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Abstract: Geomathematics is extremely important in geosciences, particularly in the geology. The 
key for any geomathematical analysis is the definition of a typical model to be applied for further 
prognosis, either through deterministic or stochastic approaches. The selection of the appropriate 
procedure is presented in this paper. Two different geomathematical subfield datasets were used in 
subsurface geological mapping and palaeontology and different biostatistics applications, 
representing important geomathematical subfields in the Croatian geology. The different 
subsurface interpolation methods tested, validated and recommended for application were used to 
obtain the best possible outcome in reservoir modelling, in the cases with small datasets. Cross-
validation may be chosen as the main selection criteria, applied to the Croatian part of the 
Pannonian Basin System (CPBS). Recent advances in biostatistics applied in palaeontology and case 
studies from Croatia are also presented, where biometric studies are of significant importance in 
fossil biota. Data, methods and problems in geosciences are vast subjects, and address a wide 
spectrum of fundamental science. Because geology includes subsurface and surface geology, and 
very different datasets regarding variable and number of data, we have chosen here two 
representative case study groups with original samples from Northern Croatia. Subsurface mapping 
has been presented on limited petrophysical datasets from the Northern Croatian, Miocene, 
hydrocarbon reservoirs. Biostatistics have been presented on very different samples, allowing us to 
achieve paleoenvironmental reconstructions of the size of relevant fossils, such as dinosaurs or other 
species and their paleoenvironments. All examples highlight examples of the valuable application 
of geomathematical tools in geology. The results, cautiously validated and correlated with other, 
non-numerical (indicator, categorical) geological knowledge, are of enormous assistance in creating 
better geological models. 

Keywords: geomathematics; geostatistics; subsurface geological mapping; biostatistics; 
palaeontology; Croatia 
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1. Introduction 

The development of geomathematics in the past was a very dynamic and non-linear process. In 
the early days (until the 1980s) geomathematics and geostatistics were considered as synonymous, 
so pioneer works in geostatistics were considered as breakthroughs in the entire geomathematics 
applied in geosciences. The first results of geostatistical research (different from research in the field 
of “spatial statistics”) had been published by [1–3] where kriging was described for the first time. The 
same algorithm had already been applied earlier by [4] for estimation of gold nuggets concentrations 
in South African mines. Matheron’s foundation has been based on the least square method and linear 
Gaussian model, which stayed as a base until the present day. Following the linear models, authors 
such as [5] and [6] also developed non-parametric and non-linear geostatistics. In parallel, 
geostatistics was developed together with applied statistics by [7]. Cressie [8] made an important step 
toward unification of geostatistics and other data analysis methods in geology, describing three main 
branches of spatial statistics-geostatistics, spatial variations and spatial point processes. That is what 
we today call geomathematics. 

Here it is also worth mentioning some pioneer works that preceded Matheron’s development of 
early geostatistics. Frits Agterberg published some early papers crucial for later development of 
spatial statistics. He used numerical analysis of depositional and structural data to interpret 
sedimentation rates [9] as well as divergent structural trends [10] and single structural events. In 
Agterberg [11] the origin of skewed distributions of ore minerals was discussed and spatial 
dependence recognized using Fourier analysis. Krumbein [12–14] developed and published several 
statistical models in geological mapping. Approximating simulations with Matheron works, Vistelius 
[15] published important studies in mathematical geology, and Merriam [16] undertook the early 
application of computers in geology. 

Here, it is important to mention that the use of geostatistics (even statistics) is closely related 
with exploration and the production of hydrocarbon reservoirs (e.g., [17,18]). In the late 1980s, 
geostatistics offered new algorithms, allowing much better reservoir characterisation to be obtained, 
in particular visualisation. However, from the early days in geostatistics and later geomathematics, 
the main factor in the selection of a method was the number and distribution of data elements. Those 
two problems are often intertwined, although distribution of data is considered as fundamental for 
any later analysis.  

As in any data-based analysis, geomathematics is highly dependent on hard data, i.e., 
measurements, aiming to predict values in non-sampled volumes (Figure 1). The problem had been 
solved differently. As geological variables are mostly presented in deterministic ways, knowledge 
about (sub)surface is always partial. In fact, the models are stochastic but too complex so that 
available mathematical approximations, restricted with limited data, could be presented in such a 
way. Geomathematics offered the approaches designed for object-based models, where objects are 
datasets analysed and visualised with different spatial methods (e.g., [19,20]). Most of them are 
deterministic (kriging) but some approaches could be stochastic (simulations). 
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Figure 1. Relation between geostatistical approach and number of data elements. 

