
Influence of smart meters on the accuracy of methods
for forecasting natural gas consumption

Smajla, Ivan; Karasalihović Sedlar, Daria; Vulin, Domagoj; Jukić, Lucija

Source / Izvornik: Energy Reports, 2021, 7, 8287 - 8297

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.egyr.2021.06.014

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:392564

Rights / Prava: Attribution-NonCommercial-NoDerivatives 4.0 International / Imenovanje-
Nekomercijalno-Bez prerada 4.0 međunarodna

Download date / Datum preuzimanja: 2024-07-23

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum 
Engineering Repository, University of Zagreb

https://doi.org/10.1016/j.egyr.2021.06.014
https://urn.nsk.hr/urn:nbn:hr:169:392564
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://repozitorij.rgn.unizg.hr
https://repozitorij.rgn.unizg.hr
https://repozitorij.unizg.hr/islandora/object/rgn:2143
https://dabar.srce.hr/islandora/object/rgn:2143


Energy Reports 7 (2021) 8287–8297

t
(
e
a
i
i
g
i
d

i
g
c
b
t

d
l

h
2
n

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

Influence of smartmeters on the accuracy ofmethods for forecasting
natural gas consumption
Ivan Smajla ∗, Daria Karasalihović Sedlar, Domagoj Vulin, Lucija Jukić
University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia

a r t i c l e i n f o

Article history:
Received 15 February 2021
Received in revised form 10 May 2021
Accepted 9 June 2021
Available online 2 July 2021

Keywords:
Natural gas consumption
Forecasting methods
Input parameters
Smart metering
Simulation
Lognormal distribution

a b s t r a c t

In 2019, natural gas accounted for 25.4% of gross inland consumption in the European Union (EU),
making it one of the most important energy sources in the EU. The importance of natural gas,
together with the ongoing liberalization of the gas market, has made the natural gas sector significantly
commercially sensitive. To reduce the risk of financial losses, balance group managers often need to
have an accurate forecast of natural gas consumption. An accurate forecast will ensure small deviations
between actual gas consumption and reserved gas volumes and transmission system capacity resulting
in less balancing energy required, which is sold at a higher price in the final balancing process.
This paper researches the optimal number of smart meters and best fitted consumption data distri-
bution in order to achieve satisfactory results in terms of the accuracy by using simple forecasting
methods. Beside mentioned, this paper provides accuracy overview of various already available
forecasting methods, as well as the selection of input parameters for forecasting short term natural
gas consumption. Using the calculated linear temperature dependence together with the lognormal
distribution, the consumption of natural gas was simulated for 12 different cases. The simulation
showed that, if more than 10 000 smart meters were installed, deviation between average estimated
natural gas consumption and the real data would be less than ±2.96 %. In case of 100 000 smart
meters installed, deviation would be less than ±1.20 %, but the ‘‘large’’ partly temperature independent
consumers must be disregarded.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, the economic development and energy consump-
ion in the EU are directly related to each other to some extent
Acaravci and Ozturk, 2010; Pirlogea and Cicea, 2012; Balitskiy
t al., 2016). According to Eurostat (2021), in 2019, natural gas
ccounted for 25.4% of gross inland consumption in the EU, mak-
ng it one of the most important energy sources in the EU. Its
mportance, as well as the ongoing liberalization of the natural
as market, have made natural gas sector more commercially
mportant (Provornaya et al., 2020), especially in regions with
eclining domestic natural gas production.
In markets with balance groups like in the EU, a balance group

s an interest grouping of participants in the gas market, i.e., a
roup with one or more energy entities organized on a commer-
ial basis. It is the responsibility of the balance group manager to
alance the balance group within transport system, i.e., to adjust
he quantities of gas delivered to and from the transport system,
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so that the transport system operator performs as few balancing
operations as possible. In addition to the trade of natural gas
itself, energy entities also trade with the capacities of the trans-
port system. The differences between the actual gas consumption
and reserved gas quantities and transmission system capacities
greatly affects the quantity of the balancing energy needed, which
is sold at a higher price at final balancing process. Balance group
managers must receive information timely and frequently enough
about the level of deviation from forecasted consumption in order
to better optimize their business by reacting on time. An accurate
forecast of natural gas consumption can greatly reduce this need
for balancing and thus ensure not only financial improvement of
business but also better optimization of the gas transport and
distribution system.

1.1. Forecasting in energy sector

With the development and improvement of the energy sector,
forecasting methods have become an integral part of it. Forecast-
ing is used to improve the optimization, operations, planning,
management, and efficiency of the entire system. Literature re-
view has shown that forecasting in energy sector is used for a

variety of purposes, such as forecasting wind speed, photovoltaic
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ower output, general energy consumption, electricity consump-
ion, heat demand, natural gas consumption, price forecasting,
tc..
Since Renewable Energy Sources (RES) show strong instability,

