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Abstract: In this paper, we analyze the intrinsic geometry of lightlike planes in the three-dimensional
Lorentz–Minkowski space M3. We connect the theory of curves lying in lightlike planes in M3 with
the theory of curves in the simply isotropic plane I2. Based on these relations, we characterize some
special classes of curves that lie in lightlike planes in M3.
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1. Introduction

In the three-dimensional Lorentz–Minkowski space M3, we distinguish three types of
surfaces with respect to their induced metric—spacelike, timelike, or lightlike. Their metric
is either positive definite, indefinite, or degenerate of rank 1, respectfully. The same holds
for planes in M3, with the consequence that the intrinsic geometry of these planes is either
Euclidean, pseudo-Euclidean (two-dimensional Lorentzian-Minkowskian), or isotropic in
the sense developed by [1]. The geometry of lightlike planes and, then, also of its objects
can be quite challenging to study, due to the degeneracy of the metric. However, they
are still worthy of attention [2–4], since they are also important in the theory of general
relativity. One of the known results is that every pseudo-null curve, that is a spacelike curve
with a lightlike principal normal field, lies in a lightlike plane [5,6]. The aim of this paper
was to relate the theory of curves lying in lightlike planes in M3 to the theory of curves in
the simply isotropic space I2. This relationship was noted in [7], where we analyzed the
involutes of pseudo-null curves. By obtaining the mentioned relationship, we can offer a
new approach in the analysis of curves lying in lightlike planes, where we consider them
as curves in an isotropic space I2. As we will show, it turns out that the isotropic curvature
of a curve can be more informative than its pseudo-torsion.

The paper is organized as follows. In Section 2, we recall the preliminaries of the
Lorentz–Minkowski space and pseudo-null curves, as a special class of curves having
lightlike fields in their Frenet bases. Then, we introduce a simply isotropic space In, in
particular two-dimensional I2, and describe the theory of curves in that space. In Section 3,
we recall that pseudo-null curves lie in a lightlike plane and show that the converse also
holds, that is every spacelike curve in a lightlike plane is pseudo-null. In Section 4, we
define a Darboux frame of curves lying in a lightlike plane. In Section 5, we further develop
connections between curves in lightlike planes and curves in simply isotropic space and
give examples.
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2. Preliminaries

2.1. Lorentz–Minkowski Space M3

The Lorentz–Minkowski three-space M3 is the three-dimensional vector space R3

equipped with the indefinite symmetric bilinear form of index 1 (a pseudo-scalar product):

〈x, y〉 = −x1y1 + x2y2 + x3y3.

A vector x in the Lorentz–Minkowski space M3 is called spacelike if 〈x, x〉 > 0 or x = 0,
timelike if 〈x, x〉 < 0, and lightlike (null, isotropic) if 〈x, x〉 = 0 and x 6= 0. The pseudo-
norm of a vector x is defined as the real number:

‖x‖ =
√
|〈x, x〉| ≥ 0.

There exist locally three types of curves and surfaces in M3: spacelike, timelike, and lightlike
(null). The type of a curve is defined based on the character of its tangent vectors, whereas
the type of a surface with respect to the induced metric, either as having the induced metric
positive definite, indefinite, or degenerate of rank 1, respectively. We can note that the
type of a surface is characterized by the causal character of its normal vectors, which are
timelike, spacelike, and lightlike, respectively [8,9].

In this paper, we are interested in lightlike surfaces in M3. If S is a regular lightlike
surface in M3 and TpS its tangent plane, p ∈ S, then by TpS⊥, we denote the space of all
vectors orthogonal to the tangent vectors at p:

TpS⊥ = {w ∈ TpM3 : 〈v, w〉 = 0, ∀v ∈ TpS}.

In contrast to non-degenerate surfaces, the union of TpS and TpS⊥ for lightlike surfaces is
not the whole TpM3; timelike vectors cannot be contained either in a lightlike plane TpS or
in its complement TpS⊥ (timelike vectors cannot be orthogonal to lightlike) [9]. Besides,
the intersection of TpS and TpS⊥ is not trivial, since a lightlike tangent vector is orthogonal
to itself. Therefore, the subspace:

Rad TpS := TpS ∩ TpS⊥

is introduced and called the radical subspace of S at the point p. Since TpS⊥ is a 1-dimensional
lightlike subspace, then Rad TpS is also a 1-dimensional lightlike subspace:

Rad TpS = TpS⊥ ⊆ TpS.

