# Primjer povratne analize stabilnosti kosina jalovišta upotrebom metode granične ravnoteže

Jurić, Stefanie

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:601159

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-11



Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb





# SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij rudarstva

# PRIMJER POVRATNE ANALIZE STABILNOSTI KOSINA JALOVIŠTA UPOTREBOM METODE GRANIČNE RAVNOTEŽE

Diplomski rad

Stefanie Jurić

R197

Zagreb, 2018

### Zahvale

Zahvaljujem se mentoru dr. sc. Dubravku Domitroviću i dr. sc. Heleni Vučenović na uloženom trudu i pomoći tijekom izrade ovoga rada. Također se zahvaljujem članovima komisije dr. sc. Vinku Škrlecu i dr. sc. Želimiru Veinoviću koji su odvojili svoje vrijeme kako bi ovaj rad bio još kvalitetniji. Isto tako se želim zahvaliti i svim svojim profesoricama i profesorima koji su prenijeli svoje znanje bez kojih ne bih bila to što jesam.

I na kraju želim iskazati posebnu zahvalnost svojim roditeljima i sestri koji su uvijek bili uz mene.

## PRIMJER POVRATNE ANALIZE STABILNOSTI KOSINA JALOVIŠTA UPOTREBOM METODE GRANIČNE RAVNOTEŽE

Stefanie Jurić

Rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za rudarstvo i geotehniku Pierottijeva 6, 10 000 Zagreb

#### Sažetak

Srž proračuna su profili 6 i 8 jalovišta Istočni greben koji pripada kompleksu kamenoloma Očura u Lepoglavi. Na profilima je provedena povratna analiza pomoću računalnog programa *Slope Stability*, kako bi se za zadane vrijednosti provjerilo ponašanje kliznih ploha. Svaki se profil analizirao za šest različitih vrijednosti kohezija (0,1 kPa; 1,0 kPa; 2,0 kPa; 3,0 kPa; 4,0 kPa i 5,0 kPa). Unutar jedne od šest varijanti je kohezija bila konstantna, dok se kut unutarnjeg trenja uvijek mijenjao za iste iznose (26°, 28°, 30°, 32°, 33°, 34°, 36° i 38°). Numerički je proračun baziran na Bishopovoj metodi opće granične ravnoteže koja automatski pronalazi optimiziranu kliznu plohu. Analiza rezultata je pokazala da se volumen klizne plohe povećava s rastom kohezije.

| Ključne riječi:     | Stabilnost kosina, povratna analiza, jalovište                        |
|---------------------|-----------------------------------------------------------------------|
| Završni rad sadrži: | 45 stranica, 30 tablica, 36 slika i 15 referenci.                     |
| Jezik izvornika:    | Hrvatski                                                              |
| Pohrana rada:       | Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb |
| Mentori:            | Dr. sc. Dubravko Domitrović, docent RGNF                              |
| Pomagao pri izradi: | Dr. sc. Helena Vučenović, poslijedoktorand                            |
| Ocjenjivači:        | Dr. sc. Dubravko Domitrović, docent RGNF                              |
|                     | Dr. sc. Želimir Veinović, docent RGNF                                 |
|                     | Dr. sc. Vinko Škrlec, docent RGNF                                     |

### TAILING SLOPE STABILITY BACK ANALYSIS USING LIMIT EQUILIBRIUM METHOD

Stefanie Jurić

Thesis completed at: University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering Department of Mining and Geotechnical Engineering Pierottijeva 6, 10 000 Zagreb

#### Abstract

The bases of the calculation are the profiles 6 and 8 of Istočni greben, which belongs to the Očura quarry complex in Lepoglava. The profiles were back analyzed using the *Slope Stability* program in order to verify the behavior of the sliding surfaces for the default values. Each profile has been analyzed for six different values of cohesion (0.1 kPa, 1.0 kPa, 2.0 kPa, 3.0 kPa, 4.0 kPa and 5.0 kPa). Within one of the six variants, the cohesion has been constant, while the inner friction angle always changed by the same amounts (26 °, 28 °, 30 °, 32 °, 33 °, 34 °, 36 ° and 38 °). The numerical calculation is based on Bishop's general limit equilibrium method that automatically finds an optimized sliding plane. Analysis of the results has shown that the volume of the sliding surface increases with the growth of cohesion.

| Keywords:              | Slope stability, back analysis, tailing                                                                                            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Thesis contains:       | 45 pages, 30 tables, 36 figures and 15 references.                                                                                 |
| Original in:           | Croatian                                                                                                                           |
| Archived at:<br>Zagreb | The Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6,                                               |
| Supervisors:           | PhD Dubravko Domitrović, Assistant Professor                                                                                       |
| Tech. assistance:      | PhD Helena Vučenović, Postdoctoral Researcher                                                                                      |
| Reviewers:             | PhD Dubravko Domitrović, Assistant Professor<br>PhD Želimir Veinović, Assistant Professor<br>PhD Vinko Škrlec, Assistant Professor |

# SADRŽAJ

| POPIS S | LIKA                                                 | .I  |
|---------|------------------------------------------------------|-----|
| POPIS T | CABLICA I                                            | Π   |
| POPIS K | KORIŠTENIH OZNAKA I JEDINICA                         | V   |
| 1. UV(  | DD                                                   | 1   |
| 2. ME   | TODE ZA ANALIZU STABILNOSTI KOSINA                   | 2   |
| 2.1. K  | Jasifikacija                                         | 2   |
| 2.2. C  | Dpćenito o metodama granične ravnoteže               | 3   |
| 2.3. P  | ojednostavljena Bishopova metoda                     | 7   |
| 3. PRI  | MJER JALOVIŠTA                                       | 9   |
| 3.1. Is | stočni greben1                                       | 0   |
| 4. POV  | VRATNA ANALIZA 1                                     | . 1 |
| 4.1. P  | Profil 6 1                                           | .4  |
| 4.1.1.  | Varijanta 1 ( $c_{ef} = 0, 1 \text{ kPa} = konst.$ ) | 5   |
| 4.1.2.  | Varijanta 2 ( $c_{ef} = 1,0$ kPa = $konst.$ )        | 6   |
| 4.1.3.  | Varijanta 3 ( $c_{ef} = 2,0$ kPa = $konst.$ )        | 8   |
| 4.1.4.  | Varijanta 4 ( $c_{ef} = 3,0 \text{ kPa} = konst.$ )  | 20  |
| 4.1.5.  | Varijanta 5 ( $c_{ef} = 4,0 \text{ kPa} = konst.$ )  | 22  |
| 4.1.6.  | Varijanta 6 ( $c_{ef} = 5,0$ kPa = $konst.$ )        | 24  |
| 4.2. P  | 2 Profil 8                                           | 26  |
| 4.2.1.  | Varijanta 1 ( $c_{ef} = 0,1$ kPa = konst.)           | 27  |
| 4.2.2.  | Varijanta 2 ( $c_{ef} = 1,0$ kPa = $konst.$ )        | 29  |
| 4.2.3.  | Varijanta 3 ( $c_{ef} = 2,0$ kPa = konst.)           | 31  |
| 4.2.4.  | Varijanta 4 ( $c_{ef} = 3,0 \text{ kPa} = konst.$ )  | 3   |
| 4.2.5.  | Varijanta 5 ( $c_{ef}$ = 4,0 kPa = $konst$ .)        | 35  |
| 4.2.6.  | Varijanta 6 ( $c_{ef}$ = 5,0 kPa = konst.)           | 37  |
| 5. ANA  | ALIZA REZULTATA4                                     | 0   |
| 5.1. E  | fektivni kut unutarnjeg trenja4                      | 0   |
| 5.2. K  | Alizna ploha4                                        | 2   |
| 6. ZAK  | KLJUČAK4                                             | 3   |
| 7. LIT  | ERATURA4                                             | 4   |

### POPIS SLIKA

| Slika 2-1. Bishopova metoda (Fine Ltd., 2007)7                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| Slika 3-1. Satelitska snimka površinskog kopa Očura (Google Maps, 2018)9                                                                     |
| Slika 3-2. Zemljopisni položaj površinskog kopa Očura (Google Maps, 2018)10                                                                  |
| Slika 4-1. Geometrija Profila 6 (Calx, 2017)12                                                                                               |
| Slika 4-2. Geometrija Profila 8 (Calx, 2017)12                                                                                               |
| Slika 4-3. Granulometrijski sastav jalovine (Calx, 2017)13                                                                                   |
| Slika 4-4. Model profila 6 14                                                                                                                |
| Slika 4-5. Koordinate točaka poligona za profil 614                                                                                          |
| Slika 4-6. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 0,1$ kPa u profilu 6 15                                              |
| Slika 4-7. Klizna ploha za vrijednosti $c_{\rm ef} = 0,1$ kPa, $\varphi_{\rm ef} = 36^{\circ}$ i $F_{\rm s} = 1,05$ u profilu 6 16           |
| Slika 4-8. Prikaz porasta $F_s$ u odnosu na $\varphi_{\rm ef}$ za $c_{\rm ef}$ = 1,0 kPa u profilu 6 17                                      |
| Slika 4-9. Klizna ploha za vrijednosti $c_{\rm ef} = 1,0$ kPa, $\varphi_{\rm ef} = 33^{\circ}$ i $F_{\rm s} = 1,03$ u profilu 6 18           |
| Slika 4-10. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 2,0$ kPa u profilu 6                                                |
| Slika 4-11. Klizna ploha za vrijednosti $c_{\rm ef} = 2,0$ kPa, $\varphi_{\rm ef} = 32^{\circ}$ i $F_{\rm s} = 1,06$ u profilu 6 20          |
| Slika 4-12. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 3,0$ kPa u profilu 6 21                                             |
| Slika 4-13. Klizna ploha za vrijednosti $c_{\rm ef}$ = 3,0 kPa, $\varphi_{\rm ef}$ = 30° i $F_{\rm s}$ = 1,04 u profilu 6 22                 |
| Slika 4-14. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 4,0$ kPa u profilu 6                                                |
| Slika 4-15. Klizna ploha za vrijednosti $c_{\rm ef} = 4,0$ kPa, $\varphi_{\rm ef} = 28^{\circ}$ i $F_{\rm s} = 1,02$ u profilu 6 24          |
| Slika 4-16. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 5,0$ kPa u profilu 6                                                |
| Slika 4-17. Klizna ploha za vrijednosti $c_{\rm ef} = 5,0$ kPa, $\varphi_{\rm ef} = 28^{\circ}$ i $F_{\rm s} = 1,06$ u profilu 6 26          |
| Slika 4-18. Model profil 8                                                                                                                   |
| Slika 4-19. Koordinate točaka poligona za profil 827                                                                                         |
| Slika 4-20. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 0,1$ kPa u profilu 8                                                |
| Slika 4-21. Klizna ploha za vrijednosti $c_{\text{ef}} = 0,1$ kPa, $\varphi_{\text{ef}} = 34^{\circ}$ i $F_{\text{s}} = 1,02$ u profilu 8 29 |
| Slika 4-22. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 1,0$ kPa u profilu 8 30                                             |
| Slika 4-23. Klizna ploha za vrijednosti $c_{\rm ef} = 1,0$ kPa, $\varphi_{\rm ef} = 32^{\circ}$ i $F_{\rm s} = 1,06$ u profilu 8 31          |
| Slika 4-24. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 2,0$ kPa u profilu 8                                                |
| Slika 4-25. Klizna ploha za vrijednosti $c_{ef} = 2,0$ kPa, $\varphi_{ef} = 30^{\circ}$ i $F_s = 1,01$ u profilu 8 33                        |
| Slika 4-26. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 3,0$ kPa u profilu 8                                                |
| Slika 4-27. Klizna ploha za vrijednosti $c_{ef} = 3,0$ kPa, $\varphi_{ef} = 30^{\circ}$ i $F_s = 1,06$ u profilu 8 35                        |
| Slika 4-28. Prikaz porasta $F_s$ u odnosu na $\varphi_{ef}$ za $c_{ef} = 4,0$ kPa u profilu 8                                                |
| Slika 4-29. Klizna ploha za vrijednosti $c_{\rm ef} = 4,0$ kPa, $\varphi_{\rm ef} = 28^{\circ}$ i $F_{\rm s} = 1,03$ u profilu 837           |

