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Abstract 

In order to reach more complex reservoir and increase ultimate recovery, engineers are 

searching for new technologies. One of these is intelligent completion which provides 

system monitoring, fluid production or injection control, and optimization. Operator can 

make decisions about managing completion based on real-time data coming from the 

downhole sensors. In addition, machine learning is becoming more popular in the oil 

industry. It finds application in automatization of processes and reducing time and error in 
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machine learning (neural network) on the real example-gas well. The goal is to see if neural 

network can predict optimal interval control valve sizes for specific scenarios.  

 

Key words: intelligent completion, ICV, neural network, classification problem, prediction 

 

Master's Thesis contains: 73 pages, 48 pictures, 5 tables and 38 references 

 

Thesis deposited in: Library of Faculty of Mining, Geology and Petroleum Engineering, 

            Pierottijeva 6, 10 000 Zagreb 

 

Supervisors:  Assistant professor Borivoje Pašić, PhD 

           University professor Mišo Soleša, PhD 

Reviewers: Assistant professor Borivoje Pašić, PhD 

Assistant professor Vladislav Brkić, PhD 

         Assistant professor Sonja Koščak Kolin, PhD 

 

Date of defense: 20th of September 2019, Faculty of Mining, Geology and Petroleum 

Engineering, University of Zagreb 



 

Contents 

LIST OF FIGURES .............................................................................................................. I 

LIST OF TABLES ............................................................................................................. III 

NOMENCLATURE .......................................................................................................... IV 

1. INTRODUCTION ........................................................................................................ 1 

2. INTELLIGENT COMPLETION ............................................................................... 3 

2.1. Application of intelligent completion ...................................................................... 4 

2.2. Components of an intelligent well ........................................................................... 5 

2.2.1. Packers ................................................................................................................. 5 

2.2.2. Surface and downhole gauges and sensors .......................................................... 5 

2.2.2.1. Downhole gauges .......................................................................................... 6 

2.2.2.2. Surface gauges ............................................................................................... 6 

2.2.3. Control, communication and power cables .......................................................... 7 

2.2.3.1. Hydraulic control system ............................................................................... 7 

2.2.3.2. Electro-hydraulic control system .................................................................. 8 

2.2.3.3. Electric control system .................................................................................. 9 

2.2.4. Flow control devices (ICD and ICV) ................................................................. 10 

2.2.4.1. Inflow control device (ICD) ......................................................................... 11 

2.2.4.2. Inflow control valve (ICV) ........................................................................... 15 

2.2.5. Surface control system ....................................................................................... 17 

2.3. An example of evolution from smart wells to a smart field in Brunei, Champion 

West offshore field ......................................................................................................... 18 

2.4. Value assessment of intelligent well technology ................................................... 20 

2.4.1. Example of value assessment performed by company Shell.............................. 21 

2.5. Challenges of intelligent completion well monitoring and control ..................... 23 

3. DATA MINING AND BIG DATA ANALYSIS ...................................................... 24 

3.1. Data mining phases ................................................................................................. 25 

3.1.1. Research understanding phase ........................................................................... 26 

3.1.2. Data understanding phase................................................................................... 26 

3.1.3. Data preparation phase ....................................................................................... 26 

3.1.4. Modelling phase ................................................................................................. 27 

3.1.5. Evaluation phase ................................................................................................ 27 

3.1.6. Deployment phase .............................................................................................. 27 

4. NEURAL NETWORK ............................................................................................... 28 



4.1. Architecture of neural network ............................................................................. 29 

4.1.1. Weights............................................................................................................... 30 

4.1.2. Propagation function .......................................................................................... 30 

4.1.3. Bias function ...................................................................................................... 31 

4.1.4. Activation function ............................................................................................. 32 

4.2. Fundamental principles of learning and training the neural network .............. 33 

4.2.1. Challenges in training a neural network model .................................................. 34 

4.3. Types of neural network ......................................................................................... 34 

4.3.1. Feedforward network ......................................................................................... 35 

4.3.2. Recurrent neural networks (RNN) ..................................................................... 37 

4.3.3. Lattice network ................................................................................................... 38 

5. ANALYSIS OF A GAS WELL IN CROATIA ........................................................ 39 

5.1. Production characteristics of well X ..................................................................... 40 

5.2. Building a physical model in commercial software PIPESIM ............................ 42 

5.2.1. Original model.................................................................................................... 42 

5.2.2. Customized PIPESIM model ............................................................................. 49 

5.2.2.1. Choke model ................................................................................................ 52 

5.2.2.2. Different cases simulated in PIPESIM ........................................................ 54 

6. NEURAL NETWORK MODEL FOR WELL X .................................................... 57 

6.1. Workflow for the neural network model .............................................................. 58 

5.2.2. Neural network for well X ................................................................................. 59 

6.2. Discussion of the results ......................................................................................... 66 

7. CONCLUSION ........................................................................................................... 68 

8. REFERENCES ........................................................................................................... 69 

9. APPENDIX ................................................................................................................. 73 



I 
 

 

LIST OF FIGURES 

 

Figure 2-1. Downhole components of intelligent completion ............................................... 5 

Figure 2-2. Three-zone intelligent completion with hydraulic control system N+1 ............. 8 

Figure 2-3. Three-zone intelligent completion with the electro-hydraulic system ................ 9 

Figure 2-4. Heel-toe effect in a horizontal well. Beginning of water and gas coning ......... 10 

Figure 2-5. Heel-toe effect in a horizontal well. Advanced water and gas coning ............. 11 

Figure 2-6. Comparison of completion with and without ICD and water and gas front 

respectively .......................................................................................................................... 12 

Figure 2-7. Autonomous inflow control device Equi Flow by Haliburton ......................... 12 

Figure 2-8. ICD helical-channel type .................................................................................. 13 

Figure 2-9. ICD nozzle type ................................................................................................ 14 

Figure 2-10. ICD orifice type .............................................................................................. 14 

Figure 2-11. First type of ICV ............................................................................................. 16 

Figure 2-12. Newly developed ICV .................................................................................... 17 

Figure 2-13. Scheme of a smart well and how surface and downhole gauges are connected 

to the surface monitoring system ......................................................................................... 18 

Figure 2-14. Scheme of how Shell smart field improvements and benefits are generated . 22 

Figure 3-1. Data mining phases according to CRISP-DM .................................................. 26 

Figure 4-1. Architecture of neural network ......................................................................... 29 

Figure 4-2. Scheme of the artificial neuron and its components ......................................... 30 

Figure 4-3. Appropriate input in the neural network; no bias added ................................... 31 

Figure 4-4. Inappropriate input corrected by bias neuron ................................................... 32 

Figure 4-5. Perceptron- the simplest model of neural network ........................................... 35 

Figure 4-6. Single-layer feedforward network .................................................................... 36 

Figure 4-7. Multi-layer feedforward network fully connected ............................................ 36 

Figure 4-8. Multi-layer feedforward network not fully connected ...................................... 37 

Figure 4-9. Recurrent network with no self-feedback loops ............................................... 37 

Figure 4-10. Lattice network ............................................................................................... 38 

Figure 5-1. Open and closed intervals in well X ................................................................. 40 

Figure 5-2. Production characteristics of Well X ................................................................ 41 

Figure 5-3. Production characteristics of Well X and time intervals (red line) for which 

analysis was performed ....................................................................................................... 41 



II 
 

Figure 5-4. PIPESIM workflow .......................................................................................... 43 

Figure 5-5. Fluid characteristics for interval A1, A6 and A12, and BOFluid that represents 

fluid produced from other intervals ..................................................................................... 43 

Figure 5-6. Well X completion scheme, simulated in PIPESIM ......................................... 45 

Figure 5-7. Surface equipment of Well X ........................................................................... 46 

Figure 5-8. Well test data .................................................................................................... 47 

Figure 5-9. Correlations used for calculation of IPR and VLP ........................................... 48 

Figure 5-10. Data matching ................................................................................................. 48 

Figure 5-11. IPR and VLP curves ....................................................................................... 49 

Figure 5-12. Different choke size performance for interval A1 .......................................... 51 

Figure 5-13. Different choke size performance for interval A6 .......................................... 51 

Figure 5-14. Different choke size performance for interval A12 ........................................ 52 

Figure 6-1. Different types of learning and models in machine learning according to 

Matlab .................................................................................................................................. 57 

Figure 6-2. Network/Data Manager window for creating neural network (Matlab) ........... 58 

Figure 6-3. The architecture of the neural network for well X............................................ 60 

Figure 6-4. Cross-entropy and percentage of misclassification for training, validation and 

testing set ............................................................................................................................. 61 

Figure 6-5. Confusion matrix .............................................................................................. 63 

Figure 6-6. Receiver operating characteristic plot............................................................... 64 

Figure 6-7. Training, validation and test performance plot ................................................. 65 

Figure 6-8. Training state plot ............................................................................................. 65 

Figure 6-9. Error histogram ................................................................................................. 66 

   



III 
 

LIST OF TABLES 

 

Table 2-1. ICD and ICV sizes for certain hole size ............................................................. 11 

Table 5-1. Casing design for well X .................................................................................... 44 

Table 5-2. List of installed equipment for customized PIPESIM model............................. 50 

Table 6-1. Example of the input and target subset data ...................................................... 60 

Table 8-1. Example of the data generated in PIPESIM after system analysis and how 

optimal choke size is selected for certain case .................................................................... 73 

  



IV 
 

NOMENCLATURE 

 

A, B, C – coefficients determined empirical 

Abean - choke area (m2) 

AI – artificial intelligence 

AICD – autonomous inflow control device 

CE – cross-entropy 

CHP – casing head pressure 

CPR – critical pressure ratio proposed by Ashford-Pierce 

CRISP-DM - Cross-Industry Standard Process for Data Mining 

cvg - gas discharge coefficient (0.9) 

cvl – liquid discharge coefficient (0.85) 

CW – Champion West 

d – choke orifice (mm) 

DL – deep learning 

DTS – distributed temperature sensing 

EOR – enhanced oil recovery method 

ESP – electrical submersible pump 

FLP – flowline pressure 

FLT – flowline temperature 

FP – frack&pack 

GLR – gas liquid ratio (m3/m3) 

GOR – gas oil ratio 

HRWP – high rate water pack 

ICD – inflow control device 

ICV – inflow control valve 

IOR – improved oil recovery method 

IPR – inflow performance relationship 

LWD – logging while drilling 

ML – machine learning 

MPFM – multiphase flow meter gauge 

MTM – metal to metal seal 

MWD – measurement while drilling 



V 
 

NN – neural networks 

OGR – oil-gas ratio 

PDG – permanent downhole gauge 

PTA – pressure transient analysis 

pup – pressure upstream to the choke (bar) 

q - total mixture flowrate (m3/s) 

ql – liquid flow rate (m3/s) 

RNN – recurrent neural network 

ROC – receiver operating characteristics 

RTU – remote terminal unit 

SCADA – supervisory control and data acquisition system 

SOV – solenoid-operated valve 

SSSV – subsurface safety valve 

TEC – tubing encapsulated conductor 

THP – tubing head pressure 

THT – tubing head temperature 

VLP – vertical lift performance 

WGR – water-gas ratio 

Zg – gas compressibility factor 

Zl – liquid compressibility factor 

γ – gas specific gravity 

ΔP – pressure loss across the choke (bar) 

λg – gas flowing fraction 

λl – liquid flowing fraction 

ν – mixture velocity (m2/s) 

ρg – gas density (kg/m3) 

ρl – liquid density (kg/m3) 

ρn – non-slip density (kg/m3)  

 

 

 

 



1 
 

1. INTRODUCTION 

 

The challenges in the oil and gas industry are becoming bigger as there is a need to 

economically produce hydrocarbons from more complex reservoirs and attempt to increase 

ultimate recovery at the same time. Engineers have found solutions for better well placement 

by obtaining higher resolution data by using measurements while drilling (MWD) and 

logging while drilling (LWD). However, good well placement and production rates alone do 

not give a good project. The need to improve the recovery of hydrocarbons has shown to be 

more difficult and essential for successful oil and gas industry. Reservoir management and 

completion technology have a big impact on ultimate recovery, and more complex reservoirs 

discovered around the world demand special multiple zone completions. As the production 

parameters change over the lifetime of a well, it is necessary to have completion that can 

modify its configuration to achieve optimal production. The special completion technology 

that is remotely controllable and able to optimize the production process in real-time is called 

intelligent completions. Intelligent completion includes downhole sensors, actuators, and 

software which allows intelligent completion operator to actively monitor, remotely control 

or shut selected zones with a bad performance from the operation centre, without traditional 

intervention on certain well. Application of this advanced technology can prevent early gas 

or water breakthrough, manage water injection for pressure maintenance or control chemical 

injection and placement.                                                              .  

