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Abstract: The ammonium nitrate (AN) and fuel oil (FO) mixture known as ANFO is a typical repre-
sentative of non-ideal explosives. In contrast to ideal explosives, the detonation behavior of ANFO
exhibits a strong dependence on charge diameter, existence, and properties of confinement, with a large
failure diameter and long distance required to establish steady-state detonation. In this study shock
initiation and propagation of detonation in ANFO were studied experimentally by determining the
detonation velocity at different distances from the initiation point, as well as by numerical modeling
using AUTODYN hydrodynamics code and a Wood–Kirkwood detonation model incorporated into
EXPLO5 thermochemical code. The run-to-steady-state detonation velocity distance was determined
as a function of charge diameter, booster charge mass, and confinement. It was demonstrated that
a Lee–Tarver ignition and growth reactive flow model with properly calibrated rate constants was
capable of correctly ascertaining experimentally observed shock initiation behavior and propagation of
detonation in ANFO, as well as the effects of charge diameter, booster mass, and confinement.

Keywords: ANFO; shock initiation; detonation; numerical modeling; EXPLO5; AUTODYN

1. Introduction

Ammonium nitrate (AN)-based explosives have been attractive candidates as blasting
agents in the mining industry due to their low production cost and relatively simple
production processes. High porosity, low density, and separated fuel (FO) and oxidizing
agents (AN) differentiate ANFO from conventional high explosives, where the fuel and
oxidizer are in a single molecule and typically display “ideal” behavior. ANFO is a typical
“non-ideal” explosive, and its detonation properties exhibit a strong dependence on charge
diameter, existence, and properties of confinement [1–3].

Depending on various factors, such as the type of AN, density, charge diameter, and
confinement, the detonation velocity (VoD) might go as low as 40% of the ideal detonation
velocity [4]. Velocities between 1.2 and 3.0 km/s were reported by [5] with fine granular
AN, paper tube confinement, and diameters in the range of 127–460 mm, while velocities
up to 3.5 km/s were reported by [6] with prilled AN. The authors of [7] and [8] reported
the calculated ideal detonation velocity of ANFO to be 4.94 km/s (at ρ0 = 0.88 g/cm3) and
4.79 km/s (at ρ0 = 0.8 g/cm3), respectively.

Despite its non-ideal detonation characteristics, its significant amount of gaseous
detonation products results in a substantial destructive power, making ANFO one of the
most widely used blast explosives.

The effects of different variables on the detonation performance of ANFO have been
well-researched and published. The main variables include [9] the fuel/oil ratio, the
properties of the AN prills [10–12], and the density and charge diameter [7]. Other variables
affecting VoD, such as the initiating energy [13], the charge temperature [14], the presence
of additives [15], and the influence of confinement [16,17], have been reported on as well.
Using underwater initiation capability tests, ref. [13] determined the influence of initiation
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energy, equivalent shock energy, and bubble energy on the VoD. They found that the
velocity of detonation increased with the increasing mass of the PETN booster charge (up
to 3.5 km/s) compared to reference detonators (up to 2.5 km/s). Further, using primers
of different densities, weights, and VoDs, ref. [9] found that the type of primer influenced
the measured detonation velocity of ANFO, increasing from 3.28 km/s to 3.56 km/s when
using different primers.

The heterogenous nature of ANFO complicates the shock initiation process, as initia-
tion depends on the shock wave duration and strength, as well as on the mechanisms of
grain burning and hot spot formation [2]. Numerical modeling of the shock initiation of
ANFO has been greatly aided by the extensive research and VoD data reported on ANFO.
Because of its wide reaction zone and curved shock front, the development of non-ideal
detonation models is challenging and has lagged behind ideal detonation models, such
as the Chapman–Jouguet (CJ) model, which assumes instantaneous reaction with no reac-
tion zone width. The ideal detonation velocity of ANFO explosives calculated by several
thermochemical codes using different equations of state (EOSs) was compared by [18].
Unfortunately, most of those codes are based on ideal CJ theory and do not adequately de-
scribe the non-ideal detonation behavior of ANFO and much less realistically demonstrate
the effects of test parameters. The thermochemical equilibrium code EXPLO5 [19] offers a
kinetic module based on Wood and Kirkwood’s (WK) detonation theory [2,20,21], which
enables the calculation of detonation properties of non-ideal explosives.