iscontinuity, and randomness, increased energy production from
his sources resulted in need for better energy storage capacities
Wang et al., 2019). Given that the increase in storage capacity
ncreases the cost of energy production, forecasting methods
ave been identified as one of the ways to optimize and reduce
nergy production costs in RES systems. Cadenas and Rivera
2007) forecasted wind speed in the South Coast of the state of
axaca in Mexico with Autoregressive Integrated Moving Average
ARIMA) and Artificial Neural Networks (ANN). Results showed
hat both models can predict the monthly power production of
ind power stations within satisfying boundaries. Authors Liu
t al. have published several papers on the topic of wind speed
nd wind energy forecasting in order to show the importance
nd future development of this topic (Liu et al., 2019a, 2020a).
n their research, they applied several different new models for
ind speed forecasting, and all models showed satisfying or su-
erior results when compared to other models and methods (Liu
t al., 2018, 2019b, 2020b). In addition to the above mentioned,
literature review showed a multitude of other papers in which
ind speeds were forecasted in different ways. Most new models
ere based on today’s increasingly popular neural networks (with
lgorithms and/or filters for processing input parameters) (Chen
t al., 2018; Memarzadeh and Keynia, 2020; Deng et al., 2020),
ut other machine learning methods such as linear and non-
inear autoregressive models (Lydia et al., 2016), random forest
lgorithm, LASSO regression, gradient boosting decision tree al-
orithm (Demolli et al., 2019) and multi-resolution multi-learner
nsemble (Chen and Liu, 2020) were also used. Madvar et al.
2019) even analyzed the text in published patents in order to
orecast the trends in the development of wind turbine tech-
ologies. Sobri et al. (2018) made an extensive review on recent
evelopments in solar energy forecasting where they concluded
hat Artificial Intelligence (AI) approaches are widely used due
o capability of solving the complex structure of data and that
I methods outperform traditional ones. Wang et al. (2020a) also
roved previous statement by combining deep learning and time
orrelation in order to achieve Mean Absolute Error (MAE) of only
.35% in forecasting photovoltaic (PV) power generation.
Apart from forecasting energy production from RES, forecast-

ng energy consumption has also been recognized as a very ef-
ective tool for making important decisions in planning energy
evelopment strategies (Zeng et al., 2017) or optimizing small
cale energy consumption (Tran et al., 2020). When it comes to
ype of methods used for energy planning, Debnath and Mour-
hed (2018) concluded that the most commonly used methods
re based on ANN followed by, support vector machine (SVM),
utoregressive integrated moving average (ARIMA) and other ma-
hine learning methods. Most of the literature reviewed has also
hown that new models are mostly a hybrid of several differ-
nt machine learning methods/algorithms and ANN is almost
lways used in at least one part of the model. Some of the
bserved models were developed for short-term forecasting of
nergy consumption in households (Alobaidi et al., 2018) and
esidential/business buildings (Tran et al., 2020; Jallal et al., 2020)
or the purpose of autonomous optimization of energy consump-
ion. Other models were used for long-term forecasting of energy
onsumption in developing countries such as China (Xiao et al.,
018; Ye et al., 2019), but also in developed countries like the USA
Prado et al., 2020) for the purpose of better long-term energy
upply and strategy planning.
Although the goal of the global energy sector is to achieve

carbon-neutral economy, one of the main obstacles to this
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is the financial viability of climate-neutral projects. Considering
the importance and economic factor of price prediction, various
forecasting models have been used in last few year in order to
forecast EU’s and China’s market carbon price (Sun and Zhang,
2018) and hourly (Yang et al., 2017), day ahead (Anbazhagan and
Kumarappan, 2014), monthly (Qiao and Yang, 2020) or annual
(Jeong et al., 2014) electricity price. Beside pricing, forecasting
was also used in order to analyze the investment value for PV
power generation with carbon market linkage (Tian et al., 2017).
In addition to the purposes already mentioned in this chapter,
models for forecasting electricity (Lahouar and Hadj Slama, 2015)
and heat demand (Spoladore et al., 2016; Izadyar et al., 2015) can
also be found in the literature.

A review of the literature has shown that forecasting models in
the observed energy sectors are constantly evolving or improving
and that neural networks have certainly been recognized as the
most popular machine learning method used.

1.2. Objective of the paper

Given the well-known characteristics of the gas energy sector
and the gas markets, this paper examines the installation of smart
meters and determination of consumption data distribution as
an alternative to using complex machine learning forecasting
methods. The objective of this paper is to analyze the optimal
number of smart meters required to achieve satisfactory accuracy
in forecasting natural gas consumption by using simple forecast-
ing methods. In order to better develop the model for forecasting
natural gas consumption with the use of smart meters (daily gas
consumption data), the forecasting methods developed so far as
well as the input parameters used in them were analyzed in the
next chapter.

1.3. Natural gas consumption forecasting methods

Many authors have so far applied different methods with
different input parameters to forecast natural gas consumption
more accurately. Forecasts were made for different areas of appli-
cation (district, city, region, national, worldwide) and for different
time periods (hourly, daily, annual). This chapter analyzes the
various methods for forecasting natural gas consumption devel-
oped or used in the last several years. The results of the developed
methods were observed, that is, the accuracy of the forecast of
natural gas consumption for the beforementioned different time
periods.

