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ŽELJKA MILIN ŠIPUŠ
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Generalized Helices on a Lightlike Cone in
3-Dimensional Lorentz-Minkowski Space

Generalized Helices on a Lightlike Cone in
3-Dimensional Lorentz-Minkowski Space

ABSTRACT

In this paper we provide characterizations and give some
properties of generalized helices in 3-dimensional Lorentz-
Minkowski space that lie on a lightlike cone. Further-
more, by analyzing their projections, which turn out to
be Euclidean or Lorentzian logarithmic spiral, we present
their parametrizations. In particular, we also analyze pla-
nar generalized helices, that is planar intersections of a
lightlike cone.
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Opće zavojnice na svjetlosnom stošcu u trodi-
menzionalnom Lorentz-Minkowskijevom prostoru

SAŽETAK

U radu je dana karaketrizacija općih zavojnica u 3-
dimenzionalnom Lorentz-Minkowskijevom prostoru koje
leže na svjetlosnom stošcu te su predstavljena njihova svoj-
stva. Nadalje, analizirajući njihove projekcije, koje su eu-
klidske ili Lorentzove logaritamske spirale, odredili smo i
njihove parametrizacije. Kao specijalan slučaj analizirane
su ravninske opće zavojnice, tj. presjeci ravnine i svjetlo-
snog stošca.

Ključne riječi: Lorentz-Minkowskijev prostor, opća za-
vojnica, krivulje konstantnog nagiba, svjetlosni stožac

1 Introduction

Generalized helices or curves of constant slope in Eu-
clidean space are curves making a constant angle with a
fixed straight line. Hence, they are isogonal trajectories of
rulings of a cylindrical surfaces whose rulings are paral-
lel to a fixed direction. A classical Euclidean result states
that a curve is a generalized helix if and only if the ratio
of its torsion to curvature is constant. Of particular inter-
est it is also to study generalized helices with some addi-
tional property, such as lying on certain surfaces, for in-
stance, spheres. In Euclidean space, spherical generalized
helices have a property that their orthogonal projections
onto a plane normal to their axis appear as epicycloids.
In this paper we are interested to analyze the analogous
problem of generalized helices in Lorentz-Minkowski 3-
space with additional property that they lie on a lighlike
cone. A lightlike cone LC(p) with a vertex at a point p is,
from Euclidean perspective, a rotational cone with vertex p

and “vertical” axis. We perform this analysis by analyzing
their projection curves.
In Lorentz-Minkowski space, generalized helices are stud-
ied in e.g. [4], where their analogous characterization to
the Euclidean counterparts are presented. Null helices are
studied in [2]. Curves on a lightlike cone are described in
terms of their intrinsic curvatures in [3].

2 Preliminaries

Let R3
1 be a pseudo-Euclidean or Lorentz-Minkowski

space, that is, the vector space R3 equipped with the in-
definite symmetric bilinear form (a pseudo-scalar product)

〈x,y〉= x1y1 + x2y2− x3y3.

A vector x in the Lorentz-Minkowski 3-space is called
spacelike if 〈x,x〉 > 0 or x = 0, timelike if 〈x,x〉 < 0
and lightlike if 〈x,x〉 = 0 and x 6= 0. A timelike vec-
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tor x = (x1,x2,x3) is said to be positive (resp. negative) if
x3 > 0 (x3 < 0). The pseudo-norm of a vector x is defined
as a real number

||x||=
√
|〈x,x〉| ≥ 0. (1)

Angle between vectors in R3
1 is introduced as follows:



coshϕ =− 〈x,y〉
||x|| ||y||

, if x,y are positive (negative)

timelike vectors,

cosϕ =
〈x,y〉
||x|| ||y||

, if x,y are spacelike vectors

that span a spacelike plane,

coshϕ =
|〈x,y〉|
||x|| ||y||

, if x,y are spacelike vectors

that span a timelike plane,

sinhϕ =
|〈x,y〉|
||x|| ||y||

, x is a spacelike, y a positive

timelike vector.

