Dadić, Dino

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:342689

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij općeg naftnog rudarstva

KOMPARATIVNA ANALIZA METODA PSEUDOIZACIJE

Diplomski rad

Dino Dadić

N138

Zagreb, 2015.

Rudarsko-geološko-naftni fakultet

Diplomski rad

KOMPARATIVNA ANALIZA METODA PSEUDOIZACIJE

DINO DADIĆ

Diplomski rad izrađen: Sveučilište u Zagrebu

Rudarsko-geološko-naftni fakultet Zavod za naftno inženjerstvo Pierottijeva 6, 10 000 Zagreb

Sažetak

Jedan od najtežih zadataka u pVT (engl. pressure-volume-temperature) karakterizaciji ležišnih fluida je opis sastava C₇₊ frakcije koji će kasnije rezultirati kvalitetno podešenom jednadžbom stanja i realističnim simuliranim podacima. Laboratorijski izvještaji ležišnih fluida obično daju ograničen sastav i opis težih komponenata - ugljikovodici teži od heksana grupiraju u C₇₊ frakciju s određenom (izmjerenom) molarnom masom i relativnom gustoćom. Upravo takva definicija teških komponenata stvara glavne probleme pri predviđanju termodinamičkih svojstava i volumetrijskog ponašanja ležišnih fluida. Stoga je svrha C_{7+} karakterizacije dobiti bolji opis nedefiniranih komponenata pomoću pseudokomponenata tako da se eksperimentalni pVT podaci usporede s predviđenima karakterizacijom jednadžbom stanja (JS). U radu je detaljno razrađeno dijeljenje plus frakcije Whitsonovom metodom, koja se najčešće koristi u praksi za definiciju plus frakcije. Ta metoda polazi od statističke obrade raspodjele komponenata u proširenom sastavu, te na temelju karakteristike te raspodjele definira pseudokomponente. Pri tome su parametri statističke raspodjele determinirani tako da se računski odredi prošireni sastav, a zatim, pošto bi numeričko rješavanje i podešavanje parametara za toliki broj komponenata bilo presloženo, ponovo se, pošto su im poznata fizikalna svojstva, niz tih komponenata grupira i radi se podešavanje parametara JS na samo nekoliko pseudokomponenata, najčešće 3 do 5. Statističkom obradom, kakva je korištena u ovom radu, moguće je "ugladiti" prošireni sastav. Time se mogu umanjiti problemi koji nastaju zbog mjerne pogreške, i na novi način se može definirati sastav do C_{7+} , kakav se standardno koristi za podešavanje JS.

Ključne riječi: raspodjela, pseudoizacija i pravila miješanja, gama distribucija, Gaussova kvadratura Diplomski rad sadrži: 59 stranica, 5 tablica, 13 slika, 3 dodatka i 54 reference. Jezik izvornika: hrvatski Diplomski rad pohranjen: Knjižnica Rudarsko-geološko-naftnog fakulteta

Pierottijeva 6, Zagreb

Voditelj:	Dr. sc. Domagoj Vulin, docent RGNF-a
Ocjenjivači:	Dr. sc. Domagoj Vulin, docent RGNF-a
	Dr. sc. Tomislav Kurevija, docent RGNF-a
	Dr. sc. Borivoje Pašić, docent RGNF-a

Datum obrane: 30. rujan 2015.

COMPARATIVE ANALYSIS OF METHODS OF PSEUDOISATION

DINO DADIĆ

Thesis completed at:	University of Zagreb
	Faculty of Mining, Geology and Petroleum Engineering
	Department of Petroleum Engineering,
	Pierottijeva 6, 10 000 Zagreb

Abstract

One of the most complex tasks in pVT characterization of reservoir fludis is describing the compsotion of C_{7+} fraction on which depends the quality of prediction of EOS (equation-of-state) and simulation data. Experimental data usually gives limited composition and description of *heavy ends* – usually all hydrocarbones heavier than hexane are lumped into single C_{7+} fraction with measured molecular weight and specific gravity. It has become clear that insufficient description of heavier components reduces the accuracy of pVT predictions.. The main purpose of C_{7+} characterization is getting better description of heavy fraction by lumping various SCN groups into pseudocomponents and matching experimental pVT data with those predicted with EOS characterization. Distribution of plus fraction by Whitson's method, which is commonly used for describing the plus fraction, is analized in thesis. That method is based on statistic processing of divison of components. Statistic processing, as one described in thesis, can be used for "smoothening" expanded composition. That reduces the problems caused by measuring errors, and in new way defines the compsition up to C_{7+} which is commonly used for EOS predicitons.

 Keywords: distribution, pseudoization, mixing rules, gamma distribution, Gaussian quadrature Thesis contains: 59 pages, 5 tables, 13 figures, 3 enclosures and 54 references.
 Original in: Croatian Thesis deposited in: Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb
 Supervisor: PhD Domagoj Vulin, Assistant Professor Reviewers: PhD Domagoj Vulin, Assistant Professor PhD Tomislav Kurevija, Assistant Professor

PhD Borivoje Pašić, Assistant Professor

Date: September 30, 2015.

SADRŽAJ

Popis tablicaIII
Popis slikaIV
Popis korištenih oznaka i pripadajućih SI jedinicaV
1. UVOD
1.1. Pseudoizacija i pravila miješanja (engl. <i>mixing rules</i>)
2. KONTINUIRANI MODELI ZA C7+ FRAKCIJSKU KARAKTERIZACIJU
UGLJIKOVODIKA 10
2.1. Dvoparametarski model raspodjele (Riazi) 11
2.1.1 Pravila raspodjele i grupiranja20
2.2. Whitsonova gama raspodjela
2.2.1 Postupci ponovnog grupiranja
2.2.2 Pravila miješanja (kombiniranja)
2.3. Raspodjela pomoću gaussove kvadrature
3. SIMULACIJA FAZNIH DIJAGRAMA I PRIKAZ REZULTATA
4. ZAKLJUČAK
5. LITERATURA
6. DODACI
 6.1. Dodatak 1 – Eksperimentalni podaci PVT ispitivanja uzorka plinskog kondenzata A- 2-9
6.2. Dodatak 2 – Prošireni sastavi za C ₇₊ frakcije izabranih uzoraka
6.3. Dodatak 3 – Uzorci dobiveni slučajnim statističkim uzorkovanjem prema gama raspodjeli
6.3.1 Prvi uzorak sastava C_7 - C_{30+} dobiven slučajnim statističkim uzorkovanjem prema
gama raspodjeli

6.3.2	Drugi	uzorak	sastava	C_7-C_{30+}	dobiven	slučajnim	statističkim	uzorkovanjem
prema g	gama ras	spodjeli						
6.3.3	Treći	uzorak	sastava	C ₇ -C ₃₀₊	dobiven	slučajnim	statističkim	uzorkovanjem
prema g	gama ras	spodjeli						

Popis tablica

Tablica 1-1. Fizikalna svojstva ugljikovodičnih frakcija
Tablica 2-1. Ukupna svojstva C7+ uzoraka korištenih u Riazijevom radu (1997.) 1:
Tablica 2-2. Ocjena predloženih metoda za raspodjelu svojstava C ₇₊ uzoraka iza Tablice 2-
(48 uzoraka, 60 podfrakcija)24
Tablica 2-3. Grupiranje 14 frakcija od C7 do C20+ za uzorak br. 42 u 5 pseudokomponenat
dvama metodama2
Tablica 2-4. Nultočke i težine za prvih 5 Laguerreovih polinoma

Popis slika

Slika 1-1. Krivulja simulirane destilacije
Slika 1-2. Raspodjela frakcija jedinstvenog ugljikovog broja određenih metodom plinske kromatografije kondenzata
Slika 2-1. Usporedba različitih modela raspodjele16
Slika 2-2. Predviđanje raspodjele molarne mase uzorka br. 39 iz Tablice 2-1
Slika 2-3. Predviđanje raspodjele indeksa refrakcije br. 39 iz Tablice 2-1
Slika 2-4. Predviđanje funkcije gustoće vjerojatnosti za molarnu masu uzorka br. 39 iz Tablice 2-1
Slika 2-5. Molni udio dobiven razlikom površina ispod funkcije gustoće vjerojatnosti unutar određenih molnih udjela (Søreide, 1989)
Slika 2-6. Molarna raspodjela parametra α dobivena regresijom 65 uzoraka s η =9031
Slika 3-1. Mjereni sastav C ₇ do C ₃₀₊
Slika 3-2. Prvi uzorak sastava C ₇ -C ₃₀₊ dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli
Slika 3-3. Drugi uzorak sastava C ₇ -C ₃₀₊ dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli
Slika 3-4. Treći uzorak sastava C ₇ -C ₃₀₊ dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli
Slika 3-5. Usporedba faznih dijagrama za sve razmotrene sustave

Popis korištenih oznaka i pripadajućih SI jedinica

- A, B konstante u Riazijevoj dvoparametarskoj jednadžbi
- c konstanta tipa molekule u eksponencijalnoj raspodjeli
- C₁, C₂ koeficijenti regresije (Riazi)

d – gustoća (g/cm³)

- $E(\alpha) error$ funkcija (Whitson, 1983)
- F funkcija gustoće vjerojatnosti u dvoparametarskoj raspodjeli (Riazi)
- f-učestalost pojave

fw-maseni udio

- f(x) kontinuirana funkcija u gama raspodjeli
- f(x_i) diskretna funkcija korištena u Gaussovoj kvadraturi
- I parametar indeksa refrakcije
- K ravnotežni omjer
- M_{bi} gornja granica molarne mase komponente i, g/mol
- $M_{bi\mathchar`l}$ donja granica molarne mase komponente i, g/mol
- M_{C7+} molarna masa komponente C₇₊, g/mol
- M_i molarna masa komponente i, g/mol
- M_{7+} molarna masa heptan plus frakcije, g/mol
- N broj parametara regresije
- N broj pseudokomponeneti
- Ng broj MCN grupa
- n prvi jedinstveni ugljični broj u C_n+ frakciji
- n indeks refrakcije pri 20°C
- n količina tvari, mol
- P-svojstvo, kao npr. M, S, I, d. T_b
- P(M) kumulativna funkcija gustoće vjerojatnosti

p - tlak, bar

- pc kritični tlak, bar
- ps predviđeni tlak rosišta
- p(M) funkcija gustoće vjerojatnosti
- po(M) modificirana funkcija gustoće vjerojatnosti
- S relativna gustoća pri 15,5 °C (Riazi)
- T točka vrenja u Riazijevoj funkciji raspodjele, K
- T_b-točka vrenja (engl. true boiling point), K
- T_i kompozitna varijabla gama funkcije
- Δw potreban maseni udio pseudokomponente
- Δz potreban molni udio pseudokomponente
- wi težine u Gaussovoj kvadraturi
- w_i normalizirani maseni udio
- woi težine iz Laguerreovih polinoma
- X parametar regresije u dvoparametarskoj raspodjeli
- x ukupni molni, maseni ili volumni udio
- x_i točke u Gaussovoj kvadraturi
- xoi nultočke iz Laguerreovih polinoma
- z_{C7+} molarni udio C₇₊frakcije
- z_i molarni udio komponente i
- zwi-maseni udio komponente i
- α bezdimenzionalni faktor u jednadžbama stanja
- α,β,η parametri koji definiraju molarnu raspodjelu
- β_0 , δ parametri modificirane funkcije raspodjele
- ϵ parametar pogrješke
- $\Gamma(\alpha)$ gama funkcija

- Θ fizikalno svojstvo
- $\gamma_{C_{7+}}$ relativna gustoća C_{7+} frakcije
- γ_o relativna gustoća nafte
- $\boldsymbol{\omega}$ acentrični faktor

Indeksi

- 0 početa vrijednost
- av prosječno ukupno svojstvo smjese
- i svojstvo SCN grupe I
- i,av prosječno svojstvo pseudokomponente i
- $n-prvi \ broj u \ SCN \ grupi u \ C_n+ \ frakciji$
- N-zadnji SCN (ili MCN) u $C_n\!+$ frakciji
- $N^{\scriptscriptstyle +}$ zadnja MCN grupa u $C_n \!+$ frakciji
- pc pseudokritično svojstvo
- pr pseudoreducirano kritično svojstvo
- w masa

1. UVOD

Jedan od najtežih zadataka u pVT (engl. pressure-volume-temperature) karakterizaciji ležišnih fluida je opis sastava C₇₊ frakcije koji će kasnije rezultirati kvalitetno podešenom jednadžbom stanja i realističnim simuliranim podacima. Kvalitetna laboratorijska analiza smanjuje potrebu za intenzivnim podešavanjem parametara jednadžbe stanja (Pedersen et al. 1985, Jhaveri i Youngren 1988, Naji 2006), dok se za plus frakciju njena svojstva (poput molarne mase i relativne gustoće) moraju određivati osobito pažljivo kako bi matematičko dijeljenje plus frakcije bilo što točnije. Za regresiju i pVT simulaciju najčešće se koristi kubna jednadžba stanja. Kubna jednadžba stanja je za složene smjese (poput nafte i plinskih kondenzata) najpogodnija zbog svoje prilagodljivosti, za razliku od više-parametarskih jednadžbi stanja koje bi preciznije opisivale jednostavne fluide (jednokomponentne fluide ili binarne smjese) (Goričnik, 2006). Primjenjivost i ograničenja kubnih jednadžbi stanja obrazloženi su u nizu radova: Martin (1967., 1979.), Abbott (1979.), Gray (1979.), Yarbourough (1979.), Firoozabadi (1988.), Søreide (1989.), Ashour et al. (2011.) itd. U naftnoj industriji dvije su jednadžbe stanja prihvaćene u najširoj primjeni: Soaveova modifikacija Redlich-Kwongove jednadžbe stanja (Soave, 1972) i Peng-Robinsonova jednadžba stanja (Peng i Robinson, 1976).

Whitson (1980.) i Maddox i Erbar (1982.), među ostalim prikazuju koliko je velik utjecaj karakterizacije teških frakcija na predviđanje PVT odnosa jednadžbom stanja. Sastav ležišnog fluida neophodan je ulazni podatak za definiciju jednadžbe stanja za taj fluid. Ležišni fluidi su kompleksna smjesa komponenata kao što su metan (C₁), etan (C₂), dušik, ugljikov dioksid, srednje teške komponente (C₃, i-C₄, n-C₄, i-C₅, n-C₅, C₆) te velikog broja komponenata težih od heptana (C₇₊) koje se laboratorijski definiraju kao jedna pseudokomponenta. Laboratorijski izvještaji ležišnih fluida obično daju ograničen sastav i opis težih komponenti - ugljikovodici teži od heksana grupiraju u C₇₊ frakciju s određenom (izmjerenom) molarnom masom i relativnom gustoćom.