Any classification of such models can be categorised. Here we decided to divide them into: 
1. Full deterministic, models where volume is well known, without uncertainties, possible 

correlated, and settings are known and established. Such knowledge is rare, but many areas 
are approximated in such a way. 

2. Stochastic volumes, where uncertainties cannot be full described and permanently exists. 
However, the probability model allows predictions and estimations to be made with different 
geomathematical algorithms. This is mostly done with analysed (sub)surface volumes, but 
the stochastic approach asks for more experiences and, contradictorily, more data than the 
deterministic approach. 

3. Unpredictable volumes, where analysed variables could not be described by any algorithm 
or just the number of data elements is not high enough so that any observation is valid and 
general.  

The key goal for any geomathematical analysis is the definition of a typical model that can be 
applied for further prognosis in similar or the same conditions. Any such prognosis needs to be based 
on valid choices, grounded on previous case studies where decision trees are made. Such choices are 
always based on the number of inputs, regarding variables and dataset size. Generally, the explored 
geological volume is researched longer so that the object of researching could be improved more 
easily with both deterministic or stochastic approaches. The decision depends on experience, 
knowledge and readiness to accept uncertainties in future estimations. Any multivariable approach 
is beneficial (like co-kriging) but needs well-documented connections among dependent variables. 
Significant inherited (measurements limitations, equipment error) and man-made (biased sampling) 
uncertainties forced stochastics, but limitation of such an approach is a must-have spatial model. 
However, it is not a condition at all for simpler algorithms like inverse distance weighting (IDW), the 
modified Shepard’s method (MSM), nearest neighbourhood (NN) or similar. The largest limitation is 
the number of data elements (Figure 2), especially if the primary variable is to be defined in the entire 
dataset. The sparse or non-representative dataset greatly limits the application of statistics. Even 
statistical representative sets (e.g., n > 30) are much easier when analysed with parametric statistics 
that require Gaussian distribution. By contrast, non-parametric statistics are only a choice, which can 
limit the number of tests and mapping, in particular. 
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Figure 2. Simple decision tree for geomathematical analysis. 

However, and despite all limitations, geomathematics has many favourable and robust tools and 
algorithms for analysis of almost all geological datasets. It is especially valid if geomathematics is 
considered as a field divided into three sub-fields: geostatistics, statistics applied to geosciences and 
neural networks applied to geoscientific data. 

The main challenge is the selection of an appropriate procedure. How to find such tools, but 
only in a very tiny spectre of geomathematics and geosciences, has been presented in this work, 
through the examples of two different geomathematical subfield datasets. The first one refers to the 
subsurface geological mapping, as described above, and the second one refers to palaeontology and 
biostatistics. 

The starting point in paleontological research is the assumption presented by day biota and 
processes which are the key to understanding Earth’s history. Therefore, the biological research 
methods and facts, such as biostatistics (biological statistics or biometry), are common in taxonomical 
and palaeoecological studies in palaeontology due to the assumption that species can be defined by 
morphology, including the measurable parameters. 

The development of biostatistics dates back to the 19th century, with Francis Galton (1822−1911), 
”the father of biostatistics and eugenics“. His methodology, used in the analysis of biological 
variation, is considered as the foundation for the application of statistics to biology [13]. The term 
“biometry“ was coined by the zoologist W.F.R. Wilson (1860−1906), who was working with Karl 
Pearson on the application of statistical methods in biology [21]. The application of biometry in the 
systematic description of plants and animals was pointed out by [22], where he describes the 
necessity of specific descriptions of taxon characteristics, in order to precisely describe the specimen. 
The rising impact of biometry resulted in the establishment of the Biometric Society on 6 September 
1947 at Woods Hole, USA, as described by [23]. The first president of the Biometric Society was Sir 
Ronald Aylmer Fisher (1890−1962). The society was later renamed the International Biometric Society. 
The Biometric Section of the American Statistical Association started publishing the Biometrics 
Bulletin in 1945, which was renamed Biometrics in 1947. 