To summarize, in each tangent plane of a lightlike surface, there exists a unique lightlike
direction determined by v ∈ Rad TpS, v 6= 0. We use Rad TpS instead of TpS⊥ and refer to
normal vectors of a lightlike surface S as the vectors of the radical space of S (see [2–4]).

Furthermore, the decomposition:

TpS = Rad TpS ⊥ S(TpS)

defines a vector subspace S(TpS), the so-called screen distribution of S, as the orthogonal
complementary vector space of Rad TpS in TpS. A screen distribution S(TpS) is a spacelike
vector space of dimension one. It is important to notice that it is not unique, and therefore,
the geometry of a lightlike surface generally depends on its choice. Furthermore, for a
given screen distribution S(TpS), there exists a unique complementary vector space ltr(TpS)
called the lightlike transversal space of S. It is of dimension one, and TpM3 now splits into

TpM3|S = TpS⊕ ltr(TpS) = (Rad TpS ⊥ S(TpS))⊕ ltr(TpS).
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2.2. Pseudo-Null Curves in Lorentz–Minkowski Space M3

Pseudo-null curves in M3 are spacelike curves having their principal normals lightlike,
and therefore, their binormals are lightlike as well. We recall their Frenet frames and
curvatures in M3.

Let c be a pseudo-null curve in M3 parametrized by arc-length ‖c′(s)‖ = ‖t(s)‖ = 1,
s ∈ I. Its Frenet frame {t, n, b} forms a pseudo-orthonormal basis (also called a lightlike
basis), with the lightlike principal normal vector field n defined as n(s) = c′′(s) and the
lightlike binormal b(s) satisfying 〈t, b〉 = 0, 〈n, b〉 = 1. The Frenet equations are given by t′

n′

b′

 =

 0 κ 0
0 τ 0
−κ 0 −τ

 t
n
b

. (1)

The function κ takes only two values, 0 if c is a straight line or 1 otherwise. The function
τ = 〈n′, b〉 is called the pseudo-torsion [9,10].

2.3. Darboux Frames of Curves on Lightlike Surfaces

In the classical differential geometry, a Darboux frame is defined as a moving frame
adapted for curves lying on a certain surface. It reflects the geometry of curves by conditions
imposed from a surface.

In Euclidean space, a Darboux frame of a curve lying on a surface consists of a tangent
field t of a curve, a surface unit normal u, and a so-called side-tangential field q, that is their
vector product. Derivatives of these fields yield functions called curvatures, the geodesic
curvature κg, the normal curvature κn, and the geodesic torsion τg, that is the following
holds:  t′

q′

u′

 =

 0 κg κn
−κn 0 τg
−κg −τg 0

 t
q
u

. (2)

The vanishing of these curvatures describes curves on a surface known as geodesic curves,
asymptotic curves, and principal curves (lines of curvature), respectively.

In this paper, we consider curves lying on a lightlike plane in three-dimensional
Lorentz–Minkowski space. If a curve lies on an arbitrary lightlike surface, its Darboux
frame is introduced in [11,12] as follows. Let c be a unit-speed curve lying on a lightlike
surface S in Lorentz–Minkowski space M3, t = c′. Let u be a lightlike field in Rad TS and q
a unique lightlike field (lightlike transversal field) such that the following orthogonality
conditions hold:

〈t, t〉 = 〈u, q〉 = 1, 〈u, u〉 = 〈q, q〉 = 〈t, u〉 = 〈t, q〉 = 0.

Further, the following formulas are satisfied: t′

u′

q′

 =

 0 κg κn
−κn τg 0
−κg 0 −τg

 t
u
q

. (3)

2.4. Curves in an Isotropic Space In

Isotropic space In is the vector space Rn equipped with the degenerate symmetric
bilinear form (a degenerate scalar product) of rank n− 1:

〈x, y〉I = x1y1 + . . . + xn−1yn−1.