### POPIS TABLICA

| Tablica 2-1. Karakteristike varijanti metoda granične ravnoteže (Leninger, 2016)4                                        |
|--------------------------------------------------------------------------------------------------------------------------|
| Tablica 2-2. Ograničenja, usvojene pretpostavke i uvjeti ravnoteže (UNIRI, 2018)5                                        |
| Tablica 4-1. Parametri analize za $c_{\text{ef}} = 0,1$ kPa na profilu 6                                                 |
| Tablica 4-2. Parametri klizne plohe, sile i momenti za $c_{ef} = 0,1$ kPa, $\varphi_{ef} = 36^{\circ}$ i $F_s = 1,05$ u  |
| profilu 6                                                                                                                |
| Tablica 4-3. Parametri analize za $c_{\text{ef}} = 1,0$ kPa u profilu 6                                                  |
| Tablica 4-4. Parametri klizne plohe, sile i momenti za $c_{ef} = 1,0$ kPa, $\varphi_{ef} = 33^{\circ}$ i $F_s = 1,03$ u  |
| profilu 6                                                                                                                |
| Tablica 4-5. Parametri analize za $c_{ef} = 2,0$ kPa u profilu 6                                                         |
| Tablica 4-6. Parametri klizne plohe, sile i momenti za $c_{ef} = 2,0$ kPa, $\varphi_{ef} = 32^{\circ}$ i $F_s = 1,06$ u  |
| profilu 6                                                                                                                |
| Tablica 4-7. Parametri analize za $c_{\text{ef}} = 3,0$ kPa u profilu 6                                                  |
| Tablica 4-8. Parametri klizne plohe, sile i momenti za $c_{ef} = 3,0$ kPa, $\varphi_{ef} = 30^{\circ}$ i $F_s = 1,04$ u  |
| profilu 6                                                                                                                |
| Tablica 4-9. Parametri analize za $c_{\rm ef} = 4,0$ kPa u profilu 6                                                     |
| Tablica 4-10. Parametri klizne plohe, sile i momenti za $c_{ef} = 4,0$ kPa, $\varphi_{ef} = 28^{\circ}$ i $F_s = 1,02$ u |
| profilu 6                                                                                                                |
| Tablica 4-11. Parametri analize za $c_{\text{ef}} = 5,0$ kPa u profilu 6                                                 |
| Tablica 4-12. Parametri klizne plohe, sile i momenti za $c_{ef} = 5,0$ kPa, $\varphi_{ef} = 28^{\circ}$ i $F_s = 1,06$ u |
| profilu 6                                                                                                                |
| Tablica 4-13. Parametri analize za $c_{\text{ef}} = 0,1$ kPa u profilu 8                                                 |
| Tablica 4-14. Parametri klizne plohe, sile i momenti za $c_{ef} = 0,1$ kPa, $\varphi_{ef} = 34^{\circ}$ i $F_s = 1,02$ u |
| profilu 8                                                                                                                |
| Tablica 4-15. Parametri analize za $c_{\text{ef}} = 1,0$ kPa u profilu 8                                                 |
| Tablica 4-16. Parametri klizne plohe, sile i momenti za $c_{ef} = 1,0$ kPa, $\varphi_{ef} = 32^{\circ}$ i $F_s = 1,06$ u |
| profilu 8                                                                                                                |
| Tablica 4-17. Parametri analize za $c_{\text{ef}} = 2,0$ kPa u profilu 8                                                 |
| Tablica 4-18. Parametri klizne plohe, sile i momenti za $c_{ef} = 2,0$ kPa, $\varphi_{ef} = 30^{\circ}$ i $F_s = 1,01$ u |
| profilu 8                                                                                                                |
| Tablica 4-19. Parametri analize za $c_{ef} = 3,0$ kPa u profilu 8                                                        |
| Tablica 4-20. Parametri klizne plohe, sile i momenti za $c_{ef} = 3,0$ kPa, $\varphi_{ef} = 30^{\circ}$ i $F_s = 1,06$ u |
| profilu 8                                                                                                                |

| Tablica 4-21. Parametri analize za $c_{ef} = 4,0$ kPa u profilu 8                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Tablica 4-22. Parametri klizne plohe, sile i momenti za $c_{\text{ef}} = 4,0$ kPa, $\varphi_{\text{ef}} = 28^{\circ}$ i $F_{\text{s}} = 1,03$ m |
| profilu 8                                                                                                                                       |
| Tablica 4-23. Parametri analize za $c_{ef} = 5,0$ kPa u profilu 8                                                                               |
| Tablica 4-24. Parametri klizne plohe, sile i momenti za $c_{\text{ef}} = 5,0$ kPa, $\varphi_{\text{ef}} = 26^{\circ}$ i $F_{\text{s}} = 1,00$ m |
| profilu 8                                                                                                                                       |
| Tablica 5-1. Prikaz smanjenja $\varphi_{ef}$ kroz povratnu analizu profila 6 za slučaj kada je $F_s = 1$                                        |
|                                                                                                                                                 |
| Tablica 5-2. Prikaz smanjenja $\varphi_{ef}$ kroz povratnu analizu profila 8 za slučaj kada je $F_s = 140$                                      |
| Tablica 5-3. Promjena parametara kliznih ploha, sila i momenata kroz povratnu analizu                                                           |
| profila 6 za slučaj kada je $F_{\rm s}$ minimalno 1,0                                                                                           |
| Tablica 5-4. Promjena parametara kliznih ploha, sila i momenata kroz povratnu analizu                                                           |
| profila 8 za slučaj kada je $F_{\rm s}$ minimalno 1,0                                                                                           |

# POPIS KORIŠTENIH OZNAKA I JEDINICA

| Oznaka           | Jedinica          | Opis                                      |
|------------------|-------------------|-------------------------------------------|
| $F_{\rm s}$      | -                 | faktor sigurnosti                         |
| $h_{ m i}$       | m                 | visina lamele                             |
| Wi               | kN                | težina lamele                             |
| $l_{ m i}$       | m                 | udaljenost između lamela na kliznoj plohi |
| $b_{ m i}$       | m                 | horizontalna udaljenost između lamela     |
| Ei               | kN/m <sup>2</sup> | normalna naprezanja između lamela         |
| Xi               | kN/m <sup>2</sup> | posmična naprezanja između lamela         |
| $\alpha_{\rm i}$ | 0                 | kut nagiba kosine                         |
| ui               | kPa               | porni tlak u lameli                       |
| Cef              | kPa               | efektivna kohezija                        |
| $arphi_{ m ef}$  | 0                 | efektivni kut unutarnjeg trenja           |
| γ                | kN/m <sup>3</sup> | jedinična težina                          |
| Ysat             | kN/m <sup>3</sup> | saturirana jedinična težina               |
| х, г             | m                 | dimenzije centra klizne plohe             |
| R                | m                 | radijus klizne plohe                      |
| Fa               | kN/m              | sila aktivnog pritiska                    |
| Fp               | kN/m              | sila pasivnog pritiska                    |
| Ma               | kNm/m             | aktivni otpor                             |
| Mр               | kNm/m             | pasivni otpor                             |
| konst.           | -                 | konstanta                                 |
| $R^2$            | -                 | koeficijent determinacije                 |

### 1. UVOD

Analiza stabilnosti kosina je složen proces koji zahtijeva posebnu pažnju i točnost ulaznih parametara, bilo da se radi o terenskim ili laboratorijskim ispitivanjima. Iako se u geotehničkoj praksi sve više koriste 3D modeli, i dalje prevladavaju 2D proračuni. Tako je i u ovom radu korištena 2D analiza stabilnosti kosina.

Srž proračuna su profili 6 i 8 jalovišta Istočni greben koji pripada kompleksu kamenoloma Očura u Lepoglavi. Na profilima je provedena povratna analiza pomoću računalnog programa *Slope Stability*, kako bi se za zadane vrijednosti provjerilo ponašanje kliznih ploha. Svaki se profil analizirao za šest različitih vrijednosti kohezija (0,1 kPa; 1,0 kPa; 2,0 kPa; 3,0 kPa; 4,0 kPa i 5,0 kPa). Unutar jedne od šest varijanti je kohezija bila konstantna, dok se kut unutarnjeg trenja uvijek mijenjao za iste iznose (26°, 28°, 30°, 32°, 33°, 34°, 36° i 38°).

Numerički je proračun baziran na Bishopovoj metodi opće granične ravnoteže koja automatski pronalazi optimiziranu kliznu plohu. Kod takvih metoda se faktor sigurnosti računa temeljem jednadžbi statičke ravnoteže. To je minimalni faktor pri kojem je stijenska masa stabilna. Cilj proračuna se sastojao u pronalasku parametara čvrstoće za koje je faktor sigurnosti prihvatljiv odnosno 1,0.

### 2. METODE ZA ANALIZU STABILNOSTI KOSINA

Analiza stabilnosti kosina neizostavna je u geomehanici. Njezin cilj je procijeniti sigurnost kosina kao i uvjete koji mogu dovesti do njihova sloma. Stabilnost kosina predstavlja otpor neke kosine klizanju odnosno slomu.

Uspješno projektiranje kosine uvjetovano je poznavanjem cijelog niza podataka vezanih uz geologiju terena i uvjete na lokacije. Prisustvo vode može ključno utjecati na stabilnost. Voda djeluje u porama, pukotinama i diskontinuitetima pri čemu može utjecati i na samu posmičnu čvrstoću materijala kosine. Između ostalog, na stabilnost još utječu svojstva tla i stijena, geometrija kosine, pukotinski sustav, rasjedi, diskontinuiteti i seizmička aktivnost. Izbor metode analize ovisi o lokalnim uvjetima i mogućim oblicima sloma.

#### 2.1. Klasifikacija

Prije pojave računala analize stabilnosti inženjeri su izvodili grafičkim metodama ili ručno pomoću kalkulatora. Danas postoji mnoštvo načina za provedbu analiza na računalima. Općenito, kao glavna podjela može se navesti (Eberhardt, 2003):

- metode opće granične ravnoteže,
- numeričko modeliranje.