In this work, we study detonation initiation and propagation in ANFO charges (a)
experimentally by determining the detonation velocity as a function of distance from
the initiation point, as well as (b) by numerical modeling. A two-pronged computational
strategy is applied: the WK model is incorporated into EXPLO5 for calculation of the steady-
state detonation velocity of unconfined charges, and the AUTODYN hydrodynamics code
is used to model both the initiation and propagation of detonation as a function of charge
diameter, the existence of confinement, and the booster mass. The objective of the work is
to examine whether it is possible for reactive flow models to correctly describe and predict
the shock initiation and detonation behavior of ANFO charges.

2. Description of Numerical Models
2.1. Shock Initiation Modeling with AUTODYN

The Lee–Tarver ignition and growth (I&G) model [22] has been implemented in
many hydrodynamics codes, such as AUTODYN, and is perhaps the most widely used
reactive model for studying shock initiation in explosives. The I&G model comprises
two Jones–Wilkins–Lee (JWL) EOSs: one for the unreacted explosive and the other for
the reaction products. The conversion from unreacted explosive to reacted explosive (i.e.,
detonation products) is controlled by a two-term pressure-dependent reaction rate given
by the following equation [22]:

∂F
∂t

= I(1 − F)b(µ − a)x + G(1 − F)cFd py (1)

where F is the reacted fraction (or conversion); p is the pressure; µ = (ρ/ρ0 − 1) is the
compression; and I, a, b, c, d, x, y, and G are constants.

The I&G model assumes that ignition starts at hot spots and growth extends outwards.
The first term in Equation (1) is related to the formation of hot spots upon the action of
a shock wave, and the second term corresponds to the growth of the reaction. The first
term is set to zero after a certain conversion (FIgmax) is reached, after which the growth term
is switched on. The initial reaction rate parameters in our model were inspired by [23],
who proposed rate constants that have a physical basis (e.g., compression exponent x = 4
approximates the amount of plastic work required for dynamic void collapse; pressure
exponent y = 0.9 describes weak, pressure-dependent laminar burning; etc.). Thus, in our
study we used values of constants from [22] (I, a, b, c, d, x, and y) and adjusted only the
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constant G to reproduce our experimental steady-state detonation velocity charge diameter
data (Table 1).

Table 1. Input parameters for reacted and unreacted ANFO with an initial density 0.8 g/cm3.

Reacted ANFO (a) Unreacted ANFO (b) Lee–Tarver I&G Reaction Rate Parameters (c)

A = 81.6492 GPa A = 1454.25 GPa I = 10 1/µs
B = 1.7537 GPa B = −0.347 GPa a = 0.2
R1 = 4.588863 R1 = 21.8866 b = 0.222
R2 = 1.021101 R2 = 0.7874 x = 4
ω = 0.32021 ω = 3.4613 G = 0.086 1/(µs GPa ˆy)

D = 4.78 km/s E0 = −0.1549 kJ/cm3 c = 0.222
pCJ = 4.61 GPa d = 0.666

E0 = 3.4481 kJ/cm3 y = 0.9
FIgmax = 0.3

Legend: (a) calculated by EXPLO5; (b) derived from Murnaghan EOS data; (c) all parameters except G are taken
from [23], and G is adjusted to reproduce our experimental VoD data.

The JWL EOS was used for unreacted ANFO, detonation products, and the PETN
booster explosive. The JWL EOS had the following form [22]:

p = A
(

1 − ω

R1 V

)
e−R1V + B

(
1 − ω

R2 V

)
e−R2V +

ωE
V

(2)

where V is the relative volume (V/V0); E is the detonation energy; and A, B, R1, R2, andω
are constants.

The JWL parameters for ANFO’s detonation products were derived from EXPLO5
calculations, as described in [24]. The JWL parameters for unreacted ANFO were derived
in the following way. First, the Murnaghan EOS given by [25] was used:

p =
1

nκ

(
1

Vn − 1
)

(3)

where n = (4S1 − 1), and κ = 1/ρ0C2
0 is used to generate p-V data along the shock adiabat

of unreacted ANFO. Then, the so-obtained p-V data were fitted to the JWL EOS to derive
the JWL constants. The values of S1 and C0 for ANFO were taken from [26] and given by
C0 = 0.92 km/s and S1 = 1.4. for a density of 0.8 g/cm3.

