Primjena NMR-karotaže za procjenu poroznosti i identifikaciju ležišnih fluida

Jelušić, Marin

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:706398

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-26

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Prijediplomski studij naftnog rudarstva

PRIMJENA NMR-KAROTAŽE ZA PROCJENU POROZNOSTI I IDENTIFIKACIJU LEŽIŠNIH FLUIDA

Završni rad

Marin Jelušić N4402

Zagreb, 2024.

PRIMJENA NMR-KAROTAŽE ZA PROCJENU POROZNOSTI I IDENTIFIKACIJU LEŽIŠNIH FLUIDA

Marin Jelušić

Rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za geofizička istraživanja i rudarska mjerenja Pierottijeva 6, 10 000 Zagreb

Sažetak

Jedna od metoda koja se koristi u industriji nafte i plina za procjenu rezervi ugljikovodika je metoda nuklearne magnetske rezonancije (NMR) koja omogućuje analizu poroznosti i propusnosti stijena, kao i identifikaciju fluida unutar njih. Prednost NMR metode u odnosu na druge metode karotažnih mjerenja je da utjecaj na mjerenje ima samo fluid u porama bez potrebe za kalibracijom sonde prema vrsti stijena. NMR metoda temelji se na primjeni magnetskog polja koje uzrokuje polarizaciju i magnetizaciju protona vodika u ugljikovodicima i vodi, te dobiveni signal rezultira ključnim podacima kao što su longitudinalno i transverzalno vrijeme relaksacije. Distribucija dobivenih vremena relaksacije odražava veličinu pora i karakteristike fluida u ležištu. Analiza NMR podataka omogućuje procjenu svojstava stijena kao što su poroznost i propusnost te identifikaciju vrsta fluida i procjenu zasićenosti fluida u ležištu. Metoda se može koristiti samostalno ili u kombinaciji s drugim metodama karotaže, što rezultira detaljnijim informacijama o ležištu.

Ključne riječi:	nuklearna magnetska rezonancija, polarizacija, magnetizacija, longitudinalno vrijeme relaksacije, transverzalno vrijeme relaksacije, poroznost, propusnost
Završni rad sadrži:	19 stranica, 16 slika i 8 referenci.
Jezik izvornika:	Hrvatski
Pohrana rada:	Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb
Mentor:	Prof. dr. sc. Jasna Orešković
Ocjenjivači:	Prof. dr. sc. Jasna Orešković
	Izv. prof. dr. sc. Sonja Koščak Kolin
	Izv. prof. dr. sc. Borivoje Pašić

SADRŽAJ

POPIS SLIKA	II
POPIS KORIŠTENIH KRATICA	III
POPIS KORIŠTENIH OZNAKA I MJERNIH JEDINICA	IV
1. UVOD	1
2. METODA NUKLEARNE MAGNETSKE REZONANCIJE (NMR)	2
2.1. Princip mjerenja	3
3. PRIKAZ PODATAKA I OSNOVNA INTERPRETACIJA	8
3.1. Analiza u vremenskom području (TDA)	8
3.2. Analiza difuzije (DIFAN)	11
3.2.1. Metoda poboljšane difuzije (EDM)	14
3.3. MRIAN metoda	15
4. ZAKLJUČAK	
5. LITERATURA	

POPIS SLIKA

Slika 1-1. Prikaz sonde u kanalu bušotine1
Slika 2-1. Sonda za mjerenje NMR-metodom2
Slika 2-2. Nasumična orijentacija magnetnih osi protona
Slika 2-3. Precesija protona oko <i>B</i> _o te porast magnetizacije
Slika 2-4. Magnetizacija ležišnih fluida za vrijeme polarizacije (T_p) 4
Slika 2-5. Primjena radio-valova, odnosno polja <i>B</i> ₁
Slika 2-6. Signali odjeka jezgre vodika - protona5
Slika 2-7. Prikaz pretvorbe NMR signala u T ₂ distribuciju putem inverzije
Slika 2-8. Tipične vrijednosti vremena T_1 i T_2 te brzina difuzije (D) za različite vrste fluida
Slika 3-1. Analiza u vremenskom području (TDA) dvojnom-TW karotažom
Slika 3-2. Grafički prikaz rezultata mjerenja primjenom modela analize u vremenskom
području10
Slika 3-3. Analiza difuzije (DIFAN) dvojnom- <i>TE</i> karotažom
Slika 3-4. Grafički prikaz rezultata primjenom modela analize difuzije13
Slika 3-5. Grafički prikaz podataka dobivenih metodom poboljšane difuzije15
Slika 3-6. Ukupna poroznost dobivena različitim polarizacijama16
Slika 3-7. Grafički prikaz kombinacije konvencionalnih metoda i NMR-karotaže17

