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PARABOLAS IN THE ISOTROPIC PLANE

Vladimir Volenec, Ema Jurkin and Marija Šimić Horvath

University of Zagreb, Croatia

Abstract. In this paper we study the properties of a parabola in
an isotropic plane and compare the results obtained with their Euclidean
analogues.

1. Introduction

In [1] the author pointed out many facts on parabola in a Euclidean
plane. In this paper we consider these properties and prove those of them
that are also valid or have analogues in an isotropic plane. The properties of
projective or affine nature will not be studied since they are equivalent in both
Euclidean and isotropic planes. Therefore, we will focus on the properties of
metric nature. Furthermore, in the isotropic plane the focus of a parabola
coincides with its vertex, and the directrix with the tangent line at vertex,
[2, 6], which is why the statements related to the chord through the focus
and its end points loose their meaning. Similarly, the statements considering
normal lines often have no sense since in the isotropic plane the normal lines
are always isotropic lines. Also, the properties stated in [5] and [7] will not
be mentioned anew.

Let us start by recalling some basic facts about the isotropic plane. The
isotropic plane is a real projective metric plane whose absolute figure is a pair
consisting of an absolute point Ω and an absolute line ω incident with it. If
T = (x0 : x1 : x2) denotes any point in the plane presented in homogeneous
coordinates, then usually a projective coordinate system where Ω = (0 : 1 : 0)
and the line ω with the equation x2 = 0 is chosen.

The isotropic points are the points incident with the absolute line ω and
the isotropic lines are the lines passing through the absolute point Ω.
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164 V. VOLENEC, E. JURKIN AND M. ŠIMIĆ HORVATH

Metric quantities and all the notions related to the geometry of the
isotropic plane can be found in [3] and [4]. Now, we recall a few facts that

will be used further on wherein we assume that x =
x0

x2
and y =

x1

x2
.

Two lines are parallel if they pass through the same isotropic point, and
two points are parallel if they are incident with the same isotropic line. For two
non-parallel points A = (xA, yA) and B = (xB , yB), a distance is defined by
d(A,B) = xB −xA, and for two parallel points, xA = xB, a span is defined by
s(A,B) = yB − yA. For two non-parallel lines p and q, given by the equations
y = kpx + lp and y = kqx + lq, an angle is defined by ∠(p, q) = kq − kp. All
these quantities are directed.

A normal line to a line l at a point P is the isotropic line n passing
through P . A distance from P to l is defined as the span s(N,P ), where N

is the intersection point of l and n, i.e., the point on l parallel to P .
Two lines a and b are antiparallel with respect to the line c if ∠(c, a) =

−∠(c, b).
All projective transformations that preserve the absolute figure form a

5-parametric group

x = a+ px, a, b, c, p, q,∈ R,

y = b+ cx+ qy, pq 6= 0,

the group of similarities of the isotropic plane, usually denoted by G5 (see
[3]).

The distance, the span and the angle are kept invariant under a subgroup
G3 of G5 being of the form

x = a+ x,

y = b+ cx+ y,
a, b, c ∈ R.

G3 is called the motion group of the isotropic plane.
The classification of conics in the isotropic plane can be found in [2] and

[3]. A circle is a conic touching the absolute line ω at the absolute point Ω.
The equation of such a circle is given by

(1.1) y = ux2 + vx+ w, u 6= 0, u, v, w ∈ R.

A parabola is a conic touching the absolute line at a point different from the
absolute point. Applying the group of similarities and choosing a suitable
coordinate system every parabola can be represented by the equation

(1.2) y2 = x.

It has vertex (focus) at O = (0, 0), the x-axis as its axis, and y-axis as its
directrix.



PARABOLAS IN THE ISOTROPIC PLANE 165

2. Properties of parabola

In this chapter we study the properties of a parabola in the Euclidean
plane that were listed in [1]. We prove that Properties I, IX, X, XI, XXV,
XXVI, XXVIII, XXIX, XLVIII, XLIX, L, LXXV are valid also in the isotropic
plane. Properties XII, XXVI, XLV 1◦, LXXVII are not valid in identical form,
but they have similar analogues in the isotropic plane. The differences appear
mainly in two cases. The first one appears when we deal with perpendicular
lines since in the isotropic plane they are usually switched to isotropic lines,
and for the points lying on them we can not measure distance, but rather
span. The second case appears when it comes to the sine of an angle since in
the isotropic plane the role of the sine of an angle is played by the angle itself.

