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Abstract: Soil heterogeneities can impact hillslope hydropedological processes (e.g., portioning
between infiltration and runoff), creating a need for in-depth knowledge of processes governing
water dynamics and redistribution. The presented study was conducted at the SUPREHILL Critical
Zone Observatory (CZO) (hillslope vineyard) in 2021. A combination of field investigation (soil
sampling and monitoring campaign) and numerical modeling with hydrological simulator HYDRUS-
1D was used to explore the water dynamics in conjunction with data from a sensor network (soil
water content (SWC) and soil-water potential (SWP) sensors), along the hillslope (hilltop, backslope,
and footslope). Soil hydraulic properties (SHP) were estimated based on (i) pedotransfer functions
(PTFs), (ii) undisturbed soil cores, and (iii) sensor network data, and tested in HYDRUS. Additionally,
a model ensemble mean from HYDRUS simulations was calculated with PTFs. The highest agreement
of simulated with observed SWC for 40 cm soil depth was found with the combination of laboratory
and field data, with the lowest average MAE, RMSE and MAPE (0.02, 0.02, and 5.34%, respectively),
and highest average R2 (0.93), while at 80 cm soil depth, PTF model ensemble performed better
(MAE = 0.03, RMSE = 0.03, MAPE = 7.55%, R2 = 0.81) than other datasets. Field observations indicated
that heterogeneity and spatial variability regarding soil parameters were present at the site. Over the
hillslope, SWC acted in a heterogeneous manner, which was most pronounced during soil rewetting.
Model results suggested that the incorporation of field data expands model performance and that the
PTF model ensemble is a feasible option in the absence of laboratory data.

Keywords: numerical modeling; soil-hydraulic properties; pedotransfer functions; hillslope vineyard;
soil water content

1. Introduction

Over the last decades, hillslope hydrological research has produced valuable field
observations, theories, and models at individual research sites and networks [1–5]. In
general, hillslope hydrology is concerned with the redistribution of precipitation and
the organization of water availability in the landscape [5] which affects vegetation, soil
development, and processes responsible for water and matter flow at the surface and in the
subsurface [6]. Since hillslopes are often characterized by a pore system affected by lateral
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forces, heterogeneities may result impacting hillslope processes [6], and an insight into
the area and its heterogeneity is of uppermost importance to unravel processes governing
water dynamics and redistribution in the hillslope agroecosystem [7].

In dry conditions, subsurface hillslope flow is considered hydrologically horizontally
disconnected, and the flow is primarily vertical, while under wet conditions, hillslopes are
connected through subsurface lateral flow [8–10]. During periods of low evapotranspiration
and low rainfall, high local convergence areas wet up and water moves downslope. Surface
flow initiation occurs when the amount of water across the surface domain exceeds the
infiltration capacity, causing excess water to flow over the soil surface as surface runoff.
Surface vegetation cover, soil texture, soil porosity, soil structure (e.g., cracks, surface
crusting), and compaction affect the infiltration of surface water [11]. Therefore, it is
important to manage land use and soil conditions to maintain a high infiltration capacity
and minimize runoff. Additionally, soil hydrophobicity, or the property of water repellence,
can lead to reduced infiltration of water into the ground, which can increase the flow of
surface water [12]. A rapid increase in potential evapotranspiration (and a decrease in
rainfall) in the wet-to-dry condition transition, causes the soil to dry out and lateral flow
will be reduced or even be stopped [8]. Downward flow into the soil profile as well as lateral
subsurface flow greatly control the soil water content at a given location along the hillslope,
and consequently the water availability for plants within the effective root zone. The ability
to extract soil water is intrinsic for plants and the extent of water extraction depends on
the plant type [13]. Furthermore, the actual water content of the soil influences nutrient
availability for plants, but also aeration, which in turn may also affect biogeochemical
processes [14].

Unsaturated soil hydraulic properties (SHPs) are essential for describing and predict-
ing water flow in the unsaturated zone [15], but their parametrization is often not the aim
itself, rather that they are essential for simulating water flow and transport processes [16].
One way of obtaining these properties is by laboratory measurements, which are commonly
employed due to their reliability and acceptance [17–19]. However, laboratory-obtained
SHPs may not always accurately represent field conditions and it is important to consider
the limitations of laboratory-obtained SHPs in field modeling [20]. Factors such as soil
structure can vary significantly under field conditions, leading to variations in SHPs. For
example, soil structure may be altered by tillage or compaction [21]. Additionally, SHPs
may be influenced by processes that are difficult to replicate in the laboratory, such as
hysteresis. Hysteresis refers to the non-linear relationship between soil moisture content
and water potential, which can lead to differences in the soil’s ability to absorb and release
water depending on its previous soil water content, and this effect cannot captured by
the desiccation method commonly used in the laboratory measurements [22,23]. SHPs
are generally measured at the smaller scale, which may not accurately represent the prop-
erties at the representative elementary volume (REV) which can lead to discrepancies in
hydrological modeling at the field scale [20].

Furthermore, detailed soil campaigns are not always available or even feasible due
to the complex nature/size of the area/system under investigation [24]. Measurements of
the SHPs are often time-consuming and costly, and are subject to measurement errors [24],
which creates a need for alternative parameter estimation procedures. In order to overcome
the problematic lab measurements, pedotransfer functions (PTFs) have been developed,
which are able to estimate the SHPs from easily obtainable soil parameters [15,25]. Unfortu-
nately, when PTFs are applied outside the area they were calibrated for, they might result in
predictions with limited accuracy [15], and therefore it is recommended to analyze which
PTF is suitable for the site under investigation to reduce prediction errors. Another way to
reduce the generalization error of the prediction might be ensemble modeling. Ensemble
modeling is hereby the approach of predicting an outcome by using multiple inputs from
the individual PTFs. In general, ensemble modeling is widely used in practical data science
applications [26–29].
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This study was conducted by combining field monitoring of soil and crop dynamics,
laboratory measurements of soil hydraulic properties and characteristics, and numerical
simulations with aim to answer the following research question of how good different
methods for determining soil hydraulic properties (individual PTF, PTF model ensemble
mean, laboratory evaporation method, and by field data from the sensor network) represent
water flow dynamics along the different hillslope positions. Furthermore, it was tested if
the usage of PTF ensemble mean could provide better results than individual PTFs at the
investigated site.