Kako bi se pojedine metode mogle koristiti potrebno je dobro poznavati njihove mogućnosti i ograničenja. Primjerice, metode opće granične ravnoteže najčešće se koriste za jednostavnije probleme, dok kod kompleksnih mehanizama sloma (pojave konsolidacije, puzanja, likvefakcije i sl.) ove metode postaju neadekvatne.

U ovom radu je naglasak na metodama opće granične ravnoteže. Za proračun nehomogenih kosina u tlima se faktor sigurnosti može odrediti jednom od metoda (UNIRI, 2018):

- metoda Felleniusa,
- metoda Bishopa,
- metoda Janbua,
- metoda Morgenstern Pricea,
- metoda Spencera,

• metoda Sarmae.

Osim relativno velikog broja metoda opće granične ravnoteže, danas na tržištu postoji i velik broj numeričkih metoda kojima je moguće vjerno oponašati ponašanje tla. Općenito ih se može podijeliti na (Hrženjak, 2018):

- metode kontinuuma,
- metode diskontinuuma.

Najvažnije odnosno najčešće korištene metode kontinuuma su (Hrženjak, 2018):

- metoda konačnih razlika,
- metoda konačnih elemenata,
- metoda rubnih elemenata.

Od metoda diskontinuuma može se navesti (Hrženjak, 2018):

- metoda diskontinuiranih deformacija,
- metoda diskretnih elemenata.

Program *Slope Stability* nudi za proračun stabilnosti kosina dva pristupa. Prvi je Bishopova/Pettersonova metoda koja se koristi kod kružnih kliznih ploha, dok se poligonalne analiziraju metodom Sarmae.

#### 2.2. Općenito o metodama granične ravnoteže

U današnjoj praksi se 2D analiza stabilnosti kosina zbog jednostavnosti i općeg razumijevanja obično rješava primjenom neke od metoda granične ravnoteže. Proračuni se sastoje od određivanja faktora sigurnosti koristeći jednadžbe statičke ravnoteže (Reyes i Parra, 2014). Faktor sigurnosti vrijednosti jedan se pritom definira kao minimalni faktor pri kojem je stijenska masa stabilna, što podrazumijeva da je na granici klizanja. Za svaku metodu se faktor sigurnosti definira ovim omjerom (UNIRI, 2018):

$$F_{\rm s} = \frac{Sile\ otpora}{Aktivne\ sile} \tag{2-1}$$

Metode granične ravnoteže (metode lamela) se temelje na statički određenom sustavu lamela kod kojih se zanemaruje njihova krutost (Juričić, 2017). Pretpostavlja se da je klizno tijelo kruti blok na kojem se raspoloživa posmična čvrstoća aktivira u istom iznosu po cijeloj kliznoj plohi uz konstantni faktor sigurnosti (Leninger, 2016). Fredlund i Krahn su 1977. prvi definirali metodu opće granične ravnoteže, a danas se varijante međusobno razlikuju po ulaznim pretpostavkama (Juričić, 2017) (tablica 2-1.). Tablica 2-2. prikazuje ograničenja i detaljnije pretpostavke pojedinih metoda.

| Varijanta                                                                                                                                               | Klizna | Jednadžbe<br>ravnoteže |                    | Sile 1<br>lame | među<br>Iama | Funkcija nagiba<br>sila među |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|--------------------|----------------|--------------|------------------------------|--|
| metode                                                                                                                                                  | piona  | $\Sigma_{\rm x}=0$     | $\Sigma_{\rm m}=0$ | ΔΧ             | ΔΥ           | lamelama $f(x)$              |  |
| Fellenius                                                                                                                                               | Kružna | Ne                     | Da                 | = 0 = 0        |              | X= 0<br>Y= 0                 |  |
| Janbu<br>(pojednostavljena)                                                                                                                             | Opća   | Opća Da                |                    | $\neq 0$       | = 0          | = 0                          |  |
| Bishop<br>(pojednostavljena)                                                                                                                            | Kružna | Ne                     | Da                 | <i>≠</i> 0     | = 0          | = 0                          |  |
| Morgenstern –<br>Price                                                                                                                                  | Opća   | Da                     | Da                 | ≠0             | ≠0           | Zadaje korisnik              |  |
| Spencer                                                                                                                                                 | Opća   | Da                     | Da                 | $\neq 0$       | $\neq 0$     | = 1                          |  |
| $\Sigma_x = 0 \rightarrow \text{jednadžba ravnoteže sila u horizontalnom smjeru}$<br>$\Sigma_x = 0 \rightarrow \text{jednadžba ravnoteže momenta sila}$ |        |                        |                    |                |              |                              |  |
| 2 <sub>m</sub> = 0 · / jednadzba ravnoteže momenta sna                                                                                                  |        |                        |                    |                |              |                              |  |

Tablica 2-1. Karakteristike varijanti metoda granične ravnoteže (Leninger, 2016)

| METODA                                       | OGRANIČENJA, USVOJENE PRETPOSTAVKE I UVJETI<br>RAVNOTEŽE PRORAČUNA                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fellenius<br>(1927.)                         | <ul> <li>metoda daje nizak faktor sigurnosti (F<sub>s</sub>) koji je vrlo netočan za razvučena klizišta s visokim pornim tlakom</li> <li>za kružne plohe sloma</li> <li>normalna sila na bazu svake lamele je <i>Wcosα</i></li> <li>jedna jednadžba ravnoteže (suma momenata za cjelokupnu masu)</li> <li>jedna nepoznanica (F<sub>s</sub>)</li> </ul>                                                                                                                                                                |
| Pojednostavljena<br>Bishopova<br>(1955.)     | <ul> <li>metoda daje pouzdane vrijednosti F<sub>s</sub></li> <li>za kružne plohe sloma</li> <li>zadovoljava ravnotežu vertikalnih sila i ukupnih momenata</li> <li>usvaja horizontalne međulamelarne sile</li> <li>N+1 jednadžba i nepoznanica</li> </ul>                                                                                                                                                                                                                                                             |
| Metoda<br>ravnoteže sila                     | <ul> <li>zadovoljava ravnotežu sila</li> <li>za opće plohe sloma</li> <li>usvaja nagnute međulamelarne sile, jednake ili različite za svaku pojedinu lamelu</li> <li>mala promjena u nagibu međulamelarnih sila utječe na smanjenje F<sub>s</sub> u odnosu na metode koje zadovoljavaju uvjete ravnoteže sila i momenata</li> <li>veliki nagib međulamelarnih sila daje F<sub>s</sub> veći od izračunatog metodama koje zadovoljavaju uvjete ravnoteže sila i momenata</li> <li>2N jednadžbi i nepoznanica</li> </ul> |
| Pojednostavljena<br>metoda Janbua<br>(1968.) | <ul> <li>zadovoljava ravnotežu sila</li> <li>za opće plohe sloma</li> <li>usvaja horizontalne međulamelarne sile</li> <li><i>F</i><sub>s</sub> je manji od izračunatog metodama koje zadovoljavaju uvjete ravnoteže sila i momenata</li> <li>2<i>N</i> jednadžbi i nepoznanica</li> </ul>                                                                                                                                                                                                                             |
| US Army Corps<br>of Engineers<br>(1970.)     | <ul> <li>zadovoljava ravnotežu sila</li> <li>za opće plohe sloma</li> <li>usvaja nagib međulamelarnih sila jednak nagibu padine<br/>(jednak za sve lamele)</li> <li><i>F</i>s je često značajno veći od izračunatog metodama koje<br/>zadovoljavaju uvjete ravnoteže sila i momenata</li> <li>2N jednadžbi i nepoznanica</li> </ul>                                                                                                                                                                                   |

Tablica 2-2. Ograničenja, usvojene pretpostavke i uvjeti ravnoteže (UNIRI, 2018)

| Lowe i<br>Karafiath<br>(1960.)    | <ul> <li>zadovoljava ravnotežu sila (vertilanih i horizontalnih)</li> <li>za opće plohe sloma</li> <li>usvaja nagib međulamelarnih sila u prosjeku nagiba padine<br/>i plohe sloma (promjenjiv po lamelama)</li> <li>općenito najtočnija među metodama ravnoteže sila</li> <li>2N jednadžbi i nepoznanica</li> </ul>                                                                          |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opća metoda<br>Janbua<br>(1968.)  | <ul> <li>zadovoljava uvjete ravnoteže sila i momenata</li> <li>za opće plohe sloma</li> <li>usvaja nagib međulamelarnih sila promjenjiv po lamelama</li> <li>metoda daje pouzdane vrijednosti F<sub>s</sub></li> <li><i>3N</i> jednadžbi i nepoznanica</li> </ul>                                                                                                                             |
| Spencer<br>(1967.)                | <ul> <li>zadovoljava uvjete ravnoteže sila i momenata</li> <li>za opće plohe sloma</li> <li>usvaja nagib međulamelarnih sila jednak za sve lamele</li> <li>nagib međulamelarnih sila računa se u procesu do zadovoljena svih uvjeta ravnoteže</li> <li>metoda daje pouzdane vrijednosti F<sub>s</sub></li> <li><i>3N</i> jednadžbi i nepoznanica</li> </ul>                                   |
| Morgenstern<br>i Price<br>(1965.) | <ul> <li>zadovoljava uvjete ravnoteže sila i momenata</li> <li>za opće plohe sloma</li> <li>usvaja nagib međulamelarnih sila koji može biti promjenjiv<br/>po lamelama</li> <li>nagib međulamelarnih sila <i>f(x)</i> računa se u procesu do<br/>zadovoljenja svih uvjeta ravnoteže</li> <li>metoda daje pouzdane vrijednosti <i>F</i>s</li> <li><i>3N</i> jednadžbi i nepoznanica</li> </ul> |
| Sarma<br>(1973.)                  | <ul> <li>zadovoljava uvjete ravnoteže sila i momenata</li> <li>za opće plohe sloma</li> <li>nagib međulamelarnih sila računa se u procesu do zadovoljenja svih uvjeta ravnoteže</li> <li>primarna namjena je proračun stabilnosti kosina u seizmičkim uvjetima, sekundarno se dobije <i>F</i><sub>s</sub> i u statičkim uvjetima</li> <li><i>3N</i> jednadžbi i nepoznanica</li> </ul>        |
|                                   | N – broj lamela                                                                                                                                                                                                                                                                                                                                                                               |

#### 2.3. Pojednostavljena Bishopova metoda

Pojednostavljena Bishopova metoda je jedna od klasičnih metoda zasnovana na teoriji granične ravnoteže. Temelji se na rješavanju jednadžbi ravnoteže za kružnu kliznu plohu s vertikalnim lamelama približno jednakih površina. Sile koje djeluju na lamele su prikazane na slici 2-1.



Slika 2-1. Bishopova metoda (Fine Ltd., 2007)

Oznaka  $X_i$  predstavlja posmična naprezanja između lamela,  $N_i$  su normalna naprezanja, a  $W_i$  težina pojedine lamele. Bishopova metoda je nastala iz Pettersonove metode (Fine Ltd., 2007), prema kojoj je faktor sigurnosti ( $F_s$ ) jednak (Fine Ltd., 2007):

$$F_{\rm s} = \frac{1}{\sum_{\rm i} W_{\rm i} \sin \alpha_{\rm i}} \sum_{\rm i} [c_{\rm ef} l_{\rm i} + (N_{\rm i} - u_{\rm i} l_{\rm i}) \tan \varphi_{\rm ef}]$$
(2-2)

Gdje je (Fine Ltd., 2007):

- $u_i$  porni tlak u lameli,
- $c_{\rm ef}$ ,  $\varphi_{\rm ef}$  efektivne vrijednosti parametara posmične čvrstoće tla,
- $\alpha_i$  nagib baze lamele prema horizontali,
- $l_i$  duljina baze lamele,
- $b_i$  širina lamele.

