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Abstract 
There are a number of methods forestimating physical and mechanical characteristics. Principally, the most widely used 
method is regression, but recently, more sophisticated methods such as neural networks have frequently been applied as 
well. This paper presents the models of a simple and a multiple regression and neural networks – types Radial Basis 
Function and Multiple Layer Perceptron, which can be used for the estimate of the Brazilian indirect tensile strength in 
saturated conditions. The paper includes the issues of collecting data for the analysis and modelling and an overview of the 
performed analysis with an efficacy assessment of the estimate for each model. After the assessment, the model which 
provided the best estimate was selected, including the model which could have the most wide-spread application in the 
engineering practice.  

Keywords: estimate, Brazilian indirect tensile strength, saturation, limestone, rock mechanics. 

1. Introduction 

 

Although Martin (1966) wrote about the impact of humidity on the tensile strength of various rocks, for a long time such 

issues remained of minor interest to the scientists dealing with uniaxial compressive strength. In the referenced literature 

on the impact of the saturation on the indirect tensile strength of rocks determined by the Brazilian test (Briševac et al., 

2015) the important papers are those by Dube and Singh (1972) which present the impact of the humid climate on 

sandstone, and the paper by Vutukuri (1974) who investigated the impact of saturation on limestone with various 

liquids. Ojo and Brook (1990) claimed in their paper that saturation reduces the tensile strength more than the uniaxial 

compressive strength. Recently, there have been a number of papers dealing with the impact of saturation on natural 

materials, such as gneiss, marble and sandstone (You et al., 2011), including the impact of saturation on artificial 

gypsum (Wong and Jong, 2013). All the papers show that saturation reduces the tensile strength. The need to estimate 

the Brazilian indirect tensile strength in saturated conditions (σBTsat) may arise upon the preparation of the underground 

works in the presence of underground waters. Only a few papers deal with the estimate of the indirect tensile strength of 

limestone, without considering the saturation. These are the paper by the Iranian scientists on simple regression 

(Arjmandpour and Hosseinitoudeshki, 2013) and the paper by the Turkish scientists (Baykasoglu et al., 2008), who 

created the advanced model of estimating tensile strength of limestone via genetic programming. The authors of these 

papers have reviewed the available literature from the relevant sources and have not found any papers dealing with the 

estimate of σBTsat of limestone by means of neural networks on two input parameters. Accordingly, the scientific interest 

for the creation and application of such a model is understandable.  

2. Methodology of model creation and data collection 

The most frequently applied method of estimation in rock mechanics is the classical statistical regression presented in 

the Expression (1). Simple Regression (SR) refers to the case when only one independent variable is used, whereas the 

Multiple Regression (MR) refers to the case when more independent variables are used.  
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 k321 ...,,,  xxxxy             (1) 

 

Where: 

y – dependent variable 

ε – mean-zero random error term 

x1,…, xk - independent variables. 

 

The structure of the artificial neural network is based on the model of the artificial neuron. Such a neuron consists of 

several inputs and one output. Each input is assigned by the corresponding weight which burdens the input value. 

Depending on the result, the neuron will remain inactive or it will be activated. The values and conditions of the 

activation depend on the so-called activation function. Accordingly, the artificial neural network consists of the layers of 

artificial neurons which are connected in the network. Each neural network has an input layer and an output layer, 

including one or more hidden layers between them. Principally, the input layer sends a signal from the environment, the 

hidden layers process the received signal and the output layer collects the results and creates the input (e.g. Malvić et al. 

2008, Malvić and Cvetković, 2009, 2013). In Croatia, neural networks are used in petroleum geology as interpretation 

tools (Malvić et al., 2011), in petroleum reservoir lithology and saturation prediction (Cvetković et al., 2009), to 

estimate the clastic facies (Malvić, 2006) and porosity (Malvić and Prskalo, 2009) inoil fields and also in estimating 

the uniaxial compressive strength and modulus of elasticity of carbonate rocks (Briševac, 2012). 