2. Materials and Methods
2.1. Site Description

The investigations were conducted at the SUPREHILL Critical Zone Observatory
(CZO) located in a hillslope vineyard at the experimental field Jazbina (45◦51′24′′ N,
16◦00′22′′ E) in Zagreb, Croatia. The hillslope is southwest exposed, and the vineyard
rows are oriented along the slope. The hillslope is separated into three segments: hilltop,
backslope, and footslope. In this 15-year-old vineyard, the soil type is classified as Dystric
(Luvic) Stagnosol (IUSS Working Group WRB, Washington, DC, USA, 2014) [30] (Table 1).

Table 1. Average soil texture and organic carbon content (Corg) at the hilltop, backslope, and
footslope for three depths (0–30, 30–60, and 60–90 cm) with standard deviation (SD), and soil type at
the SUPREHILL CZO.

Position Depth
(cm)

Sand
(%) SD Silt

(%) SD Clay
(%) SD Corg

(g kg−1) SD USDA Soil Type
(IUSS, 2014)

H
il

lt
op 0–30 5.7 1.5 71.0 1.0 23.3 0.6 11.9 0.5 silt loam Dystric Luvic Stagnosol

(Aric, Humic,
Endoloamic, Episiltic)

30–60 4.7 1.2 69.0 2.0 26.3 1.2 5.9 0.6 silt loam
60–90 7.3 0.6 60.3 7.4 32.3 6.8 2.0 0.6 silt clay loam

B
ac

ks
lo

pe 0–30 6.7 0.6 70.0 1.0 23.3 0.6 9.8 1.3 silt loam Dystric Stagnosol
(Aric, Colluvic, Humic,

Inclinic, Siltic)
30–60 8.3 3.2 67.3 3.1 24.3 1.5 6.1 0.4 silt loam
60–90 16.7 2.1 56.0 6.2 27.3 5.5 2.5 0.9 silt clay loam

Fo
ot

sl
op

e 0–30 6.7 1.5 75.0 3.0 18.3 4.5 12.4 1.2 silt loam Dystric Stagnosol
(Aric, Husmic,
Inclinic, Siltic

30–60 7.0 0.0 72.0 6.0 21.0 6.0 8.1 1.7 silt loam
60–90 6.3 0.6 67.7 5.5 26.0 5.6 4.7 1.1 silt loam

2.2. Field Measurements, Weather and Crop Data

For the measurement of soil water content (SWC) TEROS 10/TEROS 12 (METER
Group, Inc., Pullman, WA, USA) capacitance sensors were used. Sensors were installed
at the different slope positions (hilltop, backslope, and footslope) with three replicates on
three consecutive vine rows (with buffer rows in between) at two different soil depths
(40 and 80 cm). Sensors were installed in between two vines (within an equal distance),
in the observed vine rows, with three replicates in three vine rows, at two different soil
depths (40 and 80 cm) at the different slope positions (hilltop, backslope, and footslope). In
between each observed row, one non-observed vine row served as a buffer zone. For the
observation of soil water potential (SWP) TEROS 21 sensors (METER Group, Inc., Pullman,
WA, USA) were used in three repetitions in the nearby proximity of the SWC sensors, also
at 40 and 80 cm depth (Figure 1). Both SWC and SWP sensor data were recorded at an
hourly interval.

Weather data (air temperature, relative humidity, vapor and air pressure, solar radia-
tion, wind speed and direction) was acquired from a meteorological station (ATMOS41,
METER Group, Inc., Pullman, WA, USA) installed at the backslope. For the precipita-
tion data, a mean value of measured rainfall and non-rainfall water (i.e., dew) using two
high-precision weighable lysimeters (SFL 900, METER Group, Inc., Pullman, WA, USA)
installed at hilltop and footslope was used. The raw lysimeter data underwent an extensive
manual and automated plausibility control, as described in [31,32], before the subsequent
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smoothing of the lysimeter data to reduce the impact of noise. To smooth the data and
improve data reliability, the AWAT-filter was used, that applies an adaptive smoothing
window size and adaptive threshold value [33–35].
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Figure 1. Location of the established SUPREHILL critical zone observatory (CZO) on the map of
Croatia and the installed equipment setup at the hilltop, backslope and footslope presented on a 3D
generated vineyard model (model generated in Agisoft Metashape based on UAV imagery).

The maximum assumed (moment of summer vine pruning (Figure 2)) canopy leaf
area index (LAI) was measured by defoliation of the linear row distance (1 m of the
row length) from the three representative vines of the vineyard. The selected vines (row
length) were defoliated, all leaves were collected, and leaf samples were imaged using
CropReporter (PhenoVation B.V., Wageningen, The Netherlands). Detailed description
of the CropReporter™ is given in [36]. The leaf area for individual leaves, as well as for
all sampled leaves, was calculated by DA software (PhenoVation B.V., Wageningen, The
Netherlands), and a mean out of three samples was calculated.
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Figure 2. Exemplary display (3D model) of the representative vine (obtained with PlantEye F500
multispectral 3D scanner (Phenospex, Heerlen, The Netherlands)) at the SUPREHILL CZO at assumed
maximum Leaf Area Index (LAI); (a) side view; (b) top view.