POPIS KORIŠTENIH KRATICA

NMR - nuklearna magnetska rezonancija

TDA – analiza vremenskog područja (engl. Time Domain Analysis)

DIFAN - analiza difuzije (engl. Diffusion Analysis)

EDM - metoda poboljšane difuzije (engl. Enhanced Diffusion Method)

MRIAN -- interpretacijska metoda koja kombinira NMR podatke, podatke o otpornosti i

model dvojne vode (engl. Magnetic Resonance Imaging Analysis)

MRIL PERM - propusnost određena na temelju podataka dobivenih NMR mjerenjem

BVI – udio vezane vode (engl. Bulk Volume Irreducible)

DSM - metoda diferencijalnog spektra (engl. Differential Spectrum Method)

POPIS KORIŠTENIH OZNAKA I MJERNIH JEDINICA

Oznaka	Jedinica	Opis
B_o	G	vanjsko statičko magnetsko polje, gaus ; 1 G=10 ⁻⁴ T
B_1	G	oscilirajuće magnetsko polje, gaus
T_p	S	vrijeme polarizacije, sekunda
M_o	G	ravnotežno stanje koje postiže proton za vrijeme polarizacije, gaus
f	Hz	frekvencija, herc
T_1	ms	longitudinalno vrijeme relaksacije, milisekunda ; 1 ms=0,001 s
T_2	ms	transverzalno vrijeme relaksacije, milisekunda
T_{2b}	ms	glavno vrijeme relaksacije, milisekunda
T_{2s}	ms	površinsko vrijeme relaksacije, milisekunda
T_{2d}	ms	difuzijsko vrijeme relaksacije, milisekunda
$A(T_2)$	-	amplituda u distribuciji vremena T_2 koja odgovara vremenu T_2
TE	ms	vrijeme razmaka između parova radio-valova pod kutem 180°
TW	ms	vrijeme između prvog i zadnjeg radio-vala pod kutem 180°
D_a	cm ² /s	koeficijent difuzije, kvadratni centimetar po sekundi
MPHI	-	efektivna poroznost
RES/R	Ω m	otpornost, ohmmetar
SP	mV	spontani potencijal, milivolt
-	ft	stopa, mjerna jedinica za dužinu/dubinu ; 1ft=0,3048 m
-	Pa·s	paskal-sekunda, mjerna jedinica za viskoznost

1. UVOD

U industriji nafte i plina koriste se razne metode za procjenu rezervi ugljikovodika u ležištu kako bi se dobile ključne informacije za donošenje odluka o razradi ležišta i izradi bušotina te osigurala učinkovitija proizvodnja ugljikovodika. Njihov proizvodni potencijal mora biti ekonomski isplativ te opravdavati izradu bušotina za proizvodnju ugljikovodika. Karotažna mjerenja izvode se većinom pomoću sondi spuštenih u kanal bušotine (Slika 1-1.), a mjerena fizikalna veličina se prikazuje pomoću dijagrama iz kojeg se procjenjuju svojstva stijena i fluida u porama stijene.

Pored ostalih, nuklearna magnetska rezonancija (NMR) jedna je od novijih metoda karotažnih mjerenja koja se koristi u procjeni rezervi ugljikovodika, pri kojoj sondu nije potrebno kalibrirati s obzirom na litologiju jer na mjerenje utjecaj imaju samo fluidi u pornom prostoru. To je glavna karakteristika po kojoj se NMR-karotaža razlikuje u odnosu na konvencionalne metode kao što su: karotaža električne otpornosti, akustična karotaža, neutronska karotaža i karotaža gustoće. NMR nam daje uvid u podatke o porama i fluidima u njima. To su informacije o veličini pora te svojstvima i količini fluida u pornom prostoru.

U radu će se objasniti mjerenje, prikazati rezultati te interpretirati ključni parametri dobiveni NMR-karotažom.

Slika 1-1. Prikaz sonde u kanalu bušotine (Freedman, 2005)

2. METODA NUKLEARNE MAGNETSKE REZONANCIJE (NMR)

Jedna od metoda za procjenu količine ugljikovodika u ležištima je metoda nuklearne magnetske rezonancije koja se temelji na djelovanju vanjskog magnetskog polja na magnetski moment jezgre vodika. Korištenjem sonde za mjerenje NMR-metodom koja je podešena na magnetnu rezonantnu frekvenciju vodika koji je prisutan u vodi i ugljikovodicima, amplituda signala može biti mjerena i ona je proporcionalna broju jezgri vodika. Sonde su opremljene snažnim samarij kobaltnim trajnim magnetima koji su otporni na promjene u temperaturi, te se koriste za polarizaciju jezgri vodika u ugljikovodicima i vodi (Freedman, 2005). Osim magneta, sonde se još sastoje i od antene koja odašilje magnetno-rezonantne frekvencijske impulse, te prijemnika koji mjeri odziv na poslane impulse.