Two significantly different datasets and applications in geological subsurface mapping and 
biostatistics (biometrics) presented in this paper, represent, in the last decade, as well as currently, 
the most progressive and publicised geomathematical subfields in Croatian geology. 
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2. Mathematical Basics of Algorithms Applied in the Presented Case Studies 

2.1. Kriging Method 

Kriging (as well as the co-kriging and stochastic simulations) is a group of statistical estimation 
methods. The specificity of kriging (e.g., [5,24,25]) is the definition as the best linear unbiased 
estimator (BLUE), although it is valid only for specific datasets. The strength of the kriging approach 
is due to the weighting coefficient calculation, the procedure based on the minimisation of kriging 
variance. The linear method means that estimation has been done by the combination of hard data; 
the unbiased character makes sure that the estimation’s expected value is as real as for the entire 
possible population. The estimator defines the applied methodology. The linear estimation is shown 
in Equation 1: 

∑
=

×=
n

i
iik ZZ

1
λ

 

 
(1) 

Where: 
Zk - value of the regionalised variable (variable that described some geological property in a 
selected space with clear structure and known statistics) calculated at location “k“; 
Zi - value of the regionalised variable measured at location “i“; 
λi - weighting coefficient calculated by kriging matrices for location “i“. 

The necessary condition for the kriging estimation is that the measured Zi values are 
characterised with normal distribution or, at least, that such property is assumed for that variable in 
the case of a large number of measurements. Compared with simpler estimation algorithms, kriging 
is a more time-consuming interpolation method, but also better tool for handling with highly 
clustered data. By contrast, the kriging results in very weak works with small datasets (n < 20), unable 
to give an origin to meaningful spatial models. The spatial (variogram, co-variance or madogram) 
tools are powerful when applied with enough data and background knowledge. The variogram is 
the most often applied among them. It is defined as squared difference between two pints at some 
distance. 

As mentioned earlier, the main advantage of kriging is the weighting coefficient calculation. 
After the spatial model has been set up, the calculation of the coefficient is not dependent on their 
value, but exclusively on the distance between measured points and location where the value is not 
known. Such a value is also called “statistical distance” or “semivariogram distance”, referring to 
their derivation from the variogram (value of variance for any data-pair, which is function of their 
distance; once variogram model is calculated, the variogram for new measurements can be calculated 
only from the distance itself, regardless of their value). The kriging equations (Equation 2) are 
calculated using matrices. In two of them (W, B), the values are given with variogram values, which 
depend on distances among observed locations: 

[ ] [ ] [ ]BW =× λ  (2) 
There are numerous kriging techniques, each of them differenced by some modification in 

matrices. The most used in Croatian case studies are herein designated by simple, ordinary, indicator 
and universal kriging. Simple kriging is the basis for all the other available techniques. The matrix is 
presented in Equation 3: 
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⎤
 

 
(3) 

Where γ—variogram value, Z1…Zn—known measured values in spatial points (hard data), x—
location where value is estimated from known values, λ—weighed coefficients for location 1…n. 

Although the basic technique, it is the only one that do not satisfy the condition of unbiased 
estimation, because it is the only equation without constraint. Such constraint(s) could be linear or 
non-linear. 
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The technique used most often is presented in Equation 4 with an additional constraint, the 
Lagrange multiplier (μ), aiming to find the local minima and maxima of the function, subjected to 
equality constraints, i.e., to minimise the kriging variance. 

⎣
⎢
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2.2. Inverse Distance Weighting (IDW) Interpolation Method 

IDW is a widely used interpolation method, both for small and large datasets. The unknown 
value is calculated based on all known points and inversely proportional to their distances, weighted 
by power exponent (Equation 5, e.g., [26–28]) and is defined as: 

1 2

1 2

1 2

...

1 1 1...

n
p p p

n
IU

p p p
n

zz z
d d dz

d d d

+ +
=

+ +
 

 
 
(5) 

where: 
ZIU estimated value, 
d1…dn distance between locations (points) with measurements (1…n) and estimated location (IU), 
p power (distance) exponent, 
z1…zn known values at locations 1…n. 

The mapping results are greatly influenced by the power exponent, which could stress the 
influence of more distance points and smooth the map (for p <= 2) or force very local estimation (p > 
2) and even, for large “p“, result in zonal estimation, i.e., in map like Voronoi polygons. This method 
has been proved for mapping problems in the Croatian part of the Pannonian Basin System (CPBS) 
for all datasets where clustering was not largely imposed, and for datasets smaller than 15 points too 
(e.g., [29,30]). 

2.3. Basics of the Nearest Neighbourhood (NN) Estimation Method 

NN is the simplest statistical estimation method when an unknown point is estimated only from 
the closest known value. The results are valued polygons, like the Voronoi diagram. The distance 
between the points is Euclidean (Equation 6): 

( ) ( )2 2
1 1( , ) ... n nd x T X T X T= − + + −

 

(6) 

where: 
d - distance, 
n - n-th pair of points, 
x and T - unknown and measured point, 
X and T – length of line segment in Euclidean space connecting the points X and T for pairs 1…n, in 
the Euclidian n-space. 