(2)

The causal character (spacelike, timelike or lightlike) of
a regular curve is determined by the causal character of
its velocity vector. The local theory of curves in Lorentz-
Minkowski space can be found in e.g. [4]. For our pur-
poses, it is enough to provide it for spacelike curves only.
Let c : I ⊂ R→ R3

1 be a spacelike curve parametrized by
the arc length. If c′′(u) is not null, the Frenet frame and the
Frenet equations are given by T ′

N′

B′

=

 0 κ 0
−εκ 0 τ

0 τ 0

 T
N
B

 , (3)

where ε = 〈N,N〉 = ±1, κ(u) = ‖c′′(u)‖ is the curvature
and τ(u) = ε〈B′(u),N(u)〉 is the torsion of c.
Let c′′(u) be null for all u ∈ I. These curves are called
pseudo-null curves. The principal normal vector is defined
as N(u) = c′′(u). The binormal vector B(u) is the null vec-
tor orthogonal to T satisfying 〈N,B〉= 1. Then the Frenet
equations are T ′

N′

B′

=

 0 κ 0
0 τ 0
−κ 0 −τ

 T
N
B

 . (4)

Here τ= 〈N′,B〉 is the so-called pseudo-torsion, [4, 5]. The
curvature κ can be either 0 (a curve is a straight line), or
κ = 1.

3 Curves lying on a lightlike cone

A lightlike cone LC(p) with the vertex p in Lorentz-
Minkowski space R3

1 is a quadratic surfaces defined as

LC(p) = {q ∈ R3
1 : 〈q− p,q− p〉= 0}.

It is a (Euclidean) rotational cone with the axis x3, and a
ruled surface with lightlike generators (rulings). As a sur-
face in R3

1 it inherits a degenerated metric of rank 1 (an
isotropic metric), therefore it is a lightlike surface. The
lightlike cone with the vertex at 0 is simply denoted by LC.
If a curve c lies on a lightlike cone LC(p), then
〈c(s)− p,c(s)− p〉= 0 and therefore c(s)− p is a light-
like (null) vector. This implies 〈c(s)− p,c′(s)〉= 0, that is,
c′(s) is orthogonal to a lightlike vector c(s)− p. Then c′(s)
is either lightlike or spacelike (excluding zero vector due
to regularity of a curve). In the case when c′(s) is lightlike,
it needs to be collinear to c(s)− p, which would imply that
c is a null straight line (the only lightlike vectors orthogo-
nal to a lightlike vector are collinear vectors). In the case
when c′(s) is a spacelike vector, we can assume that it is
parametrized by arc length, 〈c′,c′〉 = 1. The vector c′′(s)
can be either spacelike, timelike or lightlike. Curves with
the last property are pseudo-null curves.

For curves lying on LC(p), the following result holds.

Theorem 1 A curve c lies on a cone LC(p) centered at p
if and only if

1. c is a spacelike curve with c′′ spacelike or timelike
that satisfies (when parametrized by arc length)

ρτ =±ρ
′, (5)

where ρ = 1
κ

;

2. c is a spacelike curve with c′′ lightlike if and only if
c is a Lorentzian circle in a lightlike plane (that is,
a Euclidean parabola with the axis parallel to the
lightlike direction);

3. c is a lightlike curve if and only if c is a generator
line of a ruled surface LC(p).

Proof. To prove the first statement, we recall that
〈c(s)− p,c(s)− p〉= 0 implies 〈c(s)− p,T (s)〉 = 0. Dif-
ferentiating the previous equation and using the Frenet for-
mulas (3) we get

〈c(s)− p,N(s)〉=−ρ(s), 〈c(s)− p,B(s)〉= ε
ρ′

τ
.

Therefore, if we write c(s)− p = αT (s)+βN(s)+ γB(s),
we can conclude

c(s)− p =−ρN(s)− ε
ρ′

τ
B.
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Furthermore, since c(s)− p is a null vector, we have

ρ
2 =

(ρ′

τ

)2

which was to prove. For the second statement we recall
that a pseudo-null curve is planar and lies in a lightlike
plane, [1]. A lightlike plane contains only one null direc-
tion, that is, a direction parallel to one null ruling of LC(p).
Therefore, a curve c is planar section of LC(p) yielding as
an intersection a Euclidean parabola with the axis parallel
to the null direction, that is, a Lorentzian circle in a light-
like plane. Finally, the last statement is obvious. �

Remark 1 Notice that among the curves described by the
case (1) in the previous theorem, there are also other pla-
nar sections beside Euclidean parabola described in (2),
that is curves that satisfy τ = 0. By the condition (5)
their curvature is κ = const. 6= 0. Therefore, they are Eu-
clidean (resp. Lorentzian) circles in spacelike (resp. time-
like) planes, that is, from Euclidean perspective, ellipses
and equilateral hyperbolas (see Figure 1).