Theorem 2.1. If a secant ABC through a point A intersects a parabola P

in two points B and C, then the product of the distances d(A,B) and d(A,C) is
equal to four times the product of the distances d(A,M) and d(F,M ′), where
F is the focus, M is the intersection point of the parabola with a diameter
through A, and M ′ is the intersection point of the parabola with a diameter
conjugate to BC (see Figure 1).

Proof. Let B = (b2, b) and C = (c2, c) be the points of the parabola P

given by (1.2) and A = (u, v) be a point on the line BC. The line BC has
the equation x− (b+ c)y + bc = 0, and therefore, the equality

(2.1) u = (b+ c)v − bc

holds. Now we have

d(A,B) = b2 − u = (b+ c)(b − v).

Similarly, we get d(A,C) = (b+ c)(c− v). Thus,

d(A,B)d(A,C) = (b + c)2(b− v)(c − v).

The diameter of parabola P passing through A intersects P at the point
M = (v2, v). Therefore,

d(A,M) = v2 − u = (b− v)(c− v).

A diameter conjugate to BC intersects P at M ′ =
(

(b+c)2

4 , b+c
2

)

whose dis-

tance from the focus F = O = (0, 0) equals

d(F,M ′) =
(b+ c)2

4
.

With

4d(A,M)d(F,M ′) = (b+ c)2(b− v)(c− v) = d(A,B)d(A,C)

we proved the theorem.
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Figure 1. Visualization of Theorem 2.1.

In the special case whenN = B = C, we get d(A,N)2 = 4d(A,M)d(F,N)
and the following theorem.

Theorem 2.2. If a tangent through a point A touching parabola P at the
point N is given, then the distance d(A,N) is the geometric mean of double
the length of the radius vector d(F,N) and double distance d(A,M), where
F is the focus and M is the intersection point of P and the line through A

parallel to the axis of P.

As a consequence we get.

Theorem 2.3. If two tangents AN,AN ′ through an external point A of
parabola P are given, then the square of the ratio of d(A,N) and d(A,N ′) is
equal to the ratio of d(F,N) and d(F,N ′), where F is the focus and N,N ′ are
points of contact.

Proof. The statement follows directly from

d(A,N)2

d(A,N ′)2
=

4d(A,M)d(F,N)

4d(A,M)d(F,N ′)
=

d(F,N)

d(F,N ′)
.

Theorem 2.4. If two tangents AN,AN ′ through an external point A of
a parabola P are given, then the distance between the point A and focus F is
the geometric mean of the distances between the two points of contact N,N ′

and the focus F.

Proof. Let N = (n2, n) and N ′ = (n′2, n′) be the points of parabola P .
Tangent lines at N , N ′ have the equations 2ny = x + n2, 2n′y = x + n′2,
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respectively, and they intersect in A =
(

nn′, n+n′

2

)

. We calculate d(F,N) =

n2, d(F,N ′) = n′2, d(F,A) = nn′, and get

d(F,N)d(F,N ′) = d(F,A)2.

Theorem 2.5. If a triangle AA′A′′ is circumscribed to a parabola P, and
if we denote by B,B′, B′′ the points at which the parabola touches the sides
A′A′′, A′′A, AA′, respectively, then the following relation is valid

d(A,B′)d(A′′, B)d(A′, B′′) = −d(A,B′′)d(A′, B)d(A′′, B′).

Proof. Let B = (b2, b), B′ = (b′2, b′), B′′ = (b′′2, b′′). Then A =

(b′b′′, b′+b′′

2 ), A′ = (bb′′, b+b′′

2 ), A′′ = (bb′, b+b′

2 ). Thus,

d(A,B′) = b′(b′ − b′′), d(A′, B′′) = b′′(b′′ − b), d(A′′, B) = b(b− b′),

d(A,B′′) = b′′(b′′ − b′), d(A′, B) = b(b− b′′), d(A′′, B′) = b′(b′ − b).

Therefore, d(A,B′)d(A′′, B)d(A′, B′′) = −d(A,B′′)d(A′, B)d(A′′, B′) holds.