2.3. Soil Investigation and Soil Hydraulic Properties Datasets

Disturbed soil samples were taken from three positions (hilltop, backslope, and foots-
lope) from three soil depths (0–30, 30–60, 60–90 cm), and three vine rows to determine the
soil texture and organic carbon content (Corg). Soil texture was determined by combined
wet sieving and sedimentation (ISO 11277:2009) (sand: 2–0.063 mm; silt: 0.063–0.02 mm;
and clay: <0.002 mm), and the Corg by sulfochromic oxidation (ISO 14235:1998) (Table 1).

Based on field soil data, a number of widely used pedotransfer functions (PTFs),
namely Carsel & Parrish [37], two versions of Rosetta [38], Woesten [39], Rawls [40],
Weynants [41], and two versions of Toth [42] were used to estimate the properties of the soil
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water retention curve and the saturated hydraulic conductivity for the model input data.
The reason why a set of commonly applied PTFs has been used can be found in [24], where
the authors showed, that the model outcome depends on the PTF selected. Therefore, a
PTF based model mean might reproduce best results. Based on the HYDRUS results, a
model ensemble consisting of the mentioned eight PTFs was produced to represent the
PTF dataset. This procedure was repeated for each individual row, position, and depth
available along the hillslope, while only the average soil data, representing the hillslope
position are presented in Table 1.

A second set of simulations was performed based on the laboratory derived SHPs
where undisturbed soil cores (250 cm3) have been sampled at the hilltop, backslope, and
footslope in three vineyard rows and in triplicates per location, at depths 0–20, 20–40,
40–60, and 60–90 cm, corresponding to the sensor-based monitoring network. Saturated
hydraulic conductivity (Ks) was measured by the falling head method using the KSAT
device (METER Group, Inc., Pullman, WA, USA). Furthermore, the same undisturbed soil
cores were used for estimating SHPs by using the simplified evaporation method using
the HYPROP system [43] in combination with the dewpoint device WP4C (both METER
Group, Inc., Pullman, WA, USA) [44]. The fitted soil water retention curves (SWRCs) of
the samples, as well as SHPs, were determined using the HYPROP-FIT software (METER
Group, Inc., Pullman, WA, USA ).

A third set of simulations dataset was generated by optimizing the parameters of the
van Genuchten Mualem model (θr, θs, α and n) to the measured field soil water retention
data using the Shuffled complex Evolution (SCE) algorithm (R package SoilHyP [45]).
Field soil-water retention data were taken from parallel observations of SWC and SWP
measurements in 40 and 80 cm soil depth. The SCE approach has been already used to
estimate the SHPs from field experiments as it is suitable to find the correct parameters in
the complex parameters space [45–47]. No measurements of the field soil-water retention
curve were available for the first and third depth (0–20 and 40–60 cm). Thus, parameters
for θr, θs, α, n and Ks were taken from laboratory measurements to parameterize the first
and third layer of the soil profile.

2.4. Numerical Modeling

Water flow was simulated using the HYDRUS-1D software [48] (version 4.17.0140).
For the simulation of water flow the Richards equation for the variably saturated porous
medium was solved and can be written as:

∂θ

∂t
=

∂

∂z
K
(

∂h
∂z

+ 1
)
− S (1)

where θ is volumetric soil water content [L3 L−3], h is pressure head [L], K is hydraulic
conductivity of unsaturated soil [L T−1], z is the gravitational head [L], t is time [T], and S
is a sink term for root water uptake [T−1].

Soil hydraulic functions were described using the van Genuchten-Mualem single
porosity model [49]:

θ(h) =

{
θr +

θs−θr

(1+|αh|n)
m h < 0

θs h ≥ 0

}
(2)

K(h) = KsSl
e (1− (1− S

1
m
e )

m
)

2
(3)

Se =
θ − θr

θs−θr
(4)

m = 1− 1
n

; n > 1 (5)

where θ(h) is volumetric water content [L3 L−3], K(h) is hydraulic conductivity of unsatu-
rated soil at the water pressure head of h [L], θr is residual soil-water content [L3 L−3], θs is
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water content at saturation [L3 L−3], Se is the effective saturation [-], Ks is the saturated hy-
draulic conductivity of the soil [L T−1], α is the inverse of air-entry value (bubbling pressure)
[L−1], n is the dimensionless soil pore size distribution index [-], m is the dimensionless
optimization coefficient [-], and l is the pore connectivity parameter [-].

Boundary conditions for the simulations were set to atmospheric conditions (daily
data) with surface runoff at the top, while a free drainage was applied for the bottom.
Domain discretization density was increased near the soil surface with a total number of
150 nodes for the 150 cm deep simulation domain. The soil profile was initialized in water
content according to the measured water contents at the different locations at the beginning
of the simulation time.

Evapotranspiration of vine (ETc) was calculated using the reference evapotranspiration
(ET0) determined with the Penman–Monteith equation [50] and FAO crop coefficients (Kc ini:
0.3; Kc mid: 0.7 and Kc end: 0.45) [51]. The assumed LAI development stages correspond with
used Kc stages. A simplified LAI approach was used, assuming a linear increase in the early
developing stages until measured maximum at summer pruning (LAImax: 3.55), following
a 20% decrease (due to vine biomass cut) with constant values until the end of mid stage
(7 June 2021), and a linear decrease until the end of the late stage (30 September 2021).