 Nevertheless, implementation of intelligent completion, besides advanced 

technology and equipment, requires integration of different disciplines such as reservoir 

engineering, production engineering, petrophysics, data science, and data engineering. For a 

successful application of new technology, it is essential to collect, organize and analyse the 

data. To be able to make a decision, one needs to fully understand hidden trends and 

correlations in a particular operation. The aim of this thesis is to consider the possibility to 

manage and control intelligent equipment in a way to reduce human interaction and to 

automate wells by machine learning. Implementation of machine learning is just one of 

several data mining tools. According to Eldestein, the data mining process can be defined 

as: „A process that uses a variety of data analysis tools to discover patterns and relationships 

in data that may be used to make valid predictions.” After thorough big data analysis, one is 

ready to extract key performance indicators which will give an answer on which operation 

or equipment should be focused on. Till now, software in intelligent completions was 

working based on algorithms that engineers have to put in the system. If machine learning 
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is applied, algorithms are changed by the principle of self-learning. In other words, machine 

learning is designed to emulate how the human brain works. In this case, the software will 

not be programmed but it will learn from training samples, and after training it can provide 

solutions for similar problems.                                                .                                                                                                                                                                              

In this research, data mining will be performed on a gas well located in Croatia. The aim is 

to give a solution for intelligent completion for well after detailed data analysis. Afterward, 

the goal is to combine neural network system with intelligent equipment.  
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2. INTELLIGENT COMPLETION 

 

The intelligent well system is a type of completion which provides system monitoring, 

fluid production or injection control, and optimization. Nowadays, operator companies that 

have deployed intelligent completions can make decisions based on real-time data about 

production or injection processes in complex reservoirs and wells with multiple zones 

completion. The intelligent well system enables to reach several reservoirs with just one well 

avoiding crossflows. Usually, in case of multiple zones, the completion was completed with 

several packers and several tubings. If that was not possible due to economics or feasibility, 

then a sequenced production was applied meaning the production started from the bottom 

and then moved to upper zones as the lower ones were depleted. Intelligent completion can 

save time by balanced commingled production from lower and upper production zones and 

total production can be accelerated. In addition, well interventions are reduced by the 

possibility to remotely change flow paths and improve reservoir performance which is 

especially important in subsea, multilateral or unattended platforms (Gao et.al, 2007). 

However, there is still room for improvement as in smart wells there is more and more data 

available and a big part of it is still not efficiently used. 

 

Advantages of intelligent completion in comparison to conventional completion are 

(Glandt, 2003; Bellarby, 2009; Correa et al., 2017): 

• Reduced tubing interventions by remote actuation of downhole valves;  

• Increased reservoir information by shutting in one zone and flowing the adjacent 

interval; 

• Better zone (area) selection for chemical placement; 

• Better gas/water injection control; 

• Alternating production from one interval with another; 

• Fast response to unexpected changes in production or injection operations; 

• Increase in ultimate recovery because of better reservoir management; 

• Reduced cost and risk of zonal isolation. 

 

On the other hand, the disadvantages of intelligent completions are (Abdullayev et al., 2017): 

• Significantly higher costs; 
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• Plugging and damage of inflow control device (ICD) and/or inflow control valve 

(ICV) due to debris, scales, and emulsions which results in bad performance;  

• Transmission and control loss due to mistakenly coupled communication and power 

lines;  

• Data recorded on the sensors is not processed significantly and that opens new 

possibilities. 

 

2.1. Application of intelligent completion 

 

According to Carvajal et al., 2018, there are several reasons why and when to install 

equipment for intelligent completion: 

• Gas and water flow control. Preventing early water or gas breakthrough is one of the 

main reasons why to apply intelligent completion technology. ICDs or ICVs are 

installed to equalize the flow and create necessary pressure drop, especially in 

horizontal wells due to toe-to-heel effect. If water cut or gas-oil-ratio (GOR) is too 

high, the zone can be completely shut off and production from other zones can 

undisturbedly continue;  

• Commingled production. Using only one well thus having a smaller footprint, smart 

well can produce from several reservoirs and layers at the same time. In case water 

breakthrough occurs in an individual layer, packers, and ICVs can isolate it, control 

it and obtain desired oil cut;  

• Auto lift injection. In case there are gas layers on top of oil-bearing zones, intelligent 

completion can easily manage production. If ICV is installed in upper layers, the 

produced gas volume is controlled to lift oil to the surface easily. In addition, if there 

is water in the upper layers, it can be reinjected to the oil-bearing zone to boost the 

reservoir energy. This is called water-dump flood method;  

• Optimization of enhanced oil recovery (EOR) or improved oil recovery (IOR) 

methods. ICVs can be used in water injection wells and distribute injected water to 

gain better sweep efficiency. ICVs can control production and injection per segments 

and manage permeability variations;  

• Well test. Intelligent equipment includes pressure and temperature sensors that 

provide real-time data. Therefore, pressures can be easily analysed, time for pressure 

buildup tests is minimized and production is accelerated.  
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2.2. Components of an intelligent well  

 

Basic components of an intelligently completed well are shown in figure 2-1 and consist 

of (Shaw, 2011; Gao et al., 2007): 

• packers, 

• surface and downhole gauges and sensors,  

• control, communication and power cables, 

• flow control devices (ICV and ICD), 

• surface control system. 

 

Figure 2-1. Downhole components of intelligent completion (Shaw, 2011) 

 

2.2.1. Packers 

 

Packers are part of the completion equipment used to isolate different zones. The 

zones can be different reservoirs or different layers in the same reservoir. They provide 

isolation between the production string and casing or open hole. In intelligent completion, it 

is necessary to consider the packer with bypass for control lines.  

 

2.2.2. Surface and downhole gauges and sensors 

 

When intelligent equipment is installed, intelligent completion operator is able to 

monitor permanent downhole gauges (PDGs) and operate and control interval control valves 
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from the surface control and monitoring system. Data is transmitted from the downhole 

gauges via cables to the surface where real-time monitoring and control takes place.  

 

2.2.2.1. Downhole gauges  

 

The monitoring of the operations is performed by permanent downhole gauges 

(PDG) and distributed temperature sensing (DTS). These sensors can measure several 

parameters such as flow rate, pressure, and temperature. Based on the parameters, decisions 

for production or injection operations can be made. PDGs use a tubing encapsulated 

conductor (TEC) as an electrical return path to the surface. A PDG consists of conductive 

wires with thermoplastic insulation. In the case of DTS, fiber optic cable is used instead of 

conductive wire (Shaw, 2011). The flowrate measurements are based on the Venturi system 

or pressure differences between flow control devices. Furthermore, new sensors and 

measuring devices are being developed such as density meters, water cut sensors, chemical 

analysis sensors, and resistivity measurement devices. During well shut-in, downhole gauges 

are very valuable because they can record data for pressure transient analysis (PTA) and data 

such as static reservoir pressure, skin factor and reservoir conductivity can be estimated. 

Depending on the type of artificial lift system, gauges are positioned at different places. In 

case of a gas lift, the downhole gas valve is used and based on pressure difference estimates 

the flowing pressure in the tubing and injected gas. Electrical submersible pumps (ESPs) 

usually have downhole intake pressure gauge (before the motor) and discharge pressure 

gauge (after the pump) and temperature sensor. In wells without artificial lift system, that 

produce naturally, it is recommended to set the gauges at the end of the tubing (Carvajal et 

al., 2018).  

 

2.2.2.2. Surface gauges 

 

There are several available gauges and some of the most important surface 

measurements are pressure and temperature. Surface monitoring includes tubing head 

pressure, tubing head temperature, casing head pressure (if wells produce through annulus), 

flowline temperature and flowline pressure. In addition, a permanent downhole monitoring 

system can be connected with multiphase flow meter gauges (MPFM) at the surface. The 
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MPFM gauge monitors three-phase flow at the surface and is used as an alternative to the 

separator and individual flowmeters (three flowmeters for each phase). Usually, it is found 

after the wellhead and before separator (Carvajal et al., 2018). 

 

2.2.3. Control, communication and power cables 

 

The power necessary to control inflow control valves comes from an electric source, 

hydraulic source or combination of both. In the beginning, the intelligent completion system 

relied on the electric system. The need for increased reliability and lower costs led to 

hydraulic systems. These systems provide better flow control (greater openings and bigger 

closing forces) and are more suitable in harsh well conditions. However, in comparison to a 

hydraulic control system, both electro-hydraulic and electrical control lines have some 

advantages. They have faster response time and a smaller number of control lines. On the 

other hand, disadvantages are temperature sensitivity and unavailability of the system due to 

breaks in the electrical line (Garcia and Saldanha, 2016). Usually, the control lines are 

encased in a metal tube as a protection usually called tubing encased conductor (TEC). A 

solid copper inside TEC allows two-way communication between permanent downhole 

gauges and surface and provides power (Hodges, 2000). Electric, hydraulic and fiber optic 

lines have standardized outside diameter is 6,35 mm (¼ inch) (Shaw, 2011).  

 

2.2.3.1. Hydraulic control system 

 

The hydraulic control system, also called direct control, uses two lines from the 

surface for one ICV. One hydraulic line is connected to “open” side, another to “close” side 

of a piston of the ICV. By applying pressure on one of these sides, the piston will move and 

result in opening or closing the ICV. In the case of multizone completion, when more than 

two ICVs are necessary, N+1 hydraulic lines are required (N is number of ICVs). In this 

case, the open side of ICV has an individual hydraulic line, while the closed hydraulic line 

goes from one ICV to another. However, there is a limitation of the number of used hydraulic 

lines due to available tubing hanger openings and enlarged costs with every additional line. 