Upravo takva definicija teških komponenata stvara glavne probleme pri predviđanju termodinamičkih svojstava i volumetrijskog ponašanja ležišnih fluida. Ti problemi nastaju zbog teškoća pri pravilnoj karakterizaciji plus frakcija (engl. *heavy ends*) u smislu njihovih kritičnih svojstava i acentričnih faktora. Simuliranje faznog i volumetrijskog ponašanja jednadžbom stanja zahtijeva poznavanje sastava smjese te molarne mase, acentričnog faktora, kritičnog tlaka i kritične temperature svih komponenata. Stoga je svrha C₇₊ karakterizacije

dobiti bolji opis težih, nedefiniranih komponenata pomoću pseudokomponenata tako da se eksperimentalni PVT podaci usporede s predviđenima karakterizacijom jednadžbom stanja.

Komponente ležišnih fluida moguće je podijeliti na (Zuo i Zhang, 2000):

- 1. Dobro definirane komponente poznatih kritičnih veličina (temperature i tlaka) te acentričnog faktora.
- 2. Frakcije jedinstvenog ugljičnog broja čije je molarne mase i gustoće moguće eksperimentalno izmjeriti ili odrediti nekom od publiciranih korelacija.
- 3. Plus frakciju koja se ne može separirati primijenjenom destilacijskom tehnikom

Potpuno određivanje sastava svih komponenata u ležišnim ugljikovodicima je teško iz tehničkih razloga (sve je teže razlikovati teže ugljikovodike, te sve veći broj izomera) to jest zbog činjenice da C_{7+} frakcija sadrži više stotina težih ugljikovodičnih komponenata kao što su parafini, nafteni, aromati i dr.

Katz i Firoozabadi (1978.) objavili su generalizirani set fizikalnih svojstava za ugljikovodične frakcije od C₆ do C₄₅. Na osnovu analiza 26 kondenzata i nafti tablično su prikazali svojstva uključujući prosječnu temperaturu vrelišta T_b (°K), relativnu gustoću γ , molarnu masu M (g/mol) te ravnotežni omjer K (tablica 1-1).

Frakcija	<i>Т</i> _b (°К)	γ	K	М
C_6	337,1	0,690	12,27	84
C ₇	365,1	0,727	11,96	96
C ₈	389,8	0,749	11,87	107
C ₉	415,3	0,768	11,82	121
C ₁₀	438,9	0,782	11,83	134
C ₁₁	460,3	0,793	11,85	147
C ₁₂	481,4	0,804	11,86	161
C ₁₃	500,3	0,815	11,85	175
C ₁₄	519,6	0,826	11,84	190
C ₁₅	539,2	0,836	11,84	206
C ₁₆	556,2	0,843	11,87	222
C ₁₇	573,2	0,851	11,87	237
C ₁₈	586,2	0,856	11,89	251

Tablica 1-1 Fizikalna svojstva ugljikovodičnih frakcija (Belamarić, 2012)

Frakcija	T_b	γ	K	М
C ₁₉	598,2	0,861	11,91	263
C ₂₀	611,2	0,866	11,92	275
C ₂₁	624,2	0,871	11,94	291
C ₂₂	636,2	0,876	11,95	305
C ₂₃	648,2	0,881	11,95	318
C ₂₄	659,2	0,885	11,96	331
C ₂₅	670,2	0,888	11,99	345
C ₂₆	681,2	0,892	12,00	359
C ₂₇	692,2	0,896	12,00	374
C ₂₈	702,2	0,899	12,02	388
C ₂₉	711,2	0,902	12,03	402
C ₃₀	719,2	0,905	12,04	416
C ₃₁	728,2	0,909	12,04	430
C ₃₂	736,2	0,912	12,05	444
C ₃₃	744,2	0,915	12,05	458
C ₃₄	751,2	0,917	12,07	472
C ₃₅	759,2	0,920	12,07	486
C ₃₆	766,2	0,922	12,08	500
C ₃₇	773,2	0,925	12,08	514
C ₃₈	781,2	0,927	12,09	528
C ₃₉	788,2	0,929	12,10	542
C ₄₀	795,2	0,931	12,11	556
C ₄₁	801,2	0,933	12,11	570
C ₄₂	807,2	0,934	12,13	584
C ₄₃	813,2	0,936	12,13	598
C ₄₄	820,2	0,938	12,14	612
C ₄₅	826,2	0,940	12,14	626

Laboratorijska ispitivanja termodinamičkih svojstava ležišnih fluida započinju uzorkovanjem i odabirom reprezentativnih uzoraka, a završavaju izradom pVT studije koja sadrži rezultate ispitivanja, proračuna i interpretacije izvršenih eksperimenata. U prošlosti su podaci iz PVT studija izravno korišteni u svrhu procjene rezervi i količine pridobivog fluida. Danas PVT studije predstavljaju set podataka potrebnih za prilagodbu termodinamičkog modela.

Kvalitetna laboratorijska karakterizacija težih komponenti uključuje destilaciju ugljikovodične smjese te određivanje sastava metodom plinske kromatografije ili plinske kromatografije - masene spektrometrije.

TBP (frakcijska) destilacija (engl. *True boiling point, TBP distillation*) koristi se za izdvajanje grupe frakcije spojeva u zadanom području vrelišta.

Destilacijom se dobivaju frakcije kojima je zatim moguće odrediti molarnu masu, gustoću i točku vrelišta što čini osnovu za procjenu kritične veličine i acentrične faktore svake pojedine frakcije.

TBP destilacija ima zadane temperaturne intervale malo iznad normalnih točaka vrelišta susjednih n-parafina (Katz i Firoozabadi, 1978). Ovom analizom dobiva se sastav te molarnu masu, relativnu gustoću i normalnu točku vrenja za svaki dio destilacije. Iz mjerenih svojstava može se odrediti kritična svojstva i acentrični faktor. TBP analiza uobičajeno završava na točki vrenja n C_{20} da bi se izbjeglo krekiranje, ili čak prije te točke u slučaju analize plinskih kondenzata (Søreide, 1989). Zaostatku destilacije, npr. C_{21+} , mjere se molarna masa, masa i volumen, dok mu se normalna točka vrenja treba odrediti.

Osnovni problem pri provedbi frakcijske destilacije ležišnih ugljikovodika jest potreban volumen fluida-uzorka koji iznosi oko 20 litara.

Plinska kromatografija je metoda C_{7+} karakterizacije simuliranjem destilacije, čime se dobivaju maseni udjeli čiste komponente. Komponente s normalnom točkom vrenja između susjednih n-parafina se svrstavaju zajedno, a trebaju se odrediti molarna masa, relativna gustoća i prosječna točka vrelišta za ovu SCN (engl. *single carbon number*) grupu.

Primjena simulirane destilacije (nasuprot frakcijske destilacije) skraćuje vrijeme trajanja karakterizacije C_{7+} frakcija s nekoliko dana na par sati. Usporedbu rezultata oba tipa destilacije obradili su Kiesr i Malone (2006.). Zaključili su kako se temperature vrelišta prosječno razlikuju do maksimalno ±5,5 °C, što ukazuje na izvrsno slaganje podataka. Veća razlika primijećena je za više ugljikovodike.

Glavni nedostatak simulirane destilacije je nužnost procjene molarnih masa i relativnih gustoća pojedinačnih frakcija umjesto njihovog eksperimentalnog određivanja.

Grafički prikaz krivulje simulirane destilacije dan je na slici 2-1, dok slika 2-2 prikazuje raspodjelu frakcija jedinstvenog ugljičnog broja određenih istom metodom.

Slika 1-1. Krivulja simulirane destilacije (Belamarić, 2012)

Slika 1-2. Raspodjela frakcija jedinstvenog ugljikovog broja određenih metodom plinske kromatografije kondenzata (Belamarić, 2012)

U nedostatku detaljne analize TBP destilacijom ili kromatografske analize podataka za plus frakcije, korištenjem plus frakcije kao jedinstvene komponente pri računanju faznog ponašanja smjese dobivaju se pogrešna predviđanja i zaključci. Brojni autori su naznačili da se te greške mogu značajno smanjiti rastavljanjem (engl. *splitting*) plus frakcije u broj pseudokomponenata (frakcija) koji će biti podesan za proračun jednadžbe stanja.

Stoga, problem je kako adekvatno podijeliti C_{7+} frakciju u broj pseudokomponenata karakteriziranih molnim udjelom, molarnom masom i relativnom gustoćom. Ta karakterizacijska svojstva, kada se ispravno kombiniraju, trebala bi odgovarati mjerenim svojstvima plus frakcija, tj. molarnoj masi i relativnoj gustoći frakcije.

Whitson (1998.) ističe važnost karakterizacije C_{7+} frakcije: "Jedan od ciljeva C_{7+} karakterizacije je dobivanje najboljeg mogućeg opisa više stotina nedefiniranih komponenti, koristeći minimalan broj pseudokomponenata.". Time se ukazuje i na mogućnost pogreške u samom odabiru metode dijeljenja plus frakcije te na važnost odluke o broju pseudokomponenata, iako bi ih na prvu pomisao bilo poželjno matematički opisati što više.

U literaturi su dane mnoge procedure za karakterizaciju plus frakcija. Od njih su one predložene od Pedersen et al. (1989.) i Whitson et al. (1983., 1989.) u najširoj primjeni u naftnoj industriji.

Dva su različita pristupa karakterizaciji C_{7+} frakcije: izravno računanje svojstava korelacijama i metoda dijeljenja, nakon dijeljenja računanje svojstava (ako nisu poznata) niza novih pseudokomponenata korelacijama i nakon toga grupiranja. Pomoću korelacija (Riazi-Daubertova, Riazi-Al-Sahhafijeva) određuju se svojstva C_{7+} frakcije na osnovu relativne gustoće, molarne mase i/ili temperature vrelišta (Riazi i Daubert, 1980; Riazi i Al-Sahhafi, 1996).

Karakterizacija C₇₊ uključuje (Whitson, 2012):

- korelaciju molarne mase i relativne gustoće C₇₊ frakcije
 - o definiranje trenda i identificiranje značajno bitne vrijednosti
- upotrebu TBP podataka
 - o uklapanje s modelom gama raspodjele,
 - grafičku korelaciju jedinstvenog ugljičnog broja i molarnih masa, odnosno relativnih gustoća,
 - o kvantitativnu analizu sirove nafte,
- proširenu kromatografsku analizu komponentnog sastava

 uklapanje s modelom gama raspodjele (uz zanemarivanje najteže, npr. 30+ frakcije).

Procedura karakterizacije ležišnih fluida jedinstvenom jednadžbom stanja dobivenom usklađivanjem tj. regresijom njenih parametara prema izmjerenim PVT podacima predložili su mnogi autori od kojih je najpoznatiji rad Whitsona et al. 1989. godine. Pri tome najčešće temelj samog postupka predstavlja karakterizacija plus frakcija tj. matematička metoda dijeljenja plus frakcije na niz novih pseudokomponenata kojima se zatim kao početna aproksimacija korelacijama dodjeljuju svojstva poput kritičnih tlakova, temperatura, faktora acentričnosti itd. Whitsonova metoda dijeljenja C₇₊ frakcije temelji se na modelu gama raspodjele molnih udjela komponenata nekog sastava i modifikaciji standardnog Gaussovog kvadraturnog pravila. Metoda je detaljno opisana i matematički obrađena u disertaciji Søreidea (1989.). Valjanost metode usklađivanja parametara jednadžbe stanja pomoću više uzoraka intenzivno je razmatrana posljednjih 20-tak godina (Almehaideb et al., 2000; Martinsen et al., 2010; Singh et al., 2011). Tradicionalna procedura koja se sastoji od izbora uzorka ležišnog fluida iz jedne bušotine te definicije jednadžbe stanja na osnovu PVT podataka navedenog fluida i dalje je dominantno prisutna u suvremenom ležišnom inženjerstvu (Schebetov et al., 2010; Ashour et al., 2011) svjetskih naftnih kompanija.

Zbog važnosti točno definiranog sastava, a s druge strane tehničke nemogućnosti određivanja komponentnog sastava "plus" frakcije poznatim eksperimentalnim analitičkim metodama, metode karakterizacije C_{7+} frakcije analizirane su u nizu publiciranih radova (Whitson, 1983; Cotterman i Prausnitz, 1985; Whitson et al., 1989; Barrufet, 1998; Moradi et al., 2011).

Za sve metode dijeljenja moraju biti zadovoljene sljedeće pretpostavke:

 Suma molnih udjela pojedinačnih pseudokomponenata jednaka je molnom udjelu C₇₊ frakcije:

$$\sum_{i=7}^{n_e} z_i = z_{C_{7+}} \tag{1-1}$$

gdje su:

z_i molni udio komponente i

 z_{C7+} molni udio C_{7+} frakcije

 Suma produkata molnih udjela i molarnih masa pojedinačnih pseudokomponenata jednaka je produktu molnog udjela i molarne mase C₇₊ frakcije:

$$\sum_{i=7}^{n_e} z_i \cdot M_i = z_{C_{7+}} \cdot M_{C_{7+}}$$
(1-2)

gdje su:

M_i molarna masa komponente i (g/mol)

M_{C7+} molarna masa C₇₊ frakcije (g/mol)

 Suma produkata molnih udjela i molarnih masa podijeljena s relativnom gustoćom pojedinačnih pseudokomponenata jednaka je onoj od C₇₊ frakcije:

$$\sum_{i=7}^{n_e} \frac{z_i \cdot M_i}{\gamma_i} = \frac{z_{C_7+} \cdot M_{C_7+}}{\gamma_{C_7+}}$$
(1-3)

gdje su:

 γ_i relativna gustoća komponente i

 $\gamma_{C_{7+}}$ relativna gustoća C_{7+} frakcije

1.1. Pseudoizacija i pravila miješanja (engl. mixing rules)

Izraz pseudoizacija označava reduciranje broja komponenata korištenih u proračunu jednadžbe stanja za ležišne fluide. To smanjenje postiže se uvođenjem pseudokomponenata. Pseudokomponenta označava grupu čistih komponenata grupiranih zajedno predstavljenih kao jedna komponenta sa jedinstvenim ugljičnim brojem.