Remark 2.6. According to the Theorem of Brianchon the three lines AB,
A′B′, A′′B′′ pass through a point having coordinates

S =

(

b2b′2 + b′2b′′2 + b′′2b2 − b2b′b′′ − b′2b′′b− b′′2bb′

b2 + b′2 + b′′2 − bb′ − b′b′′ − b′′b
,

b2b′ + b′2b+ b′2b′′ + b′′2b′ + b′′2b+ b′′b2 − 6bb′b′′

2(b2 + b′2 + b′′2 − bb′ − b′b′′ − b′′b)

)

.

Corollary 2.7. If a triangle AA′A′′ is circumscribed to a parabola, and
if we denote by B,B′, B′′ the points at which the parabola touches sides A′A′′,
A′′A, AA′, respectively, then the following relation is valid

d(F,A)d(F,A′)d(F,A′′) = d(F,B)d(F,B′)d(F,B′′).

Proof. If A, A′, A′′, B,B′, B′′ are given as in the proof of Theorem 2.5,
then

d(F,A)d(F,A′)d(F,A′′) = b′b′′ · bb′′ · bb′ = b2b′2b′′2 = d(F,B)d(F,B′)d(F,B′′).

Theorem 2.8. Every chord through the focus of a parabola P is equal to
four times the length of the radius vector of the end of the diameter conjugate
to the chord.
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Proof. If a chord FN , with N = (n2, n) is given, then the diameter
conjugate to FN has the equation y = 1

2n. Its intersection point with the

parabola is M =
(

1
4n

2, 1
2n

)

and we have

d(F,N) = n2 = 4 ·
1

4
n2 = 4d(F,M).

Theorem 2.9. Let A be a fixed point. If a secant ABC through the point
A intersects the parabola P at two points B and C, then the product of the
difference of the ordinates of A, B and A, C is a constant value for all chords
through A.

Proof. We use the notation introduced in the proof of Theorem 2.1.
From (2.1) we get

(b− v)(c − v) = v2 − (b+ c)v + bc = v2 − u = const.

If A lies on the axis of parabola, then v = 0 and from (2.1) we get u = −bc,
i.e., A = (−bc, 0). Thus, d(F,A) = −bc, d(A,B)d(A,C) = bc(b + c)2, and
d(A,B)d(A,C)

d(F,A) = −(b + c)2. The slope of the line BC is k = 1
b+c

. Therefore,

for the line BC of the constant slope, the fraction d(A,B)d(A,C)
d(F,A) is constant as

well.
Furthermore, if two parallel chords BC and B′C′ are given, B(b2, b),

C(c2, c), B′(b′2, b′), C′(c′2, c′), then b+ c = b′ + c′ and the following theorem
is proved.

Theorem 2.10. If CAB and C′A′B′ are two chords through the points
A and A′ on the axis of parabola P, then:

1◦ the products of the segments d(A,B)d(A,C) and d(A′, B′)d(A′, C′) are
proportional to the distances of A and A′ to the vertex of parabola P,

2◦ if CAB and C′A′B′ are parallel chords, the difference of the ordinates
of B and B′ is equal to the difference of the ordinates of C′ and C.

Theorem 2.11. Let B,B′ be fixed points of the parabola P and let the
point D move on P.

1◦ If M is a point of P and the line MAA′ parallel to the axis of P meets
the lines DB, DB′ at A, A′, respectively, then the ratio d(A,M) :
d(A′,M) is constant and equal to the ratio of the distances of the points
B and B′ to the line MAA′.

2◦ If the points B and B′ are parallel points, the lines DB and DB′ meet
the axis equidistantly from the vertex.
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3◦ If through a fixed point S the lines Sβ and Sβ′ parallel to DB and
DB′ are drawn (β and β′ are the intersection points with the axis),
then the distance ββ′ is constant.

Proof. Let D(d2, d), B(b2, b), B′(b′2, b), M(m2,m). The line DB has
the equation x − (b + d)y + bd = 0, while the line through M parallel to the
axis of parabola has the equation y = m. They meet each other at the point
A ((b+ d)m− bd,m). Similarly, the line DB′ meets the line y = m at the
point A′ ((b′ + d)m− b′d,m). Therefore, d(A,M) = m2 − (b + d)m + bd =
(m− b)(m− d), and similarly d(A′,M) = (m− b′)(m− d). Thus,

d(A,M)

d(A′,M)
=

m− b

m− b′
= const.

