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Abstract

The famous natural stone Giallo d’Istria, is categorized as a thick-bedded biomicritic limestone, is exploited in three locations on
the Croatian peninsula of Istria. In order to detect high-quality areas of the existing quarries and some new areas of exploitation
as well, models have been developed for the purpose of estimating important physico-mechanical properties of this limestone.
The models are based on the results of many laboratory tests. Complex and simple estimation models have been mutually
compared. The modelling is based on neural networks and multiple and simple regressions. Special attention was paid to
the applicability of the developed models in other sites.

© 2017 TheAuthors. Published by Elsevier Ltd. Thisis an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Giallo d'Istria (yellow Istrian) is the general name for the natural stone from the Kanfanar, Selina and Korenici
quarries which are situated on the Croatian peninsula of Istria. Stratigraphically speaking, Giallo d'Istria is a Lower
Cretaceous biomicritic limestone (see Figure 1). These deposits are characterized by a thick-bedded limestone of
a yellowish color. The thickness of the individual layers is anywhere from 0.80 to 1.50 m, provided that they are
separated with contour lines that define the boundaries and mark the weakly bound contour lines.
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Fig. 1. Position of the quarrys.

The thickness of the overburden is 17 to 25 m, which layers are typically denoted alphabetically as shown in
Figure 2, and the exploitation layers have a thickness between 4.8 and 6.8 meters, and sometimes even up to 7.6 m
they are marked with Roman numerals I, I, IV, V and VI. The layers differ in appearance and structure, and thus
cannot be mixed in the production process. There are also differences in the physico-mechanical properties even
within the layers in its strikes and dips, especially in porosity and density. In exploitation, such areas must be
rejected, and thus losses in yield occur [1, 2, 3].
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Fig. 2. The spatial distribution of overburden layers in quarries Kanfanar, Korenici and Selina.

In order to ensure a uniform quality of exploited natural stone, it is necessary, and if feasible, as simply as
possible, to locate areas where there are distinct changes in the strength and deformability of materials. For this
reason, a need arose to find a method which could practically assess the uniaxial compressive strength (UCS) and
Young's modulus of elasticity (E) based on easily determined material characteristics. Extensive testing of natural
stone for the development and introduction of underground mining in quarries [4] took place and the physical and
mechanical properties of the individual layers were tested which advanced the progress in achieving this goal.
The implemented tests, among other things, enabled the determination of the interdependence between the various
physico-mechanical characteristics. Modelling in this paper was inspired by the methods of assessing physico-
mechanical characteristics published in scientific literature. Principally, the most widely used is regression, but
recently more sophisticated techniques such as neural networks have frequently been applied as well [5].
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Among scientific papers, those which use similar parameters on the basis of which UCS and E are determined
should be emphasized: Palchik and Hatzor [6], Tugrul [7], Tziallas et al. [8], Yagiz [9], Moradian, and Behnia [10],
Manouchehrian et al. [11], Dehghan [12], Gokceoglu and Zorlu [13], Karakus and Tutmez [14], Yilmaz and Yuksek
[15] and Dehghan et al. [16].

2. Performed testing

Due to the need of the detailed determination of the physico-mechanical properties of materials from all
the representative layers of deposits, laboratory tests were conducted on several occasions during the research
period. All basic laboratory tests were carried out according to the recommended methods (Suggested Methods)
International Society for Rock Mechanics. The following tests were performed: determining the density and porosity
of materials [17]; testing the uniaxial compressive strength (UCS) and deformability of materials [18]; determining
the velocity of ultrasonic elastic P-waves (P-velocity) [19]; determining the point load strength index (PLT) [20] and
determining Schmidt hammer Rebound Hardness (SRH) [21]. The basic sample preparation was conducted by
employees of the company Kamen d.d. (PLC) Pazin, and this preparation consisted of the selection of large blocks
at the quarry and preparing smaller blocks and samples at the mill. So they prepared small blocks measuring 23 x 30
x 23 cm layer of overburden F and E from Koreni¢, D and A from Selina, C and B from Kanfanar where they also
extracted samples for testing exploitation layers I, 11, IV, V and VI. Laboratory samples were later extracted from
such small blocks and analyzed according to the requirements of individual test methods. Sample preparation for
individual tests as well as their testing was conducted in the Geomechanical Laboratory at the Faculty of Mining,
Geology and Petroleum Engineering, University of Zagreb. Part of the preparation as well as the geological
determination of materials was carried out in the Laboratory of Engineering Geology at the Croatian Geological
Survey institute in Zagreb [21]. The results of the tests are shown in Table 1.