Root water uptake was simulated using the approach of Feddes et al. (1978) setting
the parameters P0 to −10 cm, POpt to −25 cm, P2H to −400 cm, P2L to −500 cm, and P3
to −8000 cm, corresponding for the parameter set available for grapes in the HYDRUS
integrated library. Maximum rooting depth was set at 100 cm based on field observations.

2.5. Statistical Analysis

Model performance was evaluated using the mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE), and coefficient of determi-
nation (R2):

MAE =
∑N

i=1|Pi −Oi|2

N
(6)

RMSE =

√
∑N

i=1(Pi −Oi)
2

N
(7)

MAPE =
1
N ∑N

i=1

∣∣∣∣Oi − Pi
Oi

∣∣∣∣ (8)

R2 =
∑N

i=1
(
Oi −O

)(
Pi − P

)[
∑N

i=1
(
Oi −O

)2
]0.5[

∑N
i=1
(

Pi − P
)2
]0.5 (9)

where Oi is observation, Pi is prediction, Ō is average observation and P is average predic-
tion, while N is the sample size.

Seasonal SWC was evaluated using the coefficient of variation (CV):

CV =
SD
O
× 100 (10)

where SD is standard deviation and Ō is average observation.

3. Results
3.1. Laboratory and Field Soil Water Retention Characteristics

The laboratory obtained parameters showed that the saturated water content (θs)
(Table 2) varied from 0.32 cm3 cm−3 (backslope (row III) at 60–90 cm) to 0.44 cm3 cm−3

(footslope (row II) at 40–60 cm). The Ks values varied from 0.08 cm day−1 (backslope
row I at 0–20 cm) to high as 82.6 cm day−1 (hilltop row II) at 60–90 cm). At the hilltop
and backslope, θs (Table 2), was generally decreasing with depth, while bulk density was
increasing, agreeing with previous findings at similar sites [52,53]. Average Corg (Table 1)
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ranged from 12.4 g kg−1 (footslope at 0–30 cm) to 2 g kg−1 (hilltop at 60–90 cm) and
was decreasing with depth at each hillslope position. Bulk densities varied from varied
from (1.75 g cm−3) (backslope (row III) at 60–90 cm) to 1.42 g cm−3 (hilltop (row III) at
0–20 cm). Furthermore, the lowest θs (0.32 cm3 cm−3) corresponded with the highest bulk
density of a sample at the site. Values of RMSE (θ) < 0.03 cm3 cm−3 (Table 2) indicated
the applicability of VGM for all locations. In the undisturbed soil samples sampled at
the hilltop and backslope positions (depth of 60–90 cm), soil concretions and gravel was
found that could cause higher Ks and lower θs values due to the lack of possibility for water
retention. The footslope position generally had the lowest Ks, and range of values. Figure 3
shows exemplary differences in SWRCs at different hillslope positions, depths, rows, and
soil cores.

Table 2. van Genuchten-Mualem (VGM) hydraulic properties evaluated by HYPROP-FIT for the
hilltop, backslope, and footslope for four depths (0–20, 20–40, 40–60, and 60–90 cm) and three
vineyard rows at the SUPREHILL CZO.

Position Row Depth
(cm)

θr
(cm3

cm−3)

θs
(cm3

cm−3)

α

(cm−1)
n
(-)

Ks
(cm

day−1)

RMSE
(θ)

Bulk
Density
(g cm−3)

H
il

lt
op

I

0–20 0 0.39 0.00445 1.201 0.38 0.018 1.52
20–40 0 0.38 0.00537 1.182 1.04 0.013 1.54
40–60 0 0.38 0.0071 1.171 1.83 0.016 1.59
60–90 0.103 0.37 0.00618 1.229 1.01 0.009 1.63

II

0–20 0 0.42 0.00667 1.185 0.79 0.011 1.48
20–40 0 0.40 0.0052 1.178 1.37 0.013 1.51
40–60 0 0.35 0.013 1.109 18.70 0.011 1.71
60–90 0 0.40 0.0319 1.112 82.60 0.015 1.56

III

0–20 0 0.42 0.00329 1.238 0.26 0.010 1.42
20–40 0 0.39 0.0104 1.151 2.71 0.016 1.5
40–60 0 0.35 0.00995 1.112 6.76 0.014 1.71
60–90 0.21 0.37 0.00718 1.389 0.31 0.015 1.65

B
ac

ks
lo

pe

I

0–20 0 0.37 0.00428 1.190 0.42 0.012 1.61
20–40 0 0.39 0.00877 1.143 9.31 0.022 1.56
40–60 0.172 0.34 0.00702 1.317 0.39 0.012 1.7
60–90 0.214 0.34 0.00524 1.508 0.08 0.013 1.74

II

0–20 0 0.38 0.00395 1.222 0.22 0.011 1.59
20–40 0 0.37 0.00576 1.181 1.20 0.015 1.55
40–60 0 0.39 0.00627 1.177 2.34 0.014 1.58
60–90 0 0.35 0.0186 1.124 18.50 0.011 1.69

III

0–20 0 0.37 0.00603 1.162 0.95 0.029 1.6
20–40 0 0.37 0.00252 1.278 0.41 0.010 1.51
40–60 0.144 0.34 0.00806 1.320 1.16 0.014 1.68
60–90 0.167 0.32 0.00569 1.445 0.28 0.011 1.75

Fo
ot

sl
op

e

I

0–20 0 0.39 0.00737 1.194 1.59 0.009 1.46
20–40 0 0.39 0.00599 1.210 1.25 0.008 1.5
40–60 0 0.41 0.00317 1.257 0.79 0.018 1.53
60–90 0 0.42 0.00447 1.179 2.09 0.018 1.51