It has to be taken into consideration that other intelligent equipment like gauges can also 

require control lines. Therefore, in multizone completions when there are more than two 

zones, as an alternative, electro-hydraulic or electro-mechanical line can be used.  In figure 
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2-2 it is shown how many hydraulic lines would be necessary to manage ICVs in three zones 

(Garcia and Mathew, 2016).  

 

Figure 2-2. Three-zone intelligent completion with hydraulic control system N+1 (Garcia 

and Mathew, 2016) 

 

2.2.3.2. Electro-hydraulic control system 

 

The electro-hydraulic control system uses fluid to control and manage ICV 

movement as it is used in a completely hydraulic control system. However, the principle of 

working includes final opening or closing the valve electronically through the solenoid valve 

(figure 2-3). One electric and two hydraulic lines can control up to twelve zones. If the 

operator wants to open or close ICV, particular hydraulic line (depends on which operation-

opening or closing) will be pressurized from the surface. The “open” or “close” line will be 

blocked at the end until the operator electrically chooses particular ICV. Furthermore, the 

selected module will activate a solenoid-operated valve (SOV) which will let the pressure to 

the piston chamber of particular ICV. After the desired movement of the ICV is achieved, 

the removal of the electric current from the module will disengage SOV. It is possible to 

perform the movements of other ICVs without removing hydraulic pressure. In addition, 

valves can be regulated to have a different position between completely “open” or “closed” 
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position by controlling the fluid volume. It is necessary to account temperature changes 

because it can affect hydraulic fluid that actuates the system. However, the electro-hydraulic 

system allows recalibration even after the system is installed so, in case of big temperature 

difference, this effect can still be mitigated. A big advantage of this system is faster overall 

response and possibility that with only three lines, twelve different zones can be controlled. 

In the end, this reduces overall costs (Garcia and Mathew, 2016).  

 

Figure 2-3. Three-zone intelligent completion with the electro-hydraulic system (Garcia 

and Mathew, 2016) 

 

2.2.3.3. Electric control system 

 

The electric or electromechanical control system is the first generation of ICV control 

and consists of only one electrical line that is connected to each ICV. Each ICV is connected 

to electrical motor and gearbox for the purpose of converting radial motion to linear motion. 

When the operator selects particular ICV, current flows to particular motor and motor moves 

clockwise or counter-clockwise depending on the current polarity. After the opening or 

closing is done, the motor is shut off by switching the power off. This type of control system 

provided poor force for ICV opening and closing and was not suited for dealing with debris 

and scale (Garcia and Mathew, 2016). 
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2.2.4. Flow control devices (ICD and ICV) 

 

In conventional wells, hydrocarbon production rates are controlled by wellhead 

choke or in production flowline. Besides production rates, by adjusting the surface choke, 

water or gas coning and depression are controlled.  This way, drawdown pressures can be 

reduced, and production rates decreased. The result is an increased cumulative oil recovery. 

However, this procedure is not working in horizontal or multilateral wells. In long horizontal 

sections of a homogenous formation, the significant pressure drop will happen as fluids flow 

from true depth to heel of the well (end of vertical section). This effect is known as the heel-

toe effect shown in figure 2-4 and figure 2-5 where green colour represents oil, red gas and 

blue water. In heel-toe effect, the drawdown at the heel is much higher than at the toe causing 

water and gas coning and resulting in economically unprofitable well production due to high 

water cut. Early water or gas breakthrough can also happen in compartmentalized reservoirs 

and carbonate reservoirs due to a large number of natural fractures or because of the 

interference from injection and production wells. In intelligent well, inflow control device 

(ICD) and/or inflow control valve (ICV) are used to deal with that problem. The difference 

between these two is that ICD is passive control, part of the liner or casing, while ICV is 

active control (Ellis et al., 2009). Available sizes of ICV and ICD for certain hole sizes are 

shown in table 2-1. 

 

Figure 2-4. Heel-toe effect in a horizontal well. Beginning of water and gas coning (Ellis et 

al., 2009) 

 



11 
 

 

Figure 2-5. Heel-toe effect in a horizontal well. Advanced water and gas coning (Ellis et 

al., 2009) 

 

Table 2-1. ICD and ICV sizes for certain hole size (Birchenko, 2010) 

Hole size, mm 

(in) 

OD ICD flow 

conduit, mm (in) 

OD cased hole 

ICV flow conduit, 

mm (in) 

OD open hole 

ICV flow conduit, 

mm (in) 

149,23 (5 7/8) 88,90 (3 1/2)     

165,10 (6 1/2)   73,03 (2 7/8) 88,90 (3 1/2) 

200,03 (7 7/8) 139,70 (5 1/2)     

215,90 (8 1/2)   88,90 (3 1/2)   

241,30 (9 1/2) 168,28 (6 5/8)   139,70 (5 1/2) 

269,88 (10 5/8)   114,30 (4 1/2)   

 

 

2.2.4.1. Inflow control device (ICD) 

 

ICD is a permanent part of equipment installed in the well with different designs of 

flow path causing an additional pressure drop. It provides a uniform flow of oil/gas along 

whole wellbore length enabling delayed arrival of water and gas. ICDs are mostly part of 

open hole completions including sand screens. There are two types of ICD available: 

conventional ICD and autonomous inflow control device (AICD). Conventional ICD is used 

to equalize fluid flow from toe to heel and choke unwanted fluids such as water or gas (figure 

2-6). However, they still produce big amounts of unwanted fluids. Therefore, autonomous 

ICD is installed to choke unwanted fluids even more and reduce their production based on 
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centrifugation principle or density difference. AICDs have a self-regulating mechanism in 

which they are able to control fluid flow through internal discs (figure 2-7). Water takes a 

longer path while oil takes shorter resulting in restricted mass flow of water (Carvajal et al., 

2018).  

 

 

Figure 2-6. Comparison of completion with and without ICD and water and gas front 

respectively (Carvajal et al., 2018) 

 

Figure 2-7. Autonomous inflow control device Equi Flow by Haliburton 

(https://www.halliburton.com/ ) 

Two important features that are desirable in ICDs are erosion and plugging 

resistance. Once they are installed, ICDs are not adjustable. That makes their installation and 

completion design critical for production. Proper design and installation of ICDs require a 

thorough analysis of initial reservoir conditions, predictions of reservoir behaviour and 
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reservoir simulations but they are more reliable and simpler than ICVs. However, having on 

mind that reservoirs conditions are dynamic, it is often necessary to have device adaptable 

to changes in viscosity, velocity, density with time and to keep inflow balance (Ranjith et 

al., 2017).  

There are several types of conventional ICDs in the industry developed by different 

vendors. Usually, conventional ICDs can be classified into three categories: channel type, 

orifice type and nozzle type (Ranjith et al., 2017). 

Channel type (figure 2-8) has numerous helical channels which at specific flowrates 

give specific differential pressures. The formation fluid flows through the annulus into 

screen layers that are on the inner jacket. Afterward, fluid flows towards the ICD chamber 

along the screen base pipe. In ICD, designed number of channels will cause choking and 

then fluid goes to the inner part of the casing. Channel type creates pressure drop based on 

friction which means that it can be affected by emulsion effects. However, the chance of 

erosion and plugging is reduced due to channel design which causes pressure to drop over a 

larger interval in comparison to orifice and nozzle type (Al-Khelaiwi and Davies, 2007).  

 

Figure 2-8. ICD helical-channel type (Al-Khelaiwi and Davies, 2007) 

 

Nozzle type (figure 2-9) creates a pressure drop by using nozzles. The fluid flows 

through the screen towards a set of nozzles and afterward to the inner part of the tubing. The 

desired pressure drop at certain flowrate is achieved based on a specific number and diameter 

of the nozzles. In this type of ICD, pressure drop depends on the density and velocity of the 

fluid and less on the viscosity. However, the possibility of erosion is very big as one of the 

major causes is the high velocity of the fluid. In the case of high sand production this problem 

is aggravated (Al-Khelaiwi and Davies, 2007).  
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Figure 2-9. ICD nozzle type (Al-Khelaiwi and Davies, 2007) 

 

Orifice type (figure 2-10) employs numerous orifices to obtain the desired pressure 

drop. Orifices have a specific diameter and flow characteristics to enable required flow 

equalization. The base pipe in ICD chamber is surrounded by a jacket in which orifices are 

integrated. The required pressure drop is regulated by the number of open orifices (Al-

Khelaiwi and Davies, 2007).  

 

Figure 2-10. ICD orifice type (Al-Khelaiwi and Davies, 2007) 

 

Although there are several different designs of ICDs, the principle of working is the 

same. By creating differential pressure, they are trying to equalize the flow. However, they 

are not flexible, and some risks are associated with their application. ICDs can get plugged 

or damaged due to mud, scales, asphaltenes or emulsion. Moreover, they can be corroded if 

carbon dioxide is present while producing fluid (Ranjith et al., 2017).  
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2.2.4.2. Inflow control valve (ICV) 

 

As reservoir uncertainties are getting higher, more adjustments and flexibility is 

required. Therefore, ICVs can be used to provide more flexible strategies in field 

development. ICV is a tool that allows communication between tubing and annulus and 

provides control in the operations based on the information from permanent monitoring. 

Regarding functionality there are two types of ICVs (Shaw, 2011): on/off ICVs and choking 

ICVs. The first type provides communication with the zone or it selectively shuts in zones 

and presents a much cheaper solution but has limited settings. The choking ICVs have 

different port sizes and it is possible to adjust them in different positions. The number of 

positions varies and ICV can have 2, 4, 6, 8 or even 11 choking positions 

(https://www.slb.com/completions/well-completions/intelligent-completions/downhole-

interval-control-valves). Depending on the design, the price will also vary and for example 

electrically controlled ICV can cost up to $0,5 million per valve (Ranjith et al., 2017). In 

multi-lateral wells, each layer can have different permeability, therefore, water breakthrough 

happens at different time. By using ICVs, each interval can be shut off when water or gas 

breakthrough happens to prevent the early end of well’s production.  

The first type of ICV (figure 2-11) available on the market consisted of the following 

components (Joubran, 2018): 

• metal to metal (MTM) face seal from tungsten carbide; 

• tungsten carbide choke in 10 different positions;  

• micro hydraulic device that has the purpose of precise opening of ICV to the desired 

position and at the same time has the ability to completely close the ICV; 

• ICV installed in injectors are additionally equipped with tungsten carbide lined 

deflectors to prevent erosion of casing. 

 

https://www.slb.com/completions/well-completions/intelligent-completions/downhole-interval-control-valves
https://www.slb.com/completions/well-completions/intelligent-completions/downhole-interval-control-valves
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Figure 2-11. First type of ICV (Joubran, 2018) 

 

The first type of ICV had two typical issues that cause loss of zonal control. The first 

problem is control line failure that is mostly due to high-rate injections. The second very 

common problem was stuck ICV due to precipitations like scale or debris. Also, in the first 

generation of ICVs, MTM seal was a common issue. This type of face seal required a boost 

system to achieve complete pressure retention.  