Bishopova metoda omogućuje i određivanje normalne sile koja djeluje na površinu klizne plohe (Fine Ltd., 2007):

$$N_{i} - u_{i}l_{i} = \frac{W_{i} + (X_{i} - X_{i+1}) - l_{i}\left(u_{i}\cos\alpha_{i} + \frac{c_{ef}}{F_{s}}\sin\alpha_{i}\right)}{\cos\alpha_{i} + \frac{tan\varphi_{ef}}{F_{s}}\sin\alpha_{i}}$$
(2-3)

Iz gornjeg izraza u kombinaciji s Pettersonovom metodom proizlazi sljedeći izraz za faktor sigurnosti koji je točniji i češći (Fine Ltd., 2007):

$$F_{\rm s} = \frac{1}{\sum_{\rm i} W_{\rm i} \sin \alpha_{\rm i}} \sum_{\rm i} \left\{ \left[ c_{\rm ef} b_{\rm i} + (W_{\rm i} - u_{\rm i} b_{\rm i} + X_{\rm i} - X_{\rm i+1}) \tan \varphi_{\rm ef} \right] \frac{\sec \alpha_{\rm i}}{1 + \frac{\tan \varphi_{\rm ef} \tan \alpha_{\rm i}}{F_{\rm s}}} \right\}$$
(2-4)

Razlika između  $X_i - X_{i+1}$  je prema Bishopu zanemariva jer ne utječe značajno na rezultat. Prema tome slijedi (Fine Ltd., 2007):

$$F_{\rm s} = \frac{1}{\sum_{\rm i} W_{\rm i} \sin \alpha_{\rm i}} \sum_{\rm i} \frac{c_{\rm ef} b_{\rm i} + (W_{\rm i} - u_{\rm i} b_{\rm i}) \tan \varphi_{\rm ef}}{\cos \alpha_{\rm i} + \frac{\tan \varphi_{\rm ef} \sin \alpha_{\rm i}}{F_{\rm s}}}$$
(2-5)

### 3. PRIMJER JALOVIŠTA

Kamenolom Očura je izniman primjer površinskog kopa na kojemu se paralelno vrši i eksploatacija mineralne sirovine i revitalizacija. Zemljopisni položaj je vezan za istoimeno naselje. Ovo ležište dolomita se proteže jugozapadom Varaždinske županije, 5 km jugozapadno od grada Lepoglave, te između potoka Očura i vrha Veliko Kalce (Slika 3-2.). Administrativno pripada gradu Lepoglavi. Prometna infrastruktura je osigurana cestom duljine 400 m koja se nadovezuje na državnu cestu DC 35 (Varaždin - Lepoglava - Sv. Križ Začretje) (Šoltić, 2013), te željezničkom prugom Golubovec – Lepoglava – Varaždin koja je izgrađena 1912. radi početka vađenja kamena (Slavić, 2006).

Strukturu površinskog kopa čine Očura I i Očura II. Očura I je nekadašnje eksploatacijsko polje tehničko – građevnog kamena na kojemu su radovi krenuli 1936. i trajali 70 godina. U tom periodu je pridobiveno otprilike 16 milijuna tona kamena. Njegova revitalizacija je pokrenuta u rujnu 2006. Projekt je predviđao sadnju 21 000 biljaka na površini od 112 000 m<sup>2</sup> (Slavić, 2006). Na zapadnoj strani su etaže uspješno sanirane, dok se određeni problemi stabilnosti kosina uočavaju na odlagalištu jalovine Istočni greben (Slika 3-1.). Uslijed dugogodišnje eksploatacije tehničko – građevnog kamena i pratećih procesa proizvodnje i oplemenjivanja je nastala je velika količina kamene prašine (filera) koja ugrožava stabilnost odlagališta jalovine. Očura II je aktivno eksploatacijsko polje koje se nalazi istočno od spomenutog odlagališta jalovine. Eksploatacijske rezerve iznose 10 382 687 m<sup>3</sup>, a pripadaju B i C<sub>1</sub> kategoriji (Šoltić, 2013).



Slika 3-1. Satelitska snimka površinskog kopa Očura (Google Maps, 2018)



Slika 3-2. Zemljopisni položaj površinskog kopa Očura (Google Maps, 2018)

### 3.1. Istočni greben

Istočni greben je koncipiran kao ležište amfiteatralnog oblika s dvije etaže. Odlagalište se smatralo geomehanički povoljnim jer kroz niz godina njegovog postojanja nisu uočene izraženije vlačne pukotine. Međutim, visok udio kamene prašine u kombinaciji s erozijom sitnih čestica oborinskim vodama dovele su do manjih pojava novo uočenih pukotina čije podrijetla je neutvrđeno. Navedene pukotine mogu ukazivati na početak razvoja vlačnih pukotina, zbog čega je nužna provjera stabilnosti.

#### 4. POVRATNA ANALIZA

Određivanje posmične čvrstoće povratnom analizom se često koristi prilikom analize stabilnosti kosina čime se izbjegavaju problemi povezani s terenskim i laboratorijskim određivanjem parametara tla. Primjerice, laboratorijski određeni parametri posmične čvrstoće uključuju određena ograničenja zbog teškoća vezanih uz uzimanje reprezentativnih uzoraka koji bi simulirali realne uvjete. Povratna analiza je također efektivna metoda za opisivanje stvarnih uvjeta na terenu a koji se ponekad ne mogu dobro reprezentirati laboratorijskim u uvjetima. Kod ove metode, prvo se geodetski izmjeri stanje na terenu odnosno geometrijske karakteristike kosine, zatim se radi parametarska analiza uz pretpostavku da je kosina u labilnoj ravnoteži odnosno  $F_s$  je približno jednak 1,0 (Tang i dr., 1999).

Najčešće metode kojima se može provesti povratna analiza su (Rocscience, 2012):

- iterativna metoda za usklađivanje ulaznih podataka s postojećim stanjem,
- analiza osjetljivosti za pojedine varijable,
- probabilistička analiza za dvije korelirane varijable,
- napredna probabilistička metoda za simultanu analizu višestrukih parametara.

U ovom radu je korištena metoda analize osjetljivosti za pojedinu varijablu, pri čemu je u pojedinoj analizi kohezija bila konstantan parametar, a kut unutarnjeg trenja promjenljiv. Proračuni su provedeni pomoću računalnog programa *Slope Stability* za profile 6 i 8 (Slika 4-1. i 4-2.), koji pripadaju Istočnom grebenu. Svaki se profil analizirao za šest različitih vrijednosti kohezija (0,1 kPa; 1,0 kPa; 2,0 kPa; 3,0 kPa; 4,0 kPa i 5,0 kPa). Unutar jedne od šest varijanti je kohezija bila konstantna, dok se kut unutarnjeg trenja uvijek mijenjao za iste iznose (26°, 28°, 30°, 32°, 33°, 34°, 36° i 38°). Korištena je Bishopova pojednostavljena metoda koja nakon grafičkog unosa klizne plohe pronalazi optimizirano rješenje.

### **PROFIL 6**



Slika 4-1. Geometrija Profila 6 (Calx, 2017)



PROFIL 8

Slika 4-2. Geometrija Profila 8 (Calx, 2017)

Granulometrijski sastav jalovine ukazuje da se radi o česticama veličine dobro graduiranog pijeska uz primjese šljunka (Slika 4-3.). Sama jalovina sastoji se od dolomitne drobine koja je dosta heterogena. Početne vrijednosti kuta unutarnjeg trenja procijenjene su na temelju granulometrijskog sastava i literaturnih vrijednosti. Procjena je da bi se kut unutarnjeg trenja mogao kretati u intervalu od 26° do 38°. S druge strane, obzirom da se radi o česticama veličine pijeska i šljunka, vrijednosti kohezije se očekuje da je vrlo mala ili zanemariva. Velikim dijelom kohezija je prisutna samo kao prividan parametar. Pojavljuje se kao posljedica uklještenja zrnaca. Stoga su u povratnoj analizi uzete vrijednosti od 0,1 do 5,0 kPa. Jedinična težina u iznosu 18 kN/m<sup>3</sup> je odabrana temeljem ispitivanja fizičko – mehaničkih svojstava u kojima je obujmna masa u suhom stanju iznosila približno 1,6 t/m<sup>3</sup> (Calx, 2017) i temeljem literature (Geotechdata.Info, 2018).

Parametri dolomita kao matične stijene su odabrani temeljem literature i elaborata. Obujmne mase su u rasponu 2,8 do 3,0 t/m<sup>3</sup> (Vrkljan, 2018), pa je za analizu odabrana vrijednost jedinične težine od 30 kN/m<sup>3</sup>. Kut unutarnjeg trenja je procijenjen na 45°, a kohezija na 200 kPa jer su za slično jalovište vrijednosti 40° i 192 kPa (Božić i Strelec, 1992), a u elaboratu su vrijednosti 43° i 200 kPa (Calx, 2017). U analizi je izostavljen utjecaj seizmike, a utjecaj podzemne vode je zanemaren obzirom da su razine podzemne vode znatno ispod donje kote jalovišta.



Slika 4-3. Granulometrijski sastav jalovine (Calx, 2017)

### 4.1. Profil 6

Prva povratna analiza je provedena na profilu 6 (Slika 4-4.). Model se sastoji od dva poligona koja reprezentiraju dva materijala različitih parametara (Slika 4-5.). Poligon 1 označava jalovinu odnosno nasuti materijal čiju stabilnost ispitujemo, a poligon 2 matičnu stijenu (dolomit).



Slika 4-4. Model profila 6



Slika 4-5. Koordinate točaka poligona za profil 6

### 4.1.1. Varijanta 1 ( $c_{ef} = 0, 1 \text{ kPa} = konst.$ )

Parametri za varijantu kada je  $c_{ef} = 0,1$  kPa = *konst*. prikazani su u tablici 4-1. U istoj tablici su prikazani i faktori sigurnosti dobiveni analizom.

| Dolomit    |     |       |            | Jal     | ovina |       |            |   |
|------------|-----|-------|------------|---------|-------|-------|------------|---|
| γ          | Øef | Cef   | Ysat       | γ       | Øef   | Cef   | Ysat       |   |
| $(kN/m^3)$ | (°) | (kPa) | $(kN/m^3)$ | (kN/m3) | (°)   | (kPa) | $(kN/m^3)$ | F |
| 30         | 45  | 200   | 30         | 18      | 26    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 28    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 30    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 32    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 33    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 34    | 0,1   | 18         | 0 |
| 30         | 45  | 200   | 30         | 18      | 36    | 0,1   | 18         | 1 |
| 30         | 45  | 200   | 30         | 18      | 38    | 0,1   | 18         | 1 |

Tablica 4-1. Parametri analize za  $c_{ef} = 0,1$  kPa na profilu 6

Daljnji korak je ustanoviti za koju vrijednost  $\varphi_{ef}$  je faktor stabilnosti generalno prihvatljiv, odnosno 1,0. Iz prethodne tablice je vidljivo da je to između  $\varphi_{ef} = 34^{\circ}$  i 36°. Sve dobivene vrijednosti  $F_s$  i  $\varphi_{ef}$  se prikažu, te na temelju aproksimacije odredi presjecište pravaca (Slika 4-6.). Tako se za ovu varijantu kada je  $c_{ef} = 0,1$  kPa = *konst*. dobiva  $F_s = 1$  za vrijednost  $\varphi_{ef} = 34,5086^{\circ}$ .