Na Slici 2-1 mogu se vidjeti dva magneta koja stvaraju vanjsko magnetsko polje u sloju oko bušotine te antenu koja emitira radio-valove u stijenu u preciznim vremenskim intervalima (oscilirajuće magnetsko polje). Antena služi i kao prijemnik jer između vremenskih intervala prima povratni signal atoma vodika koji su u rezonanciji s magnetskim poljem magneta.

Slika 2-1. Sonda za mjerenje NMR-metodom (Chandra & Surya, 2008)

2.1. Princip mjerenja

Jezgra vodika se zbog vlastitog magnetskog momenta može promatrati kao dipol čije ja os u pravcu osi rotacije (spina) protona. Bez djelovanja vanjskog magnetskog polja magnetne osi su nasumično orijentirane kao što se može vidjeti na Slici 2-2.

Slika 2-2. Nasumična orijentacija magnetnih osi protona (Coates et al., 1999)

Djelovanjem magneta jezgre protona se usmjeravaju (orijentira se magnetski moment) u smjeru vanjskog statičkog magnetnog polja (B_o) tj. polariziraju se. Primjena vanjskog statičkog magnetnog polja (B_o) na protone uzrokuje precesiju protona oko istog (Slika 2-2.). Precesija se javlja kada tijelo koje rotira oko jedne osi polako rotira precesijskom frekvencijom (f) (naziva se i Larmorova frekvencija) oko druge osi , što je u ovom slučaju statičko magnetsko polje (B_o).

Slika 2-3. Precesija protona oko B_o te porast magnetizacije (Coates et al., 1999)

Vrijeme potrebno da se jezgre magnetiziraju je longitudinalno vrijeme relaksacije i označeno je kao T_1 . Tijekom vremena polarizacije (T_p) , nuklearna magnetizacija raste eksponencijalno prema svom ravnotežnom stanju (M_o) (Slika 2-4.). Korišteno vrijeme polarizacije mora biti najmanje tri puta duže od vremena T_1 da bi se osigurala dovoljna magnetizacija, jer ako je vrijeme polarizacije prekratko ukupna poroznost dobivena NMR mjerenjem neće prikazati stvarnu poroznost ležišta (Freedman, 2005).

Slika 2-4. Magnetizacija ležišnih fluida za vrijeme polarizacije (T_p) (Freedman, 2005)

Distribucija vremena T_1 potrebna je za opisivanje procesa magnetizacije te odražava sastav ugljikovodika i raspodjelu veličina pora u sedimentnim stijenama (Freedman & Heaton, 2004).

Nakon polarizacije protona, kreće pokretanje rotacije protona emitiranjem oscilirajućeg magnetnog polja (B_1), odnosno radio-valova emitiranih antenom. Između tih radio-valova NMR signal se bilježi istom antenom koja je te radio-valove i emitirala. Prvi radio-val je pod kutom od 90° i rotira vektor magnetizacije koji je u početku paralelan sa B_0 , u transverzalnu ravninu koja je okomita na B_0 , te se pokreće rotacija protona pod kutom od 90°. Nakon toga slijedi serija radio-valova pod kutom od 180° (Slika 2-5.), a NMR signal promatran između svakog radio-vala se bilježi, te se naziva odjekom (engl. *echo*) jer doseže maksimalnu amplitudu u središnjoj točki između svakog para valova, a zatim mu vrijednost pada na nulu prije idućeg vala (Freedman, 2005). Važna karakteristika NMR sonde je minimalni razmak odjeka (*TE*) jer određuje granicu osjetljivosti sonde, tj. najkraće vrijeme T_2 koju može mjeriti.

Slika 2-5. Primjena radio-valova, odnosno polja B_1 (Freedman, 2005)

Kada se isključi oscilirajuće polje, protoni se vraćaju u početni smjer u koji ih je usmjerilo statičko polje. Amplituda NMR signala opada eksponencijalno, a krivulju opisuje karakteristično transverzalno vrijeme relaksacije označeno s T_2 . Za vrijeme opadanja signala dolazi do smanjenja magnetizacije, kao što je prikazano na Slici 2-6.

