Izrada softvera za proračun naprezanja tunela okruglog presjeka

Vincek, Josip

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:618282

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-11

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij rudarstva

IZRADA SOFTVERA ZA PRORAČUN NAPREZANJA TUNELA OKRUGLOG PRESJEKA

Diplomski rad

Josip Vincek R290

Zagreb, 2023

Sveučilište u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET HR-10002 Zagreb, Pierotlijeva 6, p. p. 390

KLASA:602-01/23-01/45URBROJ:251-70-11-23-2U Zagrebu,08.05.2023.

Josip Vincek, student

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-01/23-01/45, URBROJ: 251-70-11-23-1 od 28.04.2023. priopćujemo vam temu diplomskog rada koja glasi:

Izrada softvera za proračun naprezanja tunela kružnog presjeka

Za voditelja ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada Izv.prof.dr.sc. Vinko Škrlec nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu i suvoditeljicu dr.sc. Karolina Herceg.

Voditelj		Predsjednik povjerenstva za završne i diploviske ispite:
Mil k		M
(potpis)		(potpis)
Izv.prof.dr.sc. Vinko Škrlec		Izv.prof.dr.sc. Mario Klanfar
(titula, ime i prezime)	\bigcirc	(titula, ime i prezime)
Suvoditeljica	Prodekar za nastavn i studente:	*
(potpis)	(potpis)	7
dr.sc. Karolina Herceg	Izv.prof.dr.sc. Borivoje Pašić	
(titula, ime i prezime)	(titula, ime i prezime)	
l.		
Oznaka: OB 8.51 SRF-1-13/0	Stranica: 1/1	Čuvanje (godina) Trajno

Diplomski rad

IZRADA SOFTVERA ZA PRORAČUN NAPREZANJA TUNELA OKRUGLOG PRESJEKA

Josip Vincek

Rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za rudarstvo i geotehniku Pierottijeva 6, 10 000 Zagreb

Sažetak

Tunelske konstrukcije imaju jednu od ključnih uloga u modernoj infrastrukturi, a analiza naprezanja je esencijalna za njihovu stabilnost i sigurnost. Ovim radom istraženo je područje sekundarnih naprezanja, čvrstoće stijenske mase i stabilnosti tunelskih konstrukcija u stijenskoj masi te je prilikom istraživanja razvijen program u Pythonu. Pobliže su objašnjena područja ispitivanja i klasifikacija koja prethode analizi naprezanja i čvrstoće, dok su jednadžbe navedene u radu korištene prilikom razvoja programa. U svrhu validacije rezultata proračuna provedena je usporedna analiza sa rezultatima geotehničkog softvera Plaxis.

Ključne riječi:tunel, analiza naprezanja, stijenska masa, čvrstoća stijenske mase, pythonDiplomski rad sadrži:67 stranica, 14 tablica, 51 sliku i 22 reference.Jezik izvornika:HrvatskiPohrana rada:Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, ZagrebMentor:Dr. sc. Vinko Škrlec, izvanredni profesor RGNFKomentorica:Dr. sc. Karolina Herceg, poslijedoktorand RGNF

Ocjenjivači:	Dr. sc. Vinko Škrlec, izvanredni profesor RGNF
	Dr. sc. Mario Dobrilović, redoviti profesor. RGNF
	Dr. sc. Siniša Stanković, docent RGNF

University of Zagreb Faculty of Mining, Geology and Petroleum Engineering

DEVELOPMENT OF SOFTWARE FOR STRESS CALCULATION WITH APPLICATION IN TUNNEL CONSTRUCTION

Josip Vincek

Thesis completed at: University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering Department for Mining and Geotechnics Pierottijeva 6, 10 000 Zagreb

Abstract

Tunnel constructions are critical components of modern infrastructure, and stress analysis is critical to their stability and safety. This thesis explored induced stresses, rock mass strength, tunnel structural stability in the rock mass and a Python program was developed throughout the research. The areas of testing and categorization that precede stress and strength analysis are discussed, and the equations presented in the article were used during the program's development. To validate the calculation results, a comparison with the results of the geotechnical software Plaxis was undertaken.