It is called an isotropic scalar product and also referred to as the “top-view product” since
it coincides with the Euclidean scalar product of the projections of vectors onto the first
(n− 1)-coordinates. The isotropic scalar product generates the isotropic norm in the usual
way ‖x‖I =

√
〈x, x, 〉I. Vectors collinear to (0, 0, . . . , 1), for which the isotropic norm
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vanishes, are called isotropic vectors. They generate a unique isotropic direction in In. The
other vectors are called non-isotropic.

A curve in In that is not an isotropic line, that is its tangent vectors, are all non-isotropic
and can be (re)parametrized by arc-length, ‖c′(s)‖I = 1, in the usual way. This is called
admissible, since it allows the construction of the Frenet frame.

In the special case of the isotropic plane I2, a curve c(s) = (x(s), y(s)) is parametrized
by the arc-length if x′(s) = ±1. We shall, for instance, take c(s) = (s, y(s)). For curves
parametrized by the arc-length in I2, the Frenet frame is introduced by tI = c′, nI = (0, 1),
and the following Frenet formulas hold:(

t′I
n′I

)
=

(
0 κI
0 0

)(
tI
nI

)
.

The isotropic curvature κI is determined as

κI = det(c′, c′′) = y′′(s). (4)

If c is parametrized by an arbitrary parameter, then

κI(t) =
det(c′(t), c′′(t))

x′1(t)
3 .

A circle in an isotropic plane is a regular curve of the second order with a normal
equation y = Rx2. The real number R is defined as its radius. As a curve, it is a Euclidean
parabola, whose axis coincides with the isotropic direction.

Remark 1. Considering the geometry of an isotropic plane I2 as a Cayley–Klein geometry ([1],
p. 23), a circle is defined as a regular curve of the second order in the underlying projective plane,
which contains the absolute point F of I2 and touches the absolute line in F. This implies that, in
affine coordinates, a circle is a curve with the given normal equation.

Remark 2 ([1]). The fundamental theorem for curves in I2 states that, with the given isotropic
curvature κI(s), there exists, up to isotropic motions, a unique curve parametrized by arc-length s with
the given curvature. Note that, in particular, curves c(s) = (s, f (s)), c̄(s) = (s, f (s) + as + b),
a, b,∈ R, are congruent, which does not hold in the Euclidean plane (see the example in Figure 1).

-2 2

5

10

15

Figure 1. Congruent curves in I2: y = ex, y = ex − 2x, y = ex + 2x + 4 (blue, orange, and green,
respectively).
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In an isotropic plane, the following curves are characterized by constant isotropic
curvature.

Proposition 1 ([1]). Let c : I → I2 be a non-isotropic curve in an isotropic plane I2. Then:

1. κI = 0 on I if and only if c is a non-isotropic straight line;
2. κI = const. 6= 0 on I if and only if c is an isotropic circle.

3. Pseudo-Null Curves in M3 Are Planar Curves

We begin this section by offering an alternative proof of the fact that every pseudo-null
curve lies in a lightlike plane. A different proof of this property can be found in [5,6].

Proposition 2. A pseudo-null curve with the curvature κ(s) = 1 is a planar curve lying in a
lightlike plane.

Proof. Let the principal normal vector field n of a pseudo-null curve c parametrized by the
arc-length be written as n = (n1, n2, n3). Since n = c′′ and by the Frenet equation n′ = τn
in (1), we can conclude that

ni = Kie
∫

τ(s)ds, Ki ∈ R, i = 1, 2, 3,

with K1 6= 0 since n is lightlike. Therefore,

n = e
∫

τ(s)ds(K1, K2, K3), (5)

where the vector:
u(s) = (K1, K2, K3) 6= 0,

is a constant lightlike vector. We consider a function

f (s) = 〈c(s)− c(s0), u(s)〉,

for an arbitrary s0 ∈ I. Since u is constant, we have f ′(s) = 〈t(s), u(s)〉 = 0, so f is a
constant function. Since f (s0) = 0 and f is smooth, we can conclude that f (s) = 0 for all s.
This means that c lies in a plane with the equation 〈x− c(s0), u(s)〉 = 0.