II

0–20 0 0.37 0.0036 1.233 0.25 0.010 1.54
20–40 0 0.37 0.00469 1.218 0.46 0.011 1.54
40–60 0 0.44 0.00344 1.249 0.94 0.016 1.45
60–90 0 0.43 0.00251 1.229 0.77 0.009 1.47

III

0–20 0 0.39 0.00357 1.211 0.53 0.009 1.53
20–40 0 0.38 0.00331 1.235 0.52 0.013 1.58
40–60 0.016 0.42 0.00967 1.158 8.24 0.012 1.49
60–90 0 0.43 0.00458 1.180 1.51 0.016 1.48



Water 2023, 15, 820 8 of 17

Water 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

40–60 0.144 0.34 0.00806 1.320 1.16 0.014 1.68 
60–90 0.167 0.32 0.00569 1.445 0.28 0.011 1.75 

Fo
ot

sl
op

e 

I 

0–20 0 0.39 0.00737 1.194 1.59 0.009 1.46 
20–40 0 0.39 0.00599 1.210 1.25 0.008 1.5 
40–60 0 0.41 0.00317 1.257 0.79 0.018 1.53 
60–90 0 0.42 0.00447 1.179 2.09 0.018 1.51 

II 

0–20 0 0.37 0.0036 1.233 0.25 0.010 1.54 
20–40 0 0.37 0.00469 1.218 0.46 0.011 1.54 
40–60 0 0.44 0.00344 1.249 0.94 0.016 1.45 
60–90 0 0.43 0.00251 1.229 0.77 0.009 1.47 

III 

0–20 0 0.39 0.00357 1.211 0.53 0.009 1.53 
20–40 0 0.38 0.00331 1.235 0.52 0.013 1.58 
40–60 0.016 0.42 0.00967 1.158 8.24 0.012 1.49 
60–90 0 0.43 0.00458 1.180 1.51 0.016 1.48 

 
Figure 3. Exemplary differences in soil water retention points and curves obtained in the laboratory 
by the evaporation method and fitted soil water retention curve with three repetitions each (Repeti-
tion (I) to Repetition (III)) for: (A) different positions at the same row and depth: backslope and 
footslope (row I) at 60–90 cm; (B) different rows at the same depth and position: hilltop (row I & 
row II) at 40–60 cm; (C) different depth at the same row and position: backslope at 0–20 cm and 40–
60 cm (row I); and (D) one location, depth and position: backslope at 0–20 cm (row III) at the SU-
PREHILL observatory. 

Even if smaller differences were found between the triplicates from each sample lo-
cation (depth and row) larger differences between the retention characteristics were found 
between the sampled rows (Figure 3). The stated soil heterogeneity is confirmed with field 
data, where the differences are more noticeable (Figure 4) for rows and hillslope positions. 

 

 

Figure 3. Exemplary differences in soil water retention points and curves obtained in the laboratory by
the evaporation method and fitted soil water retention curve with three repetitions each (Repetition (I)
to Repetition (III)) for: (A) different positions at the same row and depth: backslope and footslope (row
I) at 60–90 cm; (B) different rows at the same depth and position: hilltop (row I & row II) at 40–60 cm;
(C) different depth at the same row and position: backslope at 0–20 cm and 40–60 cm (row I); and
(D) one location, depth and position: backslope at 0–20 cm (row III) at the SUPREHILL observatory.

Even if smaller differences were found between the triplicates from each sample
location (depth and row) larger differences between the retention characteristics were found
between the sampled rows (Figure 3). The stated soil heterogeneity is confirmed with field
data, where the differences are more noticeable (Figure 4) for rows and hillslope positions.
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3.2. Model Results

As mentioned, three different inputs in soil hydraulic properties were estimated,
either based on pedotransfer functions, laboratory measurements, or parameter estimation
based on sensor network data and then the SHPs estimated/determined were propagated
through the hydrological simulator HYDRUS-1D (Figures 5 and 6).
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ensemble (red line), PTF model ensemble spread (5–95 percentile range) (grey area), laboratory da-
taset (dashed black line) and combination of lab and field data (black line), and field SWC measure-
ments (blue line) in three vineyard rows at 40 cm depth, with precipitation data obtained with 
weighing lysimeter in 2021 at the SUPREHILL Critical Zone Observatory. 

Figure 5. Simulated soil water content (SWC) [cm3 cm−3] in HYDRUS-1D: pedotransfer (PTF) model
ensemble (red line), PTF model ensemble spread (5–95 percentile range) (grey area), laboratory dataset
(dashed black line) and combination of lab and field data (black line), and field SWC measurements
(blue line) in three vineyard rows at 40 cm depth, with precipitation data obtained with weighing
lysimeter in 2021 at the SUPREHILL Critical Zone Observatory.
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Figure 6. Simulated soil water content (SWC) [cm3 cm−3] in HYDRUS-1D: pedotransfer (PTF) model
ensemble (red line), PTF model ensemble spread (5–95 percentile range) (grey area), laboratory dataset
(dashed black line) and combination of lab and field data (black line), and field SWC measurements
(blue line) in three vineyard rows at 40 cm depth, with precipitation data obtained with weighing
lysimeter in 2021 at the SUPREHILL Critical Zone Observatory.

The highest agreement of simulated values with measured SWC for 40 cm soil depth
was found with the laboratory + field data, with the lowest average MAE, RMSE and MAPE
(0.02, 0.02 and 5.34%, respectively), and highest average R2 (0.93) (Table 3). At 40 cm soil
depth, the highest average MAE, RMSE and MAPE (0.07, 0.08 and 27.52%) was found for
an individual PTF—Carsel & Parrish dataset, while the lowest average R2 (0.81) was found
for an individual PTF—Toth, continuous dataset. For the 40 cm soil depth, PTF model
ensemble did not perform better (MAE = 0.03, RMSE = 0.03, MAPE = 9.41%, R2 = 0.9) over
the best performed individual PTF—Weynants (MAE = 0.02, RMSE = 0.03, MAPE = 7.64%,
R2 = 0.92).
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Table 3. Mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2) for simulated SWC
(individual PTFs, PTF model ensemble, laboratory data, and laboratory + field data) vs. observed SWC at 40 and 80 cm soil depth in 2021 at the SUPREHILL CZO.