The JWL parameters for the PETN booster (1.5 g/cm3 density) were taken from the
built-in material library in AUTODYN [27]. The PVC confinement was modeled with
Shock EOS, whereby the EOS parameters for PVC were taken from the work of [28]. Steel
confinement was modeled assuming the material properties of 4340 alloy steel taken from
the AUTODYN material library [27]. The dynamic behavior of steel was modeled using the
Johnson–Cook failure model, the Johnson–Cook strength model, and Shock EOS [27,29].

The numerical simulation was carried out using a 2D axisymmetric Lagrangian for-
mulation. The element size (axial × radial) for both the explosive and confinement was
1 × 1 mm for all the calculations. Lightly PVC-confined ANFO charges were initiated using
a cylindrical PETN booster charge of constant mass (20 g, d = 20 mm, and ρ0 = 1.5 g/cm3),
while steel-confined ANFO charges were initiated by PETN boosters of different masses,
with an equivalent booster diameter-to-length ratio of 1. The point of initiation was set
at the front end of the booster charge. Gauges were placed at regular intervals within the
explosive charge (50 mm on the first third of the charge and 100 mm after that) to register
the time of arrival of the detonation wave to determine the shock velocity.

2.2. Calculation of Steady-State Detonation Applying Wood–Kirkwood Detonation Model

The steady-state detonation velocity of ANFO was calculated by applying the Wood–
Kirkwood (WK) detonation theory incorporated into EXPLO5 thermochemical code [19,24].
The WK theory predicts detonation velocity as a function of charge radius and considers
the radial expansion of detonation products. The hydrodynamic variables and chemi-
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cal concentrations of reactant and products along the center of the cylinder are given as
a set of ordinary differential equations and are supplemented by the reaction rate, the
rate of radial expansion, and equations of state of the detonation products and unre-
acted ANFO [20,30]. The state of gaseous detonation products can be described by the
Becker–Kistiakowsky–Wilson EOS [31], and that of condensed detonation products by the
Murnaghan EOS [26,32,33]. The parameters for both EOSs were taken from the EXPLO5
library [19].

The state of unreacted ANFO is described by the Murnaghan EOS (Equation (3)). The
parameters in the Murnaghan EOS for unreacted ANFO with a density 0.8 g/cm3 were
taken from [26]: C0 = 0.92 km/s and S1 = 1.4.

To describe the rate of radial expansion (ωr) of the detonation products, we used Wood
and Kirkwood’s [20] radial expansion model, which relates the rate of radial expansion
and the shock front curvature radius:

ωr =
(D − u)

RC
(4)

where Rc is the shock front curvature radius, u is the particle velocity in the shock frame,
and D is the detonation velocity.

The shock front curvature radius was calculated using the dependence proposed
by [34]:

RC = aRb
0 (in mm) (5)

where R0 is the charge radius, a = 0.4256, and b = 1.3835.
The reaction rate was described by two rate models: a two-step I&G rate model

(Equation (1)) and a single-step pressure-based (PB) reaction rate model [8,35]:

dF
dt

= k(1 − F)·PD (6)

where k and D are rate constants.
The constants k and D were calibrated to reproduce our experimental VoD charge

radius data for ANFO and were found to be k = 0.0471/µs and D = 1.4. The rate constants
for the I&G model were the same as those used in AUTODYN (Table 1), except for G, which
was tuned to better reproduce both experimental VoD charge radius data and the width of
the detonation driving zone, equaling G = 0.041/(µs p0.9).

3. Results and Discussion
3.1. Materials and Methods

The study was conducted with commercially available ANFO explosive containing 94.6%
AN and 5.4% fuel oil, with a minimal oil absorption of 6% and AN prill sizes ranging between
1.0 and 2.83 mm. The density of the ANFO charges was in the range of 0.78–0.82 g/cm3.

The velocity of detonation of cylindrical ANFO charges was measured by an electro-
optical method using a six-channel Kontinitro EXPLOMET-FO-2000 detonating velocity
measuring system [24]. Optical fibers were placed along the charge axis at even distances,
with the first sensor at a minimum of 50 mm from the initiation point. The detonation
velocity was determined by measuring the time of arrival at 5 different positions (sections)
along the charge axis, as illustrated in Figure 1. The distance between the fibers was 120 mm
for charges with inner diameters of 71 and 154 mm and 150 mm for other charges. The
values of the detonation velocities at the middles of sections were used for analysis.