Remark 3. The normal field u belongs to the radical space RadpS = TpS⊥ of a lightlike plane S. Ob-
viously, a constant vector u in the previous proposition is determined up to a multiplicative constant.

Remark 4. A pseudo-null curve lies in a plane through an arbitrary point of a curve spanned by
(linearly independent) c′(s) = t, c′′(s) = n. Notice that this is a consequence of the fact that c′′′(s)
is linearly dependent with c′(s), c′′(s). The same holds for planar non-degenerate curves. We refer
to this plane as the osculating plane (being spanned by t, n), whereas some authors call it a rectifying
plane (as having a normal n).

Pseudo-null curves lie in planes that are lightlike, having a lightlike direction determined by
c′′ ∈ Rad(TS). This additional fact that the osculating plane is lightlike for pseudo-null curves
is characterized by the vanishing Gram determinant (with respect to the pseudo-scalar product of
M3) [13]:

Γ(c′, c′′) =
∣∣∣∣ 〈c′, c′〉 〈c′, c′′〉
〈c′, c′′〉 〈c′′, c′′〉

∣∣∣∣ = 0.

We can verify this first for pseudo-null curves c parametrized by the arc-length, 〈c′, c′〉 = 1. Then,
also, 〈c′, c′′〉 = 0. Additionally, the principal normals are lightlike, 〈c′′, c′′〉 = 0. Therefore, we
conclude

Γ(c′, c′′) =
∣∣∣∣1 0
0 0

∣∣∣∣ = 0.
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If c is parametrized by an arbitrary parameter t and c̄ is its reparametrization by the arc-length
parameter s, then c′(t) = c̄′(s) ds

dt , c′′(t) = c̄′′(s)( ds
dt )

2 + c̄′(s) d2s
dt2 . Then, also,

Γ(c′, c′′) =

∣∣∣∣∣∣
( ds

dt )
2 ds

dt
d2s
dt2

ds
dt

d2s
dt2 ( d2s

dt2 )
2

∣∣∣∣∣∣ = 0.

Finally, note that, by the Lagrange identity in M3, we have

Γ(c′, c′′) = 〈c′, c′′〉2 − 〈c′, c′〉〈c′′, c′′〉 = 〈c′ × c′′, c′ × c′′〉,

where × is the Lorentzian cross-product ([9]). The vector c′ × c′′ is a vector orthogonal to both c′,
c′′. In the case of non-degenerate surfaces, it is a surface normal. However, for lightlike planes, it is
an element of the radical space of S, being lightlike and orthogonal to a lightlike direction of S.

4. Curves in a Lightlike Plane in M3

A lightlike plane S is a lightlike surface in Lorentz–Minkowski space M3, and its
radical space is determined by a unique lightlike direction; we denote it by u. This means
that Rad S = span{u}.

Let c : I ⊂ R→M3 be a curve that lies in S. If we assume that the causal character of c
does not change on I, then c is either a lightlike curve or a spacelike curve. If c is a lightlike
curve, then it has the same direction as the lightlike direction u. Let c be a spacelike curve
in S with the curvature κ = 1. Then, a vector field t = c′ is spacelike, and there exists a
unique lightlike field q satisfying

〈q, q〉 = 0, 〈t, q〉 = 0, 〈u, q〉 = 1.

In the following, we frame c by the pseudo-orthonormal frame L = (t, u, q) as a Darboux
frame for a lightlike plane.

Theorem 1. Let L = (t, u, q) be a Darboux frame of a curve c, the spacelike curve c,with the
curvature κ = 1 lying in a lightlike plane S. Then, the following holds: t′

u′

q′

 =

 0 κg 0
0 0 0
−κg 0 0

 t
u
q

 (6)

where κg is a function defined as

κg = 〈t′, q〉 = −〈t, q′〉. (7)

Proof. Let us put t′ = αt + βu + γq, where, for the unknown functions α, β, γ : I → R, it
holds that α = 〈t′, t〉, β = 〈t′, q〉, γ = 〈t′, u〉. Since 〈t, t〉 = 1, and we have 〈t′, t〉 = 0, so
α = 0. From 〈t, u〉 = 0 and because u is constant, we obtain 〈t′, u〉 = 0, so γ = 0. Therefore,
we may write t′ = βu. For the function β, we put β := κg.