Table 1. Results of laboratory tests.

. Density Porosity ~ PLT Vp UcCs E

Place and layer Limestone type (1000 kg-m”) %) (MPa) SRH (1000ms") (MPa) (GPa)
Koreniéi, layer F Mudstone 2.164 16.46 2.1 514 4424 33.1 43.647
Koreni¢i, layer F~ Mudstone 2.195 18.43 2.4 514  4.506 56.97 30.88
Koreni¢i, layer E Grainstone 2.379 10.94 1.7 382 5.107 51.44 38.379
Koreniéi, layer E Grainstone 2.376 11.25 3.8 382 5.261 66.48 44.338
Selina, layer D Floatstone 2.627 2.34 1.5 60 5.97 74.07 45.937
Selina, layer D Floatstone 2.626 2.61 3.24 57 6.038 68.76 57.265
Selina, layer D Floatstone 2.628 2.81 3.88 61.7  6.039 82.44 56.298
Selina, layer D Floatstone 2.623 3.27 2.68 613 6.044 80.12 48.805
Selina, layer D Floatstone 2.634 2.71 0.87 66.5 6.13 89.87 66.746
Kanfanar, layer C ~ Wackestone 2.64 3.06 4.4 63.5 5983 129.93  58.074
Kanfanar, layer C ~ Wackestone 2.634 243 3.6 63 5.932 126.02  62.254
Kanfanar, layer C ~ Wackestone 2.638 2.67 3.9 68.5 5992 136.1 57.682
Kanfanar, layer C ~ Wackestone 2.634 2.82 2.1 61 5.886 118.81  55.92
Kanfanar, layer C ~ Wackestone 2.634 2.29 3.7 59 5.88 109.75  54.787
Kanfanar, layer B Packstone 2.652 2.12 4.77 63.5 6.098 148.39  44.862
Kanfanar, layer B Packstone 2.652 2.49 3.76 61.1 5976 133.41  65.552
Kanfanar, layer B Packstone 2.653 23 391 63.5  6.067 154.2 64.756
Kanfanar, layer B Wackestone 2.652 2.14 4.03 61 6.057 122.46  65.292
Selina, layer A Floatstone 2.635 2.81 32 55 6.096 84.57 66.841
Selina, layer A Floatstone 2.671 3.15 2.4 58.5  6.071 89.14 52.953
Selina, layer A Floatstone 2.635 3.48 3.2 56 6.104 85.48 55.492
Selina, layer A Floatstone 2.636 2.75 2.6 70 6.123 107.61  66.878
Selina, layer A Floatstone 2.638 2.48 2.9 70 6.079 102.52  63.806
Kanfanar, layerI =~ Wackestone 2.675 1.75 4.64 555 5.884 109.68 51.835
Kanfanar, layer I ~ Wackestone 2.677 1.25 4.65 624 5909 11526  51.429
Kanfanar, layerI ~ Wackestone 2.676 1.23 3.81 66.5 5.896 121.27  52.118
Kanfanar, layer I ~ Mudstone 2.674 1.15 5.42 61.8 5958 111.3 50.405
Kanfanar, layerI ~ Mudstone 2.673 1.13 53 66 5.955 121.17 552
Kanfanar, layer II ~ Floatstone 2.65 2.07 3.6 62 5.944 112.54 64.556
Kanfanar, layer II ~ Floatstone 2.654 2 32 60 5.829 99.11 61.59