40 cm 80 cm

HILLTOP BACKSLOPE FOOTSLOPE HILLTOP BACKSLOPE FOOTSLOPE

ROW ROW

I II III I II III I II III Mean I II III I II III I II III Mean

PT
F

C
ar

se
l&

Pa
rr

is
h MAE 0.09 0.04 0.11 0.04 0.06 0.05 0.09 0.10 0.06 0.07 0.08 0.02 0.09 0.03 0.07 0.03 0.08 0.06 0.03 0.05

RMSE 0.10 0.04 0.11 0.04 0.07 0.05 0.09 0.11 0.06 0.08 0.09 0.02 0.10 0.03 0.07 0.03 0.08 0.07 0.03 0.06
MAPE 35.84 12.15 45.05 12.02 25.10 16.72 37.80 42.84 20.19 27.52 36.16 5.99 37.56 8.90 31.05 9.52 33.07 24.47 9.29 21.78
RSQ 0.85 0.89 0.80 0.91 0.86 0.84 0.91 0.81 0.93 0.87 0.73 0.77 0.77 0.65 0.88 0.67 0.71 0.68 0.84 0.75

PT
F

R
os

se
ta

MAE 0.04 0.02 0.03 0.02 0.04 0.05 0.06 0.06 0.04 0.04 0.03 0.02 0.03 0.03 0.05 0.05 0.04 0.03 0.02 0.03
RMSE 0.05 0.03 0.03 0.03 0.05 0.06 0.06 0.07 0.05 0.05 0.04 0.03 0.04 0.04 0.05 0.05 0.05 0.04 0.03 0.04
MAPE 12.79 7.18 9.54 7.22 14.77 18.11 22.21 22.61 14.18 14.29 11.58 6.61 9.57 9.19 18.49 18.34 15.78 9.19 8.00 11.86
RSQ 0.86 0.86 0.82 0.91 0.84 0.81 0.93 0.82 0.92 0.86 0.79 0.78 0.79 0.64 0.90 0.67 0.75 0.72 0.87 0.77

PT
F

R
os

se
ta

(+
B

D
) MAE 0.05 0.03 0.04 0.05 0.03 0.06 0.09 0.06 0.06 0.05 0.04 0.03 0.03 0.03 0.06 0.06 0.06 0.04 0.03 0.04

RMSE 0.05 0.04 0.04 0.06 0.04 0.07 0.09 0.07 0.06 0.06 0.05 0.03 0.04 0.04 0.06 0.07 0.06 0.04 0.04 0.05
MAPE 15.27 11.13 13.43 17.03 9.88 23.39 38.51 22.99 19.76 19.04 16.08 9.61 8.82 12.80 24.31 24.65 22.85 12.17 12.64 15.99
RSQ 0.87 0.87 0.83 0.92 0.88 0.83 0.92 0.84 0.92 0.88 0.79 0.79 0.81 0.60 0.92 0.66 0.77 0.72 0.86 0.77

PT
F

W
oe

st
en

MAE 0.05 0.06 0.03 0.05 0.05 0.02 0.03 0.04 0.03 0.04 0.02 0.04 0.04 0.02 0.03 0.02 0.05 0.06 0.02 0.03
RMSE 0.06 0.06 0.04 0.06 0.07 0.03 0.04 0.05 0.04 0.05 0.02 0.04 0.05 0.02 0.03 0.02 0.05 0.06 0.02 0.04
MAPE 15.33 17.62 9.14 17.14 15.70 6.97 8.52 12.64 9.51 12.51 6.27 12.01 12.73 6.29 9.99 4.81 14.49 18.79 5.44 10.09
RSQ 0.61 0.45 0.55 0.92 0.57 0.88 0.70 0.63 0.73 0.67 0.78 0.68 0.92 0.50 0.91 0.84 0.23 0.17 0.79 0.65

PT
F

R
aw

ls

MAE 0.02 0.06 0.02 0.03 0.02 0.03 0.05 0.05 0.02 0.03 0.01 0.05 0.06 0.05 0.05 0.05 0.02 0.03 0.04 0.04
RMSE 0.03 0.07 0.03 0.03 0.03 0.04 0.05 0.06 0.02 0.04 0.02 0.06 0.08 0.05 0.05 0.06 0.02 0.03 0.04 0.05
MAPE 6.68 22.05 6.83 8.15 7.82 9.44 18.29 19.33 4.83 11.49 3.51 18.83 16.53 14.35 16.43 12.62 6.27 10.92 11.27 12.30
RSQ 0.89 0.82 0.79 0.89 0.82 0.86 0.92 0.94 0.90 0.87 0.90 0.67 0.64 0.13 0.89 0.54 0.91 0.96 0.66 0.70

PT
F

W
ey

na
nt

s MAE 0.03 0.02 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.02 0.01 0.01 0.05 0.04 0.01 0.03 0.01 0.03 0.03 0.03
RMSE 0.03 0.03 0.02 0.03 0.05 0.04 0.02 0.03 0.02 0.03 0.02 0.02 0.06 0.04 0.02 0.04 0.02 0.04 0.04 0.03
MAPE 8.46 6.44 4.59 7.66 13.78 9.21 5.62 7.76 5.19 7.64 3.60 4.90 13.27 10.57 4.57 7.73 4.78 9.62 8.98 7.56
RSQ 0.94 0.94 0.86 0.93 0.94 0.83 0.96 0.90 0.97 0.92 0.89 0.93 0.82 0.51 0.84 0.80 0.94 0.92 0.81 0.83