Metodom dijeljenja i grupiranja, C_{7+} frakcija dijeli se na određen broj pseudokomponenata (najčešće od C_7 do C_{45+} , te se za svaku korelacijom određuju njihova svojstva) te se zatim grupira (na novih nekoliko pseudokomponenata čija se svojstva odrede prema pravilu miješanja). Način dijeljenja i grupiranja predmet je proučavanja stručnjaka već dugi niz

godina (Lohrenz et al., 1964; Katz, 1983; Katz i Firoozabadi, 1978; Yarbourough, 1979; Whitson, 1983; Pedersen et al., 1984; Whitson, 1989; Moradi et al., 2011).

Nekoliko autora dokazalo je veliku mogućnost pogrešnih predviđanja faznog ponašanja ležišnih fluida ukoliko se plus frakcija koristi kao jedna komponenta (Whitson, 1984; Behrens i Sandler, 1986; Pedersen et al., 1989; Danesh, 1998).

Općenito, s dovoljno velikim brojem pseudokomponenata korištenima u karakterizaciji teške frakcije smjese ugljikovodika može se dobiti zadovoljavajuće predviđanje PVT ponašanja jednadžbom stanja. Proračuni jednadžbi stanja često su opterećeni velikim brojem komponenata potrebnih za opis smjese ugljikovodika da bi dobili precizno modeliranje faznog ponašanja. Često je problem grupiranje mnogo eksperimentalno utvrđenih frakcija ili modeliranje sustava ugljikovodika kada su jedini poznati eksperimentalni podaci molarna masa i relativna gustoća.

Troškovi i resursi potrebni za simulaciju faznog i volumetrijskog ponašanja značajno rastu s brojem komponenata korištenih za opis fluida. Po nekim autorima potrebno je od samo 2 pa do čak 50 komponenata za predviđanje ponašanja ležišnih fluida. Općenito, može se reći da točnost predviđanja jednadžbe stanja raste s brojem komponenata korištenih za opis fluida. Iskustveno se mogu napraviti dva zapažanja: prvo, nije stvar u samom broju frakcija, nego koji spektar komponenata koje predstavljaju te frakcije utječe na točnost predviđanja i drugo, da se dobrim ponovnim grupiranjem može dobro opisati i potpuni sastav fluida pretpostavljen prije grupiranja.

Prema Whitsonu (1983.), nameću se tri osnovna pitanja vezana za "regrupiranje":

- 1. Koliko pseudokomponenata je potrebno za dalju primjenu jednadžbe stanja?
- 2. Kako ih se treba odabirati iz djelomične ili potpune C₇₊ analize?
- 3. Koja su pravila miješanja (kombiniranja) potrebna za računanje svojstava pseudokomponenata?

2. KONTINUIRANI MODELI ZA C7+ FRAKCIJSKU KARAKTERIZACIJU UGLJIKOVODIKA

Primjenom kontinuiranih distribucijskih modela za predviđanje faznog ponašanja težih ležišnih fluida problem je koji su pokušali riješiti razni autori. Whitson (1983., 1984.) je koristio gama model raspodjele za opis odnosa molarne mase i molarnih udjela C_{7+} frakcije. Još jedan od najviše korištenih modela raspodjele je i eksponencijalna funkcija kojom se bavio Ahmed (1985.). Gama distribucijski model je tro-parametarska funkcija dok je eksponencijalna funkcija dvoparametarski model. Riazi (1997.) se bavio dvoparametarskim modelom raspodjele. Metoda za generiranje raspodjele relativne gustoće temeljena na konstantnom Watsonovom K faktoru je navedena u radovima Søreidea (1989.) i Whitsona (1984.). Kada je distribucijski model poznat, frakcija se može podijeliti u nekoliko pseudokomponenata ili SCN grupa s poznatim molarnim udjelima korištenjem matematičkih metoda kao što je metoda Gaussove kvadrature (Stroud i Secrest, 1966). Søreide (1989.) je prikazao primjenu Gaussove kvadrature u dobivanju zadovoljavajućih pseudokomponenata C_{7+} frakcije koristeći gama distribucijski model.

Kriterij za postupak dijeljenja

Postupak dijeljenja C₇₊ frakcije može se sažeti:

- Odabire se model molarne raspodjele koji jednoznačno definira odnos molnog udjela i molarne mase;
- 2. Određuje se broj pseudokomponenata u koje se C_{7+} frakcija dijeli;
- Primjenjuje se model molarne raspodjele za određivanje molnog udjela i molarne mase svake komponente.

Javljaju se određena ograničenja tijekom postupka dijeljenja, npr. kombinirana svojstva pseudokomponenata trebaju biti jednaka poznatim svojstvima čitave C_{7+} frakcije.

Za C₇₊ ova ograničenja mogu se izraziti kao $z_{7+} = \sum_{i=1}^{N} z_i i M_{7+} = (\sum_{i=1}^{N} z_i M_i)/z_{7+}$ gdje $z_i i M_i$ predstavljaju molni udio i molarnu masu pseudokomponenata, a N označava broj pseudokomponenata.

2.1. Dvoparametarski model raspodjele (Riazi)

Riazi u svom radu (1997.), temeljenom na dvoparametarskom distribucijskom modelu predstavlja metodu za predviđanje potpune raspodjele svojstava za molarnu masu, točku vrenja, specifičnu gustoću i indeks refrakcije C_{7+} . Potrebna su samo tri ukupna svojstva smjese (molarna masa, relativna gustoća i indeks refrakcije), a ako je dostupna analiza frakcije TBP destilacijom samo su dva ukupna svojstva dovoljna (npr. molarna masa i relativna gustoća).

Riazi (1989.) je razvio jednostavan i svestran distribucijski model za različita svojstva ugljikovodičnih plus frakcija u sljedećem obliku:

$$P^* = \left[\frac{A}{B}\ln\left(\frac{1}{x^*}\right)\right]^{1/B} \tag{2-1}$$

gdje je $P^* = (P-P_0)/P_0$ i $x^* = 1-x$ u kojem je x kumulativni maseni, molarni ili volumni udio, a P je svojstvo poput npr. apsolutne točke vrenja (T_b), molarne mase (M), relativne gustoće (S), gustoća (d) ili parametar indeksa refrakcije (I). Parametar I povezan je s indeksom refrakcije (n) pri 20 °C jednadžbom (2-2):

$$I = \frac{n^2 - 1}{n^2 + 2} \tag{2-2}$$

 P_0 je parametar karakterističan za svako svojstvo (T_0 , M_0 , S_0 , I_0) i svaki uzorak. A je također parametar karakterističan za svako svojstvo (A_T , A_M , A_S , A_I) i svaki uzorak. B je parametar karakterističan za svako svojstvo (B_T , B_M , B_S , B_I) ali je jednak za sve uzorke. Određeno je da je za većinu proučenih uzoraka $B_S = B_I = 3$, $B_M = 1$ i $B_T = 1,5$. U jednadžbi 2-1, za relativnu gustoću, gustoću i parametar indeksa refrakcije, x je kumulativni volumni ili maseni udio, dok je za molarnu masu x kumulativni molarni udio.

Uz poznatu vrijednost B za različita svojstva, jednadžba 2-1 postaje dvoparametarski distribucijski model gdje je potrebno odrediti P_0 i A. Kao što pojašnjava Riazi (1989.), jednadžba 2-1 primjenjiva je na različite parametre (M, T_b, S, I, d) uz samo dva parametra koja treba odrediti. Jednadžba 2-1 može se prebaciti u linearni oblik:

$$Y = C_1 + C_2 X \tag{2-3}$$

Gdje je Y=ln P*, X=ln ln(1/x*), B=1/C₂ i A=B exp(C₁B).

P₀ i A mogu se odrediti linearnom regresijom podataka jednadžbom 2-3. Funkcija vjerojatnosti gustoće (engl. *probability density function*) dobivena je jednadžbe 2-1:

$$F(P^*) = \frac{B^2}{A} P^{*B-1} \exp\left(-\frac{B}{A} P^{*B}\right)$$
(2-4)

Ova jednadžba može se zapisati i u odnosu na svojstvo, P, ako se P* zamijeni svojom definicijom. Prosječna svojstva smjese računaju se iz jednadžbe 1 ili 4 u odnosu na P* dana su:

$$P^*_{av} = \int_0^\infty P^* F(P^*) dP^* = \left(\frac{A}{B}\right)^{\frac{1}{B}} \Gamma\left(1 + \frac{1}{B}\right)$$
(2-5)

gdje je Γ gama funkcija. Jednadžba 2-5 primjenjiva je za M, T_b, S i I, za S i I, distribuirati se mora po kumulativnom volumnom ili masenom udjelu. Ako je S dan u odnos na kumulativni maseni udio, tada je S_{av}^* računato prema:

$$S_{a\nu}^* = \int_0^\infty F(S^*) \frac{dS^*}{S^* + 1}$$
(2-6)

Ako se koriste fiksne vrijednosti parametra B za različita svojstva, tada jednadžba 2-5 daje slijedeće relacije za prosječna svojstva:

$$M_{av}^* = A_M \tag{2-7}$$

$$T_{av}^* = 0,689 A_T^{2/3} \tag{2-8}$$

$$I_{av}^* = 0,619A_I^{\frac{1}{3}}$$
(2-9)

Jednom kad smo odredili P_{av}^* , prosječno svojstvo smjese P_{av} može se dobiti relacijom

$$P_{av} = P_0 (1 + P_{av}^*) \tag{2-10}$$

Prosječnu vrijednost relativne gustoće kada je dana u odnosu na kumulativni maseni udio, računamo slijedeći način:

Ako je $A_s > 0.05$

$$S_{av} = S_0 (1,3818 + 0,3503A_s - 0,1932A_s^2 + 0,059 \ln A_s)$$
(2-11)

Ako je $A_s \le 0.05$

$$S_{av} = S_0 (1,25355 + 1,44886A_s - 5,9777A_s^2 + 0,02951 \ln A_s)$$
(2-12)

U tablici 2-1 dani su podaci za M, S i n za C_{7+} frakcije 48 uzoraka nafti i kondenzata. Izvori podataka su radovi više autora (Jacoby i Berry, 1959; Lee et al. 1979; Austad et al., 1983; Hariu i Sage, 1969; Haaland, 1981; Berge, 1981; Pedersen et al., 1984; 1985; Whitson et al., 1988).

Kad se za predviđanje raspodjele različitih svojstava uzoraka iz tablice koristi jednadžba 2-1 dobije se prosječna apsolutna devijacija (engl. *Average Absolute Deviations - AAD*) u vrijednosti 3 za molarnu masu, 3 K za točku vrenja i 0,6% za relativnu gustoću i indeks refrakcije na ukupno 650 podfrakcija. Gama distribucijski model predviđa raspodjele molarne mase i točke vrenja s približno istom točnošću kao i jednadžba 2-1. Eksponencijalni model predviđa molarnu masu s prosječnom apsolutnom devijacijom u vrijednosti 4.

Eksponencijalni model raspodjele nije pogodan za distribuciju relativnih gustoća, točaka vrenja i indeksa refrakcije.

UZORAK	TIP UZORKA*	M ₇₊	S ₇₊	n ₇₊	
1	BO	142,8	0,7717	1,4274	
2	BO	193,3	0,7995	1,4345	
3	BO	289,4	0,9041	1,5194	
4	BO	206,2	0,8505	1,4512	
5	BO	348,2	0,9386	1,5057	
6	BO	177,5	0,8067	1,4472	
7	BO	227,5	0,8518	1,4752	
8	BO	257,2	0,8732	1,4584	
9	BO	205,7	0,8412	1,4457	
10	BO	256,1	0,8759	1,4962	
11	BO	210,9	0,8451	1,4708	
12	BO	217,1	0,8449	1,4723	
13	BO	236,2	0,8525	1,4814	
14	BO	232,0	0,8658	1,4839	
15	BO	230,3	0,8650	1,4836	
16	BO	213,6	0,8458	1,4694	
17	GC	149,4	0,8195	1,4594	
18	GC	120,2	0,7955	1,4440	
19	GC	118,9	0,7597	1,4234	
20	GC	149,9	0,8165	1,4595	
21	GC	150,5	0,8162	1,4813	
22	GC	155,4	0,8086	1,4497	
23	GC	129,1	0,7865	1,4387	
24	GC	214,0	0,8598	1,4921	
25	BO	170,6	0,8005	1,4451	
26	GC	169,2	0,8008	1,4981	
27	GC	153,7	0,7871	1,4281	
28	GC	176,5	0,8043	1,4334	
29	GC	175,2	0,8033	1,4470	
30	BO	216,7	0,8517	1,4526	
31	BO	232,9	0,8534	1,4769	
32	BO	242,9	0,8833	1,4980	
33	BO	211,4	0,8458	1,4694	
34	BO	211,2	0,8459	1,4714	
35	BO	247,9	0,8839	1,4969	
36	BO	221,5	0,8338	1,4625	
37	GC	125,3	0,7737	1,4302	
38	GC	132,1	0,8039	1,4469	
39	GC	128,4	0,7909	1,4401	
40	BO	267,8	0,9033	1,4735	
41	GC	172,0	0,8127	1,4554	
42	GC	151,6	0,7917	1,4400	
43	GC	122,5	0,7633	1,4250	
44	GC	140,1	0,8068	1,4358	
45	GC	170,5	0,8113	1,4537	
46	GC	175,2	0,8055	1,4366	
47	GC	119,3	0,7838	1,4379	
48	GC	163,8	0,8137	1,4573	

Tablica 2-1. Ukupna svojstva C₇₊ uzoraka korištenih u Riazijevom radu (1997.)

*BO: nafta. GC: plinski kondenzat

Usporedba različitih modela raspodjele teške frakcije prikazana je na slici 2-1.