The second formula follows because u is a constant vector. For the third formula, we
have the following: if we write q′ = ᾱt + β̄u + γ̄q, for the unknown functions ᾱ, β̄, γ̄ : I →
R, it holds that ᾱ = 〈q′, t〉, β̄ = 〈q′, q〉, γ̄ = 〈q′, u〉. Since q is a lightlike vector, 〈q, q〉 = 0,
then 〈q′, q〉 = 0, so β̄ = 0. From 〈u, q〉 = 1, it follows that 〈u, q′〉 = 0; therefore, γ̄ = 0.
Finally, since 〈t, q〉 = 0, we have κg = 〈t′, q〉 = −〈t, q′〉, which gives ᾱ = −κg.

Remark 5. We note that the formulas (6) for lightlike planes appear as the special case of the
formulas for the Darboux frame (3) for a general lightlike surface with κn = τg = 0.

By Proposition 2, we know that a pseudo-null curve lies in a lightlike plane. Now, we
consider the converse: Which curves lie in a lightlike plane?
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Corollary 1. Every spacelike curve with the curvature κ = 1 that lies in a lightlike plane in M3 is
a pseudo-null curve.

Proof. Without loss of generality, we may assume that c is parametrized by the arc-length.
From the formulas (6), we have c′′ = t′ = κgu. If κg is different from zero, c′′ is a lightlike
vector, and c is a pseudo-null curve.

5. Connection between the Frenet and Darboux Frames of a Pseudo-Null Curve

Our next goal is to determine the relations between two constructed frames (1) and (6)
for a pseudo-null curve (parametrized by the arc-length) and their curvatures, the curvature
κ, the pseudo-torsion τ, and the geodesic curvature κg.

First note that the tangent field t is the same in both frames. Let us first consider
the case of spacelike straight lines. A curve c is a spacelike straight line if and only if its
curvature κ as a pseudo-null curve in M3 vanishes, κ = 0 (see (1)). Likewise, c′′ = t′ =
κgu = 0 implies κg = 0. Therefore, in this case, we have

κ = κg = 0.

Otherwise, κg is related to the pseudo-torsion τ, which we discuss further on. Let
now c = c(s) be a pseudo-null curve with the curvature κ = 1, and let it be parametrized
by arc-length s. Let u be a constant vector in the direction of the principal normal vector
n = c′′ of c (see (5)). Note that the vector u is determined up to a multiplicative constant.
With the vector u chosen and fixed, by (6), we may write

c′′(s) = t′(s) = n(s) = κg(s)u(s), (8)

which by (5) implies
κg(s) = e

∫
τ(s)ds, (9)

or

τ =
κ′g
κg

. (10)

Lightlike normal fields u, n are, therefore, related as follows:

u(s) = e−
∫

τ(s)dsn(s) =
1

κg(s)
c′′(s). (11)

Furthermore, since 〈n, b〉 = 〈u, q〉 = 1, then q, b are related as follows:

q(s) = κg(s)b(s). (12)

Summarizing:

Proposition 3. Let c be a pseudo-null curve with the curvature κ = 1 and the Frenet pseudo-
orthonormal frame (t, n, b) satisfying (1). Then, its Darboux frame (t, u, q) is defined by (11), (12),
and κI and τ are related by (9).

Remark 6. In Euclidean space, curvatures from the Frenet and Darboux frame for curves parametrized
by the arc-length are connected by κg = κ cos ϕ, κn = −κ sin ϕ, τg = τ + ϕ′, where ϕ is the angle
of rotation in the plane spanned by n, b, which maps n, b to q, u. In the case when a surface S
is a plane, the field b is constant and represents a unit normal of a plane. It is equal to u, up to
a sign. The angle of rotation is constant (equal to 0, π), and κg coincides with κ, whereas other
curvatures vanish.
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6. Connection between Theories of Curves in I2 and in Lightlike Planes in
M3: Examples

We introduce local coordinates in a lightlike plane S ⊂ M3. Since there is a unique
lightlike direction in S, we can consider S as being given by passing through a point q and
spanned by a lightlike vector u and a unit spacelike vector v, that is given by a parametrization:

F(v, u) = q + vv + uu. (13)

With respect to this parametrization, the induced metric of S is given with the coefficients
E = 1, F = 0, G = 0, that is ds2 = dv2. The metric is degenerate of index 1.