Slika 4-6. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 0,1$  kPa u profilu 6

Slika 4-7. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 36^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-2. pripadajuće podatke.



Slika 4-7. Klizna ploha za vrijednosti  $c_{\rm ef} = 0,1$  kPa,  $\varphi_{\rm ef} = 36^{\circ}$  i  $F_{\rm s} = 1,05$  u profilu 6

Tablica 4-2. Parametri klizne plohe, sile i momenti za  $c_{ef} = 0,1$  kPa,  $\varphi_{ef} = 36^{\circ}$  i  $F_s = 1,05$  u profilu 6

| Centar |        | Radijus | Kutovi     |            | Sile          |  | Momenti          |          |
|--------|--------|---------|------------|------------|---------------|--|------------------|----------|
| x      | z      | R       | <b>a</b> 1 | $\alpha_2$ | Fa Fp         |  | $M_{\mathrm{a}}$ | Mp       |
| (m)    | (m)    | (m)     | (°)        | (°)        | (kN/m) (kN/m) |  | (kNm/m)          | (kNm/m)  |
| 175,67 | 145,45 | 131,14  | -42,39     | -28,15     | 176,19 184,88 |  | 19934,43         | 20917,53 |

### 4.1.2. Varijanta 2 ( $c_{ef} = 1,0 \text{ kPa} = konst.$ )

Parametri i dobiveni faktori sigurnosti druge varijante kada je  $c_{ef} = 1,0$  kPa = *konst*. prikazani su u tablici 4-3. Vidljivo je da je  $F_s = 1$  vrlo blizu nakon 32° što potvrđuje i slika 4-8.

|                           | Do                 | olomit               |                              | Jalovina     |                    |                      |                              |  |
|---------------------------|--------------------|----------------------|------------------------------|--------------|--------------------|----------------------|------------------------------|--|
| γ<br>(kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>с</i> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | <i>с</i> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 26                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 28                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 30                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 32                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 33                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 34                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 36                 | 1,0                  | 18                           |  |
| 30                        | 45                 | 200                  | 30                           | 18           | 38                 | 1,0                  | 18                           |  |

Tablica 4-3. Parametri analize za  $c_{\rm ef} = 1,0$  kPa u profilu 6



Slika 4-8. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 1,0$  kPa u profilu 6

Slika 4-9. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 33^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-4. pripadajuće podatke.



Slika 4-9. Klizna ploha za vrijednosti  $c_{\rm ef} = 1,0$  kPa,  $\varphi_{\rm ef} = 33^{\circ}$  i  $F_{\rm s} = 1,03$  u profilu 6

| Tablica 4-4. Parametri klizne j | olohe, sile i momenti | za $c_{\rm ef}$ = 1,0 kPa, $\varphi_{\rm ef}$ | $= 33^{\circ} \text{ i } F_{\text{s}} = 1,03 \text{ u}$ |
|---------------------------------|-----------------------|-----------------------------------------------|---------------------------------------------------------|
| profilu 6                       |                       |                                               |                                                         |

| Cer    | ntar   | Radijus | Kutovi     |            | Sile                          |  | Mon              | nenti    |
|--------|--------|---------|------------|------------|-------------------------------|--|------------------|----------|
| x      | z      | R       | <b>a</b> 1 | $\alpha_2$ | F <sub>a</sub> F <sub>p</sub> |  | $M_{\mathrm{a}}$ | Mp       |
| (m)    | (m)    | (m)     | (°)        | (°)        | (kN/m) (kN/m)                 |  | (kNm/m)          | (kNm/m)  |
| 144,58 | 102,79 | 61,37   | -48,21     | -21,03     | 390,80 401,90                 |  | 23983,43         | 24664,77 |

### 4.1.3. Varijanta 3 ( $c_{ef} = 2,0$ kPa = konst.)

Parametri i dobiveni faktori sigurnosti treće varijante kada je  $c_{ef} = 2,0$  kPa = *konst.* prikazani su u tablici 4-5. Vidljivo je da je  $F_s = 1$  opet vrlo blizu jednog od kutova (30°) što potvrđuje i slika 4-10.

|                               | Dolomit            |                      |                              |  |              |                    |              |                              |      |
|-------------------------------|--------------------|----------------------|------------------------------|--|--------------|--------------------|--------------|------------------------------|------|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <b>с</b> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |  | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | сеf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | Fs   |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 26                 | 2,0          | 18                           | 0,85 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 28                 | 2,0          | 18                           | 0,92 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 30                 | 2,0          | 18                           | 0,99 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 32                 | 2,0          | 18                           | 1,06 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 33                 | 2,0          | 18                           | 1,10 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 34                 | 2,0          | 18                           | 1,13 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 36                 | 2,0          | 18                           | 1,21 |
| 30                            | 45                 | 200                  | 30                           |  | 18           | 38                 | 2,0          | 18                           | 1,29 |

Tablica 4-5. Parametri analize za  $c_{\rm ef} = 2,0$  kPa u profilu 6



Slika 4-10. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 2,0$  kPa u profilu 6

Slika 4-11. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 32^{\circ}$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-6. pripadajuće podatke.



Slika 4-11. Klizna ploha za vrijednosti  $c_{\rm ef} = 2,0$  kPa,  $\varphi_{\rm ef} = 32^{\circ}$  i  $F_{\rm s} = 1,06$  u profilu 6

| Tablica 4-6. Parametri klizn | e plohe, sile i momer | nti za $c_{\rm ef}$ = 2,0 kPa, $\varphi_{\rm ef}$ | $e_{\rm f} = 32^{\circ} \text{ i } F_{\rm s} = 1,06 \text{ u}$ |
|------------------------------|-----------------------|---------------------------------------------------|----------------------------------------------------------------|
| profilu 6                    |                       |                                                   |                                                                |

| Cer    | ntar  | Radijus | Kutovi     |            | Sile          |  | Mon      | nenti    |
|--------|-------|---------|------------|------------|---------------|--|----------|----------|
| x      | z     | R       | <b>a</b> 1 | <b>a</b> 2 | Fa Fp         |  | Ma       | Mp       |
| (m)    | (m)   | (m)     | (°)        | (°)        | (kN/m) (kN/m) |  | (kNm/m)  | (kNm/m)  |
| 135,19 | 89,79 | 46,00   | -52,66     | -16,10     | 518,97 549,95 |  | 23872,60 | 25297,56 |

### 4.1.4. Varijanta 4 ( $c_{ef} = 3,0$ kPa = konst.)

Parametri i dobiveni faktori sigurnosti četvrte varijante kada je  $c_{ef} = 3,0$  kPa = konst. prikazani su u tablici 4-7.  $\varphi_{ef}$  iznosi 28,8187° za  $F_s = 1$  (slika 4-12.).

|                           | Do                 | olomit               |                              | Jalovina |              |                    |              |                              |   |
|---------------------------|--------------------|----------------------|------------------------------|----------|--------------|--------------------|--------------|------------------------------|---|
| γ<br>(kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <b>с</b> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |          | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | сеf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | I |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 26                 | 3,0          | 18                           | C |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 28                 | 3,0          | 18                           | 0 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 30                 | 3,0          | 18                           | 1 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 32                 | 3,0          | 18                           | 1 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 33                 | 3,0          | 18                           | 1 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 34                 | 3,0          | 18                           | 1 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 36                 | 3,0          | 18                           | 1 |
| 30                        | 45                 | 200                  | 30                           |          | 18           | 38                 | 3,0          | 18                           | 1 |

Tablica 4-7. Parametri analize za  $c_{\rm ef} = 3,0$  kPa u profilu 6



Slika 4-12. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 3,0$  kPa u profilu 6

Slika 4-13. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 30^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-8. pripadajuće podatke.



Slika 4-13. Klizna ploha za vrijednosti  $c_{\rm ef} = 3,0$  kPa,  $\varphi_{\rm ef} = 30^{\circ}$  i  $F_{\rm s} = 1,04$  u profilu 6

| Tablica 4-8. Parametri klizne | plohe, sile i momenti | i za $c_{\rm ef}$ = 3,0 kPa, $\varphi_{\rm ef}$ | $= 30^{\circ} \text{ i } F_{\text{s}} = 1,04 \text{ u}$ |
|-------------------------------|-----------------------|-------------------------------------------------|---------------------------------------------------------|
| profilu 6                     |                       |                                                 |                                                         |

| Cer    | ntar  | Radijus | Kutovi     |            | Sile          |  | Mon        | nenti    |
|--------|-------|---------|------------|------------|---------------|--|------------|----------|
| x      | z     | R       | <b>a</b> 1 | <b>a</b> 2 | Fa Fp         |  | $M_{ m a}$ | Mp       |
| (m)    | (m)   | (m)     | (°)        | (°)        | (kN/m) (kN/m) |  | (kNm/m)    | (kNm/m)  |
| 133,15 | 87,97 | 43,76   | -53,42     | -14,02     | 617,68 643,25 |  | 27029,82   | 28148,56 |

### 4.1.5. Varijanta 5 ( $c_{ef} = 4,0$ kPa = konst.)

Parametri i dobiveni faktori sigurnosti pete varijante kada je  $c_{ef} = 4,0$  kPa = konst. prikazani su u tablici 4-9.  $\varphi_{ef}$  iznosi 27,5289° za  $F_s = 1$  (Slika 4-14.).

|                               | Do                 | lomit                |                              |             | Jal                                                                              | ovina                |                              |  |
|-------------------------------|--------------------|----------------------|------------------------------|-------------|----------------------------------------------------------------------------------|----------------------|------------------------------|--|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>с</i> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3 | <b>\$\$\$\$</b> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | <i>с</i> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 26                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 28                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 30                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 32                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 33                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 34                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 36                                                                               | 4,0                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18          | 38                                                                               | 4,0                  | 18                           |  |

Tablica 4-9. Parametri analize za  $c_{\rm ef} = 4,0$  kPa u profilu 6



Slika 4-14. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 4,0$  kPa u profilu 6

Slika 4-15. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 28^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-10. pripadajuće podatke.