Slika 2-1. Usporedba različitih modela raspodjele (prema Riazi, 1997)

Molna prosječna molarna masa smjese iznosi 562, prosječna molarna masa predviđena jednadžbom 2-5 iznosi 563, dok je kod gama i eksponencijalnog modela raspodjele 559 0 569, redom. Slične procjene raspodjela točke vrenja i relativne gustoće za uzorak nafte (br. 16) i uzorak kondenzata prikazane su Riazijevom radu. Za uzorak br 19 jednadžbom br 5 procijenjena prosječna relativna gustoća iznosi 0.7612 naspram eksperimentalne vrijednosti od 0.7597, što je devijacija od 0,2%. Eksponencijalni model daje prosječnu relativnu gustoću od 0.754 s devijacijom od 1,7%. Ove procijene pokazuju da za veoma teške frakcije jednadžba 2-1 daje bolja predviđanja raspodijele od gama distribucijskog modela, posebno prema težim frakcijama. Prilagodljivost predloženog modela je u ulozi parametra B u jednadžbi 2-4. To je glavna razlika između predloženog modela i gama distribucijskog modela. Eksponencijalni model nije prikladan za teške frakcije kao što je prikazano u grafu 2-1. Iako se čini da je jednadžba 2-1 ekvivalentna gama distribucijskom modelu za distribuciju molarne mase i točke vrenja, jednadžba koju Riazi (1997.) predlaže zapravo je dvoparametarska funkcija zbog mogućnosti određivanja konstantnog B za svako svojstvo.

Stoga, kada su poznati parametri A i P_0 za svojstvo, kompletna raspodjela može se odrediti za to svojstvo.

Riazi (1997.) predlaže dvije metode za generiranje distribucija svojstava predviđanjem parametra P₀ i A jednadžbom 2-1 za različita svojstva korištenjem samo tri već dostupna ili mjerljiva ukupna svojstva smjese (molarna masa, relativna gustoća i indeks refrakcije pri 20 °C).

METODA A - Predviđanje raspodjele korištenjem ukupnih svojstava M, S, n

Prednost modela raspodjele danog jednadžbom 2-1 ili 2-4 je u tome što samo dva parametra (P_0 i A) moraju biti određena za svako svojstvo da bi mogli predvidjeti cijelu raspodjelu, pošto su vrijednosti B poznate za svako svojstvo.

Postupak predviđanja raspodjele za M, S, T_b i I (ili n) iz tri ukupna svojstva C_{7+} može se sažeti (Riazi, 1997.):

 Očitavanje vrijednosti M, S i I za dani C₇₊ uzorak. Ako I nije dostupno, mogu se koristiti slijedeće jednadžbe za procjenu tog svojstva: za M ≤ 300

$$I = 0,12399 \exp(3,4622 x \, 10^{-4} M + 0,90389S - 6,0955 x \, 10^{-4} MS) M^{0,02264} S^{0,22423}$$
(2-13)

za M > 300

$$I = 0,01102 \exp(-8,61126 \times 10^{-4}M + 3,228607S - 9,07171 \times 10^{-4}MS)M^{0,02426}S^{-2,25051}$$
(2-14)

2. Procjena početne vrijednosti M_0 ($M_0=72$) i izračun:

$$M_{av}^* = \frac{M_{av} - M_0}{M_0} \tag{2-15}$$

3. Izračun A_M jednadžbom 2-7.

- Odabir 20 proizvoljnih udjela za smjesu s jednakim molarnim udjelima od 0,05. Izračun M za svaki udio iz jednadžbe 2-1.
- Pretvaranje molarnih udjela (x_m) u masene (x_w) korištenjem molarnih masa dobivenih u koraku 4.
- 6. Proizvoljan odabir početne vrijednosti S_0 ($S_0 = 0,59$).
- 7. Proračun A_S jednadžbom 2-11 ili 2-12 Newtonovom metodom.
- Pronalazak raspodjele S u odnosu na kumulativni maseni udio jednadžbom 2-1 i proračun S za svaki udio.
- 9. Pomoću distribucije S, pretvaranje masenih udjela (x_w) u volumne (x_v) .
- Korištenjem M i S naspram kumulativnih masenih udjela, računanje T_b za svaki udio iz Riazi-Daubertove jednadžbe:

$$T_b = 3,76587 \exp(3,7741 \cdot 10^{-3} + 2,98404S - 4,25288 \cdot MS)M^{0,40167}S^{-1,58262}$$
(2-16)

- 11. Računanje I pomoću M i S iz jednadžbi 2-13 i 2-14.
- 12. Iz podataka za I naspram kumulativnih volumnih udjela (x_v) računanje parametara I_0 i A_I iz jednadžbi 2-1 i 2-2. Zatim računanje I_{av} jednadžbama 2-9 i 2-10.
- 13. Računanje

$$\epsilon_1 = |(\mathbf{I}_{0,av} - \mathbf{I}_{7+})/\mathbf{I}_{7+}| \tag{2-17}$$

- 14. Ako je $\epsilon_1 \leq 0,005$, nastavak na slijedeći korak. U suprotnom povratak na korak 6, s tim da je $S_{novi} = S_{stari} + 0,005$; ponavljanje koraka 7-13.
- 15. Računanje I₀ iz:

$$I_0 = 0,7454 \exp(-0.01151M_0 - 2,37842S_0 + 0.01255M_0S_0)M_0^{0.2949}S_0^{1.53147}$$
(2-18)

16. Računanje

$$\epsilon_2 = |(\mathbf{I}_{0,izračunato} - \mathbf{I}_{0,korak12})/\mathbf{I}_{0,izračunato}|$$
(2-19)

- 17. Povratak na korak 2, odabir novog M_0 većeg od prvotnog odabira. Ponavljanje koraka 2-17 dok ϵ_2 ne postane minimum i manji od 0,005.
- Koristeći podatke za T_b naspram kumulativnom masenom udjelu određivanje parametara T₀ i A_T jednadžbama 2-1 i 2-3.
- 19. Ispis M₀, A_M, S₀, A_S, T₀, A_T, I₀ i A_I.
- 20. Stvaranje raspodjele M, S, T_b i I jednadžbom 2-1 i parametrima iz koraka 19.

METODA B - Postupak predviđanja raspodjele koristeći M, S i TBP

U nekim slučajevima poznata je TBP (engl. *True Boiling Point*) raspodjela uzorka iz krivulje destilacije. Kod takvih uzoraka potrebna su samo dva ukupna svojstva kao što su M i S ili M i n. Tada se s početnom pretpostavkom S_0 može se odrediti početna distribucija S. Korištenjem Tb i S za svaku podfrakciju može se odrediti M pomoću odnosa danog od API:

$$M = 42,9654 \exp(2,097 \ x \ 10^{-4} T_b -$$

7,787S + 2,0848 x $10^{-3} T_b S) T_b^{1,26007} S^{4,98308}$ (2-20)

Parametar I i kao rezultat toga njegovu raspodjelu možemo odrediti pomoću:

$$I = 2,3435 \ x \ 10^{-2} \ \exp(7,029 \ x \ 10^{-4} T_b + 2,468S - 10,267 \ x \ 10^{-4} T_b S) T_b^{0,0572} S^{-0,72}$$
(2-21)

Postupak izračuna za ovu metodu može se sažeti (Riazi, 1997):

- Očitavanje vrijednosti M, S i TBP raspodjele (npr. iz simulirane destilacijska krivulje) za dani uzorak.
- Odabir 20 proizvoljnih udjela za smjesu s jednakim masenim (ili volumnim) udjelima od 0,05. Zatim je potrebno iz TBP krivulje odrediti vrijednosti točaka vrenja u tim točkama. Ako je dostupna simulacija destilacije, za svaki udio trebalo bi koristiti maseni udio.
- 3. Pronalazak parametara T_0 i A_T jednadžbom 2-3 i pomoću podataka iz koraka 2.
- 4. Pretpostavka početne vrijednosti S_0 ($S_0 = 0,59$).

- 5. Proračun A_s iz jednadžbe 2-11 (ili 2-12) Newtonovom metodom
- Pronalaženje raspodjele S u odnosu na kumulativni maseni udio jednadžbama 2-1 i 2 Relativna gustoća može se koristiti za pretvorbu volumnih udjela u masene ako je TBP dostupan na osnovu volumnih udjela.
- 7. Koristeći vrijednosti T_b i S za svaki udio računa se M iz jednadžbom 2-20.
- Korištenje vrijednosti M izračunatih u koraku 7 za pretvorbu masenih udjela u molarne (x_m).
- Koristeći podatke izračunate u koraku 8 pronaći molarnu raspodjelu molarne mase.
 Parametri M₀ i A_M u ovom koraku računati su jednadžbom 2-3.
- 10. Proračun vrijednosti I iz T i S za svaki udio koristeći jednadžbu 2-21.
- 11. Pronalazak vrijednosti I₀ i A_I jednadžbom 2-3 koristeći podatke iz koraka 10.
- Koristeći M₀ dobiven u koraku 10 i pretpostavljeni S₀ izračunati vrijednost I₀ jednadžbom 2-18.
- 13. Pretpostaviti $I_1 = I_0$ dobiven u koraku 11 i $I_2 = T_0$ izračunat u koraku 12. Zatim izračunati:

$$\epsilon_1 = |(\mathbf{I}_2 - \mathbf{I}_1)/\mathbf{I}_1| \tag{2-22}$$

- 14. Ako je $\epsilon_1 \ge 0.005$ povratak na korak 4, $S_{0,novi} = S_{0,stari} + 0.005$. Ako je $\epsilon_1 < 0.005$ nastavak na korak 15
- 15. Ispis vrijednosti T₀, A_T, M₀, A_M, S₀, A_S, I₀, AI.
- Generiranje cjelovite raspodjele za M, S, T_b i I koristeći jednadžbu 2-1 s parametrima definiranim u koraku 15.

2.1.1 Pravila raspodjele i grupiranja

U mnogim slučajevima detaljni analitički podaci za ležišne fluide dostupni su do većih karbonskih brojeva i teške komponente grupirane su u C_{20+} ili čak C_{30+} . U tim slučajevima ako su molarna masa i relativna gustoća dostupne naspram molnom sastavu svake SCN, tada se može primijeniti jednadžba 2-1 za određivanje raspodjele molarne mase i relativnih gustoća. Ali ako podaci za M i S nisu dostupni za svaki SCN, mogu se koristit svojstva SCN grupa predložena od Riazija i Al-Sahhafa (1996.) ili Katza i Firoozabadija (1978.) da bi se dobila cjelovita raspodjela. Međutim, zbog efikasnosti proračuna, potrebno je grupirati

različite SCN grupe u nekoliko (3, 5 ili 7) pseudokomponenata. Da bi se to postiglo, potrebno je koristiti dostupne podatke o raspodjeli M i S za SCN grupe teže od C_6 za dobivanje funkcija raspodjele jednadžbom 2-1 te se nakon toga pseudokomponente mogu dobiti iz funkcija raspodjele.

svom članku (1997.) preporučuje dvije metode Riazi u dobivanje za pseudokomponenata grupiranjem. Prva metoda je primjena Gaussove kvadrature kao što su pokazali Stroud i Secreast (1966.). Metoda Gaussove kvadrature predviđa diskretan prikaz kontinuiranih funkcija koristeći različite vrijednosti kvadraturnih točaka. Broj pseudokomponenata jednak je broju kvadraturnih točaka. Svojstava i molnih udjela pseudokomponenata računaju se:

$$P_i = P_0 \left[1 + \left(\frac{A}{B}\right)^{1/B} \gamma_i^{1/B} \right]$$
(2-23)

$$Z_i = \omega_i \tag{2-24}$$

gdje su:

γ_i kvadraturna točka

ωi težinski faktor

P_i i Z_i su vrijednosti svojstva P i molni udjeli pseudokomponenata.

Parametri raspodjele P₀, A i B poznati su iz dvoparametarske metode raspodjele. Setovi γ_i i ω_i dani su tablično za različite brojeve kvadraturnih točaka (Abramowitz i Stegun, 1972).

Druga metoda za dobivanje pseudokomponenata je specificiranjem raspona svojstava (poput molarne mase ili točke vrenja) ili raspona ugljičnih brojeva za svaku komponentu. Npr. C_{7+} frakcija može se raspodijeliti u 5 pseudokomponenata s rasponom ugljičnih brojeva C_{7-} C_{10} , C_{11} - C_{15} , C_{16} - C_{25} , C_{26} - C_{35} i C_{36+} . Donje i gornje vrijednosti molarnih masa za svaku grupu mogu se dobiti iz vrijednosti danih od Riazija i Al-Sahhafa. Rasponi molarnih masa su $M_0 - 136$, 136 - 207, 207 - 345, 345 - 485, $485 - \infty$. Ovi rasponi nisu fiksni i mogu varirati ovisno o odabranom broju pseudokomponenata. Uz donju i gornju granicu za svaku grupu, može se odrediti molni udio i molarna masa grupe pomoću funkcije gustoće vjerojatnosti:

$$z_i = \int_{P_{i-1}^*}^{p_i^*} F(P^*) dP^*$$
(2-25)

$$P_{i,av}^* = \left(\frac{1}{z_i}\right) \int_{P_{i-1}^*}^{P_i^*} P^* F(P^*) dP^*$$
(2-26)

Gdje *i* ima raspon od 1 do ukupnog broja pseudokomponenata. $P_{i,av}$ je prosječna vrijednost svojstva P za pseudokomponentu i. Dodavanjem F(P*) iz jednadžbe 2-4 u gornje integrale, dobivamo slijedeće odnose za svojstvo $P_{i,av}$ i molnog udjela z_i pseudokomponente i:

$$z_{i} = exp\left(-\frac{B}{A}P_{i-1}^{*B}\right) - exp\left(-\frac{B}{A}P_{i}^{*B}\right)$$
(2-27)

$$P_{i,av}^* = \left(\frac{1}{z_i}\right) \left(\frac{A}{B}\right)^{1/B} \left[\Gamma\left(1 + \frac{1}{B}, q_{i-1}\right) - \Gamma\left(1 + \frac{1}{B}, q_i\right) \right]$$
(2-28)

$$q_i = \frac{B}{A} P_i^{*B} \tag{2-29}$$

$$P_{i,av} = P_0 (1 + P_{i,av}^*)$$
(2-30)

gdje je $\Gamma = (1 + 1/B, q_i)$ nepotpuna gama funkcija koja je izvedena u mnogim matematičkim priručnicima (Press et al. 1986) ili se može dobiti računalnim programima. Ako je B=1, jednadžbu 2-28 može se svesti na:

$$P_{i,av}^{*} = \left(\frac{A}{z_{i}}\right) \left[\left(1 + \frac{P_{i-1}^{*}}{A}\right) exp\left(-\frac{P_{i-1}^{*}}{A}\right) - \left(1 + \frac{P_{i}^{*}}{A}\right) exp\left(-\frac{P_{i}^{*}}{A}\right) \right]$$
(2-31)

Dvije metode za dijeljenje i grupiranje opisane gore mogu se sažeti kao (Riazi, 1997):

METODA I: PRISTUP GAUSSOVOM KVADRATUROM

- Očitati sastav SCN grupa i svojstava plus frakcija (npr. M₂₀+ i S₂₀₊). Normalizacija molnih udjela.
- Ako M i S nisu dostupni za svaku SCN grupu, svojstva koja nedostaju određuju se iz Riazija i Al-Sahhafa (1996.)