We note that the vectors v, u form constant fields of tangent vectors, v ∈ TpS, u ∈
Rad(Tp) ⊂ TpS, p ∈ S, which are orthogonal for every p ∈ S. The field v generates the
screen distribution S(TS). Its choice is not unique, since every spacelike vector in TpS is
orthogonal to u, p ∈ S. With the fields v, u chosen and fixed, every point x ∈ S can be given
by the local coordinates in the plane S as x = (v0, u0), after identification with F(v0, u0).

By this identification for a pseudo-null curve, we may write κg = κI. Indeed, for a
pseudo-null curve c lying in its osculating plane spanned by (v, u), i.e., by (t, n), through a
point q (see (13)), there exist functions α(s), β(s) such that

c(s) = q + α(s)v + β(s)u. (14)

If c is parametrized by the arc-length, ‖c′(s)‖ = α′(s)2 = 1, implies α(s) = ±s + c.
Following [1], without loss of generality, we will choose α(s) = s. Now, (7) implies
κg = 〈t′, q〉 = β′′(s). The same is obtained for a curve c(s) = (s, β(s)) as a curve in I2,
κI = β′′(s) (see (4)).

Next, we are interested in understanding how the choice of the pseudo-orthonormal
frame of constant fields v, u (which determines the local coordinates) affects the isotropic
curvature given by (4) of a curve c in a lightlike plane S.

Proposition 4. Rescaling a constant field u by a constant has an effect on the isotropic curvature.
If we put ū = au, a ∈ R, a 6= 0, then the corresponding isotropic curvature are related in the
following way:

κ̄I =
1
a

κI.

Proof. By introducing a frame (v, ū), a curve c given by (14) and parametrized by arc-
length, can be written as c(s) = q+ sv+(1/a)βū, that is with coordinates c(s) = (s, (1/a)β)
in the local frame. Since a is a constant, the isotropic curvature of c with respect to this
frame is κ̄I = (1/a)β′′.

Proposition 5. The curvature κI does not depend on different choices of the constant unit spacelike
field v (different screen distributions).

Proof. Let (v, u), (v̄, u) be two pseudo-orthonormal frames consisting of constant fields,
a unit spacelike field v, respectively v̄, and a lightlike field u. Obviously v = v̄ + λu, for
a constant λ ∈ R. Let c : I → S be a curve in S parametrized by the arc-length; see (14).
Then, the unit tangent vector t of c is given by t = v + f (s)u, or with respect to this basis in
local coordinates

t = (1, f (s)).

Similarly,
t = v̄ + ( f (s) + λ)u = (1, f (s) + λ),

respectively. Now, we have κI = f ′(s), κ̄I = ( f (s)+λ)′ = f ′(s) which proves the claim.
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Based on these results and the theory of curves in an isotropic plane developed in [1],
we analyzed some special pseudo-null curves in M3. By Proposition 1, we may conclude
the following:

Theorem 2. Let c : I →M3 be a pseudo-null curve curve in M3. Then:

1. κ = 0 on I if and only if c is a spacelike straight line;
2. τ = 0 on I if and only if c is an isotropic circle (a Euclidean parabola with the lightlike axis).

We are further interested in the class of spherical pseudo-null curves. These results can
also be found in [14–16] and in [17] in the case of lightlike cones. In Lorentz–Minkowski
space M3, the following sets are considered as spheres:

S2
1(p, r) = {q ∈M3 : 〈q− p, q− p〉 = r2},

H2(p, r) = {q ∈M3 : 〈q− p, q− p〉 = −r2},
LC(p) = {q ∈M3 : 〈q− p, q− p〉 = 0}.

The set S2
1(p, r) is called the Lorentzian sphere or a pseudo-sphere with center p and radius

r > 0, the set H2(p, r) a hyperbolic plane with center p and radius r > 0, and the set LC(p)
a lightlike cone with the vertex p. For unit spheres, we put S2

1(p) = S2
1(p, 1), H2

1(p) =
H2

1(p, 1).