Zhang and Yang (2015) used the Bayesian Model Averaging to
forecast annual natural gas consumption in China. They analyzed
the data collected for the period from 1965 to 2012 and used
theoretical and applied analysis to determine the quality of their
model. Their model achieved best MAPE (0.026) when compared
to Grey prediction model, Linear regression model and Artificial
neural networks (MAPE ranging from 0.045 to 0.057. This model
was then used for forecasting annual natural gas consumption
in China from 2015 to 2020 in three different scenarios (low,
reference and high).

Akpinar et al. (2016) used daily gas consumption data from
2011 to 2014 to forecast consumption for the next year in Sakarya
Province, Turkey. Two ANN models were used to predict con-
sumption, the first with a back propagation algorithm (BP) and
the second with an Artificial Bee Colony (ABC) algorithm. ANN
with ABC algorithm showed better results in all cases, with the
best MAPE of 17%, while the best MAPE for BP algorithm was
26%. Very similar models were also used in future research done
by Akpinar et al. (2017) where ANN with ABC and three hidden
layers achieved MAPE of 14.9%.
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Bai and Li (2016) used Structure-Calibrated Support Vector
egression (SC-SVR) approach with the Extended Kalman Filter
o forecast daily natural gas consumption in the city of Anqing,
hina. This model was also compared to standard Least Squares
upport Vector Regression (LSSVR) model and Back Propagation
eural Network (BPNN) to prove the superiority of the chosen
ethod. Authors concluded that SC-SVR has proven its superi-
rity over two other methods, with MAPE of 2.36% compared to
.61% from BPNN and 4.77% from LSSVR.
Zeng and Li (2016) used Self-adapting Intelligent Grey Model

SIGM) to simulate China’s natural gas demand from 2002 to 2010
nd to forecast natural gas demand from 2011 to 2014. Chosen
odel was compared to classical Grey Model (GM), Discrete Grey
odel (DGM) and Event Difference Grey Model (EDGM) to point
ut the inherent drawback of fixed structure and poor adaptabil-
ty of these two models. SIGM has proven slightly better than
he other methods in simulation period (only 0.14% better MAPE
han GM), but also showed good results in forecasting period with
APE of 5.02% compared to second best GM MAPE of 6.19%.
Wang et al. (2018) proposed hybrid forecasting model by com-

ining The Particle Swarm Optimization algorithm and Wavelet
eural Network (PSO-WNN). Proposed model and two more fore-
asting models (ANN, WNN) were first trained using China’s
nnual natural gas consumption from 1995 to 2012 and then
ere used for forecasting annual natural gas consumption from
013 to 2016. PSO-WNN model achieved best results with MAPE
f 2.31% followed by WNN (4.12%) and ANN (6.03%).
Merkel et al. (2018) presented Large Deep Neural Network

LDNN) approach compared with LR and two shallow ANN for
orecasting short term gas consumption in 62 different consump-
ion areas in the U.S. First 10 years of data was used for training
eural networks and then the networks were tested for period
f one year. Overall, LDNN showed best forecasting results in
omparison with other methods, but if the areas are viewed
eparately LDNN did not produce the best results in all areas.
Hribar et al. (2019) implemented and compared Linear Re-

ression (LR), Kernel Machine (KM), Recurrent Neural Network
odel (RNN) and empirical models (Two-reservoir model, Two-

eservoir model with linear memory and Two-reservoir model
ith nonlinear memory) based on data analysis for forecasting
as demand with hourly resolution up to 60 h into the future.
ll models were used for forecasting natural gas consumption in
he city of Ljubljana. It was concluded that models were more
ccurate if they included the influence of past temperature and
hat nonlinear models become more accurate using forecasted
emperature for training. When considering the accuracy of used
ethods, the RNN showed best results along with the LR whose
dvantage over the RNN is much shorter training time. All the
odels in this paper showed largest error on occasional events

ike holidays, where, due to the smallest increase in error, LR
ethod was proven to be the best one.
Lu et al. (2019) used Cross Factor-Simulated Annealing-Fruit

ly Optimization Algorithm-Support Vector Machine (CF-SA-
FOA-SVM) algorithm to forecast natural gas consumption in
unming city, China. This study was based on consumption data
rom January 1, 2012 to November 30, 2013 (total of 700 datasets)
nd this data was used to forecast natural gas consumption
or three different forecasting period (10, 20, 30 days). Results
btained by using mentioned algorithm were compared with
esults obtained with four different methods (PSO-SVM, BPNN,
M (1,1) and Arima) and authors of this paper concluded that
F-SA-FFOA-SVM algorithm achieved best MAPE for all three
orecasting periods.

Ravnik and Hriberšek (2019) developed a method for forecast-
ng preliminary allocation and natural gas consumption based on

tandard natural gas consumption profiles. Within this method
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they developed eight types of consumption profiles for 17 gas
consumer groups using sigmoid model function. Consumption
profiles were tested on measurements of gas consumption of 260
end consumers from different consumer groups across Slovenia
during 4 year period. Best results were achieved by using models
where temperature independent part is known along with the
separation of workdays and weekends. Accuracy of these meth-
ods increases with the increase of the dataset due to model’s
capability of better learning from larger dataset, i.e. authors con-
cluded that at least 14 600 consumers are needed in order to
achieve ±1% accuracy in forecasting daily total consumption.