- Određivanje raspodjele parametara za molarnu masu (M₀, A_M, B_M) u odnosu na kumulativnog molnog udio i parametre za relativnu gustoću (S₀, A_S, B_S) u odnosu na kumulativnog maseni udio.
- Odabir broja pseudokomponenata ili grupa (npr. 5) i određivanje njihovih molnih udjela (z_i) i molarnih masa iz jednadžbi 23 i 24 pomoću kvadraturnih točaka iz tablice.
- Koristeći molarne mase i molne udjele iz koraka 4 određuju se diskretne masene udjele (z_{wi}) za svaku pseudokomponentu.
- Pretvorba diskretnih masenih udjela u kumulativne masene udjele, nakon toga jednadžbom 2-1 s parametrima S₀ i A_S iz koraka 3 dobije se relativna gustoća svake pseudokomponente. Npr. S₁ može se odrediti izravno iz jednadžbe 2-1 ako je x₁ = z_{w1}/2
- 7. Izračunati M_{av} i S_{av} smjese iz $M_{av} = \Sigma Z_i M_i$ i $1/S_{av} = \Sigma z_{wi}/S_i$

METODA II: PRISTUP RASPONOM UGLJIKOVOG BROJA

- 1. Kao i metoda I.
- 2. Kao i metoda I.
- 3. Kao i metoda I.
- Odabir broja pseudokomponenata (npr. 5) i raspona ugljičnih brojeva C₇ C₁₀, C₁₁-C₁₅, C₁₆ - C₂₅, C₂₆ - C₃₅, C_{36+.}
- 5. Za odabrane raspone ugljičnih brojeva potrebno je iz Riazi i Al-Sahhafove metode (1996.) dobiti molarne mase. Prva molarna masa je M₀. Rasponi molarnih masa su M₀ 136, 136 207, 207 345, 345 485 i 485 ∞.
- Određivanje molnih udjela pseudokomponenata (z_i) iz jednadžbe 2-27 i molarnih masa (M_i) iz jednadžbi 2-28 do 2-30 ili jednadžbe 2-31 ako je B_M=1.
- 7. Korak 5 Metode I.
- 8. Korak 6 Metode I.
- 9. Korak 7 Metode I.
- Ako je molni udio pseudokomponente previsok ili prenizak (korak 6), može se reducirati ili povećati raspon ugljičnog broja odabran za tu pseudokomponentu u koraku 4.

Uzorcima iz tablice 2-1 predviđeni su parametri M_0 , A_M , T_0 , A_T , S_0 , A_S , I_0 i A_I metodama A i B. Pogreške prouzročene pri raspodjeli različitih svojstava svih 48 uzoraka dane su u tablici 2-

2. Kao što je prikazano rezultatima u toj tablici, za relativnu gustoći i indeks refrakcije i metoda A i metoda B dale su približno istu raspodjelu s prosječnom devijacijom oko 0,6%. Međutim, korištenjem metode B dobivena su točnija predviđanja molarne mase i pogotovo točke vrenja pošto je upotrjebljena TBP destilacija. Raspodjela molarne mase naspram kumulativnog molnog udjela prikazana na slici 2-2 također je predstavljena u obliku funkcije gustoće vjerojatnosti određenoj jednadžbom 2-3 kao što je pokazano na slici 2-4. Rezultati prikazanu u tablici 2-3 i na slikama 2-2 i 2-3 pokazuju da obje preložene metode imaju sposobnost obaviti cjelovitu raspodjelu za četiri osnovna karakterizacijska parametra (M, T_b, S, I). Jednom kad su određeni osnovni parametri mogu se koristiti Riazi-Daubertove korelacije (1980., 1987.) za određivanje kritičnih parametra potrebnih u proračunu jednadžbe stanja.

Tablica 2-2. Ocjena predloženih metoda za raspodjelu svojstava C₇₊ uzoraka iza tablice 2-1 (48 uzoraka, 60 podfrakcija) (Riazi, 1997)

	Prosječna apsolutna devijacija (AAD)					
	Μ	T,K	S	n		
metoda A	8,1	4	0,005	0,01		
metoda B	4,3	8	0,005	0,01		

Slika 2-2. Predviđanje raspodjele molarne mase uzorka br. 39 iz tablice 2-1 (prema Riazi, 1997)

Slika 2-3. Predviđanje raspodjele indeksa refrakcije br. 39 iz tablice 2-1 (prema Riazi, 1997)

Slika 2-4. Predviđanje funkcije gustoće vjerojatnosti za molarnu masu uzorka br. 39 iz tablice 2-1 (prema Riazi, 1997)

Za prikaz primjera procesa grupiranja, korišteni su analitički podaci dostupni za uzorak 42 iz tablice 2-1. Molarna masa i relativna gustoća dostupne su od C₇ do C₂₀₊ za 14 grupa. Metode I i II opisane za procese raspodjele i grupiranja korištene su za određivanje 5 pseudokomponenata. Molni udjeli, molarne mase i relativne gustoće tih pseudokomponenata prikazane su u tablici 2-3. Prosječan molarna masa smjese i relativna gustoća računata iz pseudokomponenata vrlo su blizu eksperimentalnim podacima s devijacijom od 0,1%.

pseudokomponenta	metoda I: Pristup Gaussovom kvadraturom				metoda II: Pristup rasponom ugljikova broja			
i	molni udio z _i	maseni udio z _{wi}	M_i	Si	molni udio z _i	maseni udio z _{wi}	M_i	Si
1	0,5218	0,3493	102,1	0,7436	0,532	0,372	106,7	0,7457
2	0,3987	0,4726	180,8	0,8023	0,302	0,328	165,5	0,7957
3	0,0759	0,1645	330,4	0,8591	0,144	0,24	254,4	0,8389
4	0,0036	0,0134	569,5	0,9174	0,019	0,049	392,7	0,8847
5	2,3 x 10-5	1,42 x 10-4	950,1	0,7809	0,003	0,011	553,5	0,9214
smjesa			152,5	0,7905			152,5	0,7908

Tablica 2-3. Grupiranje 14 frakcija od C7 do C20+ za uzorak br. 42 u 5 pseudokomponenata dvama metodama (Riazi, 1997)

* eksperimentalni C7+ podaci: M7+ = 151,6; S7+ = 0,7917, Parametri raspodjele M0 = 84; AM = 0,7157; BM = 1, Za relativnu gustoću u odnosu na kumulativni maseni udio: S0 = 0,665; AS = 0,03875; BS = 3

2.2. Whitsonova gama raspodjela

Kontinuirani distribucijski modeli koriste se za opis molarne raspodjele C_{7+} komponente još od početka 1980-ih. Istraživanja (Whitson et al., 1986; Søreide, 1989; Whitson et al., 1989; Naji, 2006; Moradi et al., 2011) su pokazala da je za matematički opis C_{7+} frakcija zadovoljavajuća eksponencijalna raspodjela. Nedostatak upotrebe eksponencijalne raspodjele je pretpostavka da sve C_{7+} frakcije iste molarne mase imaju i jednaku raspodjelu, što nije realno. Model gama raspodjele temelji se na gama distribucijskoj funkciji koja je iskrivljena (pomaknuta u jednu stranu) funkcija gustoće vjerojatnosti. Ona stavlja u odnos učestalost pojavljivanja (normalizirani molni udio) i molarnu masu.

Whitsonov distribucijski model (1983.) temelji se na tri-parametarskoj gama raspodjeli gdje funkcija gustoće vjerojatnosti, p(M), povezuje učestalost pojavljivanja (normalizirani molni udio) i molarnu masu:

$$p(M) = \frac{(M-\eta)^{\alpha-1} \cdot \exp[-(M-\eta)/\beta]}{\beta^{\alpha} \cdot \Gamma(\alpha)}$$
(2-32)

gdje su:

p(M)	funkcija gustoće vjerojatnosti
М	molarna masa koja se koristi kao nezavisna varijabla (g/mol)
α	mjera oblika raspodjele, za α =1, p(M) predstavlja eksponencijalnu raspodjelu, za α >1 raspodjela je desno ukošena
η	minimalna molarna masa koja se pojavljuje u C7+ frakciji
β	mješoviti parametar iskazan pomoću M ₇₊ , η i α , $\beta = (M_{7+} - \eta)/\alpha$

Za određene vrijednosti M_{C7+} , α i η jednadžba 2-34 predstavlja jedinstveni odnos između normaliziranog molnog udjela i molarne mase C_{7+} frakcije.

Slika 2-5. Molni udio dobiven razlikom površina ispod funkcije gustoće vjerojatnosti unutar određenih molnih udjela (Søreide, 1989)

Kontinuirana funkcija gustoće vjerojatnosti p(M) treba biti definirana na intervalu $[\eta, \infty]$. Integral p(M) u intervalu $[\eta, M_{bi}]$ može se promatrati kao kumulativna funkcija vjerojatnosti, $p(M_{bi})$, i ekvivalentan je kumulativnom, normaliziranom molnom udjelu:

$$p(M_{bi}) = \int_{\eta}^{M_{bi}} p(M) dM$$
 (2-33)

što predstavlja površinu ispod p(M) krivulje (slika 2-5). Kumulativna funkcija vjerojatnosti označava i frekvenciju pojave normaliziranog molnog udjela na intervalu $[\eta, M_{bi}]$.

Materijalni balans za C₇₊uvjetuje da bude ispunjen sljedeći odnos:

$$\int_{\eta}^{\infty} Mp(M) dM = M_{7+}$$
(2-34)

Očekivana vrijednost je izraz za ukupnu masu C₇₊ frakcije.

Molni udio z_i pseudokomponente i, ograničen intervalom molarne mase M_{bi-1} do M_{bi} , izražava se integriranjem p(M) unutar tih granica:

$$z_i = \int_{M_{bi-1}}^{M_{bi}} p(M) dM$$
 (2-35)

Srednja molarna masa M_i pseudokomponenata se računa:

$$M_{i} = \frac{\int_{M_{bi-1}}^{M_{bi}} Mp(M) dM}{z_{i}}$$
(2-36)

P(M_{bi}) se može izraziti kao beskonačan niz:

$$P(M_{bi}) = \frac{e^{-x}x^{\alpha}}{\Gamma(\alpha)} \sum_{j=0}^{\infty} \frac{x^{j}}{\prod_{k=0}^{j} (\alpha+j)}$$
(2-37)

kao funkcija α i $x_i = (M_{bi} - \eta)/\beta$. Za pseudokomponentu s granicama mase M_{bi-1} do M_{bi} , normalizirani molni udio z_i postaje:

$$z_{i} = [P(M_{bi}) - P(M_{bi-1})]$$
(2-38)

s $P(M_{bi-1})$ i $P(M_{bi})$ izračunatima iz formule 2-19. Prosječna molarna masa M_i determinira se iz:

$$M_{i} = \eta + \alpha \beta \left[1 - \frac{T_{i} - T_{i-1}}{z_{i} \Gamma(\alpha + 1)} \right]$$
(2-39)

gdje je:

$$T_i = e^{-x_i} x^{\alpha} \tag{2-40}$$

Za određeni ugljikovodični sustav parametri raspodjele moraju biti određeni prije dijeljenja C_{7+} frakcije. Parametri α i η mogu se odrediti TBP analizom kako predlažu Whitson et al. (1986.), η se dovodi u vezu s α empiričkom relacijom:

$$\eta = 110[1 - (1 + 4,043/\alpha^{-0,723})^{-1}]$$
(2-41)

30

Parametar η definiran kao najmanja molarna masa očekivana u Cn+ frakciji što znači da je vjerojatnost pojavljivanja komponente s molarnom masom manjom od η jednaka 0 [P(x) = 0]. Ako se razmotri C7+ frakciju, može se uzeti da je $\eta=92$ što je molarna masa toluena. Iskustveno je pokazano da je dobra aproksimacija parametra η dana s $\eta = 14n - 6$ za C_{n+} frakciju. Iako je jednadžba korisna, ne bi je se trebalo smatrati ograničenjem modelu.

Ako podaci iz TBP analize za promatrani uzorak nisu dostupni, parametri raspodjele se pretpostavljaju. U tom slučaju koristi se slika 2-5 (Søreide, 1989) za odabir empirijskih parametara raspodjele. Slika prikazuje najbolje poklapanje parametra α koji proizlazi iz regresije provedene s η fiksiranim na 90, a temelji se na 65 C₇₊ uzoraka za koje postoji TBP analiza. α uglavnom varira između 0,5 i 1,0 s tendencijom rasta porastom M₇₊.

Slika 2-6. Molarna raspodjela parametra α dobivena regresijom 65 uzoraka s $\eta=90$ (Søreide, 1989)

Parametar α može se i direktno procijeniti, pomoću empirijske relacije za koju je potrebno imati točno izmjerene molne udjele i molarne mase te cjelovitu analizu sastava. Kako su takvi podaci gotovo nepostojeći, razvijen je komplet korekcijskih tablica za slučajeve kada je dostupna samo djelomična analiza. Druga metoda određivanja parametra α spomenuta u Whitsonovom radu (1983.) je određivanje minimizacijom funkcije pogrješke (engl. *Error function*), E(α). Nju definiramo kao sumu kvadrata razlike u mjerenim i računatim sastavima, ako se radi raspodjela molarnih masa dana je kao:

$$E(\alpha) = \sum_{i=n}^{N} \left(f_{wi} - \bar{f}_{wi} \right)^2$$
(2-42)

Dva procesa minimizacije E pokazala su se korisnima, konstantni interval molarne mase (CMWI) i promjenjivi interval molarne mase (VMWI).