Based on many campaigns and field implementation of firstly developed ICVs and 

lessons learned, the goal was to design new ICVs which will combine best practices. The 

newest developed ICV (figure 2-12) consists of the following components (Joubran, 2018): 

• pressure balanced mandrel, 

• radial interference metal to metal seal, 



17 
 

• hydraulic chamber seals (hybrid elastomeric and non-elastomeric), 

• deflector and control line integration, 

• flow trim (tungsten carbide shrouded) with 8 different positions,  

• ability to send to the surface information about choke position and opening in real-

time. 

 

Figure 2-12. Newly developed ICV (Joubran, 2018) 

 

The complexity of ICVs was reduced by changing face MTM seal to radial 

interference MTM seal, therefore, there is no need for the boost system anymore. In the new 

design of MTM seal, the mandrel can liberate from the seal when ICV is at different choking 

positions which results in big unloading in every direction. 

Special attention should be given to the production fluid chemistry. As in many wells, 

problems such as wax, asphaltenes, and scales occur, the ICV design and functionality 

should be planned accordingly (Joubran, 2018).  

 

2.2.5. Surface control system 

 

The downhole equipment is connected by cables through the tubing with a surface 

control system. Pressure and temperature data are sent to the surface control panel in real-



18 
 

time. From control panel data is sent to supervisory control and data acquisition (SCADA) 

system. Based on the flow rate model, the decision about ICVs openings is made and sent 

back to the control panel. In figure 2-13 it is shown how information from downhole gauges 

is sent to the surface monitoring system where decisions are made in real-time. 

 

 

Figure 2-13. Scheme of a smart well and how surface and downhole gauges are connected 

to the surface monitoring system (Carvajal et al., 2018) 

 

2.3. An example of evolution from smart wells to a smart field in Brunei, Champion 

West offshore field 

 

Champion West (CW) offshore field in Brunei waters was accidentally discovered in 

1975. First, the intention was to use a new well as gas supply to Champion Main field, but 

oil was discovered as well. Several field development plans were made but the complexity 

of the field was obvious (10 fault blocks with erratic charge needing a lot of wells and 

platforms) and it was difficult to choose an economic and feasible plan. The first attempt 

was in 1998 but was soon abandoned after drilling problems. After that, it was decided to 

make a field development plan in several phases.  
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The new approach consisted of three parts: a novel well concept, smart well 

technology, and extended reach drilling. It was planned to have only one platform with 20 

wells. It was agreed to develop CW field as a smart field meaning the field will be constantly 

and completely monitored, remotely controlled and operated. The data (pressure, 

temperature, flow rate) will be collected and then analysed by the operator. The field 

development team concluded that only way to achieve successful smart field implementation 

is phased staircase approach. They planned three phases. Phase 1 was from 1999 till 2000 

and it was an introduction in the smart well technology. Phase 2 was 2003/2004 in which 

they upgraded the system with remote control of inflow control valves (ICVs). Finally, phase 

3 was in 2005 when the smart platform was installed.  

Phase 1 covered the installation of first intelligent completion equipment with 

permanent downhole gauges and hydraulic ICVs. The equipment installation was successful 

with only one ICV failed out of 13. With all the data coming, it was necessary to create a 

team of people from all departments (from IT to the field operators). The task was to monitor, 

detect faults, report errors and maintain the system. The very important step in field 

development was smart field training for the operators as before, only contractors and office 

petroleum engineers were skilled in how to open/close ICVs. Company Shell developed the 

Data Acquisition and Control Architecture Standard. In the beginning, a lot of data was 

coming into the office making it a problem. It was necessary to distinguish noisy data by 

using the right software to filter it and to not get lost in the abundance of data.  

In phase 2, extended reach horizontal “snake” wells were drilled (to 6 km length and 

3 km reservoir sections). The wells are called snake wells because they have tortuous in a 

narrow oil rim with right/left turnings but staying in the horizontal plane. It was a challenge 

to drill snake trajectory wells keeping the dogleg severity under 1deg/10m to not to go too 

far out of the zone of interest. The inflow performance for new wells was 10 times greater 

and the drawdown was from 1 to 10 bars. The multitude intelligent completion showed 

notable pressure losses at high rates in a stinger. The stinger is a piece of pipe installed in 

horizontal sections of the well to reduce water coning and redistribute pressure losses in 

horizontal wells. In the first phase stinger used was 73,03 mm (2 7/8”) in 139.7 mm (5 1/2’’) 

slotted liner. In phase 2 it was increased to 88,9 mm (3 1/2’’) in 168,28 mm (6 5/8’’) liner. 

Finally, in phase 3, 114,3 mm (4 1/2’’) stinger was used in 177,8 mm (7’’) slotted liner. In 

the heel section, the friction was still significant and with the use of open/close valve this 

zone would be overproduced. By use of ICVs, it was possible to manage frictional pressure 

losses. With variable ICVs and software implementation, it was possible to maintain equal 
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drawdowns in different zones but the ICV position changes were done manually. Finally, 

the old facility was upgraded. Power and fiber optic cables were installed as well as the 

downhole control system to control the smart field. In addition, facilities were upgraded to 

be able to remotely read out the sensors.  

The last phase presents the CW field as a fully developed smart field. That includes 

a remotely operable, monitored field with remote shut down and remote re-start facility 

capability. The smart wells in CW field have more pay zones, longer reservoir sections, 

longer trajectories, and more multilaterals. The platform still has a room for drilling an 

additional 30 wells. Also, swellable packers proved to be a good replacement for inflatable 

packers.  

After the smart field development, several conclusions can be made. In offshore 

application, such as Brunei water, with variable weather (monsoon seasons) and small 

platforms that are hardly accessible, remote operability presents huge value. Furthermore, 

the smart field provided better data acquisition, better monitoring and faster response which 

in the end lead to higher recovery. In CW field it is estimated that the volume recovery 

increased for 2-3%. Additionally, drilling and completion costs are reduced if for example 

there is poor casing cementation. The repair job can be substituted by additional packer and 

ICV close to the heel which will prevent thief gas coming behind the casing. Finally, the 

important advantage is risk reduction and mitigation (Van der Steen, 2006).  

 

2.4. Value assessment of intelligent well technology 

 

The crucial thing in the implementation of the new technology in the industry is to 

properly assess the potential value of the technology. The new technologies have similar 

approaches to assess the value but in case of smart well technology, it gets more difficult 

due to the complexity and different interpretations. The estimated benefits based only on the 

discussions about fewer interventions, better HSE or faster response are not enough. The 

decision of whether to implement intelligent completion in a well is based on the clear 

definition of conventional operations with detailed conditions and scenarios. The injection 

and production criteria need to be defined and with the help of reservoir simulations, 

comparison of the conventional and intelligent completion systems can be made. Besides 

technical assessment, economic evaluation should be made. Several things are taken into 

consideration: incremental capital investments, technically advanced equipment, risk 

assessment, changes in revenue and the operating costs. The initial capital cost for the 
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intelligent well system is from US $ 200 000 for a permanent downhole gauge system up to 

US $ 2 500 000 for a fully remote-controlled completion (Robinson, 2003). Although 

intelligent wells and fields have obvious advantages, there are not so many available results 

of value identification in terms of money. Every oil company has defined intelligent field 

differently to tailor it to its strategy and plans. Without a general definition, benefit and value 

estimation are even more challenging (Husain and Al-Hajri, 2013).  However, after thorough 

analysis, having on mind both costs and revenues, it can be decided is it economical and 

feasible to implement smart well completion. 

 

2.4.1. Example of value assessment performed by company Shell  

 

A value assessment has been made for a period from 2008 to 2009 for Shell Smart 

Fields in 6 regions, and around 50 assets data were collected (Van den Berg et al., 2010). To 

have a real picture, values obtained from saved costs or production increase were only looked 

in that period. Potential future benefits were excluded from the assessment meaning that, for 

example, future operating costs reduction, production gains or increase of ultimate recovery 

will not be counted. The value assessment was split into categories: 

• production increase, 

• ultimate recovery increase, 

• CAPEX reduction, 

• OPEX reduction. 

The smart field development also had HSE benefits but in this case, they were not quantified. 

A scheme was made to see how solutions generate the value (figure 2-14). In some cases, 

solutions will provide more than one type of improvement and benefit.  
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Figure 2-14. Scheme of how Shell smart field improvements and benefits are generated 

(Van den Berg et al., 2010) 

The assessment was made on conservative rules as the objective is to have valid and 

easy traceable value estimation. The rules include using 30 $/bbl oil price; only benefits such 

as saved costs or production gains till the end of 2009 were included. After thorough analysis 

and quantification, benefits are estimated to $5 billion. The production increase was 11 129 

m3/day (70 000 bbl/day) and the total calculated CAPEX reduction was $800 million. It is 

also necessary to mention that CAPEX reduction was a one-time benefit while production 

increase and OPEX reduction can be repeatable. Although retrofitting is complex, costly and 

possible just for particular problems, the analysis made by Shell for Smart Fields showed 

benefits both for retrofitting in existing wells and for design from the start in new wells.  

The solutions of new technologies provide benefits that in many cases should not be 

looked separately. It is difficult to completely evaluate benefits and economical value of the 

new technology but with an early identification in the development process, it can be 

traceable. A detailed structure and categorization like “Benefits logic” can be very useful in 

the process of evaluation (Van den Berg et al., 2010).  
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2.5. Challenges of intelligent completion well monitoring and control  

 

The long-term vision of the intelligently completed well is to make a closed circle 

between monitoring and equipment that is driven by output from comparing sensor data and 

reservoir simulations (Robinson, 2003).  According to Berg for successful implementation 

of the smart well system, it is necessary to cover three components: technology, process, and 

people. In details that means to obtain reliable real-time data, a set of tools to transform that 

data to information and a team of skilled professionals who use the information to control 

and optimize operations both on the surface and in the reservoir (Van den Berg, 2007). One 

of the benefits of intelligent completion is a large amount of the data available. However, 

this represents a problem as well. In the abundance of the data, an engineer may fail to extract 

important performance indicators or can even use noisy and unfiltered data. One of the 

challenges of intelligent completion, besides its complexity and advanced technology, is how 

to use data properly to transform it into valuable information.  By connecting intelligent 

equipment with machine learning, the goal is not to completely exclude the “people” 

component. The wanted result is to make easier handling a large amount of data, handle 

noisy data, filter and organize it and based on it make decisions about operations.  However, 

engineers and operators are still needed and their critical and analytical thinking to react 

when machine learning models do not give wanted outcomes.  
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3. DATA MINING AND BIG DATA ANALYSIS 

 

With technology development and availability, increased data storage and advanced 

computational and numerical data analysis, data acquisition and analysis evolved into data 

mining. According to Zangl and Hannerer, 2003 data mining is defined as “the process of 

discovering significant new correlations, patterns, and trends by sifting large amounts of data 

stored in repositories - using pattern recognition technologies as well as statistical and 

mathematical techniques”. The data mining becomes very valuable in case of the high 

amount of uncertainties when the conventional type of reservoir monitoring fails in decision-

making process and strategy development. The conventional type of monitoring refers to 

well testing, production data logging, seismic and fluid sampling. In this case, data 

acquisition timing becomes a big challenge since it is necessary to stop production. 