Su et al. (2019a) developed a method based on the integrated
Wavelet Transform, Bi-Long Short-Term Memory (LSTM) model,
LSTM model and Genetic Algorithm to forecast hourly gas de-
mand. This
method had an accuracy of 99% on the Mackey Glass series while
the forecasting errors while using winter set of real-world data
was from 5.84 to 6.78% for 10 h forecast. This method was also
compared with a Non-linear Autoregressive model (NAR) and
three-layer LSTM model where it showed its superiority over
other two models.

Wei et al. (2019) developed novel hybrid model by combin-
ing Improved Singular Spectrum Analysis with Long Short-Term
Memory (ISSA-LSTM) to forecast daily natural gas consumption
in four big cities (London, Melbourne, Hong Kong and Karditsa)
located in three different climate zones. Performance comparison
was made with other advanced forecasting methods (MLR, BPNN,
SVR, LSTM, SSA-LSTM) and the newly developed hybrid model
proved its superiority over all other methods. This ISSA-LSTM
method had Mean Absolute Range Normalized Error (MARNE)
around 5% for all cities except for Hong Kong (14%) where the
natural gas consumption is more complex considering that Hong
Kong is located in tropical zone.

Erdem and Kesen (2020) used five different machine learning
methods to forecast monthly natural gas consumption in Turkey.
Monthly data on natural gas consumption from 2010 to 2015
were used for training and consumption was forecasted for the
period from 2016 to 2018. They compared the results obtained
with ANN, Regression, Multiple Seasonality Time Series, Random
Forest Tree and Time Series. However, the amount of data re-
quired is applicable for country-level analysis, and not for specific
behavior of gas consumption in one urban region.

Lu et al. (2020) proposed Kernel-based Nonlinear Extension
of the Arps decline model (KNEA) with implemented Grey Wolf
Optimization (GWO) algorithm to forecast annual natural gas
consumption for seven kinds of datasets taken from the EIA.
These datasets represent seven different kinds of natural gas
users and they were collected annually from 1997 to 2018 (total
22 years). KNEA-GWO model had the best MAPE (from 1.36%
to 4.42%) when compared to five other forecast models (KNEA,
PSO-SVM, RBFNN, GM (1,1) and Random forest).

Stathakis and Stambologlou (2020) compared seven different
models for forecasting annual natural gas consumption for one
region in Greece. The models were trained on consumption data
of the previous 20 years and the results of the analysis showed
that ARIMA achieved 16.1% better forecasting accuracy than the
remaining models.

Tan et al. (2020) constructed combined forecasting model of
electricity, heat, cooling and gas based on Multi Task Learning
theory combined with Least Squares Support Vector Machine
(MTL-LSSVM) for forecasting energy consumption of the Suzhou
industrial park. Forecasting results of this model showed up to
19% better accuracy than the results from two other single task
learning models (ELM and LSSVM).

Wu et al. (2020) proposed new Grey Bernoulli model for

forecasting annual natural gas consumption of United States,
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ermany, the United Kingdom, China and Japan. Authors used
nnual consumption data from 2005 to 2017 in order to forecast
uture natural gas consumption from 2018 to 2022. Testing of
his model has produced data with remarkable MAPE’s in most of
he cases and authors concluded that proposed model has better
orecasting accuracy than other ordinary Grey models.

Zhou et al. (2020) proposed a novel Discrete Grey Model
onsidering Nonlinearity and Fluctuation (DGMNF (1,1)) for the
urpose of forecasting annual natural gas consumption from 2018
o 2025 in Jiangsu Province, China. Model was trained with his-
orical data on natural gas consumption from 2005 to 2017 for the
entioned province and the results were compared to 7 different

orecasting methods. MAPE for proposed model was less than 2%
hile the second best result was achieved by using Non-linear
rey Bernoulli model with MAPE that was around 5%.
Liu et al. (2021) developed a Discrete Fractional Grey Model

ith a time power term (DFGM (1,1, tα)) in order to forecast
annual natural gas consumption in China for time period from
2019 to 2025. This model was trained and tested on consumption
data from 2001 to 2018 and it showed best MAPE when compared
four other forecasting methods. Authors concluded that annual
natural gas consumption in China will remain on a steady upward
trend and proposed several measures to promote natural gas
consumptions.

Svoboda et al. (2021) created dataset with 52 584 data points
(six full years) which are assembled from three main compo-
nents (natural gas consumption, weather variables and natural
gas price). Purpose of this dataset is to enable availability of ‘‘hard
to get’’ consumption data to other scientists in order to help
them in development of future short-term forecasting methods.
Authors also prosed certain guidelines for development of fore-
casting models/methods and gave several conclusions concerning
forecasting of natural gas consumption.

Wu et al. (2021) have developed a grey model with a latent
information function for the purpose of determining possible
outliers. The model was developed using the annual production
and consumption of natural gas in the USA and China for the
purpose of forecasting the same for the period from 2013 to
2015. The results showed that the introduction of the latent
information function enabled the recognition of certain outliers
and thus improved the accuracy of this model.