This paper required the modelling by means of the software package Statistica 12, which offers the possibility of 

creating the regression models and the models of artificial neural networks. This software provides the creation of two 

types of networks: MLP (Multiple Layer Perceptron) and RBF (Radial Basis Function). Although there are differences 

in the architecture of these two types of neural networks, they can be applied in the same situations but with varying 

success. Accordingly, it was interesting to apply them for the estimate of the Brazilian indirect tensile strength and to 

make a comparison of them. The created models are usually evaluated by a number of coefficients, such as the 

correlation coefficient (R), the coefficient of determination (R2), the adjusted R-squared (R2
Adj) and the root mean square 

error (RMSE) which is calculated according to the formula (2). The models are more rigorously valuated by the R2
Adj 

and RMSE.  

n
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i
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Where: 

Pi – predicted values 

Oi – observed values 

n – total number of data. 

 

The creation of the model required the collection of a large number of research results. The first 45 data (see Table 1) 

were collected from the published literature, i.e. the paper by Vásárhelyi, (2005) which contains the research results 

ofporosity (n), the Brazilian indirect tensile strength in saturated (σBTsat) and dry conditions (σBTdry) of the Miocene 

limestone. The other data (see Table 1) is based on the research works performed at the Geo-mechanical Laboratory of 

the Faculty of Mining, Geology and Petroleum Engineering in Zagreb, which comprised the limestone from the Quarry 

of Podberam near Pazin (Čajić, 2015). In both studies, they were used as the source of data performed to determine the 

indirect tensile strength according to the ISRM (1978) suggested method. The input data for modelling make up the 

total of 55 research results n, σBTsat and σBTdry (see Table 1).  

 

Table 1: Input data of modelling 

No n  σBTdry σBTsat References 

1 36.4 1.1 0.86 Vásárhelyi, (2005) 

2 24.8 2.83 2.62 Vásárhelyi, (2005) 

3 38.6 0.75 0.34 Vásárhelyi, (2005) 
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n - porosity in %; σBTdry - Brazilian indirect tensile strength in dry conditions in MPa; σBTsat - Brazilian indirect tensile strength in 

saturated conditions in MPa 

Table 1: Input data of modelling (continuation) 

No n  σBTdry σBTsat References 

4 44.1 0.56 0.25 Vásárhelyi, (2005) 

5 36.1 0.14 0.23 Vásárhelyi, (2005) 

6 48.7 0.07 0.09 Vásárhelyi, (2005) 

7 40.3 0.13 0.1 Vásárhelyi, (2005) 

8 45.5 0.09 0.06 Vásárhelyi, (2005) 

9 11.4 4.16 3.99 Vásárhelyi, (2005) 

10 28 1.98 1.37 Vásárhelyi, (2005) 

11 41.1 0.81 0.31 Vásárhelyi, (2005) 

12 15.8 3.92 2.23 Vásárhelyi, (2005) 

13 38.9 1.64 0.38 Vásárhelyi, (2005) 

14 42.6 0.98 0.66 Vásárhelyi, (2005) 

15 52.2 0.59 0.62 Vásárhelyi, (2005) 

16 30.4 2.37 1.43 Vásárhelyi, (2005) 

17 24 3.16 1.23 Vásárhelyi, (2005) 

18 25.5 2.92 1.71 Vásárhelyi, (2005) 

19 46.4 0.41 0.23 Vásárhelyi, (2005) 

20 35.4 0.49 0.18 Vásárhelyi, (2005) 

21 44.9 0.35 0.08 Vásárhelyi, (2005) 

22 41 0.93 0.78 Vásárhelyi, (2005) 

23 37.4 0.8 0.39 Vásárhelyi, (2005) 

24 43.9 0.6 0.37 Vásárhelyi, (2005) 

25 46.5 0.39 0.34 Vásárhelyi, (2005) 

26 31.2 1.92 0.96 Vásárhelyi, (2005) 

27 41.6 0.99 0.69 Vásárhelyi, (2005) 

28 27.5 2.81 1.91 Vásárhelyi, (2005) 

29 28.2 2.45 1.24 Vásárhelyi, (2005) 

30 38.4 0.78 0.51 Vásárhelyi, (2005) 

31 38.2 0.97 0.62 Vásárhelyi, (2005) 

32 37.6 0.82 0.5 Vásárhelyi, (2005) 

33 33.7 1.09 0.54 Vásárhelyi, (2005) 

34 33.1 0.84 0.84 Vásárhelyi, (2005) 

35 35.6 0.89 0.38 Vásárhelyi, (2005) 