PT
F

To
th

(c
la

ss
) MAE 0.02 0.05 0.02 0.03 0.05 0.02 0.02 0.02 0.02 0.03 0.05 0.06 0.04 0.05 0.03 0.04 0.03 0.05 0.03 0.04

RMSE 0.03 0.06 0.03 0.03 0.06 0.03 0.02 0.03 0.03 0.03 0.05 0.06 0.06 0.05 0.04 0.05 0.04 0.06 0.03 0.05
MAPE 7.63 13.41 5.34 8.42 14.46 5.83 5.27 6.29 7.15 8.20 12.74 15.76 11.95 12.22 9.66 11.37 8.53 15.97 8.65 11.87
RSQ 0.91 0.86 0.80 0.90 0.88 0.85 0.94 0.85 0.95 0.88 0.83 0.79 0.82 0.59 0.89 0.76 0.87 0.83 0.92 0.81



Water 2023, 15, 820 12 of 17

Table 3. Cont.

40 cm 80 cm

HILLTOP BACKSLOPE FOOTSLOPE HILLTOP BACKSLOPE FOOTSLOPE

ROW ROW

I II III I II III I II III Mean I II III I II III I II III Mean

PT
F

To
th

(c
on

ti
nu

ou
s)

MAE 0.04 0.03 0.02 0.04 0.06 0.05 0.02 0.04 0.03 0.04 0.02 0.02 0.05 0.03 0.01 0.03 0.03 0.04 0.04 0.03
RMSE 0.05 0.04 0.04 0.05 0.08 0.06 0.03 0.04 0.04 0.05 0.03 0.03 0.06 0.03 0.01 0.04 0.04 0.05 0.05 0.04
MAPE 12.23 10.19 6.36 11.67 17.44 12.86 7.57 11.41 8.74 10.94 5.53 6.13 12.95 7.85 2.56 9.47 8.32 11.80 10.84 8.38
RSQ 0.82 0.81 0.68 0.92 0.83 0.76 0.88 0.74 0.86 0.81 0.68 0.65 0.63 0.69 0.93 0.64 0.60 0.56 0.84 0.69

PT
F

m
od

el
en

se
m

bl
e MAE 0.03 0.03 0.02 0.03 0.03 0.02 0.04 0.05 0.01 0.03 0.02 0.02 0.04 0.02 0.03 0.02 0.04 0.03 0.02 0.03

RMSE 0.04 0.03 0.03 0.03 0.04 0.02 0.04 0.05 0.02 0.03 0.02 0.02 0.05 0.03 0.03 0.02 0.04 0.04 0.02 0.03
MAPE 9.33 9.26 7.03 8.84 10.65 5.58 14.13 14.30 5.61 9.41 5.53 5.37 12.01 6.62 9.01 5.65 8.88 10.67 4.21 7.55
RSQ 0.90 0.88 0.82 0.94 0.88 0.89 0.96 0.89 0.96 0.90 0.84 0.80 0.83 0.59 0.94 0.80 0.81 0.80 0.89 0.81

La
bo

ra
to

ry
da

ta

MAE 0.02 0.01 0.04 0.02 0.03 0.04 0.01 0.05 0.03 0.03 0.01 0.01 0.04 0.03 0.04 0.05 0.05 0.07 0.04 0.04
RMSE 0.03 0.02 0.04 0.04 0.03 0.04 0.01 0.06 0.03 0.03 0.02 0.02 0.05 0.04 0.05 0.05 0.06 0.07 0.04 0.04
MAPE 6.30 5.10 12.39 6.91 8.24 10.76 3.20 13.92 7.04 8.21 3.26 4.76 12.75 8.12 12.83 14.94 18.04 26.50 11.17 12.49
RSQ 0.97 0.90 0.97 0.78 0.93 0.76 0.95 0.97 0.97 0.91 0.86 0.91 0.83 0.35 0.56 0.83 0.77 0.95 0.83 0.77

La
bo

ra
to

ry
+

fie
ld

da
ta

(i
nv

er
se

) MAE 0.02 0.02 0.01 0.01 0.03 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.04 0.03 0.03 0.02 0.03 0.03 0.01 0.02
RMSE 0.02 0.03 0.01 0.02 0.03 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.05 0.04 0.04 0.03 0.04 0.04 0.02 0.03
MAPE 5.10 8.01 2.25 4.64 8.56 7.34 2.97 6.58 2.63 5.34 4.21 4.76 15.12 7.82 9.40 6.99 9.95 12.72 3.73 8.30
RSQ 0.97 0.91 0.95 0.95 0.91 0.77 0.95 0.96 0.96 0.93 0.78 0.92 0.73 0.62 0.53 0.86 0.79 0.94 0.81 0.77
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At 80 cm soil depth, PTF model ensemble performed better (MAE = 0.03, RMSE = 0.03,
MAPE = 7.55%, R2 = 0.81) than other parameter sets used. Only higher R2 (0.82) was
found for the individual PTF—Weynants, and lower MAE (0.02) with the laboratory + field
dataset. The lowest agreement of simulated values with measured SWC for 80 cm soil
depth was found with the Carsel & Parrish, with the highest average MAE, RMSE and
MAPE (0.05, 0.06 and 21.78%, respectively), and lowest average R2 (0.75) (Table 3).