The distances of the points B and B′ to the line MAA′ are equal to b − m

and b′ −m, respectively.
To prove 2◦ we start with the assumption b′ = −b and m = 0. So,

the points A(−bd, 0) and A′(bd, 0) are symmetric with respect to the vertex
M = O of parabola.

It is left to prove 3◦. The line through a point S(u, v) parallel to the line
DB has the equation x− (b+ d)y = u− (b+ d)v and intersects the axis y = 0
at the point β(u− (b+ d)v, 0). Similarly, β′(u− (b′ + d)v, 0) and we calculate

d(β, β′) = (b− b′)v = const.,

which completes the proof.

Theorem 2.12. Let ABCD be a quadrilateral inscribed to the parabola
P. Let two opposite sides AB and CD intersect in I, let P and P ′ be their
intersections with the diameters through A and D, and Q and Q′ be their
intersections with the diameters through B and C. The following statements
hold (see Figure 2):

1◦ The line PP ′ is parallel to the side BC and the line QQ′ to the side
AD.

2◦ If the line BE parallel to the side AD meets the side CD at E, the
distance d(I,Q) is the geometric mean of distances d(I, C) and d(I, E).

Proof. Let A(a2, a), B(b2, b), C(c2, c), D(d2, d) be the points on the
parabola P . The line CD has the equation x−(c+d)y+cd = 0 and intersects
the diameters with equations y = a and y = b at the points P = (a(c+ d) −
cd, a) and Q = (b(c + d) − cd, b), respectively. The line AB has the equation
x − (a + b)y + ab = 0 and intersects the diameters with equations y = d

and y = c at the points P ′ = (d(a + b) − ab, d) and Q′ = (c(a + b) − ab, c),
respectively. The line PP ′ is parallel to BC since it has the slope

a− d

a(c+ d)− cd− d(a+ b) + ab
=

a− d

(a− d)(b + c)
=

1

b+ c
.
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It can be shown similarly that the line QQ′ is parallel to AD. The lines AB
and CD are intersected in the point

I =

(

ab(c+ d)− cd(a+ b)

a+ b− c− d
,

ab− cd

a+ b− c− d

)

.

The line through B parallel to AD has the equation x−(a+d)y+ab+bd−b2 =
0, and intersects the line CD with equation x− (c+ d)y+ cd = 0 at the point

E whose ordinate equals to y = b(a−b)+(b−c)d
a−c

. We calculate the differences
between the ordinates of the points I, C; I, E and I, Q:

c−
ab− cd

a+ b− c− d
= −

(a− c)(b− c)

a+ b − c− d
,

b(a− b) + d(b − c)

a− c
−

ab− cd

a+ b− c− d
= −

b− c

(a− c)(a+ b− c− d)
(b − d)2,

b−
ab− cd

a+ b− c− d
=

b− c

a+ b− c− d
(b − d),

and conclude that the equality d(I, C)d(I, E) = d(I,Q)2 also holds.

A

B

C

D

I

P

P’

Q

Q’
E

P

x

y

Figure 2. Visualization of Theorem 2.12.

Let us prove the following theorem.

Theorem 2.13. Let A = (a2, a), B = (b2, b), C = (c2, c), D = (d2, d) be
the points of the parabola P. These are the equivalent statements:

1◦ The points A,B,C,D lie on a circle.
2◦ The lines AB and CD are antiparallel with respect to the axis of P.
3◦ The equality a+ b+ c+ d = 0 holds.

Proof. Let us first prove the equivalence of the statements 1◦ and 3◦.
The parabola P is given by (1.2) and let the circle passing through A,B,C,D

be given by (1.1). Then the ordinates of their intersection points are the roots
of the equation uy4 + vy2 − y + w = 0. Therefore, a+ b+ c+ d = 0.
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If 3◦ holds and D′ = (d′2, d′) is the fourth intersection point of P and the
circle passing through A,B,C, then a + b + c + d′ = 0. Thus, d′ = d and
D′ = D, which leads to 1◦.