2.2.1 Postupci ponovnog grupiranja

Razmatraju se predviđanja jednadžbi stanja korištenjem dviju grupa frakcija s različitim SCN brojem:

- 1. C₇, C₈, C₉, C₁₀, C₁₁ i C₁₂₊
- 2. $C_{7-10}, C_{11-14}, C_{15-18}, C_{19-25} i C_{26-35}$

Kasnije će se pokazati da posljednja grupa daje značajno bolje rezultate od prethodne, uspoređeno s cjelovitim SCN opisom C_{7+} frakcije.

Predložena je metoda za procjenu broja grupa s višekarbonskim brojem (engl. *multiple-carbon-number*, MCN) potrebnih za zadovoljavajući opis plus-frakcije, kao i za određivanje koje SCN grupe pripadaju MCN grupi. Temelji se na Sturgeovoj metodi i opažanju da je predloženi model raspodjele sičan prelomljenoj log-normalnoj distribuciji.

Broj MCN grupa, Ng, dan je:

$$N_q = Int[1 + 3.3 \cdot \log_{10}(N - n)] \tag{2-43}$$

gdje su:

N posljednji broj ugljika u C_{n+} frakciji

n prvi broj ugljika u C_{n+} frakciji

Molarne mase koje dijele svaku MCN grupu se uzete kao:

$$M_I = M_n \left\{ exp\left[\left(1/N_g \right) \cdot \ln(M_N/M_n) \right] \right\}^I$$
(2-44)

gdje su:

M _N	molarna masa posljednje SCN grupe
M _n	molarna masa prve SCN grupe
Ι	indeks višekarbonskog broja (I = 1, 2, 3,, Ng)

Molarne mase SCN grupa koje ulaze u granice ovih vrijednosti uključene su u MCN grupu I.

2.2.2 Pravila miješanja (kombiniranja)

Whitson (1983.) primjenjuje dvije skupine pravila miješanja za računanje kritičnih svojstava (uključujući i acentrični faktor i relativnu gustoću) MCN grupa. U proračunima se pokazalo da odabir metode pseudoizacije ne utječe odviše na predviđanje jednadžbe stanja.

Molna i volumetrijska svojstva MCN grupe uvijek se računaju pomoću pravila miješanja:

$$M_{I} = \sum^{I} (z_{i}/z_{I}) M_{i}$$

$$i$$

$$\gamma_{I} = 1.0 / \left[\sum^{I} (f_{wi}/f_{wI}) / \gamma_{i} \right]$$
(2-46)

Pseudokritični volumen trebao bi se računati pomoću masenih udjela:

$$V_{pcI} = \sum^{I} \left(\frac{f_{wi}}{f_{wI}}\right) \cdot V_{ci} \tag{2-47}$$

gdje su z_I , f_{wI} sume z_i i f_{wi} iz MCN grupe I.

METODA 1: Pseudokritična pravila miješanja

Pseudokritični tlak i temperatura u Peng-Robinsonovoj jednadžbi stanja mogu se računati pomoću Kayevog pravila miješanja sa zadovoljavajućim podudaranjem termalnih procesa. Nije poznato vrijedi li to za kompliciranije sisteme kao što je ubrizgani mješoviti plin. Međutim, pravila miješanja su jednostavna i lako primjenjiva.

$$p_{pcI} = \sum^{I} (z_i/z_I) \cdot p_{ci} \tag{2-48}$$

$$T_{pcI} = \sum^{I} (z_i/z_I) \cdot T_{ci}$$
(2-49)

$$\omega_I = \sum^I (z_i/z_I) \cdot \omega_i \tag{2-50}$$

METODA 2: Prosječne točke vrenja

i

Druga metoda temelji se na odnosima razvijenima između molnih, masenih i srednjih prosječnih točaka vrenja te pseudokritičnih i kritičnih svojstava.

Molna prosječna točka vrenja za MCN grupe računa se pomoću Kayevog pravila miješanja:

$$T_{bmI} = \sum^{I} (z_i/z_I) \cdot T_{bi}$$
(2-51)

Masena prosječna točka vrenja za MCN grupe računa se pomoću masenih udjela kao parametra miješanja:

$$T_{bwI} = \sum^{I} \left(f_{wi} / f_{wI} \right) \cdot T_{bi} \tag{2-52}$$

Kubična prosječna točka vrenja dana je s:

$$T_{bcl} = \left[\sum^{I} (f_{vi}/f_{vl}) \cdot T_{bi}^{-1/3}\right]^{3}$$
(2-53)

gdje su volumni udjeli dani samo kao:

$$f_{\nu i} = \frac{f_{w i}}{\gamma_i}, f_{\nu I} = \sum^I f_{\nu i}$$
(2-54)

Srednja prosječna točka vrenja je aritmetička sredina stvarnih molnih i kubičnih prosječnih točaka vrenja.

Stvarna kritična temperatura MCN grupe računa se pomoću masenih prosječnih točaka vrenja, pseudokritična temperatura pomoću molnih prosječnih točaka. Pseudoreducirana temperatura dobije se dijeljenjem kritične s pseudokritičnom temperaturom.

$$T_{cI} = a T^b_{bwl} \gamma^c \tag{2-55}$$

$$T_{pcl} = a T^b_{bml} \gamma^c \tag{2-56}$$

$$T_{prcl} \equiv T_{cI}/T_{pcl} \tag{2-57}$$

Pseudokritični tlakovi računaju se koristeći srednju prosječnu točku vrenja:

$$p_{pcI} = a \bar{T}_{bI}^{\ b} \gamma^c \tag{2-58}$$

Grafički odnos pseudoreducirane kritične temperature i pseudoreduciranog kritičnog tlaka prilagođen je da bi se dobilo:

$$p_{prcl} = 1 + 8.467 \cdot \Upsilon + 1.654 \cdot \Upsilon^2 + 29.56 \cdot \Upsilon^3 \tag{2-59}$$

gdje je $\Upsilon \equiv T_{prcl} - 1$. Kombinacijom jednadžbi 2-58 i 2-59 dobije se odnos za računanje kritičnog tlaka MCN grupa:

 $p_{cl} = p_{prcl} p_{pcl}$

(2-60)

2.3. Raspodjela pomoću Gaussove kvadrature

Behrens i Sandler (1986.) predložili su metodu Gaussove kvadrature kao optimalno rješenje modela kontinuirane molarne gama raspodjele u slučaju da je potrebno dijeliti na manji broj pseudokomponenata. Prvo su definirali C_{7+} molarnu raspodjelu tro-parametarskom eksponencijalnom funkcijom, obično ograničenu gornjom granicom blizu C_{50} . Gaussova kvadratura se tad primjenjuje za određivanje broja ugljika u komponenata (engl. *Carbon number*) i molnog udjela dviju pseudokomponenata. Molarne mase su određene kao funkcije karbonskog broja.

Cotterman et al. (1986.) također koriste Gaussovu kvadraturu za diskretizaciju kontinuirane molarne raspodjele, i ukazuju na problem da molni udio i molarna masa pseudokomponenata nisu dovoljni za računanje poznatih svojstava ukupne C_{7+} frakcije. Ovaj nedostatak očuvanja mase javlja se jer Gaussova kvadratura i dalje predstavlja samo diskretiziran sustav koji aproksimira kontinuiranu raspodjelu te ta aproksimacija ne mora uvijek biti potpuno precizna.

Zadovoljavajuće rješenje seta jednadžbi 2-2 do 2-4, s poštivanjem fizikalnih veličina molarne mase i relativne gustoće pojedinih pseudokomponenata te njihovog proizvoljnog broja, pronašli su Whitson et al. (1989.) modifikacijom β parametra u tro-parametarskoj gama funkciji.

$$\beta_0 = \beta \cdot [1 + \ln \delta] \tag{2-61}$$

Whitson et al. (1989.) predlažu metodu za dijeljenje C_{7+} komponente na proizvoljan broj pseudokomponenata koristeći Gauss-Laguerreovu kvadraturu i gama raspodjelu. Pomoću predložene metode moguće je istovremeno izvršiti razdiobu C_{7+} komponente u više povezanih fluida. Na taj način dobivaju se ista kritična svojstva pseudokomponenata kojima je moguće pridružiti različite molne udjele.

$$\int_0^\infty e^{-x} \cdot f(x) \cdot dx = \sum_{i=1}^N w_i \cdot f(x_i)$$
(2-62)

Gdje se težine (w_{oi}) i nultočke (x_{oi}) određuju iz Laguerreovih polinoma.

Općenito, numerička integracija zasniva se na aproksimiranju integrala u kojem su sadržane težine (w_{oi}) i nultočke (točke integracije) (x_{oi}). Kod Gaussove kvadrature potrebno je odrediti i težine i nultočke, s time da nultočke nisu jednako udaljene (ekvidistantne). Točke integracije i težine određuju se pomoću ortogonalnih polinoma.

Kombiniranjem jednadžbe funkcija gustoće vjerojatnosti 2-14 s 2-29 i definiranjem $x=(M-\eta)/\beta$ na intervalu $[0,\infty]$, f(x) postaje:

$$f(x) = \frac{x^{(\alpha-1)}}{\Gamma(\alpha)}$$
(2-63)

Setovi x_i i w_i se računaju za različit broj kvadraturnih točaka N (Tablica 2-2) (Abramowitz i Stegun, 1972.)

Tablica 2-4. Nultočke i težine za prvih 5 Laguerreovih polinoma (Abramowitz i Stegun,
1965)	

N	x _{oi}	W _{oi}
2	0,585786	0,853553
-	3,41421	0,146447
3	0,415775	0,711093
	2,29428	0,278518
	6,28995	0,0103893
4	0,322548	0,603154
	1,74576	0,357419
	4,53662	0,0388879
	9,39507	0,000539295
5	0,26356	0,521756
	1,4134	0,398667
	3,59643	0,0759424
	7,08581	0,00361176
	12,6408	0,00002337

Molarna masa pseudokomponenata se određuje iz kvadraturne točke x_i i distribucijskih parametara β i η : $M_i = \eta + \beta x_i$, a molni udio je zadan s $z_i = w_i f(x_i)$. Lokacija kvadraturnih točaka i vrijednosti faktora važnosti za ponderiranje se ne odabiru proizvoljno, nego su determinirane ortogonalnim Laguerrovim polinomima, Gaussova kvadratura s N točaka integrira polinom stupnja 2N-1. Cotterman et al. tvrdi da to implicira da N pseudokomponenata definiranih Gaussovom kvadraturom rezultira aproksimacijom kontinuirane molarne raspodjele s jednakom preciznošću kao N-1 nasumično odabranih pseudokomponenata.

Whitson et al. (1988.) predlaže metodu koja rezultira setom molarnih masa pseudokomponenata za C_{7+} frakcije s drugačijim M_{7+} i α vrijednostima. Koristeći ovu metodu bilo koji uzorak fluida iz ležišta s bitnom varijacijom u sastavu po dubini mogu se okarakterizirati identičnim setom svojstava C_{7+} pseudokomponenata, a samo sastav fluida varira. Ovo se postiže uvođenjem modifikacije β parametra (formula 2-28):

$$\beta_0 = \beta \cdot [1 + \ln(\delta)]$$

Gdje su β_0 i δ parametri modificirane funkcije raspodjele, $p_0(M)$, izvedene iz funkcije gama raspodjele:

$$p_{o}(M) = \frac{(M-\eta)^{(\alpha-1)} \exp\left[-(M-\eta)/\beta_{o}}{\beta_{o}^{\alpha} \Gamma(\alpha)} \frac{(1-\ln \delta)^{\alpha}}{\delta^{\left[\frac{M-\eta}{\beta_{o}}\right]}} \equiv p(M)$$
(2-64)

p_o(M) je numerički jednaka originalnoj funkciji p(M) za danu vrijednost M.

Za dobivanje varijable koja se može integrirati Gaussovom kvadraturom, nova varijabla x_o iznosi:

$$x_{o} = \frac{M - \eta}{\beta_{o}}$$
(2-65)

S obzirom da je $dM = \beta_o dx_o$, kumulativna funkcija gustoće integrirana na intervalu 0 do ∞ postaje:

$$\int_0^\infty \frac{x_0^{(\alpha-1)} \exp\left(-x_0\right)}{\Gamma(\alpha) \delta^{x_0} (1+\ln \delta)^{-\alpha}} dx_0 \equiv 1$$
(2-66)

 $f(x_0)$ odgovara f(x) u jednadžbi 2-37 i definira se kao:

$$f(x_0) = \frac{x_0^{(\alpha-1)}}{\Gamma(\alpha)} \frac{(1+\ln \delta)^{\alpha}}{\delta^{x_0}}$$
(2-67)

Prema tome, molni udio pseudokomponente i dan je s:

$$z_i = w_i f(x_{oi}) \tag{2-68}$$

A njegova molarna masa s:

$$M_i = \eta + \beta_0 x_{oi} \tag{2-69}$$

Gaussova kvadratura u kombinaciji s originalnom gama raspodjelom može rezultirati u molarnoj masi zadnje pseudokomponente, M_N, naviše do 1500 s N=7. Fizikalna svostva pridružena tako teškoj pseudokomponenti povlače za sobom veliku nepouzdanost. Beherns i Sandler koriste gama funkciju ograničenu gornjom granicom od blizu C₅₀ da bi izbjegli te teže pseudokomponente. S manje točaka M_N se reducira, ali to rezultira manjom greškom očuvanja mase. Uvođenjem β_0 i δ postaje moguće odrediti M_N, te će se N točaka distribuirati u intervalu [η , M_N].

Postupak računanja (Whitson et al., 1989; Belamarić, 2012):

- Odrediti broj pseudokomponenata N te dobiti vrijednosti Gaussove kvadrature x_{oi} (nultočke) i w_{oi} (težine)
- Specificirati η(minimalna moguća molarna masa) koji mora biti jednake vrijednosti za sve C₇₊ uzorke.

 Specificirati β₀(parametar raspodjele) koji mora biti jednake vrijednosti za sve C₇₊ uzorke. Whitson et al. (1989.) predlažu da se za izračunati β₀ koristi molarna masa najteže komponente M_N:

$$\beta_{\rm o} = \frac{M_{\rm N} - \eta}{x_{\rm ON}} \tag{2-70}$$

x_{ON} je zadnja kvadraturna točka.