Figure 1: Lorentzian circle in spacelike, timelike and
lightlike plane, respectively.

4 Generalized helices and their plane pro-
jections

A generalized helix is a regular unit speed curve
(parametrized by the arc length or a pseudo-arc length) for
which there exists a constant vector u ∈ R3

1, u 6= 0, such
that

〈T,u〉= const.=: α. (6)

If a spacelike or a timelike curve c is a generalized helix
then

τ

κ
= const.=: A, (7)

and conversely, for a curve c with non-lightlike normal
vectors, [4]. A direction determined by u is called the axis
of a helix.

We allow also curves satisfying A = 0, that is, planar
curves, to belong to the class of generalized helices. The
constant vector u from the definition is the unit normal of
the plane in which the curves lie, therefore α = 0.
In this section we are interested in relation of a general-
ized helix and its projection curve onto a certain plane in
Lorentz-Minkowski space. For this purpose we consider
general non-lightlike planes as projection planes. Let a
plane π be determined by its unit normal vector u, which
is spacelike (resp. timelike) when a plane π is timelike
(resp. spacelike). We denote δ = 〈u,u〉=±1. Then a pro-
jection curve c̃ of c onto a plane π is given by

c̃ = c−δ〈c,u〉u. (8)

If the initial curve c is spacelike, the following result holds:

Theorem 2 Let c be a (unit speed) spacelike generalized
helix with respect to a unit spacelike or timelike vector u.
Let c̃ be the projection of c onto a plane orthogonal to u.
Then c̃ has a constant speed. Furthermore, if the principal
normals of c and c̃ are of the same causal non-null char-
acter, the curvature of c and of c̃ are related by

κ̃
2(1−δα

2)2 = κ
2. (9)

Proof. Let s be the arc length parameter of c and s̃ of c̃.
Differentiating (8) with respect to s yields

T = T̃
ds̃
ds

+δ〈T,u〉u. (10)

Therefore, since T̃ and u are orthogonal,

〈T,T 〉= 〈T̃ , T̃ 〉(ds̃
ds

)2 +δα
2.

Moreover, we have and 〈T,T 〉= 1, and 〈T̃ , T̃ 〉=±1, since
the causal character of c̃ is not known. Therefore we have

±(ds̃
ds

)2 = 1−δα
2. (11)

Moreover, the speed of c̃ is given by

||dc̃
ds
||= ||T̃ ds̃

ds
||=

√
|1−δα2|= const. (12)

which implies that c̃ is of constant speed (with respect to
s).
To prove equation (9), we proceed as follows. First we no-
tice that by (6) from the definition of a generalized helix
we have

〈N,u〉= 0.

Now, by differentiating (10) and using the previous equa-
tion, we get

κ(s)N(s) = κ̃(s̃)Ñ(s̃)(
ds̃
ds

)2,
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where κ̃ is the curvature of c̃ (as a curve in Euclidean or
Lorenzian plane, R2 or R2

1). We can notice that the previ-
ous equation implies that N and Ñ should be collinear, and
therefore of the same causal character. In that case, by tak-
ing the pseudo-scalar square of the previous equation we
get

κ(s)2 = κ̃(s̃)2(
ds̃
ds

)4.

Now (11) implies that the equation (9) holds. Note that
otherwise, when N and Ñ are not of the same causal char-
acter, it would not be possible for the relation (9) to be
satisfied in real numbers. �

Remark 2 The relation (9) between the curvatures of an
initial curve and its projection is valid only under the
assumption that their principal normals are of the same
causal character. For example, the relation holds if a curve
c with κ = const. 6= 0, τ = 0, that is a circle in R3

1, is pro-
jected onto the plane of the same character as the plane
in which it lies: if c is a circle in a spacelike plane (an
ellipse from the Euclidean perspective), then its projection
onto xy-plane is a “real” circle in Euclidean plane, having
constant curvature κ̃.

In the next result we discuss the causal character of the
projection of a spacelike generalized helix.

