### Properties of the upper part of the last glacial loesspalaeosol sequence at Savudrija (Istria, Croatia) [Prezentacija]

Hećej, Nina

Supplement / Prilog

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:594538

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-23



Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb





6<sup>th</sup> Regional Scientific Meeting on Quaternary Geology: Seas, Lakes and Rivers Ljubljana, Slovenia

28<sup>th</sup> September 2021

Properties of the upper part of the Last Glacial loess-palaeosol sequence at Savudrija (Istria, Croatia)

NINA HEĆEJ & GORAN DURN









# INTRODUCTION

- Fieldwork
- 7,5 m thick loess-palaeosol sequence in Savudrija, Istria (CRO)
- performed within NALPS (engl. North Adriatic Loess-Paleosol Sequences) project

### • Reason for the survey?

- To investigate the **origin, age** and **features of the six horizons** (depth 0-205 cm) located in the upper part of the loess-palaeosol sequence from Istria, Croatia
- How?
- By applying detailed mineralogical, geochemical, pedophysical and micromorphological analyzes
- + OSL dating

### GEOGRAPHICAL POSITION AND GEOLOGY OF THE RESEARCHED AREA





Figure 3. a) Profile through pedosedimentary complex with shown sampling sites; b) the investigated part of the pedosedimentary complex

## FIELDWORK RESULTS



**Figure 4**. The graphical log of the Savudrija loess-palaeosol sequence with indicated sampling positions analyzed within this thesis (modified after ZHANG et al., 2018)

# LABORATORY WORK

- detailed chemical analysis
- physical and chemical analysis of the paleosols (incl. CEC and base saturation, particle size analysis, analysis of iron and manganese oxides and hydroxides soluble in dithionite-citrate bicarbonate and oxalate)
- mineral composition analysis (XRD method)
- optically and infrared stimulated luminescence (OSL & IRSL)
- micromorphological analysis of thin sections.

|              |         | рН               |      |             |                          |                                |              |                    | Organski C            |               | Organic C                         |
|--------------|---------|------------------|------|-------------|--------------------------|--------------------------------|--------------|--------------------|-----------------------|---------------|-----------------------------------|
| Sample<br>ID | Horizon | H <sub>2</sub> O | KCl  | Description | CaCO <sub>3</sub><br>[%] | Description                    | Humus<br>[%] | Description        | (%humus/<br>1,72) [%] | Total<br>C[%] | (Total C -<br>anorganic C)<br>[%] |
| 4891         | AB      | 8,22             | 7,38 | alkaline    | 1,7                      | Low<br>carbonate<br>content    | 2,53         | Low<br>humosity    | 1,47                  | 2,05          | 1,85                              |
| 4892         | В       | 8,87             | 7,30 | alkaline    | 7,4                      | Low<br>carbonate<br>content    | 2,79         | Low<br>humosity    | 1,62                  | 1,57          | 0,69                              |
| 4893         | BC      | 9,14             | 7,53 | alkaline    | 24,8                     | Medium<br>carbonate<br>content | 4,91         | Medium<br>humosity | 2,85                  | 3,85          | 0,87                              |
| 4894         | СВ      | 9,20             | 7,58 | alkaline    | 34,7                     | High<br>carbonate<br>content   | 2,77         | Low<br>humosity    | 1,61                  | 5,24          | 1,08                              |
| 4895         | 2BC     | 8,58             | 7,59 | alkaline    | 27,5                     | High<br>carbonate<br>content   | 5,82         | High<br>humosity   | 3,38                  | 4,37          | 1,06                              |
| 4896         | 2C      | 8,39             | 7,65 | alkaline    | 36,1                     | High<br>carbonate<br>content   | 2,40         | Low<br>humosity    | 1,40                  | 5,54          | 1,20                              |

| Fable 4. Chemical | properties of the upper par | rt of the Savudrija profile |
|-------------------|-----------------------------|-----------------------------|
|-------------------|-----------------------------|-----------------------------|

27<sup>th</sup> - 30<sup>th</sup> September 2021; Ljubljana, Slovenia

### CATION EXCHANGE CAPACITY (CEC) & PERCENT BASE SATURATION (BS)

8,000

150,000



**GEOCHEMICAL RATIOS** 



Figure 12.  $\Sigma$ Base/Al ratio by depth

Figure 13. Ba/Sr ratio by depth

### DCB & OXALATE SOLUBLE IRON



• The mean value of the Fe<sub>d</sub> / Fe<sub>t</sub> ratio is 0.35, which according to ARDUINO et al. (1984) & DURN (1996), indicate a medium degree of weathering.