Slika 2-6. Signali odjeka jezgre vodika - protona (Freedman, 2005)

Uobičajeno je u praksi da se mjereni NMR signali zbroje u cjelinu od oko 30-ak pojedinačnih eksponencijalno opadajućih signala od kojih svaki ima amplitudu $A(T_2)$ i pridruženo vrijeme relaksacije T_2 . Zbrajanje u cjelinu je postignuto matematičkim putem koji se naziva inverzija (Freedman & Heaton, 2004). Amplitude $A(T_2)$ su rezultati inverzije, te se grafičkim prikazom može prikazati T_2 distribucija kao što je prikazano na Slici 2-7. Područje ispod krivulje distribucije transverzalnog vremena relaksacije (T_2) je proporcionalno ukupnoj poroznosti.

Slika 2-7. Prikaz pretvorbe NMR signala u T_2 distribuciju putem inverzije (Freedman & Heaton, 2004)

Raspodjela vremena T_2 pruža korisne informacije o ležišnim stijenama i fluidima jer se izdvajanjem grupa vrijednosti T_2 matematičkim putem dobiva raspodjela T_2 tj. krivulja koja predstavlja raspodjelu veličine pora. Budući da su vrijednosti T_2 proporcionalne veličini pora, određuje se granična vrijednost T_2 (engl. *Cutoff*) ispod koje se očekuje da će odgovarajući fluidi biti prisutni u malim porama, a iznad koje će odgovarajući fluidi biti prisutni u većim porama. Tako se može odrediti ukupnu i efektivnu poroznost bez utjecaja mineralnog sastava stijene, propusnost, raspodjelu veličina pora, viskoznost te vrstu i količine ugljikovodika. Vrijednosti T_2 se određuju iz laboratorijskih NMR-mjerenja na jezgrama ili se koriste poznate vrijednosti ovisne o litološkom sastavu:

- za gline oko 3 ms
- za siltove od 3 ms do 33 ms
- za pješčenjake oko 33 ms
- za karbonatne stijene oko 100 ms.

Iz NMR mjerenja se stoga može odrediti granulometrijski sastav stijene jer se voda nalazi u porama različite veličine.

Transverzalno vrijeme relaksacije (T_2) ovisi o nekoliko parametara

$$\frac{1}{T2} = \frac{1}{T2b} + \frac{1}{T2s} + \frac{1}{T2d}$$
(2-1)

gdje su:

- T_2 transverzalno vrijeme relaksacije
- T_{2b} glavno vrijeme relaksacije (engl. *Bulk relaxation*) koje je svojstveno pojedinom fluidu
- T_{2s} površinsko vrijeme relaksacije (engl. Surface relaxation) koje ovisi o mineralogiji stijena i omjeru površine pore i volumena u njoj
- T_{2d} difuzijsko vrijeme relaksacije koje ovisi o gradijentu magnetskog polja i vrsti fluida

Slika 2-8 prikazuje varijabilnost vremena relaksacije T_1 i T_2 te brzinu difuzije (*D*) s obzirom na fluide u pornom prostru.

Slika 2-8. Tipične vrijednosti vremena T_1 i T_2 te brzina difuzije (*D*) za različite vrste fluida (Coates et al., 1999)

3. PRIKAZ PODATAKA I OSNOVNA INTERPRETACIJA

NMR podaci mogu se analizirati samostalno ili u kombinaciji sa podacima dobivenim konvencionalnim metodama (npr. električna otpornost, gustoća i dr.). Kada se podaci interpretiraju samostalno mogu prikazati poroznost i propusnost (koja je izračunata matematičkim putem iz odnosa NMR-poroznosti i srednje vrijednosti vremena relaksacije T_{2}), kao i informacije o vrstama i količini fluida u ležištu. Dva računalna modela dostupna su za samostalnu analizu NMR podataka, model analize u vremenskom području (engl. *Time Domain Analysis*, TDA) i model analize difuzije (engl. *Diffusion Analysis*, DIFAN) (Coates et al.,1999). Još jedan model može se koristiti u prikupljanju podataka i pruža vrijedne informacije za otkrivanje viskozne nafte, a naziva se poboljšana metoda difuzije (engl. *Enhanced Diffusion Method*, EDM).

Ako se NMR podaci prikazuju u kombinaciji sa ostalim metodama (karotaža električne otpornosti, akustična karotaža, neutronska karotaža i karotaža gustoće) može se doći do ključnih informacija za razradu ležišta. Interpretacijski model koji koristi tu kombinaciju podataka naziva se MRIAN (engl. *Magnetic Resonance Imaging Analysis*).