Theorem 3 Let c be a (unit speed) spacelike generalized
helix with respect to a unit spacelike or timelike vector u.
Then c̃ is:

1. spacelike, if u timelike or if u is spacelike such that
u and T span a spacelike plane;

2. timelike, if u is spacelike such that u and T span a
timelike plane.

Proof. Statements follow from the analysis of the speed
of a projection, 〈c̃′, c̃′〉 = 1− δα2, where derivative is
taken with respect to s. If u is a timelike unit vector,
then δ = −1, which implies 〈c̃′, c̃′〉 = 1 + α2. Hence
the projection c̃ is spacelike (which is actually obvious
as c̃ is a projection onto a spacelike plane). To prove
other statements, we relate the constant α in the defini-
tion (6) to the angle between the initial curve c and u,
see (2). If u,T are spacelike vectors that span a space-
like plane, then we can interprete α as α = cosϕ, for
some real number ϕ; if they span a timelike plane, then
|α|= coshϕ. Therefore, in the first case of the Theorem we
have 〈c̃′, c̃′〉= 1−α

2 = 1− cos2
ϕ = sin2

ϕ > 0, and in the
second case 〈c̃′, c̃′〉= 1−α2 = 1−cosh2

ϕ=−sinh2
ϕ< 0.

By these relations the causal character of c̃ is determined.
�

Remark 3 Let us discuss the case when a curve c
is lightlike. The lightlike (null) generalized helices
are those having a pseudo-torsion (lightlike curva-
ture) constant [2, 4]. There are three types of null
helices parametrized by pseudo-arc parameter, those
congruent to c(s) = ( 1

a2 cos(as), 1
a2 sin(as), s

a ), c(s) =

(− s
a ,

1
a2 cosh(as), 1

a2 sinh(as)) or to so-called null cubics

c(s) = ( s3

4 −
s
3 ,

s2

2 ,
s3

4 + s
3 ). Their axes are timelike, space-

like and lightlike, respectively. None of them are curves
lying on a lightlike cone in Lorentz-Minkowski space.

5 Generalized helices lying on a lightlike
cone LC(p)

Theorem 4 Let c be a (unit-speed) generalized helix with
respect to a unit vector u that lies on a lightlike cone
LC(p). Then the curvature and the torsion of c are given
by

κ(s) =± 1
As

, τ(s) =±1
s
. (13)

The curvature κ̃(s̃) of a projection c̃ of c on the plane or-
thogonal to u is given by

κ̃(s̃) =
1
as̃

, i.e. ρ̃(s̃) = as̃, (14)

where a2 = A2|1−δα2|.
In particular, if A = 0, that is, if c is planar, then
κ(s) = const. 6= 0, τ = 0, and therefore κ̃(s̃) = const. 6= 0.

Proof. If c is a unit-speed on LC(p), then c is a space-
like curve whose curvature and torsion satisfy (5). Then
ρ′2 = A2, that is, ρ = ±As+ c and the assertion follows
(by neglecting without a loss of generality a constant c).
The curvature of a projection c̃ is obtained from (9). Fur-
thermore, in particular if A = 0, then α = 0, (9) implies
κ(s) = κ̃(s̃) = const. �

Remark 4 Pseudo-null curves lying on a lightlike cone,
that is Euclidean parabolas in lightlike planes (with
pseudo-torsion τ = 0), are also curves of constant slope
by definition, but we do not consider their projection since
they have null principal normals.

Our next goal is to analyze plane projections of generalized
helices lying on a lightlike cone in Lorentz-Minkowski 3-
space. Because of a special position of a lightlike cone
LC(p) (having x3 as its axis, usually depicted as vertical),
we are interested in projections onto a spacelike xy-plane
and Lorentzian xz-plane. Let c be a curve on a lightlike
cone (spacelike curve parametrized by arc length) and u
a timelike vector (δ = −1). The constant α can be inter-
preted in terms of an angle as α = 〈T,u〉 = sinhϕ. Then
we have 〈c̃′, c̃′〉= 1−δα2 = cosh2

ϕ. The projection c̃ onto
a spacelike plane orthogonal to u is a spacelike curve with
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the arc length parameter s̃ = (coshϕ)s. The curvature κ̃ is
given by (14) as