The method is meaningful to apply only for very small datasets, like 5 or fewer points. The 
output is not a map, but a schematic polygon view. 

2.4. Basics of the Natural Neighbourhood (NaN) Estimation Method 

NaN is the modification of the NN and results are also shown as Voronoi diagrams (polygons). 
The unknown point is estimated from several nearest points (e.g., [31–33]) using Equation 7: 

1
( , ) (w (X ,Y ))

n

i i i
i

X x y A
=

=∑
 

(7) 

where:  
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X(x,y) estimated value in point (x,y), 
A(Xi,Yi) known value in point (Xi,Yi), 
wi proportion of polygon , i“ in total area. 

2.5. Modified Shepard’s Method (MSM) 

The MSM interpolation is a modification of the IDW method, with the aim of reducing the 
expressive local values (outliers, extremes) that could cause “bull’s-eyeing” or “butterfly shape” 
effects. The method was developed by [34] and it is why is named as Shepard’s method. The 
modification of the method was carried out in the works of, e.g., [35] and [36]. The estimation is done 
by Equation 8: 

1

1

(x, y) Q ( , )
( , )

( , )

n

k k
k

n

i
i

W x y
F x y

W x y

=

=

⋅
=
∑

∑
 

 
 
(8) 

where:  
F MSM function,  
W relative weights, 
Qk bivariate quadratic function, 
x, y  data coordinates, 
n number of data elements.  

MSM used so called relative weights determined (Equation 9): 
2

( )( , ) k
k

k

R dW x y
R d
ω

ω

+ −
=  ⋅ 

 
 
(9) 

where:  
dk Euclidean distance between points at locations (x, y) and (xk, yk),  
Rω radius of influence around node (xk, yk).  

2.6. Cross-Validation as Numerical Estimation of Mapping Error 

Cross-validation is a numerical procedure which can be applied also as error-based comparison 
tool for several maps with the same input, but sequentially interpolated with two or more methods. 
The procedure is repeated as many times as there are measured (hard) values, dropping one known 
point out and calculating the estimation in the same location from the rest of the hard data (Equation 
10). One of the measures that can be calculated based on cross-validation are mean square error (MSE, 
e.g., [29,37–39]). This value is often used as criteria for the most appropriate map selection in the case 
of small datasets in the CPBS (e.g., [40,41]). 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑀𝑀𝑆𝑆𝑖𝑖 − 𝑃𝑃𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 
 
(10) 

where: 
MSE mean square error value, 
n number of known values,  
SV measured value in point „i“, 
P estimated value in point „i“, 
i i-th point. 

2.7. Shannon–Wiener Index or Shannon Diversity Index (H) 

In paleoecological analyses, one of the goals is to explore species richness and diversity in the 
analysed data sets, and to compare biological diversity between the samples with an uneven number 
of species and individuals. In the examples presented in this paper (e.g., see here Figure 6), authors 
showed part of the research on the biodiversity of microfossils Foraminifera, where the Shannon–
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Wiener or Shannon diversity index (H) (called also Shannon entropy in informatics) is used as one of 
the measures of species diversity in one sample, and between samples [34]. The “H” is calculated by 
Equation 11 [42]: 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖 × ln𝑝𝑝𝑖𝑖

𝑅𝑅

𝑖𝑖=1

 
 
(11) 

where: 
pi  a proportion of individuals belonging to the ith species in the sample, 
ln  a natural logarithm, 
R total number of species in the community (richness). 

Equation 11 shows dependence of H (Shannon index) on pi (proportion of individuals, and if all 
species in the sample are equally represented, H is at its maximum [42]. 

3. Recent Advances in Geomathematical Mapping in Small Datasets and Case Studies from 
Croatia 

During 2019 and 2020, broad testing of small datasets mapping has been applied [41,43] to the 
CPBS. A small subsurface sample set is considered to be a set of measurements which includes [41] 
less than 20 inputs data. Furthermore, such datasets could be subdivided in groups with respect to 
the number of data inputs: a) 1–5, b) 6–10 and c) 11–19. One example is selected here when the 
reservoir mapping is done by mathematically simpler methods (compared with previously widely 
used kriging) and results are accepted as the best possible outcomes for further reservoir 
development. The permeability maps of the Lower Pontian “K” reservoir (Lower Pontian age, 18 
data) of the field "B" are shown in Figure 3. 