Consequently, these processes are usually performed at the time of workover or intervention 

operations and a description of reservoir production behaviour can be invalid (Temizel et 

al., 2016). To overcome these problems, intelligent well technology and permanent 

downhole sensors are becoming more important. In other words, traditional methods of data 

analysis called knowledge-driven methods have been substituted by so-called data-driven 

methods. The knowledge-driven method solves problems by applying mathematical 

equations. The engineer has to know limitations in the application of laws and also make 

simplifications for more complex cases. In the data-driven methods, the applied 

mathematical algorithm finds the patterns in behaviour and relationship. From the beginning, 

data needs to be managed carefully and have good quality control to detect errors or failures. 

It is necessary to know the origin of data and methods used to obtain them. Data storage or 

so-called data warehouse has to be well organized because large sets of data are processed, 

and it is likely to have hidden trends that need to be found. In this data analysis method, it is 

crucial to have well-prepared data for further analysis.  

The process in which data miner will define a target, process data, use data-driven 

method to analyse it and estimate the result of the mining tools is called knowledge discovery  

(Zangl and Hannerer, 2003). Data mining process usually consists of three main processes: 

preparing the data, surveying the data and modelling the data.  

The most time in the data mining process is spent on the data preparation. In order to 

make a good model, it is necessary to have well-prepared data. The objective is to eliminate 

damaged, outlier or erroneous data. In the next step, the pattern tool is used to find 

representative data and eliminate out-of-trend data as that can affect the usual pattern. 
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Afterward, data has to be transformed in a certain form, so it might be necessary to perform 

calculations. For example, in the case of neural networks input data have to be normalized. 

In the end, the results have to be transformed back to the initial data form after the 

calculations. It is important to mention that as the new data is coming to the model, it needs 

to be adjusted otherwise the model will not work.  

As a next step, data survey will determine problems of interest that will be studied 

and, in the end, optimized. It will not give data evaluation but will provide information about 

data structure, general relationships, and patterns.  

The last step in data mining process is modelling the data which is often directly 

linked to neural networks. Neural networks are very important modelling tool which will be 

explained more detailed in the next chapter. Unlike conventional algorithms, neural 

networks have the ability to be trained to solve a certain task. However, other tools such as 

self-organizing maps or decision trees should not be excluded from the modelling process.  

The three main processes mentioned above can be segregated in more steps to make 

analysis and modelling easier. The process of analysing and modelling data performed in six 

phases is done according to CRISP-DM standard (Wirth and Hipp, 2000).  

 

3.1. Data mining phases 

 

According to Larkin and The Cross-Industry Standard Process for Data Mining 

(CRISP-DM) developed 1996, data mining project consists of six phases (figure 3-1): 

research understanding phase, data understanding phase, data preparation phase, modelling 

phase, evaluation phase and deployment phase. The phases are adaptive meaning that next 

phase often depends on the outcomes of the previous phase (Larose, 2005).  
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Figure 3-1. Data mining phases according to CRISP-DM (https://itsalocke.com/blog/crisp-

dm-and-why-you-should-know-about-it/) 

 

3.1.1. Research understanding phase  

 

In research understanding phase, the goals and objectives of the project have to be 

clearly defined. Afterward the requirements and restrictions stated need to be translated into 

the form of data mining problem definition. The strategy to reach these goals is defined.  

 

3.1.2. Data understanding phase  

 

This phase refers to data acquisition and then data analysis to get familiar with the 

data set and recognize first relationship patterns. It is also necessary to evaluate data quality 

and already select data set that maybe contains a pattern.  

 

3.1.3. Data preparation phase 

 

https://itsalocke.com/blog/crisp-dm-and-why-you-should-know-about-it/
https://itsalocke.com/blog/crisp-dm-and-why-you-should-know-about-it/
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The raw data are processed, and the final data set is prepared. The variables are 

chosen and if needed certain transformations are applied. The data are cleaned and prepared 

for the modelling tool.  

 

3.1.4. Modelling phase 

 

In this phase modelling tools and techniques are selected. Same data mining problem 

may require various tools. Sometimes it will be necessary to go back to the data preparation 

phase to adjust data form to meet the requirements of a certain tool.  

 

3.1.5. Evaluation phase 

 

This phase refers to quality check and effectiveness evaluation of the models made 

in the modelling phase before they are used in the field. The model has to achieve the 

objectives set in the first phase. In addition, it is necessary to recognize if maybe some 

research problems have not been sufficiently analysed. In the end, the use of data mining 

results is discussed.  

 

3.1.6. Deployment phase 

 

The final phase refers to the actual use of the model. For example, a simple 

deployment report will be generated. In more complex deployment we can implement data 

mining process in other departments.   
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4. NEURAL NETWORK 

 

As artificial intelligence (AI) is getting more popular, several new terms are introduced 

such as machine learning (ML), deep learning (DL) and neural networks (NN). Machine 

learning can be defined as:  

• According to Mitchell, T.M.: Machine learning is a branch of artificial intelligence 

and “it is the study of computer algorithms to automatically improve through 

experience.” ; 

• According to Samuel A. in 1959: “Machine learning is a large subfield of AI dealing 

with the field of study that gives computers the ability to learn without being 

explicitly programmed.” 

Deep learning is a subset of machine learning and has many hidden layers even 

hundreds. Deep learning is inspired by pattern identification and information classification 

as in the human brain. DL is able to automatically find features and patterns necessary for 

classification while ML requires manually selected features.  

Finally, neural networks are a type of machine learning algorithms that are trying to 

emulate the human brain. According to Dr. Robert Hecht-Nielsen the neural network (NN) 

is defined as: “A computing system made up of a number of simple, highly interconnected 

processing elements, which process information by their dynamic state response to external 

inputs.” Its development is motivated by the human brain and numerous nerve cells that have 

ability to work in parallel and ability to learn. Unlike regular programming in which 

algorithm is explicitly defined, NN is adaptable and learning from training samples. It has 

ability to associate, learn and is resistant to errors and outliers. It finds application in case of 

highly nonlinear relationships between data. According to Kriesel, 2005, the main 

characteristics that NN wants to adapt from human brain principle of working are: 

• self-organization and learning capability, 

• generalization capability, 

• fault-tolerance. 
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4.1. Architecture of neural network 

 

A neural network consists of input data, hidden layers and output data (figure 4-1). 

The processing units of each network are artificial neurons usually arranged in layers and 

corresponding weights which are the connection strengths between two neurons. The 

information is always propagating layer by layer in the same direction.  The neuron collects 

information from the preceding neuron and propagates the output information to neuron in 

the following layer. Hidden layers are layers between the first layer – input and the last layer 

in the network – output. There can be multiple hidden layers and in this part of the neural 

network the computation is done. 

 

Figure 4-1. Architecture of neural network (Fruhwirth, 2018) 

 

Basic components of a neuron are: 

• weights, 

• bias correction, 

• propagation function, 

• activation function. 

Simplified, three main things happen in the neuron (figure 4-2): 

1. First, each input is multiplied by its weight:  

(𝑥1 × 𝑤1;  𝑥2 × 𝑤2;  𝑥3 × 𝑤3) 
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2. Next, the weighted inputs are summed up and bias is added:  

((𝑥1 × 𝑤1) + (𝑥2 × 𝑤2) + (𝑥3 × 𝑤3) + 𝑏) 

3. Finally, the sum is passed through an activation function: 

 𝑦 = 𝑓(𝑥1 × 𝑤1 + 𝑥2 × 𝑤2 +  𝑥3 × 𝑤3 + 𝑏) 

 

 

Figure 4-2. Scheme of the artificial neuron and its components (Fruhwirth, 2018) 

 

4.1.1. Weights 

 

Neuron usually receives a lot of input data at the same time. Every input has its 

weight. Weights define the intensity of an input signal. They are measure of input connection 

strength and can adapt to various training and learning rules. The weights can be excitatory 

(positive weight) or inhibitory (negative weight) and they are responsible for learning 

(Kriesel, 2005).   

 

4.1.2. Propagation function 

 

Propagation function receives the output of preceding neuron and transforms it into 

network input by connecting weights to it. The most common is the summation function 

which is equal to the sum of all input data multiplied by corresponding weights and then bias 
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is added. The input data is represented as (x1, x2, … , xn) and weights as (w1, w2, … , wn) so 

the sum is ∑ 𝑥𝑛 × 𝑤𝑛 (Kriesel, 2005). 

 

4.1.3. Bias function 

 

The bias is added to the summation function allowing the unit to shift its nonlinear 

function horizontally, to the left or right (figure 4-3 and 4-4). If bias neuron was not applied, 

the function will look like grey function in Figure 4-4. Bias neuron correction affects the 

function to be shifted to the right –purple function in the figure. The purpose of bias is to 

better fit the data and it only affects the output values with no interaction with input data. 

Biases can be positive or negative and when they differ from weights, it means they are 

independent of previous layer output. Initially, bias is caused by input with the activation 

value of 1. Afterward by the subtraction of the product of delta value and learning rate, the 

bias function is updated (Kriesel, 2005).  

 

 

Figure 4-3. Appropriate input in the neural network; no bias added (Fruhwirth, 2018) 
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Figure 4-4. Inappropriate input corrected by bias neuron (Fruhwirth, 2018) 

 

4.1.4. Activation function 

 

The activation function defines the output of the neuron given input or inputs. It is 

very sensitive near the threshold value. The threshold value represents the maximum 

gradient of the activation function. Therefore, the activation function will activate neuron 

depending on input and threshold value. Unlike other functions and variables in the neural 

network, the activation function is defined universally for a set of neurons or all neurons in 

the network. On the other hand, the threshold values are different and changeable. Each 

neuron has its particular threshold value which can be changed in the learning process. Most 

common activation functions are (Kriesel, 2005):  

• Sigmoid function takes real values of input data and puts it in the range [0,1] 

𝜎(𝑥) = 1 (1 + 𝑒−𝑥)⁄  

• Tanh function takes real values of input data and puts it in the range [-1,1] 

tanh(𝑥) = 2𝜎(2𝑥) − 1 

• ReLU function (Rectified Linear Unit) takes real values of input data and 

thresholds it at zero meaning negative values are replaced by zero 

𝑓(𝑥) = max (0, 𝑥) 
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4.2. Fundamental principles of learning and training the neural network 

 

As mentioned before, one of the most interesting characteristics of neural networks 

is their capability to learn, get familiar with the problem and after training be able to solve 

problems of the same class. They are several ways of how neural network can learn. 

According to Kriesel, 2005, the learning can be achieved by: 

• developing new connections or deleting the existing connection, 

• changing weights, 

• changing the threshold value, 

• varying some of the three functions (propagation, activation or output 

function), 

• developing new neurons or deleting existing neurons. 

The most common way of learning is by changing the weights. Learning process is 

accomplished by algorithm implementation. There are three different learning types 

(Kriesel, 2005): 

• Supervised learning. In the supervised learning, the training set is composed of input 

data and output data as a response to the input. This way, the output of each training 

set in the network is compared to solutions and weights are adjusted according to the 

difference between the correct solution and output. The goal is to have a network that 

will adjust weights that can provide solutions for new and unknown data and be able 

to generalize and make reasonable predictions.  