Kanfanar, layer II  Floatstone 2.651 2.25 3.9 61 5.984 109.31  60.941




Zlatko BriSevac et al. / Procedia Engineering 191 (2017) 434 — 441

Table 1. Results of laboratory tests - continuation.
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. Density Porosity PLT Vp UcCsS E
Place and layer Limestone type (1000 kem™) (%) (MPa) SRH (1000ms™)  (MPa)  (GPa)
Kanfanar, layer I Floatstone 2.666 2.02 3.6 67 5.97 136.26  68.11
Kanfanar, layer I1 Floatstone 2.651 1.61 43 62 5.967 119.7 58.04
Kanfanar, layer IV~ Wackestone 2.684 0.64 55 61.5 6.149 152.37  60.884
Kanfanar, layer IV Mudstone 2.698 0.74 52 61 6.145 125.64  55.797
Kanfanar, layer IV Mudstone 2.686 0.85 5.4 68.5  6.096 178.19  61.383
Kanfanar, layer IV Mudstone 2.684 0.99 4.7 63.5  6.089 169.45  69.09
Kanfanar, layer IV~ Wackestone 2.688 0.84 4.6 64.5 6.136 17293  68.997
Kanfanar, layer V. Floatstone 2.68 1.8 4.8 59.5  6.149 136.43 67917
Kanfanar, layer V Rudstone 2.683 1.1 4.5 63 6.229 17524  74.153
Kanfanar, layer V. Floatstone 2.684 1.16 3.7 69.5  6.221 180.5 67.262
Kanfanar, layer V. Floatstone 2.683 0.84 4.8 60 6.178 166.31  72.322
Kanfanar, layer V. Floatstone 2.683 0.84 4.9 60 6.15 168.22  68.397
Kanfanar, layer VI Floatstone 2.613 1.13 32 67 5919 107.52  61.541
Kanfanar, layer VI Floatstone 2.607 1.23 3.5 63.5 5.897 75.84 65.258
Kanfanar, layer VI Floatstone 2.601 1.5 4.8 51 5.857 72.18 65.612
Kanfanar, layer VI Rudstone 2.629 1.28 43 66 5.971 90.74 66.786
Kanfanar, layer VI Rudstone 2.624 1.15 4.8 67 5.978 102.15  86.48

The results of descriptive statistics of the set presented in Table 1 are given in Table 2. According to the size of
the standard deviation, it is visible that the largest dispersion of data was given by the UCS test results, while on
the other hand, the least dispersion of data was during the testing of the density and velocity of P waves. However, if
we want to compare the dispersion of data for different values with different units of measurement, then
the Coefficient of variation is accurate. It shows the greatest dispersion with porosity, and two property groups have
approximately the same dispersion. The first group consists of UCS and PLT, and the second group consists of

density, SRH and P-velocity.

Table 2. Descriptive statistics of the surveyed materials Giallo D Istria.

Comparative tests conducted Mean Minimum  Maximum Starhlde?rd Co#fﬁcient of
value value value deviation  variation (%)
Density (1000 kg'm™) 2.6215 2.1640 2.6980 0.11112 4.239
Porosity (%) 2.9242 0.6400 18.4300 3.66629 125.378
Point load test — PLT (MPa) 3.7867 0.8700 5.5000 1.09370 28.883
Schmidt Rebound Hardness - SRH 61.0208 38.2000 70.0000 6.63633 10.876
P-wave velocity (1000 m-s™) 5.9234 4.4240 6.2290 0.36506 6.163
Uniaxial compressive strength — UCS (MPa) ~ 114.1865  33.1000 180.5000 35.86063  31.405
Young's modulus of elasticity — E (GPa) 59.4489 30.8800 86.4800 9.99195 16.808

The correlation dependence of individual tests is shown in Table 3. Porosity has a negative correlation with all
other properties, which means an increase in the porosity results in a reduction in all other values. According to
Evans’ interpretation [22] the strength of interdependencies can be described by size, as shown in Table 3.

Table 3. Correlations between tests performed.

