Sand from the sealed Middle Byzantine amphorae of cape Stoba shipwreck

Jaklić, Manuela; Zmaić Kralj, Vesna; Mileusnić, Marta


Conference paper / Rad u zborniku

Publication status / Verzija rada: Published version / Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:624981

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-03

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb
approaches used to characterise the residues. Special attention will be given to compound-specific isotope analysis, which allows further distinction between terrestrial ruminant adipose fats, dairy fats, non-ruminant fats and even wild animals fats as well as fats from marine and freshwater sources based on the d13C signatures of the palmitic and stearic acids commonly found in archaeological residues. Complexities and limitations of the technique will also be discussed.

The results obtained from ORA on vessels recovered from the Late Bronze Age cemetery and settlement of Mačkovač-Crišnjevi, in Northern Croatia will be presented. The site is located on the left bank of the Sava River, near the town of Nova Gadiška and is dated to the BrC2 to HaA1 period (Barice-Gredani group). Lipids were extracted and characterised using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography - combustion - Isotope Ratio Mass Spectrometry (GC-c-IRMS). The results obtained were found to complement faunal data, and further show the use of dairy products.

Locally produced or imported? Late-Copper-Age decorated bowls from the Trieste Karst (north-eastern Italy) and Deschmann’s pile-dwellings (central Slovenia) studied

Federico Bernardini¹,², Elena Leghissa², Zsolt Kasztovszky³, Veronika Sülzágyi⁴, Ildikó Harsányi⁶, Angelo De Min⁴ & Manuela Montagnani Kokeľ⁶
¹ Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Roma, Italy
² Multidisciplinary Laboratory, The "Abdus Salam" Int. Centre for Theoretical Physics, Trieste, Italy
³ Institute of Archaeology, ZRC SAZU, Ljubljana, Slovenia
⁴ Nuclear Analysis and Radiography Department, MTA Centre for Energy Research, Budapest Hungary
⁵ Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
⁶ Department of Humanities, University of Trieste, Trieste, Italy

A group of Late-Copper-Age decorated cross-footed bowls from the Trieste Karst (NE Italy) and Deschmann’s pile-dwellings (central Slovenia) studied using non-destructive X-ray computed microtomography and Prompt gamma activation analysis

Manuela Jaklič¹, Vesna Zmaić Kralj² & Marta Mileusnić²
¹ Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Croatia
² Croatian Conservation Institute, Zagreb, Croatia

Sand from the sealed Middle Byzantine amphorae of cape Stoba shipwreck

The remains of cape Stoba shipwreck lies on the seabed near Mijet island at the depth between 21 and 28 m. The wreck-site is evidenced by a cargo of amphorae and glass dated back to the 10th-11th century AD. Five amphoras, located in the cargo part of the ship, as well as the small ceramic vessel which had to be placed in the ship’s kitchen, were found filled with sand and closed with a wooden stopper and resin. The aim of this study is a characterization of the sand which could help in the determination of its purpose.
Sand samples from amphorae and vessel, as well as from the sea bottom, were investigated. Mineralogical content was determined using X-ray diffraction and grain size distribution by wet sieving. From fine sand magnetic fraction is separated. All granulometric and magnetic fractions were examined by binocular magnifier. All sand samples are marine sediment of carbonate composition. Sand grains are mainly skeletons of the Mollusca, Corals, Foraminifera, Sponges and Echinoderms.

This investigation has neglected the archaeological assumption that sand was used as a raw material for glass manufacture. One of the assumptions is that sand could serve as dishwash as it was found in a small ceramic vessel inside the kitchen as well. But, the composition of sand is not suitable for this purpose. It is not possible that sand from the sea bottom entered in amphorae through a small hole at the center of the cap as the coarser grain size were found. Additionally, the depth at which the amphorae were found is below the base of the waves, and the sea currents in this area are not strong enough to produce a significant suspension of seabed material. This sand could serve as a ballast, although archaeologists have not encountered such a case so far.

Nina Dirić1, Tatjana Gluhak1 & Danny Rosenberg2
1 Rémiisch-Germanisches Zentralmuseum, Mainz, Germany
2 Laboratory for Ground Stone Tools Research, Zinman Institute of Archaeology, University of Haifa, Israel

Provenance analysis of basaltic rock tools of Chalcolithic and Early Bronze Age I periods in Israel

The fact that vessels as well potter’s wheels and spindle whorls in Chalcolithic and Early Bronze Age I were made selectively from basaltic rocks shows that this raw material played a major role for tool production as well as for craft specialization during these periods. These items obviously had a great value for the communities in the southern Levant, facing increasing social and economic changes.

The petrological definition of the raw material of the archaeological finds, as well as the determination of the sources of basaltic rocks that were used for these tools, enables not only the mapping of the distribution of these items across the landscape and over time but also tracking possible trade routes and exchange mechanisms.

The value of basaltic rock tools as carriers for information is essential. In contrast to many other raw materials, the petrological characteristics of a basaltic tool correspond directly to the characteristics of its source.

To achieve more information about trade/exchange systems, a geochemical database of the basaltic raw material is currently created to enable a geochemical affiliation of the archaeological finds to their sources. For this reason, over 500 basaltic rock samples were collected in Israel and geochemically analyzed over the past years. The evaluation of the major and trace element analytical data supported by cluster analyses show that single basaltic rock deposits can be distinguished from each other as well as from other sources outside the borders of modern Israel. This permits an exact tracking of the origin of the archaeological finds.

This presentation will give an overview of the geological background data as well as present a case study of a Chalcolithic and Early Bronze Age I assemblage in order to demonstrate the approach of the provenance determinations.