Two sets of measurements were performed: the first using lightly confined ANFO
charges (thin polyvinyl chloride confinement, PVC) to determine the effect of charge
diameter on detonation velocity–distance profiles and the second using ANFO charges
confined in 3 mm thick steel tubes to determine the effects of confinement and booster mass
on detonation velocity–distance profiles.
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In the first set of measurements, the inner charge diameters varied from 71 mm to
154 mm, with lengths from 700 to 1000 mm and PVC tube thickness of 2–3 mm. The
initiation was kept the same throughout the set with the use of an instantaneous electric
detonator and 20 g of PETN booster. In the second set of measurements, the inner diameter
of the ANFO charges was 55 mm and the length 500 mm. The initiation was performed
using cylindrical PETN boosters of different masses (1 g, 20 g, 50 g, and 100 g) while keeping
the booster length-to-diameter ratio constant at 1. The detonation velocity was measured
at four sections along the charge axis. The distance between the fibers was 100 mm. For the
first set of experiments, two tests were performed for each charge diameter and the mean
value of detonation velocity was taken, and for second set, three tests were performed. In
both sets of measurements, the average density of the explosive charges was 0.8 g/cm3.
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Figure 1. Schematic representation of measuring system.

3.2. Effect of Charge Diameter on Shock Initiation Behavior

The effect of charge diameter on the shock initiation and propagation of detonation in
ANFO was studied experimentally using lightly confined charges having internal diameters
of 71 mm, 104 mm, 119 mm, and 154 mm. Detonation velocity was measured at five sections
at different distances from the initiation point. The so-obtained detonation velocities are
shown in Figure 2 as a function of distance from the booster back end.
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Figure 2. Experimental and calculated detonation velocities of slightly confined ANFO charges
having different radii as a function of distance from the booster.

Numerical modeling with AUTODYN was performed as described in Section 2.2.
Detonation velocities at individual sections of the charge were calculated from the registered
time of arrival of the shock front to individual gauges located along the charge axis and the
distance of the gauges from the initiation point. The arrival time was determined from the
pressure–time curve (Figure 3) for each gauge. The calculated detonation velocities for the
71 mm, 104 mm, 119 mm, and 154 mm charge diameters are shown in Figure 2, along with
experimentally obtained data. The density of the charges was 0.8 g/cm3.
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As is visible in Figure 2, both experiments and calculation showed a sharp drop in
VoD after shock waves entered the ANFO charges, reaching a VoD minimum value of
about 1.2 km/s after approximately 100–120 mm (from AUTODYN calculations) and after
200–300 mm (from experiments). After that, the VoD increased and achieved steady-state
velocity for a given charge diameter. The run-to-steady-state detonation velocity distance
(xSDT) decreased with increase in the charge diameter and ranged between 500 and 700 mm,
i.e., 3–6 charge diameters (Table 2).
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Table 2. Experimental and calculated detonation velocities and run-to-steady-state detonation
velocity distances at different charge radii.

din
(mm)

R0
(mm)

Detonation Velocity (km/s) xSDT (mm)
xSDT/din

Expt. AUTODYN
(at x > xSDT)

EXPLO5
(PB Model)

EXPLO5
(I&G Model) Expt. AUTODYN

71 35.5 1.23 0.96 - - - -
90 45 1.63 2.48 2.34 1000 * 11.11
98 49 2.69 2.78 2.61 720 7.35
104 52 2.85 2.88 2.94 2.77 600 600 5.77
119 59.5 3.15 3.31 3.22 3.10 650 420 3.53
154 77 3.68 3.89 3.58 3.57 500 380 2.47
250 125 4.59 4.01 4.10 300 1.20

1000 500 4.85 4.56 4.57 280 0.28

Legend: Expt.—experimental data; *—approximated.

When comparing the experimental and calculated VoD–x curves for the four studied
charge diameters, one can note that the calculated steady-state detonation velocities agreed
very well with the experimental velocities (Table 2). For example, for the 77 mm charge
radius, AUTODYN predicted a detonation velocity of 3.89 km/s, while EXPLO5 with the
I&G reaction rate model predicted 3.57 km/s, which were 5.7% higher and 2.9% lower than
the experimental detonation velocity of 3.68 km/s, respectively.