• Unsupervised learning. This type of learning is used when there is a large amount of 

data and the user does not understand the context of data. The algorithms seek 

patterns in data and segregated data into groups of features. A training set has only 

the input patterns and based on it, the algorithm tries to generate pattern classes and 

classify them into categories.  

• Reinforcement learning. Type of learning based on a trial and error approach. The 

algorithm gets feedback after analysing the data and the user is guided to the best fit 

result. The training set contains the input patterns and after each sequence, the 

network receives a value defining the result and is it wrong or right.  
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4.2.1. Challenges in training a neural network model 

 

There are two types of effect that can happen during training of neural network 

(Panchal & Panchal, 2014): 

• Overfitting. It can happen when more neurons than necessary are present in 

the network.  

• Underfitting. It can happen when there are not enough neurons in the network 

compared to complexity of the data.  

By increasing the number of neurons, the network is able to solve more complex 

problems. However, if the number of neurons is set too high it can lead to overfitting. That 

means the neural network model is very close to the training set which makes generalization 

difficult and the model is not able to make valid predictions. It is very difficult to detect if 

overfitting is occurring. Only by new data coming into the model, we can be sure if the 

model is working properly. The same is for underfitting effect. By training the network too 

much, so called overtraining, the network will overfit the training data set resulting in bad 

performance on the test set. The solution is to stop the training when performance on the 

validation set starts to decrease. This is usually called early stopping 

(https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-

network-models/).   

Generally, a good practice is to split the dataset into three parts: training set, validation set, 

and test set. The neural network model learns only on the training set. The validation set 

keeps track about the progress and considers the optimization of the model. Finally, the test 

set is used as a performance evaluation. The percentage of split data can be tailored to each 

neural network. However, usually, data is split into 70% for training, 15% for validation and 

15% for testing.   

 

4.3. Types of neural network 

 

Artificial neurons in the network can be connected in several different ways forming 

specific architectures. The oldest and simplest model of the neuron is perceptron 

(https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-

3fb6f2367464). It sums up the input, applies activation function and transfers further to the 

https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
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output layer. The scheme is shown in figure 4-5. However, there are many different, more 

complicated classifications of neural networks.  

 

Figure 4-5. Perceptron- the simplest model of neural network 

(https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-

3fb6f2367464)  

 

4.3.1. Feedforward network 

 

Feedforward network is a type of neural network in which data propagates in only 

one direction. The data is passing through different neurons until it reaches the output layer 

with no backpropagation. Feedforward networks are able to deal with a lot of noise data and 

are usually used in technologies such as face recognition.  

• Single-layer feedforward network. The simplest neural network is a single layer 

feedforward network (figure 4-6). In this network, the input layer is directly 

connected to the output layer. The term single layer refers only to the output layer 

because the input layer does not perform any computation on input data, so it is not 

considered (Beckenkamp, 2002; Kriesel, 2005). 

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
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Figure 4-6. Single-layer feedforward network (Beckenkamp, 2002) 

 

• Multi-layer feedforward network. In this network one or more hidden layer are 

added, more connections and neural iterations are present, thus it can deal with more 

complicated problems. We can differ fully connected multi-layer feedforward 

network (figure 4-7) and not fully connected (figure 4-8). In the fully connected each 

neuron is in one layer is connected to all neurons from another layer. In case of not 

fully connected, the user has information about the pattern and its classification and 

is able to remove invalid or unnecessary connections. This type of network can also 

be called a deep network when it has many hidden layers (Beckenkamp, 2002; 

Kriesel, 2005). 

 

 

Figure 4-7. Multi-layer feedforward network fully connected (Beckenkamp, 2002) 

 



37 
 

 

Figure 4-8. Multi-layer feedforward network not fully connected (Beckenkamp, 2002) 

 

4.3.2. Recurrent neural networks (RNN) 

 

The recurrent neural network (figure 4-9) has a feedback loop. The feedback can be 

from the output of one neuron to the input of another which is called indirect recurrence. It 

can happen between neurons in the same layer or between neurons of different layers. 

Another option is also a self-feedback or direct recurrence meaning the output of the neuron 

is returned to its input, so the neuron is connected to itself. Lateral recurrences refer to the 

connections of neurons within the same layer. The feedback enhances learning capability of 

the neural network making its performance better (Beckenkamp, 2002; Kriesel, 2005).  

 

Figure 4-9. Recurrent network with no self-feedback loops (Beckenkamp, 2002) 
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4.3.3. Lattice network 

 

Lattice network is formed of arrays of neurons. Input neuron is connected to the 

arrays transferring the signal to them. In figure 4-10 the architecture of the lattice network is 

shown. This network has three by three neurons and each fed from three input neurons 

(Beckenkamp, 2002).  

 

Figure 4-10. Lattice network (Beckenkamp, 2002) 
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5. ANALYSIS OF A GAS WELL IN CROATIA 

 

The exploitation of gas in Well X started in 2006 and till now it produces gas 

naturally without artificial lift system. It produces from sandstone reservoirs and gas 

composition is 99,37% of methane with 0,15% of CO2 and 0,48% of N2. Reservoir intervals 

in this well have very low or no compaction at all. The primary porosity is around 30% while 

permeability is around 100 mD. However, the low compaction in this well results in sand 

production problems and decline in reservoir pressure. In order to deal with problems with 

sand, depending on petrophysical characteristics of reservoir, frack&pack (FP) or high rate 

water pack technique (HRWP) is used. In frack&pack technique, small parts of reservoir are 

fractured under high pressure. It is used in low permeability reservoirs when there is no 

danger of water breakthrough from other adjacent reservoirs after fracturing. High rate water 

pack technique is when gravel pack is set in the well where screen is placed. It is set at or 

near the fracturing pressure of the reservoir.  

There are 8 reservoir intervals perforated in well X: A1, A5, A5a, A5h, A6, A6a, A8, 

and A12. As it can be seen in figure 5-1 in 2006 all intervals were opened and producing. In 

2012, interval A1 was closed while intervals A6 and A12 were closed in 2013. Increased 

water production resulted in closing these three intervals.  
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Figure 5-1. Open and closed intervals in well X 

 

5.1. Production characteristics of well X 

 

Based on the data from the company, production trend and characteristics are 

determined. Parameters that are investigated are gas rate, water rate, and wellhead pressure. 

Based on the trends of these parameters, significant changes in the lifetime of the well can 

be determined. It is shown in figure 5-2 that important problem in this well is water. In figure 

5-2, orange line represents gas production with corresponding values at left y-axes. The blue 

line represents water production with corresponding values at right y-axes and black line is 

wellhead pressure with corresponding values at right y-axes. Water production was held at 

minimum until 2011 when it increased significantly. That was the reason why it was decided 
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to close intervals. First, interval A1 was closed in 2012. Afterward, intervals A6 and A12 

were closed in 2013.  

 

Figure 5-2. Production characteristics of Well X 

 

Figure 5-3. Production characteristics of Well X and time intervals (red line) for which 

analysis was performed 

Fluid production is observed in three specific periods (red lines in figure 5-3)– at the 

beginning in 2006, in 2009 when water production and wellhead pressure started to change 
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and finally in 2012 when water production was at the highest rate and just before A1 interval 

was closed.  

In order to make best decision where to implement ICVs in well X and how to obtain 

results which will give information about possible production improvements if intelligent 

equipment is used, it was necessary to look into various set of data. Data that is necessary 

for the analysis is: completion design (casing design, downhole equipment, perforation 

details), reservoir data (reservoir temperature and pressure for each perforated interval, 

permeabilities, skin), well tests, workover programs, well logs. However, it was not possible 

to gather all specific data. Therefore, model was built in PIPESIM with available data and 

other input data was inserted until the model matched production data provided by company.  

 

5.2. Building a physical model in commercial software PIPESIM 

 

One of the objectives of this thesis is to consider the possibility of intelligent 

completion implementation and simulate production if ICVs were used and intervals were 

not closed. Finally, the goal is to build neural network which will manage ICV opening 

depending on production rates and bottomhole pressure. A model was made in software 

PIPESIM to simulate cases for different ICV sizes (2-15 mm) and find the optimal ones. For 

each of these three intervals that were closed (A1, A6, and A12) due to high water 

production, downhole choke is selected. However, before simulating ICV impact on 

intervals of interest, basic model was built with conventional completion.  

 

5.2.1. Original model 

 

For building a basic model of well X in PIPESIM, workflow shown in figure 5-4 was used. 
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Figure 5-4. PIPESIM workflow 

 

Steps to build a wellbore physical model include: 

1. Selection of an appropriate model, either single well or multiple wells.  

In this case, the chosen model is single well. 

2. Set up the fluid model.  

PIPESIM offers the possibility to choose between the black oil model and 

compositional model. The selected model is black oil model and as production fluid 

is gas, oil-gas ratio (OGR) equals zero. As there are several intervals producing in 

well X and high water production comes from A1, A6 and A12, different fluids are 

used for simulation. For intervals A5, A5a, A5h, A6a and A8 fluid BOfluid (figure 

5-5) is used with water-gas ratio (WGR) close to zero (as those intervals are currently 

not producing high amount of water). For the interval A1, fluid A1 is used with 

corresponding water ratio and for the intervals A6 and A12, another fluid – A6 and 

A12 fluid with corresponding water ratio is used. 

 

Figure 5-5. Fluid characteristics for interval A1, A6 and A12, and BOFluid that represents 

fluid produced from other intervals 

3. Add downhole and surface equipment.  

Casing sizes and depths are shown in Table 5-1. Scheme of well completion is shown 

in figure 5-6 and surface equipment which includes wellhead, choke, sink and 

flowlines in figure 5-7. 
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Table 5-1. Casing design for well X 

Equipment  Name 
Depth 

(m) 

OD 

(mm) 

ID 

(mm) 

Wall 

thickness 

(mm) 

Roughness 

(mm) 

Casing Conductor 130.0 508,0 457.2 25.4 0.0254 

Casing 

Surface 

Casing 306.0 339,7 317.9 10.9 0.0254 

Casing 

Intermediate 

Casing 1298.0 244,5 224.4 10.0 0.0254 

Casing 

Production 

Casing 2442.0 177,8 159.4 9.2 0.0254 

Tubing Tubing 2074.0 73,0 62.0 5.5 0.0254 
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Figure 5-6. Well X completion scheme, simulated in PIPESIM 
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Figure 5-7. Surface equipment of Well X 

Where Ck is surface choke (currently not in use), Fl 1 is flowline and Sk is sink (end of the 

system). 

 

4. Define basic data for each model object.  

In this step wellbore geometry is specified (deviated well). Reservoir intervals were 

defined (perforation depths) and data such as well test data, reservoir pressure, 

reservoir temperature were defined. Example of well test data table is shown in figure 

5-8.  
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Figure 5-8. Well test data 

 

5. Select flow model for simulation of individual components in the system.  

For each interval, “Jones” equation is used for calculating inflow performance 

relationship (IPR). For the calculation of vertical lift performance (VLP), in 

horizontal section of the well selected correlations are “Beggs and Brill original” and 

“Baker Jardine Revised”. For vertical section flow, “Grey modified”, “Grey original” 

and “Hagedorn Brown” were selected. After choosing correlations, it is necessary to 

perform data matching to make sure selected equation fits the data. In figure 5-9 it is 

shown which correlations are available for calculations and which one are selected. 