3.1. Analiza u vremenskom području (TDA)

Analiza u vremenskom području (TDA) se temelji na činjenici da različiti fluidi imaju različite brzine polarizacije ili različita vremena relaksacije T_1 . Longitudinalno vrijeme relaksacije (T_1) plina i lagane nafte je u pravilu dulje od vremena T_1 za vodu (Coates et al. 1999).

TDA podaci prikupljaju se dvojnom-*TW* aktivacijom, gdje *TW* predstavlja vrijeme između prvog i zadnjeg radio-vala pod kutom 180° prilikom rotacije protona. Dvojna-*TW* karotaža prikuplja dva NMR signala koristeći se dugim-*TW* i kratkim-*TW* s jednim zajedničkim *TE*, koji je ranije opisan kao minimalni razmak odjeka. U dvojnoj-*TW* karotaži, za vrijeme kratkog-*TW* samo se voda, odnosno jezgre vodika u vodi, može potpuno polarizirati, dok se za vrijeme dugog-*TW* mogu polarizirati i voda i ugljikovodici. Dobiveni signali, tj. dugi i kratki-*TW* odjeci su zbrojeni u cjeline koje se zatim oduzimaju, a dobivena razlika se pretvara u distribuciju vremena relaksacije *T*₂ (Slika 3-1.) iz koje možemo odrediti poroznost. Ovakva obrada podataka naziva se analiza u vremenskom području jer se razlike signala računaju u običnoj vremenskoj domeni (*t*), a ne u domeni vremena relaksacije. Tek u zadnjem koraku se razlika transformira u vrijeme *T*₂.

Slika 3-1. Analiza u vremenskom području (TDA) dvojnom-*TW* karotažom (Coates et al., 1999)

Kao što je ranije rečeno, koristeći taj model, samostalna analiza podataka u potpunosti prikazuje poroznost, propusnost i zasićenje fluidom što se može vidjeti u sljedećem primjeru (Slika 3-2.). Kolona 1 prikazuje krivulju dobivenom konvencionalnom gama-karotažom i podatke dugog-TW, pri čemu je T_2 podijeljen u intervale (binove). Kolona 2 prikazuje podatke o propusnosti (*MRIL PERM*) i dvije krivulje otpornosti (*RES*). *MRIL PERM* je propusnost određena na temelju podataka dobivenih NMR mjerenjem korištenjem formula kao što je Coates-ova formula za propusnost. Kolona 3 prikazuje krivulje distribucije vremena relaksacije T_2 dugog-TW. Kolona 4 prikazuje diferencijalni spektar (DSM) koji je razvijen kao ranija metoda korištenja dvojne-TW karotaže gdje su se signali odjeka prvo pretvarali u distribuciju T_2 , a tek onda oduzimali. Kolona 5 sadrži podatke analize u vremenskom području te prikazuje efektivnu poroznost (*MPHI*), udio vezane vode (*BVI*), kao i zasićenje naftom, plinom te vodom.

Prema rezultatima analize u vremenskom području, na dubini označeno intervalom A vidljivo je da se nalazi vrlo dobra proizvodna zona bez vode, iako je otpornost označena intervalom B niska. Zona s vodom uočava se na dubini označenoj intervalom C. Na dubinama označenim sa D_1 i D_2 vidljive su jako male količine plina.

Slika 3-2. Grafički prikaz rezultata mjerenja primjenom modela analize u vremenskom području (Coates et al, 1999)

3.2. Analiza difuzije (DIFAN)

Analiza difuzije temelji se na kontrastu difuzije između fluida kako bi se odredila zasićenja naftom, plinom ili vodom. Difuzija je proces u tekućinama, plinovima ili krutim tvarima pri kojem molekule nasumično migriraju zbog svog toplinskog gibanja.

Prilikom mjerenja NMR karotažom difuzijsko vrijeme relaksacije T_{2d} ovisi o gradijentu magnetskog polja, žiromagnetnom omjeru jezgre vodika (γ), koeficijentu difuzije (D_a) i vremenu TE tj. vremenskom intervalu između uzastopnih radio-signala (Slika 2-5). Za analizu difuzije podaci NMR signala prikupljaju se putem dvojne-TE aktivacije (Mardon et al., 1996). Dvojna-TE karotaža snima dva NMR signala koristeći se dugim-TE i kratkim-TEintervalom sa jednim zajedničkim TW (vrijeme između prvog i zadnjeg radio-vala). Za potpunu polarizaciju protona, vrijeme TW mora biti barem 3 puta veće od maksimalnog longitudinalnog vremena relaksacije T_1 svih fluida u porama. Tipični par vremenskih intervala TE je 1,2 i 4,8 ms. Dvojna-TE aktivacija omogućuje primjenu principa mjerenja s obzirom na difuziju kako bi se voda razlikovala od nafte srednje viskoznosti. Nafta mora imati manji koeficijent difuzije (D_a) od vode, a u praksi bi viskoznost nafte morala biti u rasponu od 0,0005 do 0,035 Pa·s. Usporedbom NMR signala odjeka dobivenih kratkim-TEi dugim-TE, signal nafte se razlikuje od signala vode.