The calculated and experimental VoD–x profiles were in good qualitative agreement.
However, the values of the VoD at minimum and the run-to-steady-state detonation dis-
tance were somewhat different. For example, the calculated minimum VoD was achieved
earlier (after 100–120 mm) compared to the experimental minimum (200–300 mm), and its
value was higher than the experimental value (1.7 km/s versus 1.2 km/s). In addition, a
faster growth in VoD from the minimum value to a steady-state velocity, i.e., a shorter xSDT,
was predicted by the calculations.

The difference between the calculations and experiments may be attributed partly to
the shortcomings of the experimental set-up and partly to the inadequacies of the numerical
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model. From the experiments, the measurement of VoD on five sections along the charge
axis may be insufficient to obtain a smooth and accurate VoD–x profile, particularly in
the region closer to the initiation point where abrupt change in VoD was observed. As
for the numerical model, the calculated VoD–x profiles resulted from the combined effect
of chemical and mechanical responses, which implies that both the equations of state
of unreacted ANFO and the reaction rate model were imperative to obtain an accurate
depiction of the detonation behavior. Since in our model reaction rate constants were
calibrated to reproduce experimental steady-state detonation velocity, inaccuracy of the
unreacted EOS seems to be the more likely cause of discrepancy between the experimental
and modeling results rather than the reaction rate model.

The VoD–x profiles shown in Figure 1 are characteristic of shock initiation in heteroge-
neous explosives. The shock wave generated by the booster charge propagated into the
main ANFO charge, and its intensity attenuated quickly with distance. At the same time,
some of the reaction occurred just behind the shock front (hotspot reaction), causing pres-
sure growth. Most of the reaction occurred behind the leading shock (growth in reaction),
generating a pressure wave that overtook the initial shock wave and caused the process
to finally transition to steady-state detonation [36]. This is clearly seen in Figure 3, which
shows calculated pressure–time profiles along the charge axis.

Figure 3b shows that pressure generated by the booster charge dropped quickly to ap-
proximately 0.3 GPa (0.003 Mbar) in less than 80 µs. The same applied for the 59.5 mm and
77 mm charges. When the reaction rate became significant, pressure accelerated quickly to
a pressure that corresponded to steady-state detonation. The pressure growth was clearly
visible for the 52 mm, 59.5 mm, and 77 mm charge radii. However, for R0 = 35.5 mm
(Figure 3a), pressure continuously and slowly decreased, approaching about 0.18 GPa
(resulting in VoD = 0.96 km/s) at x = 550 mm. This indicates that steady-state detonation
velocity was not achieved after 550 mm. Such an effect of charge diameter on the shock
initiation behavior of ANFO resulted from larger radial expansion of the detonation prod-
ucts and, consequently, larger pressure weakening in the case of smaller charge diameters.
The final shape of the VoD–x curves was determined by an interplay between the rate of
expansion of the detonation products and the rate of reaction for a given charge size. To
obtain clearer insight into the dependence of initiation behavior on charge diameter, several
calculations were carried out for charge diameters ranging from 71 to 1000 mm. The results
of the calculations are shown in Figure 4 and Table 2.
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Figure 4. Calculated effect of charge diameter on VoD–x profiles.

Figure 4 shows that steady-state detonation velocity increased and was achieved at a
shorter distance for larger charge radii (xSDT = 600 mm for R0 = 52 mm and xSDT = 280 mm
for R0 = 500 mm). For charge radii slightly above the failure radius (31.5 mm according [37])
and 37.5 mm according to [38]), VoD growth to steady-state detonation was slower, and a
steady state was attained only beyond distances of 1000 mm (Table 2 and Figure 5).
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The steady-state detonation velocity as a function of charge radius was also calculated
by applying the Wood–Kirkwood (WK) model incorporated into EXPLO5 thermochemical
code in the way described in Section 2.2. The calculation is performed assuming light
PVC confinement did not play a role, i.e., assuming the charge was unconfined. It is
important to note that the WK model predicts steady-state detonation parameters, and
it does not model initiation behavior. The decomposition of ANFO was described by a
simple, pressure-based (PB) reaction rate model (Equation (6)) and a Lee–Tarver I&G rate
model (Equation (1)). As mentioned in Section 2.2, the reaction rate constants were adjusted
to reproduce our experimental detonation velocity charge radius data. Figure 6 and Table 2
show the comparison between the EXPLO5 and AUTODYN calculation results with the
experimental VoD–R0 results.
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Figure 6. Comparison of experimental and calculated detonation velocity and inverse charge radii data [7].