Odrediti (na osnovu TBP krivulje) ili procijeniti α vrijednosti (α definira formu raspodjele, visinu i širinu) za sve C₇₊ uzorke. Na osnovu velikog broja eksperimentalnih podataka postoji korelacija između η i α parametara (Søreide 1989):

$$\eta = 110 \cdot \left[1 - (1 + 4.043/\alpha^{-0.723})^{-1}\right]$$
(2-38)

Prema Whitsonu (1983.) razumne granice za α su između 0.5 i 3.0 dok su prema Søreide (1989.) između 0.5 i 1.0.

 Da bi se zadovoljio uvjet normalizacije (Σz_i=1), mora se izračunati parametar δ za sve C₇₊ uzorke, pomoću jednadžbi:

$$\delta = \exp(\beta_0 / \beta - 1) \tag{2-71}$$

$$\delta = \exp\left(\frac{\alpha \cdot \beta_0}{M_{7+} - \eta} - 1\right) \tag{2-72}$$

- α , β , i η su parametri raspodjele
- 6. Izračunati molne udjele i molarne mase za sve pseudokomponente pomoću jednadžbi:

$$z_i = w_i \cdot f(x_{oi}) \tag{2-73}$$

$$M_i = \eta + \beta_o \cdot x_{oi} \tag{2-74}$$

$$f(x_0) = \frac{x_0^{(\alpha-1)}}{\Gamma(\alpha)} \cdot \frac{(1+\ln \delta)^{\alpha}}{\delta^{x_0}}$$
(2-75)

Gama funkcija definirana je sljedećim integralom:

$$\Gamma(\alpha) = \int_0^\infty t^{z-1} \cdot e^{-t} \cdot dt$$
(2-76)

Za računalne potrebe koristi se Lanczosova aproksimacija (Lanczos, 1964) računanja gama funkcije:

$$\Gamma(\alpha) = \left[\frac{\sqrt{2 \cdot \pi}}{\alpha} \cdot \left(p_0 + \sum_{n=1\dots 6} \frac{p_n}{\alpha+n}\right)\right] \cdot (\alpha + 5.5)^{\alpha+0.5} \cdot e^{-(\alpha+5.5)}$$
(2-77)

gdje su,

 $p_0 = 1.00000000190015$

 $p_1 = 76.18009172947146$

 $p_2 = -86.50532032941677$

 $p_3 = 24.01409824083091$

 $p_4 = -1.231739572450155$

 $p_5 = 1.208650973866179 \times 10^{-3}$

$$p_6 = -5.395239384953 \times 10^{-6}$$

Točnost Lanczosove aproksimacije, odnosno njezina greška je manja od 2×10^{-10} za sve $\alpha > 0$.

 Izračunati prosječnu molarnu masu M₇₊ i provjeriti da li je jednaka eksperimentalno određenoj vrijednosti. Podešavati δ sve dok nije zadovoljeno slaganje. Za svaki novi δ ponovno izračunavati nove molne udjele.

$$M_{7+} = \frac{\sum_{i=1}^{N} z_i \cdot M_i}{\sum_{i=1}^{N} z_i}$$
(2-78)

Parametar raspodjele η moguće je izračunati sljedećim metodama:

 Srednja vrijednost između molarne mase frakcije jedinstvenog ugljičnog broja najlakše komponente u plus frakciji i prethodne komponente.

$$\eta = (M_{wC6} + M_{wc7})/2 = 90 \tag{2-79}$$

Molarne mase frakcija jedinstvenog ugljičnog broja uzete su iz tablice 2-1.

 Jednaka prvoj metodi, osim što se u proračunu uzimaju molarne mase normalnih parafina.

$$\eta = (M_{wC6} + M_{wc7})/2 = 93.2 \tag{2-80}$$

3. Molarna masa lakše komponente od one u plus frakciji.

 $\eta = M_{wC6} = 84$

Molarna masa uzeta iz tablice 2-1.

4. Molarna masa lakše komponente od one u plus frakciji, ali jednaka molarnoj masi normalnog parafina.

$$\eta = M_{wC6} = 86.2$$

 U skladu s Whitsonovom preporukom (1983.). Gdje je n jedinstveni ugljični broj plus frakcije (za C₇₊, n=7).

$$\eta = 14 \cdot n - 6 = 92 \tag{2-81}$$

Za istovremenu C₇₊ karakterizaciju nekoliko uzoraka fluida sa jednim setom molarnih masa pseudokomponenata, primjenjuje se identična vrijednost M_N, η i β_0 . Specifične vrijednosti M₇₊ i α mogu biti određene za svaki uzorak posebno. Kad se prethodno navedena procedura ponovi za sve uzorke s identičnim M_N, η i β_0 rezultat će biti specifična vrijednost δ za svaki uzorak.

3. SIMULACIJA FAZNIH DIJAGRAMA I PRIKAZ REZULTATA

U radu su korišteni podaci o sastavu do C₇₊ komponente i sastavu do C₃₀₊ (Belamarić, 2012.)

Za usporedbu se koristilo simulacijski pVT softver PVTi tvrtke Schlumberger (Schlumberger PVTi Reference Manual, 2009) u kojem su računate granice faza, tj. fazni dijagram.

Slučajevi sastava koji su uspoređivani:

- 1. sastav do C₇₊ frakcije (prema Belamarić, 2012, Dodatak 1)
- 2. sastav do C_{30+} frakcije (prema Belamarić, 2012, Dodatak 2)
- sastav dobiven analizom mjerenih sastava te stohastički gama raspodjelom (dodatak 3.1., 3.2., 3.3.)

Testiralo se kako različiti sastavi, prema istim parametrima gama raspodjele utječu na fazni dijagram. Ukoliko neki od zadanih sastava pokazuje slaganje s prvotno mjerenim proširenim sastavom do C_{30+} frakcije, moglo bi se zaključiti da se ovakva metoda može koristiti alternativno, tj., kada je teško podesiti parametre jednadžbe stanja klasičnim metodama.

Za potrebe testiranja statističke raspodjele, koristio se statistički jezik "R" (https://www.r-project.org/):

- U konzolu "R" sučelja učitani su podaci iznad C₇;
- Testirani su parametri gama distribucije α i γ ;
- Na temelju tih parametara generiran je novi sastav rgamma funkcijom: rgamma(length(sampleSastav), rate=l.est, shape=a.est);
- tako generiran sastav korišten je kao ulazni podatak za PVTi simulacijski program,

Referentni sastav za usporedbu bio je sastav C_7 - C_{30+} komponenata iz Belamarić (2012., dodatak 2., slika 3-1). Takav sastav se dalje koristi za pseudoizaciju, kako bi se numerički jednadžbom stanja računali fazni dijagrami. Načelno, za podešavanja parametara jednadžbe stanja prvotno bi se koristio sastav do C_{7+} , a sastav do C_{30+} služi preciznijem određivanju

početne aproksimacije svojstava C_{7+} (najčešće dodjeljivanjem kritičnih vrijednosti i acentričnih faktora svakoj od komponenata do C_7 do C_{30+} i grupiranjem). U radu je zato i rađeno nekoliko uzoraka C_7 do C_{30+} kako bi se vidio utjecaj tog postupka na konačan rezultat.

Slika 3-1. Mjereni sastav C_7 do C_{30+}

Prema danom sastavu testirani parametri gama distribucije iznose:

 $\alpha = 1,283608$ $\lambda = 0,2698232$

Na temelju tih parametara načinjena su tri slučajna statistička uzorka (dodatak 3.1., 3.2., 3.3) a njihov sastav se najzornije može vidjeti na slikama 3-2, 3-3, i 3-4:

Slika 3-2. Prvi uzorak sastava C_7 - C_{30+} dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

Slika 3-3. Drugi uzorak sastava C_7 - C_{30+} dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

Slika 3-4. Treći uzorak sastava C₇-C₃₀₊ dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

Ovakvi uzorci su statistički jednakopravni, međutim tek pridruživanjem fizikalnih svojstava svakoj komponenti i nakon numeričke PVT simulacije faznog dijagrama jednadžbom stanja Penga i Robinsona (1978.). Pri tome su C_7 - C_{30+} prvo grupirane u C_{7+} kako bi se uspoređivalo fazne dijagrame dobiveno jednom te istom metodom tj. pseudoizacijom C_{7+} frakcije. Rezultati usporedbe su dati slikom 3-5:

Slika 3-5. Usporedba faznih dijagrama za sve razmotrene sustave

4. ZAKLJUČAK

Jednadžbe stanja (JS) dobro opisuju jednokomponentne sastave, međutim kod višekomponentnih sastava potrebno je podešavanje parametara, prvenstveno prema analizama otparavanja i volumnih promjena fluida. Takvo podešavanje parametara JS za svaki novi sastav fluida iz pojedinog ležišta može potrajati i mjesecima, pošto ne postoji jedinstvena metoda podešavanja.

Prvenstveno, proces ubrzava podešavanje svojstava plus frakcija, pošto te frakcije uvelike i uzrokuju takvu razliku u pVT ponašanju fluida da nije moguće definirati metodu podešavanja. U radu je detaljno razrađena metoda dijeljenja plus frakcije Whitsonovom metodom, koja se gotovo uvijek u praksi koristi za definiciju plus frakcije. Ta metoda polazi od statističke obrade raspodjele komponenata u proširenom sastavu, te na temelju karakteristike te raspodjele definira pseudokomponente. Pri tome su parametri statističke raspodjele determinirani tako da se računski odredi prošireni sastav, a zatim, pošto bi numeričko rješavanje i podešavanje parametara za toliki broj komponenata bilo presloženo, ponovo se, pošto su im poznata fizikalna svojstva, niz tih komponenata najčešće tri do pet.

U laboratoriju, ovisno o kvaliteti opreme, za pouzdan sastav se računa najčešće da je izmjeren do C₆ ili do C₉, a C₇₊ i C₁₀₊ su pseudokomponente za koje iz niza razloga, a ponajviše zbog sličnosti molekula, izomera, i njihovih svojstava nije moguće precizno odrediti sastav. Stoga je motivacija rada bila usporediti fazne dijagrame s sastavom do C₇₊ i proširenim sastavom do C₃₀₊.

Problem takve usporedbe je upravo taj što je sastav do C_{30+} neprecizan, a trebao bi poslužiti za usporedbu sa sastavom do C_{7+} , nakon dijeljenja i grupiranja (pseudoizacije).

Kako je Whitsonova metoda po definiciji bazirana na statističkoj raspodjeli, stohastički se generiralo prema parametrima gama distribucije tri nova uzorka C_7 - C_{30+} sastava. To je bilo dovoljno za donijeti slijedeće zaključke:

 Mjereni prošireni sastav do C₃₀₊ očito, kako je i navedeno, nije precizan sastav koji zadovoljava gama distribuciju. Povećani udio se može očekivati za C₃₀₊, međutim na slici 3-1 se jasno vidi kako postoji i povećan udio od C₂₄ do C₂₉, uz minimalan udio od C₂₀ do C₂₃

- Posljedično, fazni dijagram izračunat samo sa sastavom do C₇₊, ali i nakon dijeljenja Whitsonovom metodom (pseudokomponente C₇, C₁₂, C₁₉₊, slika 3-5) se ne poklapaju s faznim dijagramom dobivenog na temelju proširenog mjerenog sastava.
- Očito je da svi fazni dijagrami modela fluida s "proširenim" sastavom odudaraju od faznog dijagrama sastava do C₇₊. To je samo potvrda da je potrebno dijeliti plus frakciju.
- Na temelju statističkih uzorka, ali i mjerenog uzorka, može se zaključiti kako Whitsonova metoda pomiče krivulju faznog dijagrama udesno.

Finalno se može zaključiti kako je napretkom računala i statističkih softvera (tj. jezika poput "R") moguće dati alternativnu metodu dijeljenja i to uz dvije preporuke za moguće dalje istraživanje (Vulin, 2015):

- statističkom obradom, kakva je korištena u ovom radu, moguće je "ugladiti" prošireni sastav. Time se mogu umanjiti problemi koji nastaju zbog mjerne pogreške, i na novi način se može definirati sastav do C₇₊ kakav se standardno koristi za podešavanje JS, što bi bilo korisno provjeriti na nizu realnih analiza.
- 2. Bilo bi korisno usporediti mogućnost podešavanja parametara jednadžbe stanja na temelju sastava do C₇₊ i klasičnim metodama dijeljenja i sastava dobivenim slučajnim statističkim uzorkovanjem proširenog sastava do puno daljeg ugljikovodičnog broja (engl. *Single Carbon Number*, SCN), npr. do C₅₀₊, bez pseudoizacije. Naime sa slučajnim statističkim uzorkom ne bi bilo potreban niz koraka u podešavanju parametara plus frakcije, pošto bi ona imala puno manji udio u sastavu. Naravno, tada je potrebno generirati niz slučajnih uzoraka, međutim, uz današnju tehnologiju, kada se razvije metoda za takav postupak *uzorkovanja* poput ovog prezentiranog u radu, to bi moglo predstavljati temelj za puno brži ili bar alternativni proces podešavanja JS.