Slika 3-3 prikazuje model dvojne-*TE* karotaže u kojem gornji i srednji odsječci prikazuju polarizaciju i nastajanje odjeka koristeći se modulom dvojne frekvencije (f_1 i f_2), jedna sa dugim-*TE* i druga sa kratkim-*TE* intervalom. Za dugi-*TE* interval, smanjenje amplitude signala pri zasićenju vodom je puno brže od smanjenja signala amplitude srednje-viskozne nafte, te se signali mogu odvojiti. Za kratko-*TE* mjerenje, krivulja distribucije transverzalnog vremena relaksacije T_2 vode preklapa se dobrim dijelom T_2 distribucije nafte. Donji odsječak prikazuje krivulje distribucije vremena relaksacije T_2 i vode i nafte po kojima ih se može razlikovati.

Slika 3-3. Analiza difuzije (DIFAN) dvojnom-TE karotažom (Coates et al., 1999)

U sljedećem primjeru (Slika 3-4.) može se primijetiti da podaci dobiveni dvojnom-*TE* karotažom uključuju dva tipa distribucije vremena relaksacije T_2 (prikazane žutom i plavom bojom). Ovo mjerenje sadrži rezultate dobivene primjenom modela analize difuzije. Pored toga efektivnu poroznost (*MPHI*) te udio vezane vode dobiveni pomoću oba NMR signala, kratkog-*TE* i dugog-*TE*, kao i propusnost (*MRIL PERM*). Kolona 1 prikazuje krivulju konvencionalne gama-karotaže, spontanog potencijala (*SP*) i kalipera. Kolona 2 prikazuje podatke električne otpornosti dobivene s tri lateralna zahvata (dubokim, srednjim i plitkim) te propusnost (*MRIL PERM*). Kolona 3 prikazuje distribuciju vremena T_2 za dugi-*TE* interval, dok kolona 4 prikazuje distribuciju vremena T_2 za kratki-*TE*. Posljednja kolona (5) prikazuje ključne podatke o raspodjeli fluida dobivene analizom difuzije.

Prema podacima korištenjem dvojne-TE aktivacije vidljivo je da su intervali dubina označeni sa **A**, **B** i **C** zone zasićenja ugljikovodicima, ali sa značajnim udjelom slobodne vode.

Slika 3-4. Grafički prikaz rezultata primjenom modela analize difuzije (Coates et al., 1999)

3.2.1. Metoda poboljšane difuzije (EDM)

Metodom poboljšane difuzije može se odrediti vrstu i količina nafte s viskoznostima u rasponu od 0,001 do 0,05 Pa·s. Koristeći razlike u difuziji određuju se različite vrste fluida (Akkurt et al., 1998). Korištenjem ispravno odabranih dugih-*TE* vremena poboljšava se efekt difuzije prilikom prikupljanja podataka dobivenih iz signala odjeka, te se omogućuje razdvajanje vode i nafte na krivulji distribucije vremena relaksacije T_2 .

Metoda ovisi o NMR podacima nafte, a može koristiti NMR podatke dobivene sljedećim aktivacijama:

- standardna-*T*₂ karotaža sa dugim-*TE*
- dvojna-TE karotaža sa jednim dugim-TW
- dvojna-TW karotaža sa jednim dugim-TE.

Ako je cilj EDM-a razlikovati proizvodnu zonu od neproizvodne koristi se jedno NMR mjerenje s dugim-TW intervalom za potpunu polarizaciju i dugo-TE vrijeme za poboljšanje difuzije, pa je dovoljno koristiti standardnu- T_2 karotažu s dugim-TE. Ako je cilj EDM-a procijeniti količine fluida u proizvodnoj zoni, koristi se dvojna-TE karotaža. Ako se očekuje da distribucija vremena relaksacije T_2 neće biti dovoljno velika za razlikovanje vrijednosti vode i nafte, koristi se dvojna-TW karotaža s jednim dugim TE, te se dobivaju podaci za analizu u vremenskom području (TDA).