 
Figure 3. Results of inverse distance weighting (IDW), nearest neighbourhood (NN) and natural 
neighbourhood (NaN) methods (from top to bottom) of the permeability (left) and injected volumes 
(right) in the “K” reservoir [41]. 

All maps obtained with different methods (Figure 3) are validated with a cross-validation (Table 
1) and visual assessment (where the larger “bull’s-eyes” areas mean worse interpolation). 

Table 1. Summary results of cross-validation (mean square error, MSE) for IDW, NN, NaN and 
modified Shepard’s method (MSM) methods [41]. 
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Variable 
Number 
of data 

Value of Cross-Validation (MSE) 
Inverse Distance 

Weighting 
Nearest 

Neighbourhood 
Natural 

Neighbour 

Injected volumes 3 2.86 × 1011 3.96 × 1011 - 

Permeability 18 480.8 1397.4 1044.7 

Two interpolation (IDW, NaN) methods and one zonal (NN) method, gave different mapping 
results as well as cross-validation errors, as expected. Interestingly, each of them led to at least one 
useful information about analysed reservoirs, i.e., about connection between permeability and 
injected water volumes, including the role of some fault zone. The IDW method algorithm remains 
the main interpolation method of mapping for a small reservoir dataset in Northern Croatia. Other 
interpolation methods, NN, NaN, may be additional information. But the main advantage was that 
such datasets could be divided into three classes regarding their mapping, as follows: (a) 1–5, (b) 6–
10 and (c) 11–19 inputs. The “class a” could not be analysed with the NaN method because it is often 
not possible to calculate the cross-validation and the interpolated area is very small regarding unit 
margins. In the “class b” and “class c”, all three methods gave results, and the main selection criteria 
could be cross-validation. 

Malvić et al. [40] also analysed the possibility of artificially increasing the input data set using 
the “jack-knifed” method. That is a resampling statistical technique, later upgraded into, e.g., 
bootstrapping. It is useful for statistics estimation, sequentially leaving out each value from datasets 
and calculating the statistical parameters of remaining data. For example, if the estimated parameter 
is the population mean (x), using jack-knifing it is possible to calculate the mean of each sub-dataset 
that includes all but the i-th measurement (xi) using Equation (12): 

�̅�𝑥𝑖𝑖 =
1

𝑛𝑛 − 1
∙ � 𝑥𝑥𝑗𝑗 , 𝑖𝑖 = 1 …𝑛𝑛

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 
 
(12) 

where: 
x�i mean of sub-dataset, where i-th data is skipped, 
n number of data points, 
j data currently analysed. 

The presented analysis is the first of such a kind in the Sava Depression (Northern Croatia). It 
represents the continuation of previous geostatistical analyses conducted in that depression and the 
entire CPBS. The “jack-knifed” method was applied on porosity of reservoir “K” (19 data) of the “B” 
field (Figure 4).  

 
Figure 4 Experimental semivariograms and porosity maps for the “K” reservoir obtained by the 
ordinary kriging (OK) method: a) without the “jack-knifed” method and b) with the “jack-knifed” 
method [40]. 
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The porosity maps obtained were analysed by comparing the cross-validation values and 
expression of the “bull’s-eyes” effect. The results of the analysis of the “jack-knifing” method are 
summarized in Table 2. 

Table 2. Comparison of cross-validation (MSE) values for OK maps based on original and “jack-
knifed” semivariograms [40]. 

Field/ 
reservoir 

OK 
(original 

semivariogram) 

OK  
(jack-knifed 

semivariogram) 
Recommendation 

“B”/“K” 
0.001320 
(linear) 

0.000970  
(Gaussian) 

OK with jack-knifed semivariogram 

The results in Table 2 confirm the possibility of applying the “jack-knifing” method to reservoirs 
with small data input and should be compared with the maps obtained by the IDW method. By 
contrast, in another analysed reservoir, the OK was not accepted as the interpolation method, but 
IDW has been accepted. It was the case when jack-knifing did not yield any progress in spatial 
modelling and the kriging has been abandoned as an approach. 

The permanent problem of small datasets could be oversized with new data. Such data can be 
obtained with new sampling, but also with the creation of new artificial data, based on the statistical 
properties of original dataset. The jack-knifing is one such method, appropriate for datasets of 15–30 
points, where the basic, descriptive statistics are more or less representative (variance and mean), and 
the Gaussian distribution can be assumed or verified with use of the Shapiro-Wilk test. In the 
presented analysis, the original semivariogram results were highly uncertain, with large oscillations, 
a small number of data pairs per class and unknown nugget. Consequently, the linear model was the 
only acceptable theoretical model to use. Due to fact that a small dataset could not be statistically 
representative, the new kriged maps interpolated from “jack-knifed” semivariograms has been tested 
(a) visually (maps without the “bull-eye” or “butterfly” effects are better) and (b) numerically, using 
cross-validation and comparing with the simpler method of the IDW. Obviously, the results were 
better in one of the two cases where such validation has been applied.  