Proposition 6. A pseudo-null curve that is spherical in M3, i.e., that lies on H2(p), S2
1(p), or

LC(p), p ∈M3, is an isotropic circle (a Euclidean parabola).

Proof. First, we assume that a pseudo-null curve c parametrized by the arc-length parame-
ter lies on H2(p), S2

1(p), or LC(p). Therefore,

〈c(s)− p, c(s)− p〉 = ε, ε ∈ {±1, 0}.

Differentiating the previous expression twice, we obtain 〈c(s)− p, t〉 = 0, 〈t, t〉+ 〈c(s)−
p, n〉 = 0. Hence, by using (8) and κI = κg, we obtain

κI〈c(s)− p, u〉 = −1. (15)

Further, we represent c by (14). By taking the pseudo-scalar product of (14) by u, we obtain
〈c(s)− q, u〉 = 0. Therefore, 〈c(s)− p, u〉 = 〈q− p, u〉 = const. 6= 0, since q 6= p. Now,
(15) implies

κI = −
1

〈q− p, u〉 ,

and from Proposition 1, it follows that c is an isotropic circle.
In the case when the osculating plane passes through the center of a sphere, q = p, then

the relation (14) implies 〈c(s)− p, c(s)− p〉 = 〈c(s)− q, c(s)− q〉 = α2(s) = ε, ε ∈ {±1, 0}.
In the case ε = −1, we have α2 = −1 with α ∈ R, which implies that there is no intersection
of H2(p) by a lightlike plane passing through its center. In the case when ε = 1 or ε = 0
(that is, α = ±1 or α = 0), by differentiating (14), we further have t = β′(s)u. This means
that the tangent field of a curve c would be lightlike, which implies that c is a lightlike
straight line. However, this curve is not pseudo-null (pseudo-null curves are spacelike).

Note that part of this statement is a classical result stating that the cross-section of a
hyperboloid of one sheet and a cone, by a plane parallel to its rulings, is a parabola with
the axis parallel to the rulings, or a straight line (a ruling).

Example 1 ([10]). Up to isometries of M3, the only pseudo-null curve with the pseudo-torsion
τ = 0 is the curve:

c(s) =
( s2

2
, s,

s2

2

)
.
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The curve c lies in the lightlike plane x = z with the lightlike direction (1, 0, 1). According to
Theorem 2, it is an isotropic circle (a Euclidean parabola with the lightlike axis).

The fields of the Frenet frame are t = (s, 1, s), n = (1, 0, 1), and therefore, the Frenet and
the Darboux frames of c coincide (up to a multiplicative constant for n). Since n′ = 0, we have
τ = 0. On the other side, if we define u = n, then t′ = u, and therefore, κI = 1. Having a constant
isotropic curvature κI = 1, this also shows that c is a circle as a curve in I2.

We can also reason in local coordinates. If we choose a frame (t(0), n(0)) as a coordinate frame
in S, the curve c can be written as c(s) = st(0) + s2

2 n(0) or, in local coordinates, as c(s) = (s, s2

2 ).
Now, we apply (4) to calculate the curvature again as κI = 1.

Example 2 ([10]). Up to isometries of M3, the only pseudo-null curve with the pseudo-torsion
τ = const. 6= 0 is the curve lying in the lightlike plane x = z given by

c(s) =
1
τ2 (e

τs, τ2s, eτs).

The unit tangent vector is t(s) = c′(s) = 1
τ (e

τs, τ, eτs), and the principal normal n = c′′(s) =
(eτs, 0, eτs). For the constant principal normal, we choose u = n(0) = (1, 0, 1). Now, we have

t′(s) = c′′(s) = (eτs, 0, eτs) = eτsu;

hence, κI(s) = eτs.
Regarding the curve c as a curve in a lightlike plane with the chosen frame (t(0), u), we obtain

c(s) = st(0) + (
1
τ2 eτs − s

τ
)u,

that is in the given local coordinates, we obtain

c(s) = (s,
1
τ2 eτs − s

τ
).

This curve is an isotropic tractrix sharing the property of the constant tangent length with the
Euclidean tractrix: if P is a point of c and p a non-isotropic line and if a tangent of c at P
intersects p at G, then the distance between P and G is constant [1]. It is congruent to the curve
c(s) = (s, 1

τ2 eτs); see Remark 2.