In figure 5-10 it is shown that correlations fit the data which means, for each selected 
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correlation, the calculated data falls on the line that represents the real data. That 

means that each of these correlations can be used for further calculations.  

 

Figure 5-9. Correlations used for calculation of IPR and VLP 

 

 

Figure 5-10. Data matching 
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6. Perform an operation such as P/T profile, nodal analysis and system analysis. 

In this step, analysis of the system can be performed, and various variables can be 

analysed. In figure 5-11 the IPR and VLP curves and operating point of the system 

are shown.  

  

Figure 5-11. IPR and VLP curves 

 

5.2.2. Customized PIPESIM model 

 

Customized PIPESIM model was made in order to perform simulations with 

implemented ICVs. Three ICVs with other necessary equipment are installed at depths that 

correspond to closed intervals A1, A6 and A12 (table 5-2). In table 5-2 the ICVs are labelled 

as chokes because PIPESIM only offers possibility to install regular downhole chokes not 

intelligent equipment. Simulations are performed for ICV sizes from 2 to 15 mm (figure 5-

12, 5-13, 5-14). After simulations three sizes for each interval are selected. The selection 

was based on significant changes seen in production and for ICVs that show similar results, 

one size was selected. Choke size selected are 4, 6 and 8 mm for each interval.  
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Table 5-2. List of installed equipment for customized PIPESIM model 

Equipment Name Depth (m) 

SSSV SSSV 176.2 

Packer Pk 1 1674.0 

Choke Choke 1 1701.0 

Sliding sleeve Sleeve 1703.0 

Packer Pk 1705.0 

Sliding sleeve Sleeve 1 1795.5 

Packer Pk 2 1800.0 

Sliding sleeve Sleeve 2 1868.5 

Packer Pk 3 1875.0 

Sliding sleeve Sleeve 3 1887.5 

Packer Pk 4 1895.0 

Choke Choke 2 1901.0 

Sliding sleeve Sleeve 4 1902.5 

Packer Pk 5 1910.0 

Sliding sleeve Sleeve 5 2020.0 

Packer Pk 6 2028.0 

Choke Choke 3 2072.0 

Tubing plug Tp 2073.0 
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Figure 5-12. Different choke size performance for interval A1 

 

Figure 5-13. Different choke size performance for interval A6 
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Figure 5-14. Different choke size performance for interval A12 

 

As intelligent completion is considered and at the moment is not implemented, there 

are no downhole sensors and therefore there is no real-time data about bottomhole pressures. 

In order to build neural network as a final step of this thesis, it was necessary to generate 

bottomhole flowing pressures. The data was obtained from the software once the customized 

model was built and choke size were selected. 

 

 5.2.2.1. Choke model 

 

As one of the main ideas is to investigate how ICVs will affect production 

characteristics if they are installed, after basic PIPESIM model was made, downhole chokes 

were added to the model to simulate different cases. PIPESIM has no option to install 

intelligent completion, particularly ICVs or ICDs so regular chokes with different choke 

bean sizes were used for simulations. Mokhtari and Waltrich, 2016 investigated how to 

simulate multiphase flow models in PIPESIM and which equations best describe certain 

components and among others, the choke was investigated. According to them, choke model 

in PIPESIM is described the best by Mechanistic and API-14B model.  

In the choke valve, as the pressure difference increases, fluid velocity will also 

increase and if the compressible fluid is present it reaches sonic velocity. When the sonic 
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velocity is reached, the fluid flow becomes critical and independent of downstream pressure. 

In the software, there are nine correlations available for critical flow and three for subcritical. 

As the mechanistic and API-14B model showed to be the best according to literature, it was 

used in the simulation for well X and is described here. 

The basic equation that all correlations use is: 

𝑞𝑙 =
𝑝𝑢𝑝64𝑑𝐶

𝐴𝐺𝐿𝑅𝐵
          (1) 

Where: 

ql – liquid flow rate (m3/s) 

pup- pressure upstream to choke (bar) 

d – choke orifice (mm) 

GLR – gas liquid ratio (m3/m3) 

A, B, C – coefficients determined empirical 

In choke subcritical flow using Mechanistic and API-14B models, the pressure drop across 

the choke is (Mokhtari and Waltrich, 2016): 

𝛥𝑃 =
𝜌𝑛×𝜈2

2×𝑐
× [

𝜆𝐿

(𝑐𝜈𝐿×𝑍𝐿)2
+

𝜆𝐺

(𝑐𝜈𝐺×𝑍𝐺)2
]       (2) 

 

Where: 

 

𝜌𝑛 = 𝜆𝐿𝜌𝐿 + 𝜆𝐺𝜌𝐺          (3) 

𝜈 =
𝑞

𝐴𝑏𝑒𝑎𝑛×𝜌𝑛
          (4) 

𝑍𝐿 = 1           (5) 

𝑍𝐺 = 1 −
0.41+0.35𝛿4

𝛾
×

𝛥𝑃

𝑃𝑢𝑝
        (6) 

The assumptions in this model are fluid flow is incompressible and gas flow is 

incompressible and adiabatic. 

For the choke critical flow using Mechanistic and API-14B models, the same correlations 

are used like the ones in subcritical flow with the addition: 
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𝛥𝑝 = (1 − 𝐶𝑃𝑅)𝑝𝑢𝑝         (7) 

 

Where: 

Abean - choke area (m2) 

CPR – critical pressure ratio proposed by Ashford-Pierce 

Zg – gas compressibility factor 

Zl – liquid compressibility factor 

q - total mixture flowrate (m3/s) 

γ – gas specific gravity 

ΔP – pressure loss across the choke (bar) 

λg – gas flowing fraction 

λl – liquid flowing fraction 

ν – mixture velocity (m2/s) 

ρg – gas density (kg/m3) 

ρl – liquid density (kg/m3) 

ρn – non-slip mixture density (kg/m3) 

 

For the mechanistic and API-14B model, gas discharge coefficient is a constant number 

cvg=0.9, as well as liquid discharge coefficient cvl=0.85. 

 

5.2.2.2. Different cases simulated in PIPESIM 

 

After making a basic model in PIPESIM that matches actual production characteristics 

of the well and after customized model was built with installed ICVs, next step includes 

simulation of different cases. As it was mentioned, three reservoir intervals (A1, A6, A12) 

showed to be problematic due to high water production. The objective of simulations of 

different cases is to assume several scenarios that are possible to happen in the well. As there 

is no real-time data from the sensors, four variables were changed as possible scenarios, 

sensitivity analysis was performed and data necessary for neural network was generated.  
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Cases that were simulated: 

• WGR: 20, 40, 60, 80, 120, 150, 200, 300 and 400 m3/mmsm3, 

• Choke sizes: 4, 6 and 8 mm,  

• Outlet pressures: 40, 50, 60, 70 and 80 bar, 

• Reservoirs pressure: 95, 100, 105, 110, 115 and 119 bar (choke 1 and choke 3) and 

90, 95, 100, 105, 109 bar (choke 2). 

Parameters obtained after simulating different cases: 

• stock tank liquid rate, 

• stock tank gas rate, 

• bottomhole pressure, 

• temperature difference, 

• maximum liquid loading gas rate, 

• choke critical pressure ratio, 

• choke pressure drop, 

• critical choke pressure drop. 

After making different scenarios, output data was exported to Excel. For each 

combination of these variables, data was thoroughly studied. Optimal choke size was 

selected for each case. The optimal size selection was based on comparison of parameters: 

water rate, gas rate and bottomhole pressure. The example of choke selection is shown in 

Chapter 8 - Appendix in table 8-1 where 3 different cases and corresponding parameters are 

shown. The selection of optimal choke size is as following: first, if there are no significant 

changes in water rate for the three choke sizes, the one giving the biggest gas rate is chosen. 

Secondly, if water rate is high, around 2m3, then gas rate is compared for chokes and if there 

is no big difference, then middle choke size is selected. Finally, if water rate is bigger than 

2,5m3, the smallest choke size – 4mm is chosen. After filtering the data, the optimal choke 

size and corresponding parameters are used for the neural network model. 

There are several things that need to be considered in simulations and later optimal 

choke size selection. As the well X produces gas, liquid loading problem may occur. Liquid 

loading happens when gas velocity is not high enough to lift the liquid. In case of well X, 

water production is increasing, and this could be potential problem. However, in simulated 
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cases in PIPESIM, critical liquid loading values were compared to actual and the results 

showed it should not be a problem at the moment. 

Another parameter that should be investigated is critical pressure drop (Δp) at the choke. 

PIPESIM gives critical values that should not be exceeded, and values of the system 

installed. After comparison, it can be concluded which cases can be considered further for 

neural network model. However, in all cases, Δp of the system was below critical meaning 

all cases can be considered. 
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6. NEURAL NETWORK MODEL FOR WELL X 

 

Final step of the thesis is building neural network. The idea is to see if neural network 

can predict optimal choke size as the data will come from sensors in real-time. It is assumed 

that sensors will send real-time data about bottomhole flowing pressure, gas rate and water 

rate and therefore, those were generated in PIPESIM for different cases and will be input 

data for the model. General workflow is described, and the results of the network are given. 

The neural network is made in Matlab software in package DeepLearning Toolbox. 

When building a machine learning model, it is important to decide which type of learning 

process will be applied. As it can be seen in figure 6-1 there are two types available in 

Matlab. Based on the problem that is analysed and desired solutions, for the well X, 

supervised learning is chosen. Furthermore, classification is selected and finally neural 

network as a machine learning model.  

 

Figure 6-1. Different types of learning and models in machine learning according to 

Matlab 
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6.1. Workflow for the neural network model 

 

The workflow for building the neural network consists of several steps: 

1. Data acquisition and pre-processing, 

2. Creating a neural network model 

3. Network training and initialization of the weights and biases 

4. Network validation 

First step was described in chapter 5.2.2.2. Data was prepared in PIPESIM and Excel.  

Second step is creating the model. Matlab function nnstart is used. This function opens 

a Network/Data Manager window - Neural Network Start window (figure 6-2) in which it is 

possible to select which type of network will be used. It offers four different networks: neural 

network fitting, pattern recognition, clustering and time series. 

For the well X, it is decided to use Pattern Recognition app (function nprtool) to create 

the network. This function solves a classification problem by creating two-layer feed forward 

network. This neural network classifies input into target categories which are in this case 

choke sizes: 4, 6 or 8 mm.  

 

 

Figure 6-2. Network/Data Manager window for creating neural network (Matlab) 
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Neural network consists of input, hidden layers and output. Input and output are defined 

by importing excel sheet or writing the data directly in Matlab. One hidden layer is selected 

as this is enough for solving majority of problems according to literature. The number of 

neurons in the hidden layer can be defined according to several rules. According to Panchal 

and Panchal (2014.), there are several methods for selecting the hidden neuron number. They 

describe try and error method, rule of thumb method, simple method, two phase method, 

sequential orthogonal approach. However, to simplify, the selected number of hidden 

neurons is 10, as it is by default in Matlab.  