36 33.8 0.56 0.28 Vásárhelyi, (2005) 

37 34 1.13 0.55 Vásárhelyi, (2005) 

38 26.1 2.48 2.27 Vásárhelyi, (2005) 

39 36.8 1.32 0.86 Vásárhelyi, (2005) 

40 42.8 0.8 0.58 Vásárhelyi, (2005) 

41 41 0.83 0.52 Vásárhelyi, (2005) 
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n - porosity in %; σBTdry - Brazilian indirect tensile strength in dry conditions in MPa; σBTsat - Brazilian indirect tensile 
strength in saturated conditions in MPa 

Table 1: Input data of modelling (continuation) 

No n  σBTdry σBTsat References 

42 41.6 1.03 0.72 Vásárhelyi, (2005) 

43 38.3 0.96 0.63 Vásárhelyi, (2005) 

44 42.3 0.68 0.31 Vásárhelyi, (2005) 

45 41.8 0.67 0.4 Vásárhelyi, (2005) 

46 0.5 3.579 3.219 Čajić, (2015) 

47 0.49 4.011 3.412 Čajić, (2015) 

48 0.46 4.45 3.946 Čajić, (2015) 

49 0.45 4.46 4.474 Čajić, (2015) 

50 0.43 4.539 4.607 Čajić, (2015) 

51 0.35 5.04 4.734 Čajić, (2015) 

52 0.34 5.161 5.303 Čajić, (2015) 

53 0.32 6.592 5.305 Čajić, (2015) 

54 0.25 6.612 5.948 Čajić, (2015) 

55 0.23 7.381 6.233 Čajić, (2015) 

xmin 0.23 0.07 0.06  

xmax 52.2 7.381 6.233  

xmean 29.95 1.96 1.52  

s 15.95 1.86 1.73  

n - porosity in %; σBTdry - Brazilian indirect tensile strength in dry conditions in MPa; σBTsat - Brazilian indirect tensile 
strength in saturated conditions in MPa; xmin - minimum value; xmax - maximum value; xmean - arithmetic mean of data;     
s - sample standard deviation 

3. Results 

 

Based on the collected data, five models for the estimate of the Brazilian indirect tensile strength in saturated conditions 

were made. The first model is marked SR_1 and is based on the simple regression with porosity (see Fig.1). Such a 

model is defined by the equation (3). The evaluation of the model SR_1 is presented inTable 2.  

 

nBTsat  1019.05665.4           (3) 

 

Where: 

σBTsat – Brazilian indirect tensile strength in saturated conditions (MPa), 

n – porosity (%) 

 

Table 2: Evaluation of simple regression models SR_1 and SR_2 

 Model SR_1 Model SR_2 

R 0.939863 0.971707 

R2 0.883342 0.944215 

R2
Adj 0.881141 0.943162 

RMSE 0.585059 0.404578 
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Figure 1: Simple regression with porosity 

 

The second model was made by the simple regression with Brazilian indirect tensile strength in dry conditions and is 

marked SR_2. It is defined by the equation (4). The evaluation of the model SR_2 is presented in Table 2. 

 

BTdryBTsat   9051.02623.0          (4) 

 

Where: 

σBTsat – Brazilian indirect tensile strength in saturated conditions (MPa), 

σBTdry – Brazilian indirect tensile strength in dry conditions (MPa). 

 

Figure 2: Simple regression with Brazilian indirect tensile strength in dry conditions 
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The multiple regression model MR consists of independent variables n and σBTdry , whereas a dependent variable σBTsat  is 

estimated.  The model is of a linear shape and is defined by the equation (5). The evaluation of this model is presented 

in Table 3.  