The next examples are taken from [43] and compare the differences between the results obtained 
with the IDW and MSM methods. The IDW does not use weighting coefficient, i.e., each value is 
“weighted” by a simple (powered) inversely proportional distance from the measured point. The 
MSM (Modified Shepard’s Method) uses relative weights. The porosity, permeability and thickness 
maps, interpolated with IDW and MSM are given in Figure 5. They show the oil reservoir “K” of the 
Lower Pontian age in the Sava Depression. 

The maps obtained by the IDW and MSM methods could be assessed in two ways. One is 
numerical, using cross-validation. The another is quick-look searching for observable feature of 
highly expressed local value, i.e., bull’s-eye or butterfly shape effects. The expected advantage of the 
MSM is the larger smoothing of the shapes, which is confirmed in that analysis (Figure 5). The 
numerical cross-validation strongly favoured the IDW (Table 3).  
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Figure 5. The mapping of the Lower Pontian “K” reservoir, the Sava Depression, Northern Croatia. 
Left—IDW results, right—MSM results. Top—porosity, middle permeability, down—thickness [43]. 

The difference resulted from the different mathematical backgrounds of those two methods [43] 
, because the IDW takes into account all measured points or work with general searching radius (or 
radii for ellipsoid), but the MSM works with local searching by default. This is why cross-validation 
was higher for MSM—for porosity 289%, permeability 7%, and thickness 49%.  
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Table 3. Cross-validation (MSE) of the IDW and MSM methods applied in reservoir "K" [43]. 

Description No Data 
Cross-Validation 

Inverse Distance (IDW) Modified Shepard’s Method (MSM) 
Porosity 19 0.00119 0.00345 
Permeability 18 480.8 516.1 
Thickness 14 40.7 60.5 
Both methods, obviously led to appropriate quick assessment of the reservoir. However, it was 

also shown that visual assessment is sometimes the more important criteria than purely numerical 
cross-validation, what is a crucial conclusion for subsampled reservoirs of the CPBS, and stressed the 
importance of human and geological expertise, and not purely the application of interpolation 
algorithms. Consequently, [43] recommended the MSM for subsurface geological mapping of 
Neogene reservoirs in Northern Croatia in (a) number of samples smaller than 20 measured values, 
and/or (b) for early exploration phase or later development phase when the number of measurements 
of the selected property is small, but a quick insight in the spatial distribution of such variables is 
necessary. 

4. Recent Advances in Biostatistics Applied in Palaeontology and Case Studies from Croatia and 
the Wider Region 

Paleontological studies published by numerous authors, including those from Croatia, almost 
always include basic numerical analyses in recognizing the different taxa. In Croatia, [44] measured 
the dimensions of the bivalve shells (length, width, length/width ratio of the shell, apical angle) in 
order to recognize the bivalve subspecies. In her dissertation and several published papers (e.g., [45]), 
A. Sokač applied biometry in order to present the differences in growth pattern of male and female 
ostracods. One of the earliest graphically substantiated biometric analysis on the fossil assemblage 
from Croatia was published by [46], who studied the taxonomy and biometry of Eocene corals. The 
authors distinguished two coral species based on the biometric analyses of the smallest and the 
largest diameter of the calyx, and the height of the coral calyx plotted in a scatter diagram. Looking 
at the dispersal of the measured parameters, two areas of dispersal could be recognized, indicating 
the existence of different species between measured specimens. 

During the last decades, a number of global researches were focused on the paleoecology of 
terrestrial, fresh-water or marine biota. In Northern Croatia, Miocene deposits from the Paratethys 
epicontinental Sea comprise the marine invertebrate fauna, mostly foraminifers, mollusks and 
ostracods, which were often subject to biostatistics analyses (e.g., [47–50]). The following data, 
common in palaeoecological studies, are presented in the referred papers: plankton/benthos ratio, 
number of species, relative abundance of benthic species within the community, species diversity of 
benthic foraminifera estimated by the Shannon–Wiener index (H), dominance (D), Fisher α index (α), 
oxygen index and the infauna/epifauna ratio. The Shannon–Wiener index or Shannon diversity index 
(H) estimate the species diversity in the assemblage, as described in section 2.6 of this paper (after 
[42]). Dominance (D) reflects a distribution of a particular species in the assemblage, and the 
dominant species are those presented with >10% in the sample [42]. The Fisher α index (α) shows the 
relation of the number of species to the number of the individuals, and to explore the number of 
species by each individual, a log series distribution is used [42]. This index is used for 
palaeoecological determinations, because specific values are characteristic for each environment. 
Depending on the index value range, we can analyse the palaeoecological changes in the 
environment.  