Yukseltan et al. (2021) consider that it is important for most
of the parties involved in gas market to accurately forecast daily,
monthly and annual natural gas consumption of some city or
region. Authors proposed a model consisting of a modulated
expansion in Fourier series with supplementation of deviations
from comfortable temperatures which act as a regressor. They
used daily consumption data for period from 2002 to 2017 for
Istanbul West, Istanbul East, Ankara, Eskisehir and Bursa in order
to forecast daily, monthly and annual natural gas consumption for
a period of one year in future. MAPE of forecasted data was rel-
atively good (mostly under 10%) and authors concluded that the
advantage of the proposed model is capability of fairly accurate
long term forecasts, even with minimal input information.

Zheng et al. (2021) have developed a new model based on the
Conformable Fractional NonHomogeneous Grey Bernoulli Model
(CFNHGBM (1,1, k)) for the purpose of forecasting natural gas
production and consumption in North America. They used annual
production and consumption data from 2008 to 2018 to forecast
the same for the period from 2019 to 2021. The results showed
that the newly developed model achieves better performance
compared to the four other competitive grey models.

Predicting annual natural gas consumption is most commonly
used in developing countries (e.g. China) to design energy devel-
opment strategies, organize markets, plan future project devel-

opment, etc. Ten observed methods for predicting annual natural
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gas consumption use quite different machine learning models,
but it is evident that in all methods the better results are obtained
by using more complex machine learning models.

In addition to the above, other methods observed are used
for the more interesting short-term (hourly, daily) forecasting
of natural gas consumption. These types of methods have the
best perspective to be used by distribution system operators,
transmission system operators, natural gas suppliers and natural
gas traders. Eight out of thirteen observed methods for fore-
casting natural gas consumption use neural networks modified
with certain algorithms and/or mathematical/statistical methods
(‘‘complex neural networks’’) to achieve better accuracy than the
shallow neural networks or other machine learning methods.
As in the forecast of annual natural gas consumption, here it
is not possible to conclude with certainty which of the above
methods is the best for short-term forecasting, but it is obvious
that more complex methods give better results. The same can
be concluded for the methods which were not based on the use
of neural. Between all the above mentioned methods, one that
conceptually stands out, is the one developed by Ravnik and
Hriberšek (2019). Unlike the others, this method used simple
mathematical functions combined with a large set of natural gas
consumption data from each consumer group and temperature
data to predict natural gas consumption. With this method, the
accuracy of the forecast is improved with the implementation of
so-called smart meters, meters that read hourly gas consumption
(high-resolution data) which will be described in more detail in
later chapter. Unlike the method that will be proposed later in
the paper, this method uses a significantly higher resolution of
consumption and temperature data as well as the division of end
users into different groups and calendar information.

1.4. Input parameters for natural gas consumption forecasting meth-
ods

By observing the input parameters (Table 1) for methods men-
tioned earlier, it is easy to conclude that the consumption of
natural gas is crucial, and in some methods, the only input pa-
rameter. Natural gas consumption is the only input parameter
used in eleven observed methods, seven of which forecast annual
natural gas consumption. For three methods, it is quite unusual
to be able to achieve good results when forecasting short-term
natural gas consumption without any other input parameter,
especially temperature. For one method, the reason for the good
accuracy is the active use of historical consumption data and
the type of consumer (81% commercial users) while the other
two methods use sliding window technique. Furthermore, in all
other methods for short-term natural gas forecasting, the two
most important input parameters, natural gas consumption and
temperature are always used. In addition to temperature, other
weather indicators are also often used, such as humidity, wind
speed, atmospheric pressure, etc. Beside mentioned, although less
frequent, some methods also use calendar information (week-
days, holidays, weekends) and various economic indicators. From
the observed, natural gas consumption and temperature are cer-
tainly recommended as input parameters for short-term natural
gas consumption forecast.

1.5. The contribution of this work

After literature review, it is identified that there are no analy-
sis of needed number of gas smart meters that will give enough
data for forecasting natural gas consumption by existing methods.
The scientific contribution of this research is statistical approach
for determination of required number of installed gas smart me-

ters to achieve satisfactory forecast of natural gas consumption.
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Authors Input parameters

Zhang and Yang (2015) GDP, urban population, industrial structure, energy efficiency, energy consumption structure, exports of goods and
services

Akpinar et al. (2016) Daily natural gas consumption (from 2011 to 2014)

Bai and Li (2016) Natural gas consumption (366 daily records — first 300 used for training)

Zeng and Li (2016) Natural gas consumption (only 9 datasets)

Akpinar et al. (2017) Daily natural gas consumption (from 2011 to 2014), seven-day natural gas consumption before forecasting day

Wang et al. (2018) Natural gas consumption, per capita GDP, total amount of gas production, household consumption level, population
with access to gas, urbanization ratio (1995–2016)

Merkel et al. (2018) Natural gas consumption, heating degree day, dew point, cooling degree day, day of the week, day of the year (10
years training, one year testing)