 

BTdryBTsat   0.69259+n 0.02641-.946240        (5) 

 

σBTsat – Brazilian indirect tensile strength in saturated conditions (MPa), 

σBTdry – Brazilian indirect tensile strength in dry conditions (MPa), 

n – porosity (%) 

 

Table 3: Evaluation of multi regression model MR 

 Model MR 

R 0.975469 

R Square 0.951540 

R2
Adj 0.950626 

RMSE 0.377079 

 

Input data from Table 1 was used when creating neural networks. They were divided into three sets. The training set 

consisted of 70% of the data, validation and test set each have 15% of the total data. All the networks have completely 

connected perceptrons and were recorded by the one input layer, one hidden layer and one output layer. With the help of 

training errors, fitting parameters were carried out and the tuning of the parameters was based on the size of validation 

errors. Test error enabled the assessment of the performance of neural networks. The values of training test and 

validation errors are relative because they are iteratively adjusted. By means of the software package Statistica 12, 100 

models of neural networks of RBF type and 100 models of MLF type were created. The best models were then selected 

and named NN_RBF and NN_MLP. Their performance is presented in Tables 4 and 5. The NN_RB Model has 19 

neurons in the hidden layer created by the radial basis function training algorithm (RBFT). The error function used upon 

training was the sum of squares (SOS), The Model has the Gaussian based activation functions. 

The NN_MLP Model has 29 neurons in the hidden layer created by the variant Broyden-Fletcher-Goldfarb-Shanno 

algorithm (BFGS 94). The error function in this model was also the sum of squares (SOS). This model has the 

hyperbolic tangent based activation functions. 

 

Table 4: Performance and evaluation of NN_RBF Model 

Net. configuration Training perf. Test perf. Validation perf. Training error Test error Validation error 

RBF 2-19-1 0.991499 0.976937 0.979943 0.027605 0.068873 0.042649 

Training algorithm Error function Hidden activation R R2 R2
Adj RMSE 

RBFT SOS Gaussian 0.97547 0.95154 0.95063 0.27881 

 

Table 5: Performance and evaluation of NN_MLP Model 

Net. configuration Training perf. Test perf. Validation perf. Training error Test error Validation error 

MLP 2-29-1 0.991242 0.988590 0.973099 0.028553 0.041006 0.060950 

Training algorithm Error function Hidden activation R R2 R2
Adj RMSE 

BFGS 94 SOS Tanh 0.987348 0.974856 0.974382 0.272791 

 

4. Discussion 

First to be discussed is the possibility of creating the model based on the published and newly determined data. The 

consolidation of the data may be realized if the way of determining the measured values is the same and if the same 

types of rocks have been investigated. Due to the fact that this paper and the paper by Vásárhelyi (2005) applied the 

same recommendation ISRM (1978) and the same rock types – limestones, it can be concluded that a consolidation of 

data is possible. It is rather useful that different porous types of limestone were applied in both cases, since this 
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increases the uniqueness on the level of the limestone and widens the ranges within which the created models can 

function. In order to enable an easier evaluation of the models, Table 6 presents all the calculated parameters for the 

estimate of the models.   

 

Table 6: Evaluation of models 

 
Model 

SR_1 

Model 

SR_2 

Model 

MR 

Model 

NN_RBF 

Model 

NN_MLP 

R 0.939863 0.971707 0.975469 0.975469 0.987348 

R2 0.883342 0.944215 0.951540 0.951540 0.974856 

R2Adj 0.881141 0.943162 0.950626 0.950626 0.974382 

RMSE 0.585059 0.404578 0.377079 0.278810 0.272791 

 

According to all the calculated parameters for the evaluation of the models based on simple regression (see Table 2) it 

can be concluded that the model SR_2 provides a better estimate and that it is better to make estimates of σBTsat by 

means of σBTdry than n. The comparison of the model MR and NN_RBF is not so simple due to the fact that R, R2 and 

R2
Adj according to Table 6 have similar values for each investigated model. However, according to the smaller RMSE in 

the model NN_RBF it can be concluded that the model of the neural network of NN_MLP type has higher values of R, 

R2 and R2
Adj, whereas the value of RMSE is similar in both models. Accordingly, the calculation of various parameters 

enables an easier evaluation of the models, although the same comparison could in this case be carried out by two 

parameters: R2
Adj and RMSE. The final ranking of the models according to Table 6 is as follows: the best model is 

NN_MLP whose diagram of the relation between the desired and the input values is presented in Figure 3; followed by 

the model NN_RBF, the model MR, the model SR_2 and finally the model SR_1. 