The aforementioned analyses were enhanced by defining and comparing the benthic 
foraminiferal fauna from different localities conducting the Cluster Analysis and Non-metric 
Multidimensional Scaling by means of the PAST (PAlaeontology STatistic) Program 
(https://folk.uio.no/ohammer/past/; e.g., [48]; Figure 6). 

https://folk.uio.no/ohammer/past/
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Figure 6. Example of statistical comparison of fauna from different localities using cluster analysis 
and non-metric multidimensional scaling analyses (after [48]). 

There are a number of other papers dealing with paleoenvironmental reconstructions of fossil 
communities based on the biometry of benthic foraminifera. Growth characteristics are used as a 
parameter for the palaeoecological and phylogenetical studies in the wider region (e.g., [51,52]). For 
example, [53] calibrated test flattening of the foraminifera species Heterostegina depressa as a 
bathymetric signal (Figure 7), using its growth functions and thickness. Similar study can be applied 
to the Miocene large nummulitids from Northern Croatia. 

 

 
Figure 7. Example of using growth characteristics as an indicator of the bathymetry [53]. 
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Biometric studies are also commonly applied in taxonomic study of mollusks. For example, a 
thorough revision based upon this method was made by [54] on gastropod families Conidae and 
Conorbidae from the Paratethys Sea. The authors measured several shell parameters (shell length, 
maximum diameter, aperture height, height of maximum diameter, spire angle, apertural length, the 
angle of the last whorl, length width ratio, relative diameter ratio, position of maximum diameter 
ratio, relative height of spire ratio, subsutural flexure, mean and standard deviation), analysed by 
principal component analysis (PCA). Applying this analysis, authors compared similar species of 
Conidae and showed the separation of the species and morphospace occupied by genera (Figure 8). 

 
Figure 8. Separation of the species and morphospace occupied by genera as shown by principal 
component analysis (after [54]). 
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Studies from Croatia were mostly focused on gastropods and scaphopods (e.g., [55–57]). Several 
parameters are measured (height and length of the shell, apical angle), defining the basic numerical 
data useful in species determination, morphometric characteristics of the group, correlation with 
recent species, comparison with other localities and palaeoecological interpretations.  

Bošnjak et al. [55] studied the Miocene planktic gastropods from northern Croatia and, based on 
the measured shell elements, compared their data with the available published measures of that fossil 
group found in the Miocene deposits of the neighbouring areas (Figure 9). 

A 

B 

C 

Figure 9. Morphometric characteristics and comparison of the planktic gastropods between different 
localities based on the measured morphometric elements of the shell (after [55]). A: Measured 
parameters on the gastropod shell: H (height of the shell), W (width of the shell), α (apical angle), A1 
and A2 (aperture diameters). B. Comparison of planktic gastropod from different areas (black and 
white triangles) based on the measured values of the shell height and width. C. Comparison of 
planktic gastropod species from different areas (dark and light grey columns) based on the measured 
values of the apical angle of the gastropod shells. 
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Bioerosive traces on skeletal remains, in most cases traces of predation, are also rather common 
topic in biostatistical analyses. Measures and shapes of the drill-holes can indicate the possible 
predator and help to gain a better insight into the predator–prey relationship, as described in 
numerous papers (e.g., [58] and references therein). 

One more example of biostatistics analysis is presented in [59]. The authors measured the 
orientations of oyster attachments on ammonite shells, concluding that the oysters attached 
themselves while the ammonites were living (Figure 10). The results are helpful in palaeoecological 
studies of fauna in oxygen-depleted environments. 

 
Figure 10. Analysis of oyster attachments positions on the ammonite shell [59]. 

Biostatistical analyses are also common in studies of vertebrates. In Croatia, research included 
the study of dinosaur footprints. The measured parameters of footprints included width and length 
of the footprint, and length of the second, third and fourth finger (e.g., [60] and references therein). 
These studies give an insight on the dimensions of the animal (height) and type of their movement 
(walking) based on the calculations of the movement speed (e.g., [60]; [61–63] and references therein), 
which gives a better insight into the biodynamics of the animal. Costa-Pérez et al. [64] demonstrated 
the application of geometric morphometrics as a tool for the shape analysis of the dinosaur footprints 
and trackways geometric differences (Figure 11). 
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Figure 11. Application of geometric morphometrics on the dinosaur footprints analysis [64]. 