Hribar et al. (2019) Natural gas consumption (8 winter seasons-city’s total hourly consumption), outdoor temperature, time of the day, i.e.,
time (mod) 1 day, time of the week, i.e., time (mod) 1 week, presence of public holiday, presence of school holiday,
day between public holiday and weekend

Lu et al. (2019) Natural gas consumption, daily temperature data

Su et al. (2019a) Natural gas consumption, date and time, weather, climate, gas price

Ravnik and Hriberšek (2019) Natural gas consumption (260 consumers — 32856 hourly measurements per consumer), average temperature

Wei et al. (2019) Natural gas consumption (3 years of training data, 5 months of testing data), daily low temperature, daily average
temperature, daily high temperature, daily low dew point, daily average dew point, daily high dew point, daily low
humidity, daily average humidity, daily high humidity, daily low visibility, daily average visibility, daily high visibility,
daily low air pressure, daily average air pressure, daily high air pressure, daily low wind speed, daily average wind
speed, daily high wind speed, daily precipitation, day, month, year, daily natural gas price

Tan et al. (2020) Weather factor (temperature index, humidity index, wind speed, atmospheric pressure), calendar information (working
day, holiday), economic factors (per capita GDP, electricity price, electricity flow), technical conditions (electric load
history date, heat load history date, cooling load history date, gas load history date)

Erdem and Kesen (2020) Monthly natural gas consumption (from 2010 to 2018)

Lu et al. (2020) Natural gas consumption (annual data from 1997 to 2018 for 7 different users)

Stathakis and Stambologlou (2020) Annual natural gas consumption, GDP, GDP/capita, energy (kWh) consumption/household, electricity (kWh)
consumption/household

Wu et al. (2020) Annual natural gas consumption (from 2005 to 2017)

Zhou et al. (2020) Annual natural gas consumption (from 2005 to 2017)

Liu et al. (2021) Annual natural gas consumption (from 2001 to 2018)

Svoboda et al. (2021) Natural gas consumption, weather variables, natural gas price

Wu et al. (2021) Annual natural gas production and consumption (from 2007 to 2012)

Yukseltan et al. (2021) Daily natural gas consumption (from 2002 to 2017), daily temperature

Zheng et al. (2021) Annual natural gas production and consumption (from 2008 to 2018)
The method is based on determining the statistical distribution
of gas consumption deviations recorded at smart meters from
average consumption curve, which is used to upscale the forecast
to total number of consumers in the observed region. The method
includes only gas consumption and respective atmospheric tem-
perature values, and eliminates the need for detailed data about
consumers, such as household properties, building types, differ-
ent consumers (private, industrial, business facilities, etc.). The
objective of the research was to determine needed number of gas
smart meters, not to improve or establish a new forecast method.

2. Implementation of smart meters and their use in forecast-
ing natural gas consumption

The installation of smart meters and the realization of smart
rids is a new step towards optimizing energy consumption (Bag-
adee et al., 2020; Maruf et al., 2020). EU member states with
ell-developed gas and electricity markets such as Great Britain,
etherlands, France, Italy, Austria, Sweden, etc. have started or
re considering large scale projects to install smart meters for
lectricity and/or gas in large number of households (Castelnuovo
nd Fumagalli, 2013; DECC and Ofgem, 2011; Van Aubel and
oll, 2019). This is due to the many benefits that come with
heir installation, such as reduced household energy consumption
Sovacool et al., 2017), emission reduction, reduced operating and
onsumption costs (Sheikhi et al., 2015), better optimization of
he energy system (Leiva et al., 2016), smoother consumption
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fluctuation and improved supply reliability (Su et al., 2019b).
Most of the energy savings and emission reduction are the result
of customers easier consumption tracking which results in chang-
ing their habit with the main goal of cost reduction, therefore
changing consumption patterns (Mogles et al., 2017; Buchanan
et al., 2016). Apart from energy savings, smart metering data was
also successfully used in building energy characterization (Melillo
et al., 2020), development of daily electricity consumption pro-
files (Gouveia et al., 2017) and determination of gas consumption
per individual appliance in residential buildings (Tewolde et al.,
2013). The main disadvantage of installing smart meters is that
installation is a fairly expensive and time-consuming process. One
example is the UK, where the total cost is estimated to be over
£11 billion and the whole process will take more than 5 years
(Sovacool et al., 2017).

2.1. Data resolution

Currently, there are many consumers in the European Union
who use meters without remote reading, which means that the
resolution of energy consumption data is fairly low (Stegner
et al., 2019), i.e. energy consumption readings are made on a
monthly basis or even less frequently. With the installation of
smart meters, the resolution of energy consumption data is in-
creasing exponentially, and it is possible to obtain consumption
data almost in real time (Pesantez et al., 2020). Such a large
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mount of data greatly contributes to the optimization and eas-
er adaptation of the energy system to the needs of consumers
Tornai et al., 2016) and constantly fluctuating energy market.
his high-resolution data can also greatly help in the design
nd development of district heating systems, given that most
xisting district heating are oversized due to lack of thorough
nderstanding of energy demand (Wang et al., 2020b).