Lowest coefficient (0.3%) of variation (CV) for SWC at 80 cm soil depth was found at
the footslope in winter and spring season in vineyard row III, while the lowest (1.8%) at
40 cm was found at the hillop in winter in row III (Figure 7). In general, lower CV for SWC
was found at the 80 cm soil depth. At the soil depth of 40 cm, the highest (25%) CV was
found in autumn at the backslope in row II, while at 80 cm, the highest (24.6) was found at
the hilltop in row III, also in autumn. Overall, highest CVs were found in autumn, during
the soil rewetting phase.
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Figure 7. Heatmap of coefficients of variation (CV) [%] for soil water content (SWC) at the at two
depths (40 and 80 cm), in three vineyard rows, along the hillslope (hilltop, backslope and footslope)
in 2021 at the SUPREHILL Critical Zone Observatory.

4. Discussion

Variations in soil properties can significantly impact the hydrological processes by
affecting water infiltration, storage, and flow. This can cause differences in the amount of
water retained in the soil, leading to variable runoff generation at the hillslope [54,55]. Soil
heterogeneity can result in differential water uptake, leading to variable soil water content
and rates of rewetting. It is widely known that vertical and lateral soil heterogeneities are
not uncommon in intensively used agroecosystems, as land use and soil management prac-
tices impact the soils directly. At the hillslope scale additional processes such as soil erosion
and deposition contribute to the soil development and lead to heterogeneities [56]. These
can lead to strong changes in water and solute transport, as well as biomass development,
along the hillslope scale [57]. At the pedon scale itself, structural heterogeneity may lead
to preferential flow through macropores, cracks, and intra-aggregate pore spaces causing
flow instabilities [58], resulting in a reduction in the residence time of the percolating soil
water [56] and nonuniform water flow through the profile. Therefore, the shape of the
retention characteristics, especially in the wet and mid water saturated range (100–1000 cm)
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is of particular importance for the investigation of hydrological response of soils [59]. On
the other hand, other processes such as hydrophobicity and wettability of the soil (surface),
are classically not represented in the retention characteristics (drying branch) but may also
cause preferential flow [60].

Looking at the field retention data by plotting field measured SWCs versus measured
SWP at the same location and depth (Figure 4), a more detailed picture can be drawn. First,
at some locations a clear hysteresis between wetting and drying cycle can be detected,
which is most prominent for the hilltop position and measurements at 40 cm depth. The
assumption made is here that the measured water potential is in equilibrium with the
progressing water front. Additionally, the data are much noisier due to different response
times of the sensors and/or small scale soil heterogeneities as already detectable in the data
from the laboratory.

Hillslope hydrological processes are influenced by variations in hillslope SWC, while
the complexity and heterogeneity of water movement, makes it often difficult to predict
temporal and spatial processes and patterns [61], and the presented data exhibits the
mentioned. Field sensor measurements captured SWC variability during rewetting phase,
for different vineyard rows, hillslope positions and depths. These differences were most
pronounced in the deeper layer, suggesting that in the rewetting process the impact of
lateral flow is dominant in some cases (Figure 6).

Islam et al. [62] compared actual SWC to three sets of simulated values that were
generated using three different sets of hydraulic parameters, and found that the model is
accurate only if the soil hydraulic parameters are estimated using site-specific PTFs, but
noted that none of the methods used can accurately simulate soil water content data, so
the most accurate method is still unknown. Gijsman et al. [63] compared eight methods
of estimating hydraulic parameters using a functional approach for predicting crop yield
and found that the differences between estimations were significant, making it difficult to
determine which method is best for specific soils. Baroni et al. (2010) [64] in a similar study,
demonstrated that soil hydraulic properties obtained by direct methods do not necessarily
guarantee the best results. The use of PTFs based on site-specific texture and organic matter
data did indeed provide comparable simulation results for the given experimental profile.
Even though similar approaches and combinations of methods are used in research, data is
often not validated on a rather dynamic hydrological system such as a hillslope.

PTF model ensemble in some cases captured the observed soil water dynamics well
(e.g., backslope [row I, 40 cm] or footslope [row I, 40 cm]) (Figure 5), but could not reproduce
water contents near saturation as also shown for the soil hydraulic characterization based on
laboratory data. Additionally, a downside of the laboratory dataset could be observed in the
drying out phase (e.g., hilltop [row III, 40 cm], backslope [row III, 40 cm], or footslope [row
II, 40 cm]), as the SWC response in simulations did not agree with field SWC measurements
in a timely manner. Nevertheless, the dataset using field data was the only one that could
capture soil water dynamics near saturation in general (Figure 6). Our model performance
results point out that in absence of field or laboratory data, for this field conditions and
site, the generated PTF model ensemble could as well as be used as a reliable method at the
investigated site.

5. Conclusions

In the absence of laboratory-estimated soil hydraulic properties (SHPs), the presented
data indicated that model ensemble using PTFs (or even certain individual PTFs) could
be considered reliable, for this site and conditions. Even though laboratory-estimated
SHPs provided relatively dependable values, better model performance was achieved
with the same dataset after the sensor network estimated SHPs were incorporated into the
dataset. Furthermore, model performance evaluation with different statistical parameters
was needed for adequate assessment. Field observations indicated that heterogeneity and
spatial variability regarding soil parameters were present at the site. Soil water content
acted in a heterogeneous manner in both space and time across the hillslope. Due to the
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nature of the water flow of the sloped site, two- or three-dimensional modeling could
provide more sufficient data due to spatial variables and complex hydrological processes
involved in future research at the site. For future investigation, modeling could provide
better results, but considering this kind the vineyard is a multi-crop system (grass & vine),
the whole system should be accounted for, as well as more detailed crop observations.
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