We can conclude that biostatistical analyses generally occurred very early in paleontological 
studies. In Croatia, their number exhibits the pattern of periodicity. Basic numeric analyses of fossil 
assemblages were published in the mid-1990s, marking the first peak of biometric studies in Croatia. 
The second peak was during the first decade of the 2000s, with most research done on microfossils 
(foraminifers and accompanying ostracods). We can say that the third pulse is happening from 2016 
onwards, considering the various groups of fossil biota.  
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The analyses are mostly made to give more insight in the paleoecology of populations or fossil 
assemblages, and to help in the species determination. To present the analysed parameters, common 
statistical tools are used, mostly MS Office Excel and PAST (PAlaeontological STatistics) programs.  

5. Discussion and Conclusion 

The topic “Advances in Geosciences” is so broad that any publication would hardly cover only 
the small portion of significant milestones that shaped and led the progress in geosciences in general. 
The spectre of geosciences includes so many “fundamental” sciences that the means of progress are 
very different, regarding data, methods and problems. Geosciences could be found in social (e.g., 
geography), technical (e.g., geodesy) and natural (e.g., geology) sciences. This is why the authors 
selected only one science (geology) with only one small segment (subsurface and surface geology) 
and tiny analytical, numerical methods (small datasets in mapping, larger in biostatistics). Even in 
such a case, the presented cases are given mostly from the researching area where authors worked 
mostly in the last decade, i.e., original samples taken from the surface and subsurface of the Northern 
Croatia. 

However, both examples present the areas where, at least in Croatia, huge progress was made 
and referencing methods for later researchers were set up. After more than 15 years of extensive and 
successful application of the different Kriging techniques in the subsurface mapping of the CPBS, the 
problem of a small dataset where geostatistics cannot be reliable applied has been solved. Several 
simpler algorithms are tested, validated and recommended for application, namely inverse distance 
weighting, nearest neighbourhood, natural neighbourhood and the modified Shepard method. For 
such small datasets, the importance of mutual application for cross-validation and visual assessment 
had been stressed. Additionally, the Kriging was simultaneously tested as an alternative to such 
algorithms, even in cases when variogram model cannot be calculated as reliable value, even an 
omnidirectional one. The extensive experiments with the jack-knifing method have been done on 
variogram, creating artificial data from original dataset. In some cases, jack-knifed variograms gave 
competitive value to the kriging results, but geostatistics was eliminated as the first choice in 
mapping analysis of small subsurface datasets. 

The application of biostatistics has been presented on very different samples, collected from 
shallow subsurface or surface outcrops. Here the numerical values characterised not petrophysics, 
but morphological variables of different fossil groups (foraminifers, molluscs, vertebrates). In the 
presented examples on molluscs, parameters like the height and length of the shell are measured 
giving a set of numerical values for determination of morphometrics and consequently species which 
gave more insight into Miocene palaeoecological conditions and environments in Northern Croatia, 
especially during the existence of the Paratethys Sea. On a larger scale, biostatistical analysis in 
Croatia helped to reconstruct the size and height of, e.g., dinosaurs, using footprint measurements. 
Two periods of the Croatian biostatistical (biometric) analyses, presented with relevant publications, 
are noted. The first was in the mid-1990s, and the second was during the first decade of the 2000s, 
with most research done on microfossils (foraminifers and accompanying ostracods). Croatian 
researchers entered the third fruitful period from 2016 onwards, currently analysing the various 
marine fossil biota aiming to determine species and their paleoenvironments. 

Both examples showed the useful application of geomathematical tools in geology. The first 
group showed how small datasets (n < 10 data) of different geological variables collected in the 
Neogene sandstones in the Northern Croatia can be reliably mapped with the IDW and MSM 
methods. The second presented how morphometric and surface features could be collected, 
numerically analysed and applied in paleoenvironmental reconstructions. Uncertainties, of course, 
remained due to the data properties. The most problematic is clustering, which can be hardly handled 
when datasets are small and/or spatially noisy. In such cases, two crucial statistical properties cannot 
be reliably checked or established. That are proof of the normal distribution and statistical 
representativeness of a dataset (mean, variance of population). However, the results, carefully 
validated and correlated with other, non-numerical (indicator, categorical) geological knowledge, are 
of great help in creating better geological models. 
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