Third step is training. When building the neural network model, one of the issues is 

which training function to choose. Training function selection depends on several factors 

such as complexity of the problem, is the model used for pattern recognition or regression, 

the number of data points, the error goal, the number of biases and weights. The training 

function used in this model is Scaled Conjugate Gradient (in Matlab trainscg). This training 

function is selected by default when choosing pattern recognition app. Data set is divide to 

70% for training, 15% for validation and 15% for testing.  

Final step is validation of the model. There are several parameters showing the 

performance and results of the network. In classification problem, percent misclassification 

error and cross-entropy are used. In addition, performance of the network can be evaluated 

from plots: matrix confusion plot, receiver operating characteristics (ROC) plot, 

performance plot, training state plot and error histogram. 

 

5.2.2. Neural network for well X 

 

The architecture of the created network is shown in figure 6-3. It is a two-layer network. 

It has hidden neuron where sigmoid function is applied and output neurons where softmax 

function is applied for calculations. The number of selected hidden neurons is 10, while size 

of input and output is 3.  
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Figure 6-3. The architecture of the neural network for well X 

 

In table 6-1 an example of the data used for creating network is shown. Input consists 

of 3 parameters: water rate, gas rate and bottomhole pressure. Optimal size for the given 

input is selected in the column target. As the network is supposed to solve classification 

problem, the target has to be in the form of vector. Therefore, targets are labelled as it is 

shown in the column Target (vector). The data set consists of 521 observations, which are 

divided in training set-365, validation set-78 and testing set-78. 

Table 6-1. Example of the input and target subset data 

INPUT TARGET TARGET (vector) 

Water 

rate 

(m3/day) 

Gas rate 

(mmm3/day) 

Bottomhole 

pressure 

(bar) 

ICV size 

(mm) 
8mm 6mm 4mm 

0.50869 0.02543 57.436 8 1 0 0 

0.47409 0.02370 68.287 6 0 1 0 

0.52356 0.02618 71.631 6 0 1 0 

0.57328 0.02866 75.140 6 0 1 0 

0.62304 0.03115 78.806 6 0 1 0 

0.66330 0.03316 81.810 6 0 1 0 

0.52321 0.01308 77.977 4 0 0 1 

1.12437 0.02811 60.591 8 1 0 0 

1.26136 0.03153 62.649 8 1 0 0 

1.40002 0.03500 64.955 8 1 0 0 

1.22426 0.03061 79.581 6 0 1 0 

1.30444 0.03261 82.569 6 0 1 0 

1.45525 0.02426 59.702 8 1 0 0 

1.65555 0.02759 61.542 8 1 0 0 

1.86108 0.03102 63.567 8 1 0 0 
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After selecting input and target and importing it in Matlab, the next step is training 

the network. Training is performed until the validation set reaches the lowest possible values 

of the misclassification error and the cross-entropy value (figure 6-4). Cross-entropy (CE) is 

a number that gives the error in the model. The lower values are better while zero means no 

error. Percent error (%E) is the number that says how many percent of the sample is 

misclassified. 100 means maximum misclassification while 0 means no misclassification. It 

is important to point out that the network can be overtrained, meaning the network will start 

memorizing from training set instead of learning. Therefore, it is a challenge to train network 

long enough to make valid predictions but not too long, so the data is overfitted. Some of 

the advices when training the network are to stop when the validation set error is decreasing 

and then suddenly increase.  

 

 

Figure 6-4. Cross-entropy and percentage of misclassification for training, validation and 

testing set 

To validate and visualize results, matrix confusion plot, receiver operating 

characteristics (ROC), performance plot, training state plot and error histogram are used. 

Matrix confusion (figure 6-5) shows the percent of correct responses (in green squares) and 

percent of incorrect responses (in red squares). It basically gives information how good is 

the classifier. In the figure 6-5 a) the matrix shows the classification accuracy for the training 

data. The training data has 365 observations. The upper number in the squares shows the 

number of the observations classified in the particular class, while the lower number gives 

the percentage of the classified observations in that class. There are three classes, 1, 2 and 3 

which represent the ICV sizes - 8, 6 and 4 mm. On the x line – Target Class, data represent 

the desired outcome of the model, while on the y-line – Output Class, data represent the 

actual output of the model. In the white squares, summation for each class is shown and in 
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the grey square overall classification accuracy. Figure b) shows the classification accuracy 

for the validation set which is 78 observations. The validation set is necessary to check if the 

model works properly and see if there is room for optimization of the model. In the validation 

of the model, training is not performed. The training of the model is only performed on the 

training set. Finally, a data set is selected for the testing of the model to see how the model 

will work on the future data coming in the network (figure c). In the figure d) summation of 

all confusion matrixes is shown and it represents overall classification accuracy. The neural 

network showed classification accuracy for the training 86,3%, for the validation 85,9% and 

for the testing 86,4%. That makes overall 85,6% classification accuracy of the model.  
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Figure 6-5. Confusion matrix 

 

The ROC plots the true positive rate-sensitivity and false positive rate-specificity. In 

perfect neural network, plot would show points in the upper left corner and 100%sensitivity 

and 100% specificity. As it can be seen in figure 6-6, trend of the curves for each class fall 

towards left upper corner which indicates that the model is good.  Figure a) represents the 

training of the model, b) shows the validation, c) how the model will work on new data – 

testing, and d) summation of all receiver operating characteristics. 
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Figure 6-6. Receiver operating characteristic plot 

 

The performance plot and training state plot give training statistics. The performance 

plot (figure 6-7) shows how the error reduces after certain number of epochs in the training. 

In the default, training stops after 6 increases in validation error. The best performance is 

taken from the epoch where is the lowest validation error. This graph can also show if the 

network is overfitting the training data. When it happens, the training curve increases 

significantly before the validation curve increases. In this model, curve follow the usual trend 

and there is no indication that overtraining happened. The training state plot (figure 6-8) 

shows the backpropagation gradient which shows when the local minimum of the function 

is reached. In addition, validation fails show when validation mean squared error increased 

which can also indicate if the model is overtrained or not.  
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Figure 6-7. Training, validation and test performance plot 

 

 

Figure 6-8. Training state plot 

Error histogram is used as additional verification of the network and it shows error 

distribution for the number of observations. As it can be seen in figure 6-9, errors are 

normally distributed. 
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Figure 6-9. Error histogram 

 

6.2. Discussion of the results 

 

It is hard to strictly define when the neural network is good and will provide 

satisfying results after application. It depends on the problem and its complexity. According 

to http://www.dataminingblog.com/what-is-a-good-classification-accuracy-in-data-mining/ 

in some cases the classification accuracy is more than 90% (face recognition), in other 55-

60% (finances). In both cases this is a satisfying result. However, generally 80% of accuracy 

is considered to be good neural network model. 

 In the neural network created for the well X the classification accuracy of 85,6% 

presents good results. However, if we consider its application, the input data for this neural 

network will be coming in real-time from the sensors, which means this network will have 

much bigger set of data. That will constantly update network, and it can learn and train from 

new samples. Therefore, the classification accuracy can be even better. Another thing why 

it would be better if there was more input data, is that class 2 which is 6 mm choke has very 

small difference with 8mm choke in application. The results in confusion matrix show the 

poorest classification accuracy for the class 2. Based on the results, this model has problem 

http://www.dataminingblog.com/what-is-a-good-classification-accuracy-in-data-mining/
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to classify input data to class 2, and it often happens that it misclassifies it into class 1 – 8 

mm choke. Therefore, more data is needed to upgrade the neural network model. 

In addition, fully closed or fully opened choke in this neural network model is not 

considered as it demands additional neural network because parameters to build it would not 

be the same. For example, for fully closed choke, there would not be bottomhole flowing 

pressure but static pressure, and gas rate and water rate would be zero. This requires more 

data analysis and analytical thinking in order to create the network. It can be recommended 

as the next step to develop a complete automatization of the ICVs.  

After all benefits of the neural networks are mentioned it is also important to emphasize 

the setbacks. The disadvantage of neural network is when it does not perform well, or in 

other words it does not give expected results, it is very hard to figure out the reason why. 

That is one of the reasons why neural network is often called “black box”. Therefore, if there 

is an explanation needed what and how something happened in the network, the neural 

networks may not be the best machine learning tool.   
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7. CONCLUSION 

 

Nowadays, intelligent completion found many applications and has many advantages. 

Some of those are reduced well interventions, better reservoir management, faster response 

to unexpected changes and better gas/water injection control. However, there are still some 

setbacks such as significantly higher costs, plugging and damage of ICVs and the inability 

to handle abundance of data coming from sensors. It is necessary to make good planning and 

consider all possible issues before implementing such expensive equipment. The thesis 

considered possible implementation of the intelligent equipment in well X instead of the 

current conventional completion. Several scenarios were simulated in PIPESIM to see how 

ICVs will regulate gas and water production. The results of simulations were used to build 

neural network. The results showed that it could be feasible to manage ICVs through neural 

network with more than 85% model accuracy. However, there is a need for much more data 

to be able to create high quality network. If it was a real case, the data will be coming in the 

real-time from the sensors and there will be enough data to create and test network for this 

application. Furthermore, the network will be constantly updated and learn from new data, 

as it is coming to surface monitoring system. The good model also includes trial and error 

process in defining compatible hidden neuron number and the training duration as there is 

no universal rule to define those parameters.  

In the end, although neural network showed to be very convenient in solving problems, 

it is still often called “black box”. The name comes from the inability to completely 

understand what happens in the hidden layers. Therefore, the output cannot be explained by 

simple mathematical and statistical calculations. It is impossible to completely rely on the 

machine learning without critical and analytical thinking of the engineers.  
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9. APPENDIX  

 

Table 8-1. Example of the data generated in PIPESIM after system analysis and how optimal choke size is selected for certain case 

  

Outlet 

pressure 

(bar) 

WGR 

(sm3/mmsm3) 

Choke 

size (mm) 

Reservoir 

pressure 

(bar) 

Stock 

tank 

liquid rate 

(m3/day) 

Stock tank 

gas rate 

(mmm3/day) 

BHFP 

(bar) 

Liquid 

Loading gas 

rate 

maximum 

(mmm3) 

Choke 

Critical 

Pressure 

ratio 

Choke 

Delta P 

Choke 

Critical 

Delta P 

Status 

1 

40 20 4 95.003 0.26864 0.01343 77.47 0.03650 0.53 27.26 36.40 

Not 

optimal 

40 20 6 95.003 0.42498 0.02125 65.12 0.03642 0.53 15.01 30.60 

Not 

optimal 

40 20 8 95.003 0.50869 0.02543 57.44 0.03639 0.53 7.28 26.99 Optimal 

2 

40 80.002 4 110 1.30846 0.01636 91.75 0.03646 0.53 37.42 43.11 

Not 

optimal 

40 80.002 6 110 2.18043 0.02725 77.22 0.03637 0.53 23.03 36.28 Optimal 

40 80.002 8 110 2.72187 0.03402 66.63 0.03631 0.53 12.38 31.31 

Not 

optimal 

3 

40 300 4 105 3.81366 0.01271 90.35 0.03692 0.53 27.14 42.45 Optimal 

40 300 6 105 6.33152 0.02111 79.20 0.03703 0.53 16.00 37.21 

Not 

optimal 

40 300 8 105 7.85987 0.02620 71.60 0.03709 0.53 8.24 33.64 

Not 

optimal 
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