Slika 4-15. Klizna ploha za vrijednosti  $c_{\rm ef} = 4,0$  kPa,  $\varphi_{\rm ef} = 28^{\circ}$  i  $F_{\rm s} = 1,02$  u profilu 6

| Tablica 4-10. | Parametri klizne | plohe, sile i | momenti za | $c_{\rm ef} = 4,0  \rm kPa$ , | $\varphi_{\rm ef} = 28^{\circ}$ | $i F_s = 1$ | ,02 u |
|---------------|------------------|---------------|------------|-------------------------------|---------------------------------|-------------|-------|
| profilu 6     |                  |               |            |                               |                                 |             |       |

| Cer    | ntar  | Radijus | Kutovi     |            | Sile          |  | Mon      | nenti    |
|--------|-------|---------|------------|------------|---------------|--|----------|----------|
| x      | z     | R       | <b>a</b> 1 | <b>a</b> 2 | Fa Fp         |  | Ma       | Mp       |
| (m)    | (m)   | (m)     | (°)        | (°)        | (kN/m) (kN/m) |  | (kNm/m)  | (kNm/m)  |
| 130,95 | 84,86 | 40,24   | -55,19     | -12,03     | 672,99 684,95 |  | 27081,23 | 27562,53 |

### 4.1.6. Varijanta 6 ( $c_{ef} = 5,0 \text{ kPa} = konst.$ )

Parametri i dobiveni faktori sigurnosti pete varijante kada je  $c_{ef} = 5,0$  kPa = konst. prikazani su u tablici 4-11.  $\varphi_{ef}$  iznosi 26,4731° za  $F_s = 1$  (Slika 4-16.).

|                               | Do                 | olomit               |                              |             | Jal                  | ovina                |                              |   |
|-------------------------------|--------------------|----------------------|------------------------------|-------------|----------------------|----------------------|------------------------------|---|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3 | <b>Ø</b> ef<br>) (°) | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 26                   | 5,0                  | 18                           | _ |
| 30                            | 45                 | 200                  | 30                           | 18          | 28                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 30                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 32                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 33                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 34                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 36                   | 5,0                  | 18                           |   |
| 30                            | 45                 | 200                  | 30                           | 18          | 38                   | 5,0                  | 18                           |   |

Tablica 4-11. Parametri analize za  $c_{\rm ef} = 5,0$  kPa u profilu 6



Slika 4-16. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 5,0$  kPa u profilu 6

Slika 4-17. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 28^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-12. pripadajuće podatke.



Slika 4-17. Klizna ploha za vrijednosti  $c_{ef} = 5,0$  kPa,  $\varphi_{ef} = 28^{\circ}$  i  $F_s = 1,06$  u profilu 6

| orofilu 6 | 2.1   |         | prone, sr  |            |        | 0,0 M u | , φει <u>2</u> 0 | ,        |
|-----------|-------|---------|------------|------------|--------|---------|------------------|----------|
| Cer       | ntar  | Radijus | Kut        | tovi       | Si     | le      | Mon              | nenti    |
| x         | z     | R       | <b>a</b> 1 | <b>a</b> 2 | Fa     | Fp      | Ma               | Mp       |
| (m)       | (m)   | (m)     | (°)        | (°)        | (kN/m) | (kN/m)  | (kNm/m)          | (kNm/m)  |
| 130,02    | 83,98 | 39,18   | -55,68     | -11,01     | 714,13 | 758,19  | 27979,57         | 29705,83 |

Tablica 4-12. Parametri klizne plohe, sile i momenti za  $c_{ef} = 5.0$  kPa,  $\varphi_{ef} = 28^{\circ}$  i  $F_s = 1.06$  u

### 4.2. Profil 8

Ovaj model (Slika 4-18.) se od prethodnog razlikuje samo po koordinatama poligona (Slika 4-19.). Poligon 1 i dalje označava nasuti materijal, a poligon 2 matičnu stijenu. Obzirom na iste karakteristike, povratna analiza za profil 8 je provedena s istim vrijednostima efektivne kohezije i efektivnog kuta unutarnjeg kuta trenja.



Slika 4-18. Model profil 8



Slika 4-19. Koordinate točaka poligona za profil 8

#### 4.2.1. Varijanta 1 ( $c_{ef} = 0, 1 \text{ kPa} = konst.$ )

Parametri za varijantu kada je  $c_{ef} = 0,1$  kPa = *konst*. prikazani su u tablici 4-13. U istoj tablici su prikazani i faktori sigurnosti dobiveni analizom,  $\varphi_{ef}$  iznosi 33,4033° za  $F_s = 1$  (Slika 4-20.).

|                               | Do                 | olomit               |                              |              | Jal        | ovina                |                              |  |
|-------------------------------|--------------------|----------------------|------------------------------|--------------|------------|----------------------|------------------------------|--|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | Øef<br>(°) | <i>C</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 26         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 28         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 30         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 32         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 33         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 34         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 36         | 0,1                  | 18                           |  |
| 30                            | 45                 | 200                  | 30                           | 18           | 38         | 0,1                  | 18                           |  |

Tablica 4-13. Parametri analize za  $c_{\rm ef} = 0,1$  kPa u profilu 8



Slika 4-20. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 0,1$  kPa u profilu 8

Slika 4-21. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 34^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-14. pripadajuće podatke.



Slika 4-21. Klizna ploha za vrijednosti  $c_{\rm ef} = 0,1$  kPa,  $\varphi_{\rm ef} = 34^{\circ}$  i  $F_{\rm s} = 1,02$  u profilu 8

| Tablica 4-14. | Parametri klizne | plohe, sile | i momenti z | $z_{ef} = 0,1$ | kPa, $\varphi_{\rm ef} = 34$ | $\circ$ i $F_{\rm s} = 1$ | 1,02 u |
|---------------|------------------|-------------|-------------|----------------|------------------------------|---------------------------|--------|
| profilu 8     |                  |             |             |                |                              |                           |        |

| Cei    | ntar   | Radijus | Kut        | tovi       | Si     | le         | Mon      | nenti    |
|--------|--------|---------|------------|------------|--------|------------|----------|----------|
| x      | z      | R       | <b>a</b> 1 | <i>a</i> 2 | Fa     | $F_{ m p}$ | Ma       | Mp       |
| (m)    | (m)    | (m)     | (°)        | (°)        | (kN/m) | (kN/m)     | (kNm/m)  | (kNm/m)  |
| 193,93 | 185,39 | 156,45  | -40,12     | -28,02     | 200,63 | 204,11     | 31388,05 | 31933,31 |

### 4.2.2. Varijanta 2 ( $c_{ef} = 1,0$ kPa = konst.)

Parametri i dobiveni faktori sigurnosti druge varijante kada je  $c_{ef} = 1,0$  kPa = konst. prikazani su u tablici 4-15.  $\varphi_{ef}$  iznosi 31,2187° za  $F_s = 1$  (Slika 4-22.).

|                               | Do                 | olomit       |                              |              | Jal                | ovina         |                              |   |
|-------------------------------|--------------------|--------------|------------------------------|--------------|--------------------|---------------|------------------------------|---|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | Cef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | Cef<br>(kPa)  | γsat<br>(kN/m <sup>3</sup> ) |   |
| 30                            | 45                 | 200          | 30                           | 18           | 26                 | (KI u)<br>1,0 | 18                           | _ |
| 30                            | 45                 | 200          | 30                           | 18           | 28                 | 1,0           | 18                           |   |
| 30<br>30                      | 45<br>45           | 200<br>200   | 30<br>30                     | 18<br>18     | 30<br>32           | 1,0<br>1.0    | 18<br>18                     |   |
| 30                            | 45                 | 200          | 30                           | 18           | 33                 | 1,0           | 18                           |   |
| 30                            | 45                 | 200          | 30                           | 18           | 34                 | 1,0           | 18                           |   |
| 30                            | 45                 | 200          | 30                           | 18           | 36                 | 1,0           | 18                           |   |

Tablica 4-15. Parametri analize za  $c_{\rm ef} = 1,0$  kPa u profilu 8



Slika 4-22. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 1,0$  kPa u profilu 8

Slika 4-23. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 32^{\circ}$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-16. pripadajuće podatke.



Slika 4-23. Klizna ploha za vrijednosti  $c_{ef} = 1,0$  kPa,  $\varphi_{ef} = 32^{\circ}$  i  $F_s = 1,06$  u profilu 8

| Tablica 4-16. | Parametri klizne plohe | e, sile i momenti za <i>c</i> | $\varphi_{\rm ef} = 1,0$ kPa, $\varphi_{\rm ef} = 3$ | $32^{\circ} \text{ i } F_{\text{s}} = 1,06$ |
|---------------|------------------------|-------------------------------|------------------------------------------------------|---------------------------------------------|
| u profilu 8   |                        |                               |                                                      |                                             |

| Cei    | ntar   | Radijus | Kut        | tovi       | Si     | le     | Mon      | nenti    |
|--------|--------|---------|------------|------------|--------|--------|----------|----------|
| x      | z      | R       | <b>a</b> 1 | <b>a</b> 2 | Fa     | Fp     | Ma       | Mp       |
| (m)    | (m)    | (m)     | (°)        | (°)        | (kN/m) | (kN/m) | (kNm/m)  | (kNm/m)  |
| 148,61 | 119,68 | 77,77   | -46,09     | -21,01     | 472,79 | 484,50 | 36768,90 | 37679,35 |

### 4.2.3. Varijanta 3 ( $c_{ef} = 2,0 \text{ kPa} = konst.$ )

Parametri i dobiveni faktori sigurnosti treće varijante kada je  $c_{ef} = 2,0$  kPa = konst. prikazani su u tablici 4-17.  $\varphi_{ef}$  iznosi 29,5921° za  $F_s = 1$  (Slika 4-24.).

|                               | Do                 | lomit                |                              |     |           | Jal                | ovina        |                              |
|-------------------------------|--------------------|----------------------|------------------------------|-----|-----------|--------------------|--------------|------------------------------|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <b>с</b> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | (kN | γ<br>/m3) | <b>Ø</b> ef<br>(°) | сеf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 26                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 28                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 30                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 32                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 33                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 34                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 36                 | 2,0          | 18                           |
| 30                            | 45                 | 200                  | 30                           | 1   | 8         | 38                 | 2,0          | 18                           |

Tablica 4-17. Parametri analize za  $c_{\text{ef}} = 2,0$  kPa u profilu 8



Slika 4-24. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 2,0$  kPa u profilu 8

Slika 4-25. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 30^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-18. pripadajuće podatke.