 

Figure 3: Relation of desired and output values of model NN_MLP 

 

In order to avoid some major errors upon using the models for the estimates σBTsat, the range of the values of the input 

parameters n and σBTdry (see Table 1) should be considered, on whose base the models were created. Thus the estimate 

should not be used outside such a range. 
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5. Conclusion 

After collecting the data, their consolidation was successfully completed according to the method of investigation and 

types of material. The neural network model of the type Multiple Layer Perceptron was estimated as the best one among 

all the created models. However, in view of the possibility of a wide application, the model of multiple regression is the 

most promising one due to the fact that its application does not require complicated software packages.  

The models should be used only if the input parameters are in the range from 0.07 to 7.381 MPa for the Brazilian 

indirect tensile strength in dry conditions.  

Future research works should be aimed at the investigation and collection of data on various types of limestone, in order 

to enable the creation of high quality models, which should result in the possibility to estimate the limestone material 

better. 
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Sažetak 

Modeli za procjenu neizravne čvrstoće vapnenca u saturiranom stanju 

 

Potreba za procjenom neizravne vlačne čvrstoće koju inače određujemo brazilskim testom može se javiti pri idejnim 

rješenjima podzemnih radova u sredinama gdje je prisutna podzemna voda. Pregledom dostupne literature iz relevantnih 

izvora, koja se bavi utjecajem zasićenja na neizravnu vlačnu čvrstoću stijena koja se određuje brazilskim testom, 

utvrđeno je da se samo nekoliko radova bavi procjenom neizravne vlačne čvrstoće kod vapnenaca i pri tome se ne bave 

zasićenjem vodom. Isto tako, autori ovoga rada pregledom dostupne literature iz relevantnih izvora nisu naišli na rad 

koji bi se bavio procjenjivanjem neizravne vlačne čvrstoće vapnenca pomoću neuronskih mreža koje bi primjenjivale 

samo dva ulazna parametra, neizravnu vlačnu čvrstoću u suhome stanju i/ili šupljikavosti, stoga je bio razumljiv 

znanstveni interes za izradu i primjenu modela takva tipa. Skup podataka na temelju kojega je modelirano izrađen je 

jednim djelom od prikupljenih podataka iz objavljene literature gdje su navedeni rezultati ispitivanja poroznosti, 

indirektne vlačne čvrstoće u suhome i zasićenome stanju miocenskoga vapnenca, a drugi dio početnoga skupa bazira se 

na istraživanjima koja su provedena u Geomehaničkome laboratoriju RGN fakulteta u Zagrebu na vapnencima iz 

kamenoloma „Podberam” kod Pazina. U obama slučajevima ispitivanja su obavljena prema preporuci Međunarodnoga 

društva za mehaniku stijena pa je objedinjavanje bilo moguće. Na temelju prikupljenih podataka pomoću programskoga 

paketa Statistica 12 ukupno je napravljeno pet modela za procjenu neizravne vlačne čvrstoće. Modeli jednostruke 

regresije nose oznaku SR_1 (temelji se na jednostavnoj regresiji s poroznošću) i SR_2 koji je napravljen pomoću 

neizravne vlačne čvrstoće u suhome stanju. Model višestruke regresije nazvan je MR, a u njemu su nezavisne varijable 

šupljikavosti i neizravne vlačne čvrstoće u suhome stanju. Model neuronskih mreža s radijalnom baznom funkcijom 

nazvan je NN_RBF, a model tipa višeslojna mreža nosi oznaku NN_MLP. Uobičajeno se izrađeni modeli evaluiraju 

pomoću niza koeficijenata koji služe u tu svrhu: koeficijent koleracije (R), koeficijent determinacije (R2), korigirani R2 

(R2
Adj) i korijen srednje kvadratne pogreške (RMSE). Prema parametrima ocjene najbolji je model NN_MLP, zatim 

slijedi model NN_RBF pa model MR te model SR_2 i na kraju model SR_1. Iako model NN_MLP najbolje procjenjuje 

neizravnu vlačnu čvrstoću u saturiranome stanju jer ima R = 0,987348; R2 = 0,974856; R2
Adj = 0,974382 i RMSE = 

0,272791, ipak prema mogućnosti šire primjene u inženjerskoj praksi model višestruke regresije najviše obećava jer za 

njegovu primjenu nisu potrebni složeni programski paketi. 

Modele iz ovoga rada treba primjenjivati samo kada su ulazni parametri u rasponu za indirektnu vlačnu čvrstoću u 

suhome stanju od 0,07 do 7,381 MPa.  
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