.2. Installation of smart meters

In this case, gas smart meters were installed across three
losely located smaller cities and their rural surroundings at 3337
ifferent end users (households, schools, kindergartens, business
acilities, etc.) in the eastern part of Croatia. The structure of end
onsumers, i.e. the percentage of households, public buildings,
usiness facilities, etc. is a business secret or the unknown to the
istribution system operator and is not publicly available, but it
s known that most smart meters are installed in temperature-
ependent consumers. The uncertainty of the structure of final
onsumers is overridden by statistical distribution determination
f consumption deviations from average consumption, which is
escribed in more detail below. These smart meters are pro-
rammed to collect consumption data every 6 h and send the sum
f the same every 24 h at 6 am. The reason why data is sent as a
um is to save battery power when sending data. If the data were
ent every six hours the built-in battery life would be four times
horter. Likewise, if a larger amount of data were sent once a day
n terms of sending daily consumption subdivided into periods of
ix hours, the battery life would also be significantly shorter.

. Developing an accurate model for natural gas consumption
orecasting

The use of smart meters allows the collection of a very large
mount of input data which is the most important factor for
he successful development of an accurate method. Fig. 1 shows
he authors step by step suggestion for developing an accurate
ethod for forecasting natural gas consumption. In addition to
onsumption data, the authors propose the use of high-resolution
ata on temperature. Some additional parameters can also be
sed, but their use can be characterized as less important. Since
t is suggested to use high-resolution data, this data should be
iltered to eliminate possible outliers that can reduce the accuracy
f the method. Once obtained, the database is used as input for
n already existing or newly developed forecasting model. New
odel, of course, needs to be tuned and the forecasting results
eed to be validated successfully so that proposed model could
e used to forecast unknown data. In case that the obtained
orecasted results are not satisfactory in terms of accuracy, the
uthors suggest the formation of a better-quality database or
mprovement of the forecasting model.

.1. Data collection, processing, filtering and determination of data
istribution

Following the proposed flowchart, data was obtained from gas
mart meters installed at 3337 metering points in the eastern part
f Croatia (3 cities and their rural surroundings). The collected
ata is a reading of the gas meter, i.e. the meter sends data on
daily basis on the total consumption of natural gas from the
oment when the meter was installed. The daily consumption
as then easily calculated by subtracting the total consump-
ion recorded on the observed day from the total consumption
ecorded on the previous day. Collected data was first filtered
ue to improper logging (smart meter failure, network problems
nd/or users with zero consumption) because the accumulation of
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Fig. 1. Proposed flowchart for developing accurate method for natural gas
consumption forecasting.

errors can produce a significant total deviation in forecast. After
filtering, dataset from 2486 smart meters was used in further
analysis. This dataset consisted of daily natural gas consumption
measured in m3 during several months in last heating season for
significantly different temperatures.

The assumption is that average daily natural gas consump-
tion obtained via observed 2486 smart meters can be used to
upscale the consumption to regional level and to correlate the
consumption with daily measured (or predicted) temperature.
Temperature data was collected from publicly available meteoro-
logical database where the mean daily temperatures are available
for the observed locations. Consumption was linearly correlated
with temperature (r value = −0.9634, p value = 0.00048, and
standard error stderr = 0.03484) according to the formula below:

Vg = −0.28 · t + 8.2026

Where Vg = daily gas consumption (m3) and t = daily average
temperature (◦C).

Next step was determining deviations (relative errors, %) of
real-world measured data from average (real) consumption. These
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Fig. 2. Best fit (lognormal) distribution (shape = 0.4, loc = −14.4014, scale =

3.2018).

eviations were tested for several statistical distributions (by cod-
ng the function for distribution testing in Python programming
anguage, using scipy.stats library, Jones et al., 2001). Goodness
f fit of observed distributions was evaluated by Kolmogorov–
mirnov (K–S) test, i.e., the test statistic (D, supremum between
umulative density functions of two samples) and p-values (the
robability that the D statistic value will be larger than observed).
inally, the distributions with best fit were evaluated visually by
lotting (Fig. 2) to finally select the lognormal distribution as
epresentative, based on the deviations at different temperatures
.e., days.

. Results

Distribution parameters defined in the last chapter along with
eal-world historical temperature data were used for random
ampling i.e., simulation of real-world consumption data in time
eriod from 1st of October to 1st of April (heating season). Ran-
om sampling was done by using Python programming language
or cases of 100, 1000, 10 000 and 100 000 installed smart meters.
he mean value was calculated for all simulated values and the
eviation of the mean value for the simulated data from the mean
alue obtained by the previously mentioned correlation (Vg =

0.28 · t + 8.2026) was calculated. For each of these cases, the
impact of removing ‘‘large’’ consumers from distribution, i.e., lim-
iting the maximum daily gas consumption, was also observed.
These limits were set at a maximum daily consumption of 50,
250 and 500 m3 per day. Figs. 3–5 show the average deviations
as a function of temperature for all the above cases (12 cases).

