle Miocene
(Matoš, 2014; Tomljenović & Csontos, 2001 with refer-
ences). In the same time, NW–SE and NE–SW
elongated depressions with depth ≥3000 m (e.g.
Drava Depression with max. depth of 7000 m; see
Main Map) are mainly bordered by pre-Neogene struc-
tural highs, i.e. inselbergs (e.g. Mt. Medvednica, Mt.
Moslavačka gora, Mt. Kalnik, etc.) and their subsurface
prolongations, which affected sedimentation rates and
lithofacies distributions within the CPB.

Fault traces represent important features on the sur-
face as they can be fairways for hydrocarbon and
hydrothermal fluid migration from deeper formations
or can be boundaries of hydrocarbon traps primarily
influenced by near-fault petrophysical properties of
rocks. Additionally, they can also be very valuable in

determining the possibility of CO2 storage as larger
faults can be related to an active fault area and possible
paths of leakage of injected CO2.

Supplemental maps are a result of basin modelling
and do not represent only the legacy data values as
structured surface on the Main map. The three ‘mod-
elled maps’ presented confirm the regional settings of
the studied PB area as having elevated heat flow values
(Lenkey et al., 2002), higher than average 65 mW/m2

estimated for continents (Jaupart, Labrosse, Lucazeau,
& Mareschal, 2015; Pollack, Hurter, & Johnson,
1993), resulting in higher geothermal gradient than
Earth’s average. Although, it is worth noting that, sur-
face heat flow values determined in the calibration pro-
cess of the 3D basin modelling in certain places showed
significantly lower results than those presented in Len-
key et al. (2002) and Békési et al. (2017). Also, esti-
mated values of geothermal gradient were in certain
areas lower than those presented in Jelić, Kevrić, and
Krasić (1995) and Kurevija et al. (2014).

The first direct consequence of the elevated heat flow
is the source rock maturity reached at relatively shallow
interval (early oil window onset at only −1600 m) mak-
ing it a proliferous hydrocarbon exploration area. Mod-
elled Ro values and hydrocarbon maturity windows are
in accordance with the up to date discoveries in the CPB.
Favourable areas for directing future petroleum explora-
tions can easily be outlined based on the modelled %Ro
values presented in the Map.

Supplemental map of averaged geothermal gradient
along with the Main map can be used to geographically
focus the exploration of geothermal resources. It can be
used to delineate areas prospective for exploration of
hydrothermal systems as well as areas that are poten-
tially interesting for exploration of enhanced geother-
mal systems (hot-dry-rocks). As it was previously
mentioned, the presented map of averaged geothermal
gradient shows certain differences in comparison with
previously published maps (Jelić et al., 1995; Kurevija
et al., 2014), mainly related to generally lower averaged
geothermal gradient values in the Sava Depression. It
should be noted that the more prominent difference
of averaged geothermal gradient values in Sava and
Drava Depression visible in this supplemental map is
in accordance with the difference of Earth’s crust thick-
ness between the Sava and Drava Depression (after
Horváth et al., 2006).

The importance of the Main Map from the aspect of
exploration aiming to CO2 geological storage capacity
estimation is manifested mainly in the definition of
depth of pre-Neogene basement unconformity as well
as identification of deep discontinuities that represent
potential leakage paths for CO2 from geological storage
objects. So far, regional exploration of CO2 storage
capacity estimates has been mainly focused on Upper
Miocene sandstones as potential regional storage for-
mations, while storage in fractured basement reservoirs
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has not been assessed. Furthermore, estimates were
based on interpretation of well data to enable corre-
lation and mapping of storage unit thickness (e.g.
Kolenković, Saftić, & Perešin, 2013) and this approach
partly disregarded structural analysis. In that respect,
Main map can be used to direct further exploration
to areas where pre-Neogene basement unconformity
is situated shallower than 2500 m and where faults
are not densely situated.

Presented Map is a most detailed publicly available
structured surface of the Base Neogene unconformity
covering the CPB. Constructed maps are important for
planning of regional research of the geoenergy potential,
including conventional and unconventional hydro-
carbon resources, geothermal energy, CO2 geological
storage capacity and of the subsurface energy storage
potential as well. Implications of developing this research
are two-fold. Firstly, northern Croatia is a mature pet-
roleum province with many oil and gas fields discovered
and partly already depleted. This means that either the
quest for the by-passed oil in the existing exploitation
blocks is inevitable (which is ongoing) or one should
also consider if some regional elements of petroleum sys-
tems have been omitted or underexplored, which would
render additional HC resources, both conventional and
unconventional. Secondly, the already developed subsur-
face exploration and results offer the opportunity for
using this as an impetus to more quickly develop emer-
ging resources that are becoming increasingly important
in the light of energy transition to renewables or needs
for decarbonization of both the energy and industrial
sector. Regarding the renewables, deep geothermal
potential is a non-intermittent source and as such is
highly desirable in the energy mix which means that if
Croatia will be able to speed up the development of
this resource it is bound to have a significant impact
on the national economy.

Software

For the preparation of the data for the map construction,
ArcGIS ArcMap 10.1 and Schlumberger Petrel 2017
software were used. Construction of the Main Map
and maps with supplemental data were performed
using Schlumberger Petrel 2017 and PetroMod 2017
software. Final map layout was drafted in CorelDraw
X4 software.
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