Slika 4-25. Klizna ploha za vrijednosti  $c_{\rm ef} = 2,0$  kPa,  $\varphi_{\rm ef} = 30^{\circ}$  i  $F_{\rm s} = 1,01$  u profilu 8

| Tablica 4-18. | Parametri klizne | plohe, sile | i momenti z | $z_{ef} = 2,0 \text{ kP}$ | Pa, $\varphi_{\rm ef} = 30^{\circ}$ | $i F_{s} = 1$ | ,01 u |
|---------------|------------------|-------------|-------------|---------------------------|-------------------------------------|---------------|-------|
| profilu 8     |                  |             |             |                           |                                     |               |       |

| Cei    | ntar   | Radijus | Kut        | tovi       | Si     | le         | Mon      | nenti    |
|--------|--------|---------|------------|------------|--------|------------|----------|----------|
| x      | z      | R       | <b>a</b> 1 | <b>a</b> 2 | Fa     | $F_{ m p}$ | Ma       | Mp       |
| (m)    | (m)    | (m)     | (°)        | (°)        | (kN/m) | (kN/m)     | (kNm/m)  | (kNm/m)  |
| 138,65 | 105,78 | 61,36   | -49,26     | -17,03     | 634,09 | 641,28     | 38907,96 | 39348,66 |

4.2.4. Varijanta 4 ( $c_{ef} = 3,0$  kPa = konst.)

Parametri i dobiveni faktori sigurnosti četvrte varijante kada je  $c_{ef} = 3,0$  kPa = konst. prikazani su u tablici 4-19.  $\varphi_{ef}$  iznosi 28,3013° za  $F_s = 1$  (Slika 4-26.).

|                               | Do                 | olomit       |                              |              | Jal                | ovina        |                              |  |
|-------------------------------|--------------------|--------------|------------------------------|--------------|--------------------|--------------|------------------------------|--|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | Cef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | Cef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |  |
| 30                            | 45                 | 200          | 30                           | 18           | 26                 | 3,0          | 18                           |  |
| 30<br>30                      | 45<br>45           | 200          | 30<br>30                     | 18           | 28                 | 3,0          | 18                           |  |
| 30<br>30                      | 43<br>45           | 200          | 30<br>30                     | 18           | 30<br>32           | 3,0<br>3,0   | 18<br>18                     |  |
| 30                            | 45                 | 200          | 30                           | 18           | 33                 | 3,0          | 18                           |  |
| 30<br>30                      | 45<br>45           | 200<br>200   | 30<br>30                     | 18<br>18     | 34<br>36           | 3,0<br>3.0   | 18<br>18                     |  |
| 30                            | 45                 | 200          | 30                           | 18           | 38                 | 3,0          | 18                           |  |

Tablica 4-19. Parametri analize za  $c_{\text{ef}} = 3,0$  kPa u profilu 8



Slika 4-26. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 3,0$  kPa u profilu 8

Slika 4-27. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 30^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a tablica 4-20. pripadajuće podatke.



Slika 4-27. Klizna ploha za vrijednosti  $c_{\rm ef} = 3,0$  kPa,  $\varphi_{\rm ef} = 30^{\circ}$  i  $F_{\rm s} = 1,06$  u profilu 8

| Tablica 4-20. | Parametri klizne | plohe, sile | i momenti z | $z_{ef} = 3,0 \text{ kP}$ | a, $\varphi_{\rm ef} = 30^{\circ}$ | $i F_{s} = 1$ | 1,06 u |
|---------------|------------------|-------------|-------------|---------------------------|------------------------------------|---------------|--------|
| profilu 8     |                  |             |             |                           |                                    |               |        |

| Cer    | Centar R |       | Kutovi     |            | Si            | le     | Momenti  |          |  |
|--------|----------|-------|------------|------------|---------------|--------|----------|----------|--|
| x      | z        | R     | <b>a</b> 1 | <b>a</b> 2 | Fa Fp         |        | Ma       | Mp       |  |
| (m)    | (m)      | (m)   | (°)        | (°)        | (kN/m) (kN/m) |        | (kNm/m)  | (kNm/m)  |  |
| 133,73 | 99,01    | 53,54 | -51,57     | -14,04     | 762,97        | 809,61 | 40849,24 | 43346,76 |  |

### 4.2.5. Varijanta 5 ( $c_{ef} = 4,0 \text{ kPa} = konst.$ )

Parametri i dobiveni faktori sigurnosti pete varijante kada je  $c_{ef} = 4,0$  kPa = konst. prikazani su u Tablici 4-21.  $\varphi_{ef}$  iznosi 27,2347° za  $F_s = 1$  (Slika 4-28.).

|                           | Do                 | olomit               |                              |              | Jal                                                                               | ovina                |                              |   |
|---------------------------|--------------------|----------------------|------------------------------|--------------|-----------------------------------------------------------------------------------|----------------------|------------------------------|---|
| γ<br>(kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>с</i> еf<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | <b>\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$</b> | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 26                                                                                | 4,0                  | 18                           | _ |
| 30                        | 45                 | 200                  | 30                           | 18           | 28                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 30                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 32                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 33                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 34                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 36                                                                                | 4,0                  | 18                           |   |
| 30                        | 45                 | 200                  | 30                           | 18           | 38                                                                                | 4,0                  | 18                           |   |

Tablica 4-21. Parametri analize za  $c_{\text{ef}} = 4,0$  kPa u profilu 8



Slika 4-28. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 4,0$  kPa u profilu 8

Slika 4-29. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 28^\circ$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a Tablica 4-22. pripadajuće podatke.



Slika 4-29. Klizna ploha za vrijednosti  $c_{\rm ef}$  = 4,0 kPa,  $\varphi_{\rm ef}$  = 28° i  $F_{\rm s}$  = 1,03 u profilu 8

| Tablica 4-22. Paran | netri klizne plohe, | sile i momenti | za $c_{\rm ef} = 4,0$ kPa, | $\varphi_{\rm ef} = 28^\circ \mathrm{i}F$ | $_{\rm s} = 1,03$ u |
|---------------------|---------------------|----------------|----------------------------|-------------------------------------------|---------------------|
| profilu 8           |                     |                |                            |                                           |                     |

| Cer    | Centar |       | Kutovi     |            | Si            | le     | Momenti  |          |  |
|--------|--------|-------|------------|------------|---------------|--------|----------|----------|--|
| x      | z      | R     | <b>a</b> 1 | <b>a</b> 2 | Fa Fp         |        | Ma       | Mp       |  |
| (m)    | (m)    | (m)   | (°)        | (°)        | (kN/m) (kN/m) |        | (kNm/m)  | (kNm/m)  |  |
| 130,94 | 94,87  | 48,88 | -53,41     | -12,03     | 835,00        | 861,61 | 40814,99 | 42115,67 |  |

4.2.6. Varijanta 6 ( $c_{ef} = 5,0 \text{ kPa} = konst.$ )

Parametri i dobiveni faktori sigurnosti pete varijante kada je  $c_{ef} = 5,0$  kPa = konst. prikazani su u Tablici 4-23.  $\varphi_{ef}$  iznosi 26,0000° za  $F_s = 1$  (Slika 4-30.).

|                               | Do                 | olomit               |                              |              |                    |                      |                              |      |
|-------------------------------|--------------------|----------------------|------------------------------|--------------|--------------------|----------------------|------------------------------|------|
| $\gamma$ (kN/m <sup>3</sup> ) | <b>Ø</b> ef<br>(°) | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | γ<br>(kN/m3) | <b>Ø</b> ef<br>(°) | <i>c</i> ef<br>(kPa) | γsat<br>(kN/m <sup>3</sup> ) | Fs   |
| 30                            | 45                 | 200                  | 30                           | 18           | 26                 | 5,0                  | 18                           | 1,00 |
| 30                            | 45                 | 200                  | 30                           | 18           | 28                 | 5,0                  | 18                           | 1,07 |
| 30                            | 45                 | 200                  | 30                           | 18           | 30                 | 5,0                  | 18                           | 1,15 |
| 30                            | 45                 | 200                  | 30                           | 18           | 32                 | 5,0                  | 18                           | 1,23 |
| 30                            | 45                 | 200                  | 30                           | 18           | 33                 | 5,0                  | 18                           | 1,20 |
| 30                            | 45                 | 200                  | 30                           | 18           | 34                 | 5,0                  | 18                           | 1,31 |
| 30                            | 45                 | 200                  | 30                           | 18           | 36                 | 5,0                  | 18                           | 1,39 |
| 30                            | 45                 | 200                  | 30                           | 18           | 38                 | 5,0                  | 18                           | 1,48 |

Tablica 4-23. Parametri analize za  $c_{\rm ef} = 5,0$  kPa u profilu 8



Slika 4-30. Prikaz porasta  $F_s$  u odnosu na  $\varphi_{ef}$  za  $c_{ef} = 5,0$  kPa u profilu 8

Slika 4-31. pokazuje prvu kliznu plohu ( $\varphi_{ef} = 26^{\circ}$ ) koja je tijekom analize zadovoljila faktor sigurnosti, a Tablica 4-24. pripadajuće podatke.



Slika 4-31. Klizna ploha za vrijednosti  $c_{\rm ef} = 5,0$  kPa,  $\varphi_{\rm ef} = 26^{\circ}$  i  $F_{\rm s} = 1,00$  u profilu 8

| Cei    | Centar Rad |       | Kutovi     |            | Si     | le     | Momenti    |          |  |
|--------|------------|-------|------------|------------|--------|--------|------------|----------|--|
| x      | z          | R     | <b>a</b> 1 | <b>a</b> 2 | Fa Fp  |        | $M_{ m a}$ | Mp       |  |
| (m)    | (m)        | (m)   | (°)        | (°)        | (kN/m) | (kN/m) | (kNm/m)    | (kNm/m)  |  |
| 128,75 | 92,40      | 46,03 | -54,59     | -10,03     | 936,06 | 935,67 | 43086,69   | 43069,10 |  |

Tablica 4-24. Parametri klizne plohe, sile i momenti za  $c_{ef} = 5,0$  kPa,  $\varphi_{ef} = 26^{\circ}$  i  $F_s = 1,00$  u profilu 8

#### 5. ANALIZA REZULTATA

U ovom poglavlju su pregledno prikazani rezultati povratne analize i međusoban odnos podataka profila 6 i 8.

### 5.1. Efektivni kut unutarnjeg trenja

Povratna analiza je pokazala da je efektivni kut unutarnjeg trenja obrnuto proporcionalan efektivnoj koheziji, ako je faktor sigurnosti konstantan ( $F_s = 1$ ) (Tablica 5-1. i 5-2.). Linearnom aproksimacijom funkcije je dodatno vidljivo kako se efektivni kut unutarnjeg trenja smanjuje s povećanjem efektivne kohezije (Slika 5-1. i 5-2.).

Tablica 5-1. Prikaz smanjenja  $\varphi_{ef}$  kroz povratnu analizu profila 6 za slučaj kada je  $F_s = 1$ 

|               | c <sub>ef</sub> (kPa)       |         |         |         |         |         |  |  |  |  |
|---------------|-----------------------------|---------|---------|---------|---------|---------|--|--|--|--|
| $F_{\rm s}=1$ | 0,1                         | 1,0     | 2,0     | 3,0     | 4,0     | 5,0     |  |  |  |  |
| 1 5 - 1       | $\varphi_{ m ef}(^{\circ})$ |         |         |         |         |         |  |  |  |  |
|               | 34,5086                     | 32,0392 | 30,2555 | 28,8187 | 27,5289 | 26,4731 |  |  |  |  |

Tablica 5-2. Prikaz smanjenja  $\varphi_{ef}$  kroz povratnu analizu profila 8 za slučaj kada je  $F_s = 1$ 

|             | c <sub>ef</sub> (kPa)       |         |         |         |         |         |  |  |  |  |
|-------------|-----------------------------|---------|---------|---------|---------|---------|--|--|--|--|
| $F_{s} = 1$ | 0,1                         | 1,0     | 2,0     | 3,0     | 4,0     | 5,0     |  |  |  |  |
|             | $\varphi_{ m ef}(^{\circ})$ |         |         |         |         |         |  |  |  |  |
|             | 33,4033                     | 31,2187 | 29,5921 | 28,3013 | 27,2347 | 26,0000 |  |  |  |  |



Slika 5-1. Odnos efektivne kohezije i kuta unutarnjeg trenja za  $F_s = 1$  u profilu 6



Slika 5-2. Odnos efektivne kohezije i kuta unutarnjeg trenja za  $F_s = 1$  u profilu 8

Zavisnost varijabli se iskazuje koeficijentom determinacije  $R^2$ . U ovom slučaju su krivulje dobivene iz podataka tablica 5-1. i 5-2. zavisne varijable, a njihova linearna aproksimacija nezavisne varijable. Koeficijent determinacije  $R^2$  za profil 6 iznosi 0,9721 odnosno zavisna varijabla se poklapa s vjerojatnošću od 97,21% s očekivanim podacima (nezavisnom varijablom) (Slika 5-1.). Slična zavisnost se javlja i kod profila 8 za koji je  $R^2 = 0,9774$  (Slika 5-2.).