As shown in Figure 6, both EXPLO5 and AUTODYN correctly reproduced experimen-
tal VoD–1/R0 data at radii larger than 50 mm, with AUTODYN predicting slightly larger
values of VoD (Table 2). The error in the predicted VoD values was larger in the vicinity of
the failure radius for both the EXPLO5 and AUTODYN calculations. The pressure-based
model described the experimental VoD–1/R0 data very well, even in the vicinity of the
failure radius, and correctly predicted the failure radius (Rf = 39 mm, which was very close
to experimental value of 37.5 mm). AUTODYN and EXPLO5 with the I&G model tended
to overpredict the failure radius at between 40 and 45 mm.

3.3. Effects of Booster Mass and Confinement on Shock Initiation Behavior

The effect of booster charge mass on the initiation of ANFO was studied experimentally
using steel-confined charges (55 mm inner diameter, 500 mm length, and 3 mm wall
thickness), and details are reported in our paper published earlier [13]. The size of the
charges was kept constant in all the experiments, while the booster mass varied. The



Energies 2023, 16, 1744 9 of 13

experiments were modeled in AUTODYN using an I&G reaction rate model and the values
of the I&G parameters given in Table 1. A comparative presentation of the experimental
and calculated VoD–x data is given in Figure 7.
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Figure 7. Experimental and calculated VoD–x profiles as a function of mass of booster for confined
ANFO charges [13].

It can be seen that, similar to lightly confined ANFO charges, the calculations qual-
itatively described VoD–x profiles quite well. A detailed look at the comparison of the
experimental results and calculations indicates that the same deficiencies of previous ex-
periments existed. First, the small number of sections at which VoD was determined (four
sections) was not sufficient to correctly register the rapid drop in shock velocity at the
beginning of the charge and the existence of the minimum VoD value after which growth
in shock velocity occurred. In addition, it follows from Figure 7 that the length of the
explosive charges used in the experiments was not sufficient to achieve steady-state det-
onation in all cases. The fact that the detonation velocity determined in the last section
(Section 4, x = 400 mm) was lower for charges initiated by a lower mass booster confirmed
that steady-state detonation velocity was not established in all cases (because steady-state
detonation velocity should be the same for the same charge size). On the contrary, the
AUTODYN calculations predicted practically the same value of steady-state detonation
velocity (3.32 ± 0.02 km/s), regardless of booster mass. AUTODYN calculations were
performed for booster masses outside the range of the masses used in the experiments, and
the results of calculations are summarized in Figure 8 and Table 3.

Table 3. Comparison of experimental and calculated detonation velocities of confined ANFO.

Booster (g)
Experiment AUTODYN

VoD * (km/s) VoD ** (km/s) VoDmin (km/s) xSDT (mm)

1 2.35 3.34 0.81 450
5 3.34 1.10 400
20 3.04 3.28 1.72 330
50 3.19 3.31 2.10 320

100 3.46 3.33 2.25 290
200 3.32 2.45 260
500 3.32 2.55 250

Legend: VoD *—detonation velocity measured at section 4 (400 mm from the booster end base); VoD **—steady-
state detonation velocity.
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All the VoD–x curves shown in Figure 8 show a characteristic minimum, which
increased and shifted to larger distances with increase in the booster mass. At the same
time, the run-to-steady-state detonation distance decreased with the booster mass, while
the steady-state detonation velocities remained the same (about 3.32 km/s at x > 400 mm).
Such behavior is consistent with the findings of [2], who studied the initiation of AN/TNT
mixtures with boosters of different masses.
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Figure 8. Calculated effect of booster mass on VoD–x curve (note: charge size is the same in all cases).

Assuming the expansion (rarefaction wave) of detonation products is similar for
charges of the same size, the shape of the VoD–x curves in Figure 8 was defined primarily
by reaction kinetics. A larger booster produced a larger initiating pressure impulse in the
explosive region adjacent to the booster surface, resulting in a faster reaction rate (since
the rate was pressure-dependent) compared to boosters of lower masses. Faster reaction,
in turn, resulted in faster generation of additional pressure and energy that reinforced
the initial shock wave, which led to faster growth in pressure and shock velocity and,
ultimately, to a shorter distance to steady-state detonation. The fact that the rapid drop in
VoD at the beginning of the charge was lower for larger boosters and that the minimum
VoD shifted to larger distances with booster mass, as well as that the xSDT became shorter
for larger boosters, supports the aforementioned hypothesis.