Slika 3-5 prikazuje grafički prikaz podataka dobivenih metodom EDM. U kolonama 3, 4 i 5 prikazani su rezultati, odnosno krivulje distribucije vremena relaksacije T_2 s vremenskim intervalima $TE_3=1,2$ ms, $TE_4=3,6$ ms i $TE_5=4,8$ ms. U koloni 1 je krivulja prirodne gamakarotaže koja ukazuje na propusni interval (niske vrijednosti GR), a u koloni 2 su krivulje otpornosti izmjerene dvojnim laterologom (LLS i LLD; plitki i duboki zahvat). Povećane otpornosti ukazuju na zasićenje ugljikovodicima. U kolonama 3, 4 i 5 vertikalnom crnom linijom označene su granične vrijednosti T_{2DW} , odnosno granična vrijednost za vodu. To znači da se svaki signal s vremenom T_2 većim od T_{2DW} može pripisati nafti. U kolonama 4 i 5 jasno je vidljiva zona zasićena naftom, koja se nalazi na dubini označenoj intervalom **A**. On odgovara velikim amplitudama na krivulji distribucije, desno od granične vrijednosti. U koloni 5 se može primijetiti naglašeniji kontakt vode i nafte zbog povećanog vremena TE.

Slika 3-5. Grafički prikaz podataka dobivenih metodom poboljšane difuzije (Coates et al., 1999)

3.3. MRIAN metoda

MRIAN (engl. *Magnetic Resonance Imaging Analysis*) je metoda koja kombinira podatke dobivene NMR mjerenjima i podatke karotaže otpornosti (Coates et al., 1994). MRIAN koristi *dual-water* model kako bi odredio volumen ležišnih fluida u netaknutoj zoni. Glavni parametri potrebni za obradu podataka MRIAN metodom su otpornost netaknute zone (R_i), ukupna poroznost i zasićenje vezanom vodom. NMR podaci koriste se za dobivanje dva parametra potrebna u *dual-water* modelu, a to su poroznost glinovitih naslaga s vezanom vodom (*MCWB*) i efektivna poroznost (*MPHI*). Pri tome se NMR podaci dobivaju korištenjem karotaže za ukupnu poroznost, koja snima dvije skupine odjeka: potpuno polarizirane i djelomično polarizirane. Odjek u slučaju potpune polarizacije dobiva se korištenjem dugih vremenskih intervala *TW* i *TE*. Odjek u slučaju djelomične polarizacije dobiva se korištenjem kratkih intervala *TW* (20 ms) i *TE* (0,6 ms). Pri tome se pretpostavlja da djelomično polarizirani odjek predstavlja signal vezane vode u glini. Kombiniranjem dvije distribucije vremena relaksacije T_2 dobivene različitim polarizacijama, dobiva se kontinuirana raspodjela vremena T_2 od 0,5 ms pa do 1 s, koja daje dobru procjenu ukupne poroznosti (Slika 3-6.).

Slika 3-6. Ukupna poroznost dobivena različitim polarizacijama (Coates et al., 1999)

Sljedeći primjer (Slika 3-7.) sadrži MRIAN interpretaciju kombiniranjem NMR podataka i podataka električne otpornosti u sloju pješčenjaka. Kolona 1 prikazuje krivulje prirodne gama-karotaže, promjera bušotine (kalipera), spontanog potencijala (*SP*) i ukupnu poroznost dobivenu pomoću raspodjele T_2 podijeljenu u osam grupa (binova). Kolona 2 prikazuje otpornost i propusnost izračunatu iz NMR mjerenja, pri čemu se otpornost smanjuje prema donjem dijelu intervala. Kolona 3 sadrži prikaz distribucije vremena relaksacije T_2 u intervalu od 2 ms do 2048 ms, gdje crvena boja predstavlja najveću amplitudu. Kolona 4 prikazuje MRIAN analizu fluida u kojoj je kapilarno vezana voda (*BVI*) označena sivom bojom, slobodna voda plavom te ugljikovodici zelenom bojom. Na grafičkom prikazu se jasno vidi da cijeli interval ne sadrži slobodnu vodu i proizvodit će samo naftu, što je kasnije i potvrđeno testiranjem.