5. LITERATURA

- ABBOTT, M.M. (1979): Cubic Equations of State: An Interpretive Review, Advances in Chemistry, Vol. 182, 47-70
- 2) ABRAMOWITZ, M. i STEGUN, I.A. (1965): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ch. 22, New York: Dover, pp. 773
- AHMED, T.H., CADY, G.V. i STORY, A.L. (1985): A Generalized Correlation for Characterizing the Hydrocarbon Heavy Fractions, SPE Paper 14266
- ALMEHAIDEB, R.A., AL-KHANBASHI, A.S., ABDULKARIM, M. i ALI, M.A. (2000): EOS Tuning to Model Full Field Crude Oil Properties Using Multiple Well Fluid PVT Analysis, Journal of Petroleum Science and Engineering 26, 291–300
- 5) ASHOUR, I., AL-RAWAHI, N., FATEMI, A. i VAKILI-NEZHAAD, G. (2011): Applications of Equations of State in the Oil and Gas Industry, InTech, 165-178
- 6) AUSTAD, T., HVIDSTEN, J., NORVIK, H. i WHITSON, C. H. (1983): Practical Aspects of Characterization Petroleum Fluids, presented at the Conference on North Sea Condensate Reservoirs and Their Development, London 1983.
- BARRUFET, M.A. (1998): Importance of the C₇₊ Fraction in Phase Behavior Calculations, Hart's Petroleum Engineer International, Vol. 71, 47-53
- BEHRENS, R. A. I SANDLER, S. I. (1986): The Use of Semicontinuous Description to Model the C₇₊ Fraction in Equation of State Calculations, SPE paper 14925
- BELAMARIĆ, I. (2012): Termodinamička karakterizacija ugljikovodika jedinstvenom jednadžbom stanja i pri temperaturama različitim od ležišne, doktorski rad, RGN, Zagreb
- 10) COTTERMAN, R.L. i PRAUSNITZ, J.M. (1985): Flash Calculations for Continuous or Semicontinuous Mixtures by Use of an Equation of State, Ind. Eng. Chem. Process Des. Dev., 24 (2), 434–443
- 11) DANESH, A. (1998): PVT and Phase Behaviour of Petroleum Reservoir Fluids, Elsevier Science
- 12) FIROOZABADI, A. (1988): Reservoir Fluid Phase Behavior and Volumetric Prediction Using Equation of State, JPT 397
- 13) GORIČNIK, B. (2006): Termodinamika ugljikovodika, skripta, RGN, Zagreb
- 14) GRAY, R.D.Jr. (1979): Industrial Experience in Applying the Redlich-Kwong Equation to Vapor-Liquid Equilibria, Advances in Chemistry, Vol. 182, 253–270

- 15) HAALAND, S. (1981): Characterization of North Sea Crude Oils and Petroleum Fractions, M.Sc. Thesis, NTH, Trondheim, Norway
- 16) HARIU, O. H. i SAGE, R. C. (1969): Crude Split Figured by Computer, Hydrocarbon Processes, 143-148
- 17) JACOBY, R. H. i BERRY, V. J. (1958): A Method for Predicting Pressure Maintenance Performance for Reservoirs Producing Volatile Crude Oil, Trans. AIME, 213, 59-64
- 18) JHAVERI, B.S. i YOUNGREN, G.K. (1988): Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions, SPE Reservoir Engineering, August 1988., Texas
- 19) KATZ, D.L. (1983): Overview of Phase Behavior of Oil and Gas Production, JPT, pp. 1205-1214
- 20) KATZ, D.L. i FIROOZABADI, A. (1978): Predicting Phase Behavior of Condensate/Oil Natural Gas System, Ind. End. Chem. 29, 1072
- 21) KIESR, M.D. i MALONE, D.P. (2006): A Comparison of Simulated Distillation to True Boiling Point Distillation of H-coal Distillates, Symposium on Coal Liquefaction, Kansas City
- 22) LANCZOS, C. (1964): A Precision Approximation of the Gamma Function, SIAM Journal on Numerical Analysis series B 1, 86–96
- 23) LEE, S. T., JACOBY, R. H., CHEN, W. H., CULHAM, W. E. (1979): Experimental and Theoretical Studies on the Fluid Properties Required for Simulation of Thermal Processes, Paper SPE 8389
- 24) LOHRENZ, J., BRAY B. G. i CLARK C. R. (1964): Calculating Viscosities of Reservoir Fluids from Their Compositions, JPT, pp. 1171-78; Trans., AIME, 231
- 25) MADDOX, R. N., i ERBAR, J. H. (1982): Gas conditioning and Processing, Advanced Techniques and Applications, Campbell Petroleum Series, Norman, OK, USA
- 26) MARTIN, J.J. (1967): Equation of State, Ind. Eng. Chem. 59, No. 12
- 27) MARTIN, J.J. (1979): Cubic Equation of State Which?, Ind. & Eng. Chem. 18, No. 2, 70-81
- 28) MARTINSEN, S.Ø., CASTIBLANCO, I., OSORIO, R. i WHITSON, C.H. (2010): Advanced Fluid Characterization of Pauto Complex, Colombia, SPE paper No. 135085

- 29) MORADI, G.R., KHOSHMARAM, A.A. i RIAZI, M.R. (2011): Estimation of Properties Distribution of C₇₊ by Using Artificial Neural Networks, Journal of Petroleum Science and Engineering, 76, 57-62
- 30) NAJI, H.S. (2006): A Polynomial Fit to the Continuous Distribution Function for C₇₊
 Characterization, Emirates Journal for Engineering Research, 11(2), 73-79, United
 Arab Emirates
- 31) PEDERSEN, K.S., THOMASSEN, P. i FREDENSLUND, A. (1985): On the Dangers of "Tuning" Equation of State Parameters, SPE paper No. 014487
- 32) PEDERSEN, K.S., THOMASSEN, P. i FREDENSLUND, A. (1989): Characterization of Gas Condensate Mixtures, Chorn, L.G. and Mansoori, G.A.: C₇₊ Fraction Characterization, Taylor& Francis New York Inc., New York, 137
- 33) PENG, D.Y. i ROBINSON, D.B. (1976): A New Two-Constant Equation of State, Ind. & Eng. Chem. 15, No.1, 59-64
- 34) PRESS, W.H., FLANNERY, B.P., TEUKOLOSKY, S.A. (1986): Numerical Recipes.The Art of Scientific Computing, Cambridge, University Press
- 35) RIAZI, M. R. (1989): Distribution Model for Properties of Hydrocarbon Plus Fractions, Ind. Eng. Chem. Res. 1989, 28, 1631-1735
- 36) RIAZI, M. R. (1997): A Continuous Model for C₇₊ Fraction Characterization of Petroleum Fluids, American Chemical Society
- 37) RIAZI, M. R. i DAUBERT, T. E. (1980): Simplify Property Predictions, Hydrocarbon Processing, 23, 115-116
- 38) RIAZI, M. R. i AL-SAHHAF, T. A. (1996): Physical Properties of Heavy Petroleum Fractions and Crude Oils, Fluid Phase Equilibria, 117, 217-224
- 39) SCHEBETOV, A., RIMOLDI, A. i PIANA, M. (2010): Quality Check Of Gas-Condensate PVT Studies and EOS Modeling Under Input Data Uncertainty, SPE paper No. 133258
- 40) Schlumberger PVTi Reference Manual (2009)
- 41) SINGH, K., MANTATZIS, K., WHITSON, C.H. i BENJEMIA, R. (2011): Reservoir Fluid Characterization and Application for Simulation Study, SPE paper No. 143612
- 42) SOAVE, G. (1972): Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chem. Eng. Sci. 27, 1197-1203
- 43) SØREIDE, I. (1989): Improved Phase Behavior Predictions Of Petroleum Reservoir Fluids From A Cubic Equation Of State, PhD Theses, NTNU, Trondheim, Norway

- 44) STROUD, A. H. i SECREST, D. (1966): Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ
- 45) VULIN, D. (2015): interna komunikacija
- 46) WHITSON, C.H. (1980): Characterizing Hydrocarbon Plus Fractions, Paper EUR183, European Offshore Petroleum Conference, London, October 21-24, 1980
- 47) WHITSON, C.H. (1983): Characterizing Hydrocarbon Plus Fractions, SPE Journal, Vol. 23, No. 4, 683-694
- 48) WHITSON, C.H. (1984): Effect of C7+ Properties on Equation-of-State Predictions, SPE Journal, Vol 24. No 6
- 49) WHITSON, C.H., ANDERSEN, T.F. i SØREIDE, I. (1986): Application of the Gamma Distribution Model to Molecular Weight and Boiling Point Data for Petroleum Fractions, AIChE Annual Meeting, Miami
- 50) WHITSON, C.H., ANDERSEN, T.F. i SØREIDE, I. (1989): C₇₊ Characterization of Related Equilibrium Fluids Using the Gamma Distribution, C₇₊ Fraction Characterization, L.G. Chorn and G.A. Mansoori (eds.), Advances in Thermodynamics, Taylor &Francis, New York City 1, 35–56
- 51) WHITSON, C.H. (1998): PVT Analysis Manual, Chapter 3, Fluid Sampling and Analysis of Laboratory Data, Norsk Hydro
- 52) WHITSON, C.H. (2012): materijali s tečaja Advanced Gas Condensate Reservoir Management, HotEng, Trondheim
- 53) YARBOROUGH, L. (1979): Application of a Generalized Equation of State to Petroleum Reservoir Fluids Advances in Chemistry, Vol. 182, 385-439
- 54) ZUO, J.Y. i ZHANG, D. (2000): Plus Fraction Characterization and PVT Data Regression for Reservoir Fluids near Critical Conditions, SPE paper No. 64520

6. DODACI

6.1. Dodatak 1 – Eksperimentalni podaci PVT ispitivanja uzorka plinskog kondenzata A-2-9 (Belamarić, 2012.)

i	Zi
N ₂	0,737
CO ₂	2,061
C ₁	86,231
C ₂	3,200
C ₃	1,827
C ₄	1,335
C ₅	0,894
C ₆	0,566
C ₇₊	3,149
<i>M</i> _{<i>C</i>7+}	160,60
$ ho_{\rm C7+}({\rm kg/m3})$	786,76

Šifra uzorka	A-2-9	A-2-17	A-1-2	E-2-3	C-3-1
SCN	$x_i \pmod{\%}$				
C ₇	0,658	2,918	1,361	0,204	5,169
C_8	0,566	3,198	0,782	0,367	5,120
C ₉	0,420	2,469	0,558	0,372	3,668
C ₁₀	0,323	2,283	0,437	0,367	3,243
C ₁₁	0,218	1,707	0,285	0,289	2,742
C ₁₂	0,167	1,412	0,206	0,225	2,355
C ₁₃	0,155	1,443	0,184	0,206	2,190
C_{14}	0,124	1,432	0,141	0,148	2,196
C ₁₅	0,119	1,437	0,125	0,119	2,036
C ₁₆	0,079	1,032	0,075	0,062	1,552
C ₁₇	0,067	0,999	0,064	0,043	1,684
C ₁₈	0,060	0,904	0,053	0,031	1,442
C ₁₉	0,049	0,601	0,042	0,019	1,021
C ₂₀	0,030	0,553	0,023	0,007	0,893
C ₂₁	0,024	0,518	0,018	0,003	0,800
C ₂₂	0,020	0,436	0,014	0,001	0,712
C ₂₃	0,015	0,414	0,01	0,001	0,651
C ₂₄	0,011	0,358	0,007	0,204	0,573
C ₂₅	0,009	0,341	0,005	0,367	0,561
C ₂₆	0,008	0,289	0,004	0,372	0,471
C ₂₇	0,006	0,261	0,003	0,367	0,469
C ₂₈	0,005	0,281	0,002	0,289	0,437
C ₂₉	0,004	0,256	0,003	0,225	0,387
C ₃₀₊	0,013	1,115	0,004	0,206	3,330

6.2. Dodatak 2 – Prošireni sastavi za C7+ frakcije izabranih uzoraka (Belamarić, 2012)

6.3. Dodatak 3 – Uzorci dobiveni slučajnim statističkim uzorkovanjem prema gama raspodjeli

6.3.1 Prvi uzorak sastava C₇-C₃₀₊ dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

	х	C ₇₊ (1)
C ₇	0,157092986	0,157092986
C ₈	0,149793716	0,149793716
C ₉	0,128213266	0,128213266
C ₁₀	0,116788321	0,116788321
C ₁₁	0,090130117	0,090130117
C ₁₂	0,08124405	0,08124405
C ₁₃	0,062519835	0,062519835
C ₁₄	0,045382418	0,045382418
C ₁₅	0,034592193	0,034592193
C ₁₆	0,027927642	0,027927642
C ₁₇	0,021580451	0,021580451
C ₁₈	0,019358934	0,019358934
C ₁₉	0,015550619	0,015550619
C ₂₀	0,012059664	0,012059664
C ₂₁	0,007933989	0,007933989
C ₂₂	0,006981911	0,006981911
C ₂₃	0,003490955	0,003490955
C ₂₄	0,001586798	0,001586798
C ₂₅	0,003490955	0,003490955
C ₂₆	0,002538877	0,002538877
C ₂₇	0,001904157	0,001904157
C ₂₈	0,001586798	0,001586798
C ₂₉	0,001269438	0,001269438
C ₃₀₊	0,000952079	0,006981911

	х	C ₇₊ (2)
C ₇	0,137734053	0,137734053
C ₈	0,156775627	0,156775627
C ₉	0,134877817	0,134877817
C ₁₀	0,120913996	0,120913996
C ₁₁	0,086004443	0,086004443
C ₁₂	0,075214218	0,075214218
C ₁₃	0,059663599	0,059663599
C ₁₄	0,046334497	0,046334497
C ₁₅	0,038717867	0,038717867
C ₁₆	0,030783878	0,030783878
C ₁₇	0,020628372	0,020628372
C ₁₈	0,017454776	0,017454776
C ₁₉	0,018089495	0,018089495
C ₂₀	0,015233259	0,015233259
C ₂₁	0,008568708	0,008568708
C ₂₂	0,011424944	0,011424944
C ₂₃	0,006029832	0,006029832
C ₂₄	0,003173596	0,003173596
C ₂₅	0,004760394	0,004760394
C ₂₆	0,001904157	0,001904157
C ₂₇	0,000634719	0,000634719
C ₂₈	0,000952079	0,000952079
C ₂₉	0,001269438	0,001269438
C ₃₀₊	0,000634719	0,002856236

6.3.2 Drugi uzorak sastava C_7 - C_{30+} dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

	х	C ₇₊ (3)
C ₇	0,139320851	0,139320851
C ₈	0,148841638	0,148841638
C ₉	0,144715963	0,144715963
C ₁₀	0,101555062	0,101555062
C ₁₁	0,092351634	0,092351634
C ₁₂	0,081561409	0,081561409
C ₁₃	0,061250397	0,061250397
C ₁₄	0,049825452	0,049825452
C ₁₅	0,04411298	0,04411298
C ₁₆	0,027927642	0,027927642
C ₁₇	0,027610282	0,027610282
C ₁₈	0,016820057	0,016820057
C ₁₉	0,017772136	0,017772136
C ₂₀	0,008568708	0,008568708
C ₂₁	0,005395113	0,005395113
C ₂₂	0,006029832	0,006029832
C ₂₃	0,004443034	0,004443034
C ₂₄	0,004760394	0,004760394
C ₂₅	0,003490955	0,003490955
C ₂₆	0,003173596	0,003173596
C ₂₇	0,003173596	0,003173596
C ₂₈	0,003173596	0,003173596
C ₂₉	0,000634719	0,000634719
C ₃₀₊	0,00031736	0,003490955

6.3.3 Treći uzorak sastava C_7 - C_{30+} dobiven slučajnim statističkim uzorkovanjem prema gama raspodjeli

IZJAVA

Izjavljujem da sam ovaj rad samostalno izradio.

Dino Dadić