#### 5.2. Klizna ploha

U prethodnom poglavlju su prikazane optimizirane klizne plohe po Bishopu za svaki  $c_{ef}$ . Promatrajući te slike je vidljivo da se s povećanjem  $c_{ef}$  i  $\varphi_{ef}$  mijenja položaj kliznih ploha. Za prvu polovicu vrijednosti  $c_{ef}$ , odnosno do 2,0 kPa je vidljivo znatno povećanje klizne plohe odnosno volumena kliznog tijela, dok je za ostale vrijednosti prirast minimalan. Što je klizna ploha veća, to je veća i kohezija, odnosno, radijus klizne plohe je manji. Takvo ponašanje klizne plohe se uočava u tablicama 5-3. i 5-4. gdje se radijus za profil 6 smanjuje od 113,14 m na 39,18 m, odnosno od 156,45 m na 46,03 m za profil 8. Isto tako se s produbljivanjem kliznih ploha povećavaju i sile i momenti.

Tablica 5-3. Promjena parametara kliznih ploha, sila i momenata kroz povratnu analizu profila 6 za slučaj kada je  $F_s$  minimalno 1,0

|       | Centar       |        | Radijus      | Kutovi                |        | Sile   |        | Momenti  |            |
|-------|--------------|--------|--------------|-----------------------|--------|--------|--------|----------|------------|
| Cef   | x            | z      | R            | <i>α</i> <sub>1</sub> | α2     | Fa     | Fp     | Ma       | $M_{ m p}$ |
| (kPa) | ( <b>m</b> ) | (m)    | ( <b>m</b> ) | (°)                   | (°)    | (kN/m) | (kN/m) | (kNm/m)  | (kNm/m)    |
| 0,1   | 175,67       | 145,45 | 113,14       | -42,39                | -28,15 | 176,19 | 184,88 | 19934,43 | 20917,53   |
| 1,0   | 144,58       | 102,79 | 61,37        | -48,21                | -21,03 | 390,80 | 401,90 | 23983,43 | 24664,77   |
| 2,0   | 135,19       | 89,79  | 46,00        | -52,66                | -16,10 | 518,97 | 549,95 | 23872,60 | 25297,56   |
| 3,0   | 133,15       | 87,97  | 43,76        | -53,42                | -14,02 | 617,68 | 643,25 | 27029,82 | 28148,56   |
| 4,0   | 130,95       | 84,86  | 40,24        | -55,19                | -12,03 | 672,99 | 684,95 | 27091,23 | 27562,53   |
| 5,0   | 130,02       | 83,98  | 39,18        | -55,68                | -11,01 | 714,13 | 758,19 | 27979,57 | 29705,83   |

Tablica 5-4. Promjena parametara kliznih ploha, sila i momenata kroz povratnu analizu profila 8 za slučaj kada je  $F_s$  minimalno 1,0

|       | Centar |        | Radijus      | Kutovi                |            | Sile   |        | Momenti  |            |
|-------|--------|--------|--------------|-----------------------|------------|--------|--------|----------|------------|
| Cef   | x      | z      | R            | <i>a</i> <sub>1</sub> | <i>a</i> 2 | Fa     | Fp     | Ma       | $M_{ m p}$ |
| (kPa) | (m)    | (m)    | ( <b>m</b> ) | (°)                   | (°)        | (kN/m) | (kN/m) | (kNm/m)  | (kNm/m)    |
| 0,1   | 193,93 | 185,39 | 156,45       | -40,12                | -28,02     | 200,63 | 204,11 | 31388,05 | 31933,31   |
| 1,0   | 148,61 | 119,68 | 77,77        | -46,09                | -21,01     | 472,79 | 484,50 | 36768,90 | 37679,35   |
| 2,0   | 138,65 | 105,78 | 61,36        | -49,26                | -17,03     | 634,09 | 641,28 | 38907,96 | 39348,66   |
| 3,0   | 133,73 | 99,01  | 53,54        | -51,57                | -14,04     | 762,97 | 809,61 | 40849,24 | 43346,76   |
| 4,0   | 130,94 | 94,87  | 48,88        | -53,41                | -12,03     | 835,00 | 861,61 | 40814,99 | 42115,67   |
| 5,0   | 128,75 | 92,40  | 46,03        | -54,59                | -10,03     | 936,06 | 935,67 | 43086,69 | 43069,10   |

### 6. ZAKLJUČAK

Analiza stabilnosti kosina je složen proces koji zahtijeva posebnu pažnju i točnost ulaznih parametara. Njezin cilj je procijeniti sigurnost kosina kao i uvjete koji mogu dovesti do njihova sloma i kao takva predstavlja neizostavan i jedan od najčešće korištenih alata u geotehnici.

Uspješno projektiranje kosine uvjetovano je poznavanjem cijelog niza podataka vezanih uz geologiju terena i uvjeta na lokacije. Na stabilnost značajan utjecaj ima prisutnost vode, svojstva tla i stijena, geometrija kosine, pukotinski sustav, rasjedi i diskontinuiteti, seizmička aktivnost i sl.

Procjena parametara posmične čvrstoće materijala kosine povratnom analizom se često koristi u geotehnici. Na ovaj način se izbjegavaju problemi povezani s terenskim i laboratorijskim određivanjem parametara tla. Primjerice, laboratorijski određeni parametri posmične čvrstoće uključuju određena ograničenja zbog teškoća vezanih uz uzimanje reprezentativnih uzoraka. Povratna analiza je također efikasna metoda kojom je moguće jednostavno opisati stvarne uvjeta na terenu a koji se ponekad ne mogu dobro prenijeti u laboratorij.

Povratna analiza je provedena za materijal jalovine profila 6 i 8 na Istočnom grebenu. Kako su na kosinama uočeni prvi znakovi potencijalnih vlačnih pukotina te dugogodišnji utjecaj erozije, procijenjeno je da je potrebna provjera stabilnosti.

Analiza osjetljivosti je u ovom slučaju pretpostavila konkretne vrijednosti efektivne kohezije od 0,1; 1,0; 2,0; 3,0; 4,0 i 5,0 kPa. S druge strane je cilj bio pronaći vrijednosti efektivnog kuta unutarnjeg trenja koje za zadanu koheziju daju faktor sigurnosti od 1. Za profil 6 su to redom bile vrijednosti od približno  $34,51^{\circ}$ ;  $32,04^{\circ}$ ;  $30,26^{\circ}$ ;  $28,82^{\circ}$ ;  $27,53^{\circ}$  i  $26,47^{\circ}$ . Kod profila 8 je smanjenje vrijednosti bilo slično, s tim da je početni kut manji:  $33,40^{\circ}$ ;  $31,22^{\circ}$ ;  $29,59^{\circ}$ ;  $28,30^{\circ}$ ;  $27,23^{\circ}$  i  $26,00^{\circ}$ . Uočeno je i povećanje klizne plohe s povećanjem kohezije. Koeficijent determinacije  $R^2$  za podatke ispitivanja profila 6 iznosi 0,9721, a za profil 8 0,9774, što u oba slučaja pokazuje veliku zavisnost varijabli jer je vjerojatnost poklapanja podataka preko 95%.

### 7. LITERATURA

BOŽIĆ, B., STRELEC, S., 1992. Istraživanje stijenskih masiva za projektiranje miniranja u kamenolomima "Križ" i "Belski dol". Primjena plitke refrakcijske seizmike. Zagreb: Rudarsko – geološko – naftni zbornik. Vol:4. str 87 – 93.

CALX, 2017. Geomehanička analiza stabilnosti odlagališta jalovine – ELABORAT. Površinski kop "Očura" – Istočni greben. Zagreb: Calx d.o.o.

DRY UNIT WEIGHT, 2018. Geotechdata.info. URL: http://www.geotechdata.info/parameter/soil-dry-unit-weight.html (15.7.2018.)

EBERHARDT, E. 2003. *Rock Slope Stability Analysis - Utilization of Advanced Numerical Techniques*, Vancouver, Canada: Earth and Ocean Sciences, University of British Columbia.

FINE Ltd., 2007. Geo 5 – User's Guide. Version 5.5.

HRŽENJAK, P., 2018. *Analiza stabilnosti kosina*. Predavanje. Zagreb: Rudarsko – geološko – naftni fakultet.

JURIČIĆ, K., 2017. *Prikaz mjera sanacija klizišta*. Završni rad. Osijek: Građevinski fakultet, Sveučilište Josipa Jurja Strossmayera.

LENINGER, I., 2016. Analiza stabilnosti pokosa obale pod utjecajem potresnog opterećenja. Završni rad. Osijek: Građevinski fakultet, Sveučilište Josipa Jurja Strossmayera.

REYES, A. PARRA, D., 2014. *3D slope stability analysis by the using limit equilibrium method analysis of a mine waste dump*. Keystone, Colorado: Proceedings Tailings and Mine Waste 2014. October 5 – 8, 2014.

ROCSCIENCE, 2012. *Slope Stability Back Analysis Methods using Rocscience Software*. URL:

https://www.rocscience.com/documents/pdfs/rocnews/winter2012/Slope-Stability-Back-Analysis-Methods-Using-Rocscience-Software.pdf

SLAVIĆ, I., 2006. Revitalizacija kamenoloma Očura. Magazin Plus. Broj 8.

ŠOLTIĆ, I., 2013. *Studija o utjecaju na okoliš eksploatacije tehničko – građevnog kamena na budućem proširenom eksploatacijskom polju "Očura II". Ne – tehnički sažetak.* Varaždin: SPP d.o.o. za geotehniku, rudarstvo, građenje, hidrogeološke radove i usluge. http://www.lepoglava.hr/uploads/content/1302/document/1/08\_sazetak\_za\_ju.pdf

TANG W. H., STARK T. D., ANGULO M., 1999. *Reliability in back analysis of slope failures*. Soils and foundations. Vol. 39, No. 5. Japanese Geotechnical Society.

UNIRI, 2018. *Analize stabilnosti kosina*. Rijeka: Sveučilište u Rijeci. URL: <u>https://helpdesk.uniri.hr/system/resources/docs/000/009/135/original/Stab\_kosina\_P5\_15\_16.pdf?1485352884 (15.7.2018.)</u>

VRKLJAN, D. *Fizičko – mehaničke značajke stijena*. Predavanje. Zagreb: Rudarsko – geološko – naftni fakultet.