Slika 3-7. Grafički prikaz kombinacije konvencionalnih metoda i NMR-karotaže (Coates et al., 1999)

4. ZAKLJUČAK

NMR-karotaža predstavlja napredniju tehniku mjerenja svojstava i fluida kako bi se procijenile rezerve ugljikovodika. NMR-podaci dobivaju se mjerenjima koja se obavljaju sondama podešenim na magnetnu rezonantnu frekvenciju vodika kojeg ležišni fluidi sadrže. S obzirom na to kako je sonda podešena, postoje različiti principi mjerenja koji rezultiraju ključnim podatkom za daljnju interpretaciju mjerenja, a to je transverzalno vrijeme relaksacije T_2 . Analiza podataka NMR-karotaže omogućava razlikovanje vrsta ležišnih fluida (nafta, voda i plin) na temelju njihovih različitih vremena relaksacije T_2 . Iz dobivenih NMR podataka moguće je odrediti i poroznost ležišta neovisno o litologiji jer NMR-karotaža prepoznaje samo fluide u pornom prostoru, predvidjeti propusnost i proizvodne zone na temelju veličine pora, viskoznost te vrstu i količinu fluida u ležištu.

Interpretacijom NMR podataka dobivaju se osnovna ležišna svojstva za projektiranje i izradu bušotina, a dobiveni podaci su neophodni i kod modeliranja proizvodnog sustava bušotine, temeljem kojeg se prognozira buduća proizvodnja, a time i isplativost cjelokupnog sustava. Korištenjem NMR-karotaže u kombinaciji sa dodatnim karotažnim metodama, dobiveni podaci mogu dati precizniji uvid osnovnih ležišnih karakteristika.

5. LITERATURA

- AKKURT, R., MARDON, D., GARDNER, J.S., MARCHALL, D.M., SOLANET, F., 1998. Enhanced diffusion: expanding the range of NMR direct hydrocarbontyping applications. SPWLA 39th Annual Logging Symposium Transactions, SPWLA-1998-GG.
- CHANDRA, R.Y., SURYA, S.Y., 2008. Techniques in Exploration and Formation Evaluation for Gas Hydrates. 7th International Conference & Exposition on Petroleum Geophysics, P-177
- COATES, G.R., GARDNER, J.S., MILLER, D.L., 1994. Applying pulse-echo NMR to shaly sand formation evaluation., SPWLA 35th Annual Logging Symposium Transactions, SPWLA-1994-B.
- 4. COATES, G.R., XIAO, L., PRAMMER, M.G., 1999. *NMR Logging, Principles and Applications*. Halliburton Energy Services, Houston.
- 5. FREEDMAN, R., HEATON, N., 2004. Fluid Characterization using Nuclear Magnetic Resonance Logging. Petrophysics, 45(3), str. 241-250.
- 6. FREEDMAN, R., 2005. Advances in NMR Logging. Journal of Petroleum Technology, 58(1), str. 60-66.
- 7. MARDON, D., PRAMMER, M.G., COATES, G.R., 1996. *Characterization of light hydrocarbon reservoirs by gradient-NMR well logging*. Magnetic Resonance Imaging, 14, str. 769–777.
- 8. OREŠKOVIĆ, J., 2019. Bušotinska karotaža : Metoda nuklearne magnetske rezonancije (NMR), nastavni materijali ak.godine 2019./2020.

IZJAVA

Izjavljujem da sam ovaj rad izradio samostalno na temelju znanja stečenih na Rudarsko-geološko-naftnom fakultetu služeći se navedenom literaturom.

Marin Jelusić

Sveučilište u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET HR-10002 Zagreb, Pierottijeva 6, p. p. 390

KLASA: 602-01/24-01/109 URBROJ: 251-70-12-24-2 U Zagrebu, 11. 9. 2024.

Marin Jelušić, student

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-01/24-01/109, URBROJ: 251-70-12-24-1 od 26.06.2024. priopćujemo vam temu završnog rada koja glasi:

PRIMJENA NMR-KAROTAŽE ZA PROCJENU POROZNOSTI I IDENTIFIKACIJU LEŽIŠNIH FLUIDA

Za mentoricu ovog završnog rada imenuje se u smislu Pravilnika o izradi i ocjeni završnog rada Prof. dr. sc. Jasna Orešković nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu.

Mentorica:

(potpis)

Prof. dr. sc. Jasna Orešković

(titula, ime i prezime)

Predsjednica povjerenstva za završne i diplomske ispite:

(potpis)

Izv. prof. dr. sc. Karolina Novak Mavar (titula, ime i prezime)

Prodekan za nastavu i studente: ((potpis)

Izv. prof. dr. sc. Borivoje Pašić (titula, ime i prezime)

Oznaka: OB 8.5.-1 SRF-1-13/0

Stranica: 1/1

Čuvanje (godina)

Trajno