The shock initiation behavior of confined and lightly confined ANFO charges is
illustrated in Figure 9, which summarizes the effects of booster mass, charge diameter,
and confinement on the initiation behavior of ANFO. The graph shows the dependence of
xSDT on booster mass in a log–log scale, and it is similar to the so-called “Pop Plot”, which
represents the dependence of run-to-detonation-distance on initial impact pressure [36].

As shown in Figure 9, on a log–log scale, the relationship between xSDT and booster
mass (mB) data was linear. For all the charge diameters, xSDT decreased with increase
in the booster mass and, for mB = 1000 g, xSDT was approximately 250 mm, regardless
of the charge radius and the existence of confinement. From the slopes of the lines, it
follows that the effect of booster mass was more pronounced for smaller charge radii
(slope is larger). The slope for steel-confined charges was the smallest, which indicates
the smaller effect of booster mass compared to lightly confined (unconfined) charges. For
illustration, the xSDT for mB = 1000 g equaled approximately 250 mm for all the charges.
However, for mB = 1 g of booster charge, xSDT = 450 mm for the steel-confined charge of a
25.4 mm of radius, xSDT = 380 mm for the lightly confined charge of a 77 mm radius, and
xSDT = 600 mm for the lightly confined charge of a 52 mm radius.

Such results indicated that, along with reaction rate kinetics, the expansion of deto-
nation products plays an important role when it comes to the shock initiation of ANFO.
This is the reason why, for steel-confined charges where expansion is supressed by the
confining material, the xSDT is much shorter than for unconfined charges, even at much
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lower charge radii. Based on this, it can be expected that, with stronger confinement
where radial expansion is highly supressed, the effect of booster mass on xSDT may be less
pronounced compared to weak confinement. It should be added that other factors (e.g., shape
and size of the booster charge, position of booster charge relative to the ANFO charge, etc.) can
affect, to a certain extent, the shock initiation and growth of detonation to attain a steady state.
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4. Conclusions

The shock initiation of ANFO and the effects of charge diameter, booster mass, and
confinement on initiation behavior were studied experimentally by measuring detonation
velocity distribution along a cylindrical explosive charge axis and were subsequently
modeled using a calibrated ignition and growth (I&G) reaction rate model.

(1) It was demonstrated that AUTODYN with an I&G model could qualitatively describe
the initiation process and predict steady-state detonation velocity as a function of
charge diameter with an error of up to 6%. The WK detonation model incorporated
into EXPLO5 thermochemical code could predict accurately the steady-state detona-
tion velocity of unconfined (i.e., lightly confined) charges with an error of up to 3.5%
for R0 > 50 mm.

(2) For lightly confined charges initiated by a constant mass of booster, steady-state
detonation was established faster (at shorter distances) for charges of larger diame-
ters. The initial drop in VoD and the minimum VoD reached were related to booster
mass, i.e., initiating pressure impulse, and thus did not change with charge diame-
ter. However, the shock velocity (and pressure) growth rate increased with charge
diameter. This was associated with a greater expansion of products at smaller charge
diameters, which resulted in stronger pressure weakening and a slower reaction rate
at smaller charge diameters. Faster reaction, in turn, resulted in faster generation
of additional pressure and energy that strengthened the initial shock wave, hence
leading to faster growth in pressure and shock velocity and, ultimately, to a shorter
distance to steady-state detonation.

(3) Both the experiments and the calculations confirmed that booster mass strongly
affected the resulting VoD–x profiles: the minimum VoD increased with booster
mass and shifted to larger distances, the shock velocity growth rate increased, and
the run-to-steady-state detonation decreased. On a log–log scale, xSDT vs. booster
mass showed linear dependence analogous to a “Pop Plot”, which represents the
dependence of run-to-detonation distance on initial impact pressure.

(4) The log(xSDT)–log(mB) graphs for lightly confined and steel-confined charges showed
that the xSDT was smaller for steel-confined charges, which supports the hypothe-
sis that the expansion of detonation products plays an important role in the shock
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initiation of ANFO charges. The effect of booster mass was less pronounced for
steel-confined charges.

(5) Considering the wide range of parameters that could affect the shock initiation and
propagation of detonation in non-ideal explosives such as ANFO, this study aimed to
contribute a better understanding of the impacts of some of these factors, which is
important for better tailoring the effects of ANFO for use in the mining industry.
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