Comparative tests conducted 8%r(1)s(;tzg_m_3) er)osity E\I/‘;a) SRH X% 00 m-s™) K/?l’sa) fGPa)
Density (1000 kgm™) 1.000000 -0.975333  0.459429  0.640282  0.965444 0.649812  0.594591
Porosity (%) -0.975333 1.000000  -0.482353  -0.653525 -0.942704 -0.600888  -0.652219
PLT (MPa) 0.459429 -0.482353  1.000000  0.222391  0.384955 0.603924  0.336280
SRH 0.640282 -0.653525  0.222391 1.000000  0.628970 0.561293  0.543868
P-velocity (1000 m-s™) 0.965444 -0.942704  0.384955  0.628970  1.000000 0.621141  0.646761
UCS (MPa) 0.649812 -0.600888  0.603924  0.561293  0.621141 1.000000  0.522603
E (GPa) 0.594591 -0.652219  0.336280  0.543868  0.646761 0.522603  1.000000
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Porosity has a very strong interdependence with density and P-velocity. UCS has a strong correlation with
density, porosity, PLT and P-velocity. E has a strong correlation with porosity and P-velocity, a weak
interdependence with PLT, and it has a moderate relationship with the rest of the properties. The geological
determination of samples shows that the test samples were mostly with mud and matrix supported and belonging to
madstone, wackstone and floatstone types per Dunham's classification limestone [23]. The appearance of grain-
supported in the form of grainstone and packstone types occur in two layers of overburden, but also in the deepest
layers marked V and VI where there were three samples of the rudstone type.

3. Modelling estimates

The most accessible method for assessing UCS and E are simple and multiple regression as well as neural
networks and so modelling in this paper was based on those procedures. For modelling complex assessments,
the software package Statistica 12 was used, which offers the possibility of creating regression models and
the models of artificial neural networks such as Multiple Layer Perceptron (MLP). This type of network was chosen
because it performed better than the other type which Statistica 12 can produce, i.e. Radial Basis Function (RBF).

3.1. Simple regression models

Simple regression equations comprise relations defined for the estimation of UCS and E values as dependent
variables based on the tested value of another property that constitutes an independent variable [24]. In this paper,
the independent variable was represented by one of the values for testing density, porosity, PLT, SRH and P-
velocity. The success of the model is usually determined through the coefficient of determination R?. The modelling
results are shown in Table 4. Among all the performed simple models, the best models for estimating UCS are
shown in equations (1) (2) and (3) which used density, porosity and SRH as independent variables. The best models
for estimating E are shown in equations (4) and (5) which used porosity and P-velocity as independent variables.

UCS =0,1724-e>*°"* (1)
UCS =139,63-n7"% ()
UCS =1,5991-¢" """ )
UCS = 65,025-¢ %" ©)
UCS =7,1465-"*"" ®)

where is: UCS - uniaxial compressive strength in MPa, E - Young's modulus of elasticity in GPa, p - density in
1000 kg'm™, n — porosity in %, Vp - P-wave velocity in 1000 m-s™.

Table 4. Simple models for estimation UCS and E.

Dependent variable  Independent variable ~ Coefficient of determination R

UcCs Density 0.5959
ucCs Porosity, 0.5703
ucs PLT 0,3711
ucs SRH 0,3885
UucCsS P velosity 0.5391

E Density 0.4427
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Table 4. Simple models for estimation UCS and E- continuation.

Dependent variable  Independent variable — Coefficient of determination R

E Porosity 0.5201
E PLT 0.1226
E SRH 0.3271
E P-velocity 0.5045

3.2. Multi regression models

Multiple regression models are represented by the equation (6).
Y=08+BX +BX,+. . +BX +& (6)

where is: Y - dependent variable, X;, X, ..., Xi - independent variables, S - denotes contribution of
the independent variable X;, ¢ - random error.

According to Table 5, which presents the results of modelling, the model that included porosity, PLT, SRH and
P-velocity proved to be the best for estimating UCS. The estimation of E using this type of model did not show
greater success than the model based on single regressions.

Table 5. Multiple regression models.