The simulation shows that, if more than 10 000 smart meters
were installed, deviation between average estimated natural gas
consumption and the simulated real-world data would be less
than ±2.96% in case of maximum daily consumption of 50 m3.
n case of 100 000 smart meters installed, this deviation would
e less than ±1.20%. If average daily temperature forecast is
ccurate, total gas consumption in observed regions could be
stimated with ±1.20% accuracy (see Table 2). Presented method-

ology can be used for different regions, however distribution
parameters should be evaluated separately for each case, because
they depend on characteristics of natural gas users.

It is also evident that ‘‘large’’ consumers can cause an un-
favorable increase in deviation due to the fact that at higher
temperatures they have a significantly greater impact on the
observed consumption of a region. This impact is mainly due to
the fact that a large part of natural gas consumption by ‘‘large’’

consumers is temperature independent.
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Table 2
Overview of maximum deviations from simulated real-world
consumption for all cases.
Samples Maximum daily

consumption (m3)
Maximum
deviation (%)

100 50 −27.51
1000 50 −8.33
10 000 50 2.96
100 000 50 1.20
100 250 27.55
1000 250 9.86
10 000 250 2.84
100 000 250 −1.26
100 500 −30.86
1000 500 −10.28
10 000 500 −4.39
100 000 500 −3.03

5. Conclusion

A review of the available methods concludes that in most
cases more complex methods have proven to be more accurate,
although one method has proven to be fairly accurate despite
using a simple mathematical function. The reason for this is
the availability of a large set of data on natural gas consump-
tion which proves that the availability of high-resolution data is
extremely important for achieving accurate natural gas consump-
tion forecast. High-resolution data availability can be achieved
by installing smart meters for the majority of users. Based on
conducted research, natural gas consumption and temperature
were suggested as parameters that should be used for modeling
a new method for forecasting natural gas consumption.

Following the proposed flow diagram, the actual consump-
tion data was analyzed and the linear temperature dependence
of natural gas consumption for the observed region was cal-
culated. Using the obtained temperature dependence together
with the lognormal distribution, the consumption of natural gas
was simulated for 12 different cases. The analysis of the results
showed that the best results are achieved with the largest num-
ber of installed smart meters (100 000), but quite satisfactory
results can also be achieved with 10 000 installed smart meters.
‘‘Large’’ partly temperature independent consumers should be
disregarded because they can cause an unfavorable increase in
forecasting deviation. The results of this research show that the
availability of high-resolution data on natural gas consumption
obtained by gas smart meters significantly influence the accuracy
of natural gas forecasting methods. Also, this paper proves that
during the partial installation of smart meters in a particular
region or city, it is necessary to strategically identify locations
for the installation of smart meters. Quality distribution of smart
meters to a wide range of consumers with different profiles will
provide a representative sample that can be used to upscale
natural gas consumption in the observed area.

Nomenclature

ABC — Artificial bee colony
ANN — Artificial Neural Network
ARIMA — Autoregressive Integrated Moving Average
CF-SA-FFOA-SVM — Cross Factor-Simulated Annealing-Fruit Fly
Optimization Algorithm-Support Vector Machine
BP — Back Propagation
BPNN — Back Propagation Neural Network
CFNHGBM (1,1, k) — Conformable Fractional NonHomogeneous
Grey Bernoulli Model
DGM — Discrete Grey Model
DFGM (1,1, tα) — Discrete Fractional Grey Model with a time
power term
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Fig. 3. Deviations from simulated real-world consumption of natural gas during heating period (maximum daily consumption = 50 m3).
Fig. 4. Deviations from simulated real-world consumption of natural gas during heating period (maximum daily consumption = 250 m3).
GMNF (1,1) — Discrete Grey Model considering Nonlinearity and
luctuation
DGM — Event Difference Grey Model
LM — Extreme Learning Machine
M — Grey Model
SSA-LSTM — Improved Singular Spectrum Analysis with Long
hort-Term Memory
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KM — Kernel Machine
KNEA — Kernel-based Nonlinear Extension of the Arps decline
model
KNEA-GWO — Kernel-based Nonlinear Extension of the Arps de-
cline model with implemented Grey Wolf Optimization
LASSO regression — Least Absolute Shrinkage and Selection Op-
erator
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Fig. 5. Deviations from simulated real-world consumption of natural gas during heating period (maximum daily consumption = 500 m3).
DNN — Large Deep Neural Network
R — Linear Regression
SSVM — Least Squares Support Vector Machine
SSVR — Least Squares Support Vector Regression
STM — Long Short-Term Memory
AE — Mean Absolute Error
APE — Mean Absolute Percentage Error
LR — Multiple Linear Regression
TL-LSSVM — Multi Task Learning theory combined with Least
quares Support Vector Machine
AR — Non-linear Autoregressive
SO-SVM — SVM optimized by Particle Swarm Optimization al-
orithm
SO-WNN — The Particle Swarm Optimization algorithm and
avelet Neural Network
BFNN — Radial basis function neural network
NN — Recurrent Neural Network
C-SVR — Structure-Calibrated Support Vector Regression
IGM — Self-adapting Intelligent Grey Model
SA-LSTM — Singular Spectrum Analysis with Long Short-Term
emory
VM — Support Vector Machine
VR — Support Vector Regression
NN — Wavelet Neural Network
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