We will now prove the equivalence of the statements 2◦ and 3◦. Since
the slopes of lines AB, CD are 1

a+b
, 1

c+d
, respectively, they are antiparallel

with respect to the parabola’s axis precisely when 1
a+b

+ 1
c+d

= 0, i.e., when

a+ b+ c+ d = 0 (note: if a+ b = 0 and c+ d = 0, the lines AB and CD are
the isotropic lines and they can be considered as the antiparallel lines).

In the same way the following Corollaries can be shown. There one pair (or
a triple) of the four basic points from Theorem 2.13 coincide.

Corollary 2.14. Let A = (a2, a), C = (c2, c), D = (d2, d) be the points
of the parabola P. These are the equivalent statements:

1◦ The points A,C,D lie on a circle touching P at the point A.
2◦ The tangent line to P at A and the line CD are antiparallel with respect

to the axis of P.
3◦ The equality 2a+ c+ d = 0 holds.

Corollary 2.15. Let A = (a2, a), D = (d2, d) be the points of the
parabola P. These are the equivalent statements (see Figure 3):

1◦ The point D is the intersection point of the parabola P and its circle
of curvature at the point A.

2◦ The tangent line to P at A and the line AD are antiparallel with respect
to the axis of P.

3◦ The equality 3a+ d = 0 holds.

F

D

A

A’

MAD

P

x

y

Figure 3. Visualization of Corollary 2.15 and Theorem 2.16.

The chord AD is called the osculation chord of P at A. So, if a point A =
(a2, a) on the parabola P having equation (1.2) is given, than the endpoint of
the osculation chord AD is the point D = (9a2,−3a).
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Theorem 2.16. If A is a point of a parabola P, D the intersection point
of the parabola and its circle of curvature at A, and A′ the intersection point
of the tangent at A with the axis of parabola, then the distance between A and
D is four times the distance between A and A′ (see Figure 3).

Proof. The tangent to P at A = (a2, a) is given by 2ay = x + a2 and
meets the axis at the point A′ = (−a2, 0). So, d(A′, A) = 2a2 and from
Corollary 2.15 it follows that

d(A,D) = d2 − a2 = 8a2 = 4d(A′, A).

In the isotropic plane a parabola with an equation y2 = 2px is said to
have a parameter 2p, and semi-parameter p. For the parabola given by (1.2)
the semi-parameter is p = 1

2 . Similarly, a circle with equation 2ry = x2 is
said to have a radius r, that can be a positive or a negative number.

It was shown in [7] that the circle of curvature of P at N = (n2, n) has
the equation x2 − 6n2x+8n3y− 3n4 = 0, and therefore the radius r = −4n3.

Theorem 2.17. The locus of midpoints of the osculation chords is a
parabola having the same axis and the same vertex as given parabola P. A
parameter of obtained parabola is five times less than the one of given parabola.

Proof. The midpoint of the points A = (a2, a) and D = (9a2,−3a) is
the point M = (5a2,−a) laying on a parabola with equation y2 = 1

5x.

Theorem 2.18. The ratio of radii of curvature at the points N , N ′ of the
parabola P is the same as the ratio of the cubes of s(M,N), s(M ′, N ′), where
M , M ′ are the points on the axis of parabola parallel to N , N ′, respectively.

Proof. The circles of curvature of P at N = (n2, n), N ′ = (n′2, n′)
have the radii r = −4n3, r′ = −4n′3, respectively. The points on the axis
of parabola parallel to N , N ′ are M = (n2, 0), M ′ = (n′2, 0), and therefore
s(M,N) = n, s(M ′, N ′) = n′. Thus,

r

r′
=

−4n3

−4n′3
=

s(M,N)3

s(M ′, N ′)3
.

Theorem 2.19. The radius of curvature at a point N of the parabola P

is obtained by dividing the half of the distance d(F,M) by the angle between
the tangent at N and the axis, where M is the intersection point of parabola
P with the line through the focus F parallel to the given tangent.

Proof. The tangent to parabola P at the point N = (n2, n) has the
equation 2ny = x + n2. Thus, the angle formed by the tangent and the axis
of parabola equals − 1

2n . The line parallel to the tangent through the focus
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has the equation y = 1
2nx and meets parabola at the point M = (4n2, 2n).

Therefore, d(F,M) = 4n2 and

1

2
d(F,M) :

(

−
1

2n

)

= −4n3 = r,

which proves the theorem.
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