Dependent variable ~ Independent variable ~ Coefficient of determination R?

ucCs Density, PLT, SRH 0.5918
ucCs Porosity, PLT, SRH 0.5656
ucs PLT, SRH, P-velocity 0.5952
UCsS Density, PLT 0.5405
ucs Density, SRH 0.4580
UCs Porosity, PLT 0.4896
UCsS Porosity, SRH 0.4107
UcCs PLT, P-velocity 0.5421
ucCs SRH, P-velocity 0.4340
E Density, PLT, SRH 0.4075
E Porosity, PLT, SRH 0.4518
E PLT, SRH, P-velocity 0.4593
E Density, PLT 0.3586
E Density, SRH 0.3987
E Porosity, PLT 0.4260
E Porosity, SRH 0.4495
E PLT, P-velocity 0.4273
E SRH, P-velocity 0.4494

3.3. Neural network models

The success of neural network models is shown in Table 6, where the best performance estimate of UCS is
shown in the model in the first row of the table which has the largest number of available predictors. Based on
performance, the second place model is the model in which the predictors were density, porosity, PLT and SRH, and
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in third place is the model with the density and porosity predictors. Predictors of the third model can be determined
by one simple procedure and so from that point of view, this model is very suitable for the estimation of UCS.

Table 6. Neural networks models.

Estimates target  Input parameters Coefficient of determination R*
ucs Density, porosity, PLT, SRH, P-velocity 0.8565
UCsS Density, porosity, PLT, SRH 0.8015
UCs Density, porosity, SRH 0.7755
ucCs Porosity, PLT, SRH, 0.7546
uCs Density, porosity 0.7828
UcCs Density, SRH 0.7323
ucs Density, PLT 0.7183
E Density, porosity, PLT, SRH, P velocity 0.6406
E Density, porosity, PLT, SRH 0.5705
E Density, porosity, SRH 0.4912

4. Discussion

Due to the need for more accurate and easier detection of areas of exploitation layers that have unfavorable
physico-mechanical properties, models to estimate UCS and E were developed based on laboratory tests. It was
necessary to find a simple and sufficiently versatile model that would be based on simple, achievable tests. Tests on
density, porosity and SRH can be easily evaluated, so it is understandable that they are the preferred parameters on
the basis of which UCS and E are estimated.

The best model for the estimation of UCS based on single regression is the one with density as the independent
variable that has a R* of 0.5959, and the best model of its kind to estimate E is the one with an independent variable
porosity with a R? = 0.5201. More complex models can be considered more successful only if they have a higher R
value than the aforementioned values.

While modelling with the method of multiple regression, it was necessary to take into account that the tested
independent variables used are not interdependent. According to Table 3, there is a large interdependence between
density, porosity and P-velocity and so combinations of these values are not used in modelling. Table 5 shows that
no combination of independent variables can achieve a higher R? than those achieved in single regression models.
Simple models have a non-linear form and this is the reason why they are better than multiple regression models.

Neural network models have a higher estimate success rate, as expected, and the advantage of this type of model
is that you are not limited in terms of the combination of predictor values. Table 6 shows that the largest R* values
are achieved by models estimating UCS and E where the predictors include all the available values. However, since
the implementation of the P-velocity test cannot be regarded as a simple test, this characteristic is omitted from
the list of predictors. Therefore, it can be determined that the best estimate with the application of all essential
criteria for a successful estimate is achieved by models which have density, porosity, PLT and SRH as predictors. In
the case of UCS estimates, these models have a R?> = 0.8015 whereas in the case of E estimates, R* is 0.5705.

5. Conclusion

When modelling estimates are performed in the mining industry, the possibilities of the easiest application of
the model in the field must be taken into account. Therefore, single regression methods should not be neglected even
though their parameters of success do not give better results than neural networks, but they have the advantage of
application simplicity.

Simple regression methods that have a non-linear shape proved to be more successful than the linear generalized
form of multiple regression. Therefore, future modelling using multiple regression should focus more on non-linear
forms of multiple regression.
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The rapid rise of computer technology makes models of neural networks more accessible, so such complex
models become practically applicable and contribute to the greater security of estimated results
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