### DCB & OXALATE SOLUBLE MANGANESE

• **Table 9.** Shares and ratios of total (Mn<sub>t</sub>), dithionite-soluble (Mn<sub>d</sub>) & oxalate soluble Mn (Mn<sub>o</sub>).



*Figure 16. Total (Mnt), dithionite-soluble (Mnd) and oxalate (Mno) soluble manganese by profile depth* 





### MODAL COMPOSITION

**Table 12.** Semiquantitative mineral composition of the clay fraction (particle size &  $<2\mu$ m) of samples after dissolution of carbonate (in wt %).

| Sam          | Clay con | 0   | DI | TZC | G  |     |      | 711 | 171  |      | 14            | lÅ           | Chl -           | MM /   |      |
|--------------|----------|-----|----|-----|----|-----|------|-----|------|------|---------------|--------------|-----------------|--------|------|
| ıple         | nponent  | Qtz | PI | KIS | Gt | Hm  | Amph | 111 | Kin  | Chi  | S             | Vrm          | Vrm             | NIM    | AC   |
| 4891<br><2μm | 25,90    | 6   | +  | ?   | +  | -/? | ?    | ++  | +/++ | ++   | +<br>(S i/ili | +<br>i Vrm)  | +/++            | +++    | +    |
| 4892<br><2μm | 31,10    | 5   | -  | -   | +  | ?   | -    | ++  | ++   | +/++ | +/++          | ?            | +/++            | ++/+++ | +    |
| 4893<br><2μm | 26,30    | 5   | -  | -   | +  | ?   | -    | ++  | ++   | +/++ | +<br>(S i/ili | +<br>i Vrm)  | +/++            | ++/+++ | +    |
| 4894<br><2μm | 23,90    | 6   | -  | -   | +  | -   | -    | ++  | ++   | +/++ | +<br>(S i/ili | ·+<br>i Vrm) | +/++            | ++/+++ | +    |
| 4895<br><2μm | 21,40    | 7   | -  | -   | +  | -   | -    | ++  | ++   | ++   | ?             | ++           | ?               | ++/+++ | +/++ |
| 4896<br><2μm | 20,60    | 5   | -  | -   | +  | -   | -    | ++  | ++   | +/++ | ?             | ?            | ?<br>(Chl -Ill) | ++/+++ | +/++ |

## OSL & IRSL AGE

| Table 13. OSL | and IRSL | ages of the | upper part | of the section |
|---------------|----------|-------------|------------|----------------|
|---------------|----------|-------------|------------|----------------|

| Sample ID | Lab ID | Depth [cm] | IRSL age [ka]  | OSL age [ka]   |  |
|-----------|--------|------------|----------------|----------------|--|
| SAV 7     | 4894   | 55 - 115   | $17,5 \pm 1,2$ | $8,9\pm0,6$    |  |
| SAV 6     | 4896   | 165 - 205  | $31,4 \pm 2,5$ | $20,4 \pm 1,6$ |  |



Figure 18. The graphical log of the upper part of Savudrija loesspalaeosol sequence OSL and IRSL ages of the two loess horizons (modified after ZHANG et al., 2018)



Figure 19. Thin section Savudrija 21; a) c / f distribution in the thin section; pedofeatures: rhizoconcretions within voids and cracks, Fe/Mn oxide nodules, accumulation of dispersed organic matter(PPL); b) Rhizoconcretion (dimension 1,25 mm) with a pronounced honeycomb structure filled with secondary carbonate: b) (PPL); c) (XPL)

leology: Seas, Lakes and Rivers jubljana, Slovenia

#### Savudrija 20

-microstructure: spongy/vesicular
-pedofeatures: dominant rhizoliths, with Fe- &Mn nodules, few
pedorelicts (brown coloured well-rounded forms)
-pedality: weak, with predominantly

angular grains and poor sorting



*Figure 21.* Savudrija 20; *a*) rhizoliths with secondary crystallised calcite within voids (PPL); *b*) rhizoliths with secondary crystallised calcite within voids (XPL); *c*) Fe-Mn nodules with embedded Qtz-grains (PPL)