κ̃(s̃) =± 1
(Acoshϕ)s̃

=
1
as̃

,

where a =±Acoshϕ.
We can reconstruct the projection curve c̃ from its natu-
ral equation (14). In the case when the projection plane is
xy-plane, we introduce

t(s̃) =
∫ s̃

s̃0

κ̃(s̃)ds̃ =
∫ s̃

s̃0

1
as̃

ds̃ =
1
a

ln|bs̃|, (15)

where b is a real constant. The curve c̃ can be written as

c̃(s̃) =
(∫ s̃

s̃0

cos t(s̃)ds̃,
∫ s̃

s̃0

sin t(s̃)ds̃
)
.

By calculating these integrals and using (15) we get the
following parametrization of the curve c̃

x(t) =
a

b(1+a2)
eat(acos t + sin t),

y(t) =
a

b(1+a2)
eat(−cos t +asin t).

We can notice that this curve is a logarithmic spiral (see
Figure 2, right). Now, having a projection, the remaining
coordinate of a curve c lying on a lightlike cone LC is cal-
culated as

z(t) =
a

b
√

1+a2
eat .

See Figure 2.

Figure 2: A generalized helix on a cone and its projection
on xy-plane

Now, consider u to be a spacelike vector (δ = 1), in par-
ticular u = (0,1,0). The projection plane is a timelike xz-
plane.

If c′ and u span a spacelike plane, a projection curve c̃ is
spacelike. Then α can be interpreted as cosϕ, ϕ ∈ R (see
(2)) . Then we have 〈c̃′, c̃′〉= sin2

ϕ, and for the arc length
parameters the following holds s̃ = sinϕs. The curvature κ̃

satisfies (14) with a = Asinϕ. The spacelike curve c̃ in a
timelike plane can be reconstructed from (see [4])

c̃(s̃) =
(∫ s̃

s̃0

cosh t(s̃)ds̃,
∫ s̃

s̃0

sinh t(s̃)ds̃
)
,

where t(s̃) is given by (15). By calculating these integrals
and using (15) we get the following parametrization of the
curve c̃ with a 6= 1

x(t) =
a

b(a2−1)
eat(−sinh t +acosh t),

z(t) =
a

b(a2−1)
eat(asinh t− cosh t).

It would be a Lorentzian logarithmic spiral (see Figure 3,
right). Furthermore, for the initial curve we need the coor-
dinate

y(t) =
a

b
√

1−a2
eat .

See Figure 3.

Figure 3: A generalized helix on a cone and its projection
on xz-plane

In the case when a = 1, b = 1 we have

x(t) =
1
2
(

e2t

2
+ t),

z(t) =
1
2
(

e2t

2
− t).

The coordinate y is given by

y2(t) =−1
2

e2tt,

which restricts to t < 0. See Figure 4.

Figure 4: A generalized helix on a cone and its projection
on xz-plane
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Finally, if u is spacelike, and c′ and u span a timelike
plane, then by (2) we have |α| = coshϕ, ϕ ∈ R. Then
we have 〈c̃′, c̃′〉 = −sinh2

ϕ, and for the arc length pa-
rameters s̃ = (sinhϕ)s. The curvature κ̃ satisfies (14) with
a =±Asinhϕ. The timelike curve c̃ in a timelike plane can
be reconstructed from

c̃(s̃) =
(∫ s̃

s̃0

sinh t(s̃)ds̃,
∫ s̃

s̃0

cosh t(s̃)ds̃
)
,

where t(s̃) is given by (15). Lorentzian logarithmic spirals
obtained in this case are the same as in the previous, but
with the x and z coordinates interchanged.

Finally, as we have already commented, when projections
curves are circles in xy- or xz-planes, that is, curves hav-
ing a constant curvature κ̃, then by (7), their torsion τ is
also constant, meaning they are helices lying on a circular
cylinder as well. Then they should be planar curves, that
is planar intersections of a lighlike cone (Euclidean circles
or hyperbolas).

We can also note, that contrary to Euclidean case, where
the projections of cone helices are logarithmic spirals and
circles only, in Lorentz-Minkowski case we have other
classes of cone helices as well, those whose projections are
Lorentzian logarithmic spirals and hyperbolas, and those
lying in lightlike planes (parabolas).
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