Example 3 ([7]). The curve:

c(s) =
(
− s3

12
,

s3 + 12s
12
√

2
,

s3 − 12s
12
√

2

)
.

is a pseudo-null curve lying in the lightlike plane y+ z = −
√

2x. Its tangent and principal normals
are given by

t = c′(s) = (− s2

4
,

s2 + 4
4
√

2
,

s2 − 4
4
√

2
), n = c′′(s) = (− s

2
,

s
2
√

2
,

s
2
√

2
).

Since
n′ = (−1

2
,

1
2
√

2
,

1
2
√

2
)

its pseudo-torsion is τ =
1
s

. If we introduce

u =
1
2
(−1,

1√
2

,
1√
2
)

we obtain the isotropic curvature as κI(s) = s.
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On the other hand, if we choose

t(1) = (−1
4

,
5

4
√

2
,− 3

4
√

2
), n(1) = (−1

2
,

1
2
√

2
,

1
2
√

2
)

as a local frame in the lightlike plane in which the curve lies, then

c(s) = s t(1) +
s3 − 3s

6
n(1)

or

c(s) = (s,
s3 − 3s

6
).

According to [1], the curve c is a lightlike analogue of the Euclidean clothoide curve having the
property that its curvature is proportional to the arc-length, κI(s) = s.
If we choose another local frame for the lightlike plane with a different unit spacelike vector (different
screen) and the same lightlike vector u, e.g.,

v =
1√
2
(0, 1,−1), u =

1
2
(−1,

1√
2

,
1√
2
),

then

c(s) = sv +
s3

6
u

or

c(s) = (s,
s3

6
).

The isotropic curvature as a function of s is again given by κI(s) = s (see Figure 2).

Figure 2. Congruent clothoides in I2 as presentations of a pseudo-null curve in Example 3 in two
orthonormal frames (blue curve in the first local frame, orange in the second).

Example 4. The curve with the isotropic curvature κI =
1
s in I2 is a curve c(s) = (s, s ln|s|). If

we choose that c lies in a lightlike plane spanned by (0, 1, 0) and (1, 0, 1), then c is a pseudo-null
curve in M3 parametrized by

c(s) = s(ln|s|, 1, ln|s|).

Its pseudo-torsion is calculated as τ = − 1
s , which confirms the relation (10) (see Figure 3).
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Figure 3. A pseudo-null curve with τ = −1/s or κI = 1/s.
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7. López, R.; Milin Šipuš, Ž.; Primorac Gajčić, L.; Protrka, I. Involutes of pseudo-null curves in Lorentz–Minkowski space.

Mathematics 2021, 7, 1256. [CrossRef]
8. Kühnel, W. Differential Geometry: Curves-Surfaces-Manifolds; American Mathematical Society: Providence, RI, USA, 2005.
9. López, R. Differential geometry of curves and surfaces in Lorentz–Minkowski space. Int. Electron. J. Geom. 2014, 7, 44–107.

[CrossRef]
10. Walrave, J. Curves and Surfaces in Minkowski Space. Ph.D. Thesis, K. U. Leuven, Faculteit Der Wetenschappen, Leuven,

Belgium, 1995.
11. Osmar, A.; Badr, S.A.-N.; Hassan, S.A.; Rodrigues, L.A.; Silva, F.N.; Soliman, M.A. Transversal Intersection Curves of Two

Surfaces in Minkowski 3-Space. Sel. Mat. 2018, 5, 137–153.
12. Topbas, G.I.; Ekmekci, N.; Yayli, Y. Darboux Frame of a Curve Lying on a Lightlike Surface. Math. Sci. Appl. E-Notes 2016, 4,

121–130. [CrossRef]
13. Bonnor, W.B. Curves with null normals in Minkowski space–time. In A Random Walk in Relativity and Cosmology; Dadhich, N., Ed.;

Wiley Easten Limited: New Delhi, India, 1985; pp. 33–47.
14. Pekmen, U.; Pasali, S. Some characterizations of the Lorentzian spherical space-like curves. Math. Morav. 1999, 3, 33–37.
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