2/<sup>m</sup> - 30<sup>m</sup> September 2021; Ljubljana, Slovenia



Figure 23. Savudrija 19: axial cross section of the brachiopod shell (PPL & XPL



Figure 24. Accumulation of rhizoconcretions and chain aggregation of secondary carbonates along the edges of the cavities (PPL & XPL)



#### Savudrija 18

-microstructure: chanelly with *vughs*- pedofeatures: clay coatings, Fe & Mn nodules, aglomeration of secondary crystalised calcite, higher amount of organic matter

**-pedality:** weak, with angular to rounded aggregates; in lower part of the section stronger bioturbation is observed

*Figure 25.* Thin section Savudrija 18; *a*) crystallized agglomerated grains of secondary calcite and clay coating along the edge of the crack (PPL), *b*) crystallized agglomerated grains of secondary calcite and clay coating along the edge of the crack (XPL), *c*) An elongated fragment of charcoal (PPL)







### Savudrija 17

-microstructure: channelly to spongy
-pedofeatures: clay and calcite
coatings, replacement of quartzite grain
with calcite, abundance of Fe/Mn oxide
noduls, rhizocretions
Higher amount of organic matter
-pedality: weak, with angular to

*Figure 26.* accumulation of dispersed organic matter, christalization of secondary calcite along the mollusc shell fragments in thin section Savudrija 17 *a)* (PPL), *b* (XPL)



Slika 26. a) replacement of chert grain with calcite (PPL), b) replacement of chert grain with calcite(XPL) observed in thin section Savudrija 17



*Figure 27.* Pedofeatures observed in thin section Savudrija 17; *a*) Rhizoconcretions with observed crystalization of calcite along the cell wall (PPL), *b*) Rhizocretions with observed crystalization of calcite along the cell wall (XPL)









Savudrija 16 150-158 cm

#### Savudrija 16

-microstructure: spongy with *vughs* and channels
-pedofeatures: clay coatings,
Fe/Mn oxide nodules and secondary crystalized calcite
replacement of chert grain with calcite; molluscs shell fragments observed
-high amount of organic matter
-pedality: weak to medium

*Figure 28.* Savudrija 16; *a*) dispersed organic matter and clay coatings along the edge of cracks and cavities (PPL), *b*) (XPL), *c*) Dispersed organic matter in contact with the grain of chert (PPL),

Seas, Lakes and Rivers Slovenia

#### Savudrija 15

-microstructure: spongy to *vughy*-channelly

- pedofeatures : Fe-Mn oxide nodules, a lot of clay coatings; agglomerated grains of sekundary crystalized calcite
-pedality: weak to medium







170-178 cm

Figure 29. Pedofeatures observed in thin section Savudrija 15;
a) dispersed organic matter, accumulation of clay coatings along the edge of the channel and vughs, rounded dark brown to black Fe - Mn nodules, nodules of agglomerated calcite and secondary crystallized calcite within the shell fragments (PPL);
b) (XPL); c) dispersed organic matter and clay coatings along the edge of vughs (PPL)



## CONCLUSION

- The uppermost part of the sequence studied was represented by presumably polygenetic soil developed on loess (AB-B-BC-CB) underlain by brown palaeosol developed on older loess (2BC-2C). Based on the Sm/Nd and La/Ce geochemical ratios (SHELDON & TABOR, 2009), it was also determined that the loess parent material examined in this study has the same provenance as the materials examined in BANIČEK (2016) and DURN et al. (2018a, b).
- XRD analysis revealed that all soil samples contain a significant amount of quartz, plagioclase, alkali feldspar, illitic material, kaolinite, chlorite, 14 Å minerals (vermiculite and/or smectite), mostly irregular mixed-layer clay minerals, goethite and amorphous components, whose content increases with depth.
- ➤ Based on quartz OSL dating, the age of the studied soil horizon CB is 9 ± 0.8 ka and of soil horizon 2C is 20.9 ± 2.1 ka (ZHANG et al., 2018).
- Micromorphological studies of the uppermost part of the section revealed two superimposed loess substrates in which (palaeo)sols developed. significant share of rhizoconcretions, ferrous/manganese oxide nodules and clay coatings, which indicate that there have been a significant illuviation in the horizons of the uppermost part of the Savudrija pedosediment complex.



As part of the research preparation, this work has been supported in part by the Croatian Science Foundation under the projects ACCENT (3274) and WIANLab (8054)