Keywords:	tunnel, stress analysis, rock mass, rock mass strength, python		
Thesis contains:	67 pages, 14 tables, 51 figures and 22 references.		
Original in:	Croatian		
Archived in:	Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb		
Supervisor:	Associate Professor Vinko Škrlec, PhD		
Co-supervisor:	Postdoctoral Researcher Karolina Herceg, PhD		
Reviewers:	Associate Professor Vinko Škrlec, PhD		
	Full Professor Mario Dobrilović, PhD		
	Assistant Professor Siniša Stanković. PhD		

SADRŽAJ

1. I	UVOD	1
2. (OPĆENITO O TUNELIMA	2
2.1.	Geotehnička istraživanja u tunelogradnji	3
2.2.	Geološka istraživanja u tunelogradnji	5
3. I	ISPITIVANJA I KLASIFIKACIJE STIJENA	7
3.1.	Sustavi klasifikacije	8
3.1.1	. RQD	9
3.1.2	. Geomehanička ili RMR klasifikacija	11
3.1.3	. Q klasifikacija	14
3.1.4	. GSI	17
4. Č	ČVRSTOĆA I NAPREZANJA	19
4.1.	In-situ naprezanja	19
4.2.	Sekundarna naprezanja - Kirschovo rješenje	21
4.2.1	. Slučaj vertikalnog naprezanja	23
4.2.2	. Slučaj vertikalnog i horizontalnog naprezanja	25
4.2.3	. Slučaj kvazihidrostatskog naprezanja	27
4.2.4	. Glavna naprezanja i pomaci	28
4.3.	Hoek - Brown kriterij čvrstoće	29
4.3.1	. Mohr - Coloumb parametri čvrstoće	34
4.3.2	. Čvrstoća stijenske mase	35
4.3.3	. Modul deformabilnosti stijenske mase	35
4.3.4	. Određivanje vrijednosti σ 3, max'	37
5. I	PROGRAM ZA PRORAČUN NAPREZANJA OKO KRUŽNOG OTVOJ	RA I
ČVR	STOĆE STIJENE	39
5.1.	Općenito	39
5.2.	Način rada	40
5.3.	Ulazni podaci	47
5.3.1	. Proračun naprezanja i pomaka	47
5.3.2	. Proračun čvrstoće	48
5.4.	Validacija rezultata	49
5.4.1	. Validacija naprezanja i pomaka	50
5.4.1	.1. Slučaj $\theta = 0^{\circ}$	51

5.4.1.2. Slučaj $\theta = 90^{\circ}$	
5.4.2. Validacija čvrstoće	
6. ZAKLJUČAK	
LITERATURA	

POPIS SLIKA

Slika 2-1. Pružanje, kut nagiba, smjer nagiba (Hoek i dr., 2012)	6
Slika 3-1. RQD (Deb i Verma, 2016)	10
Slika 3-2. Unaprijeđeni Q - podgradni dijagram za odabir podgrade u tunelima i ka	ivernama
u stijeni (Deb i Verma, 2016)	17
Slika 3-3. GSI (Hrženjak i Briševac, 2009)	
Slika 4-1. Koeficijent k u ovisnosti o srednjem modulu deformabilnosti (Sheorey,	1993) 21
Slika 4-2. Primarno i sekundarno polje naprezanja (Vrkljan, 2013)	
Slika 4-3. Ploča s kružnim otvorom beskonačne dubine (Hrestak, 2010)	
Slika 4-4. Model za slučaj djelovanja vertikalnog naprezanja (Frgić, 2013)	23
Slika 4-5. Preraspodjela tangencijalnih naprezanja za slučaj vertikalnog opterećen	ja (Frgić,
2013)	25
Slika 4-6. Model prilikom djelovanja vertikalnog i horizontalnog naprezanja (E	berhardt,
n.d.)	
Slika 4-7. Kvazihidrostatsko naprezanje (Eberhardt, n.d.)	27
Slika 4-8. Krivulja sloma prema Hoek-Brownovom kriteriju čvrstoće (Hoek, 1983)31
Slika 4-9. Vrijednosti konstante <i>m</i> _i (Hoek, 2007)	
Slika 4-10. Vrijednosti parametra faktora poremećaja D (Hoek i Brown, 2018)	
Slika 5-1. Pojednostavljeni dijagram RockStressCalc programa	40
Slika 5-2. Ulazni parametri sekundarnih naprezanja i pomaka	41
Slika 5-3. Popis jediničnih težina stijenske mase	41
Slika 5-4. Mogućnosti prikaza sekundarnih naprezanja i pomaka	
Slika 5-5. Proračun čvrstoće stijenske mase	43
Slika 5-6. Područje primjene kriterija čvrstoće	44
Slika 5-7. Područje primjene kriterija čvrstoće - Naizmjenična primjena	44
Slika 5-8. Područje primjene kriterija čvrstoće - Općenita primjena	44
Slika 5-9. Područje primjene kriterija čvrstoće – Tunelogradnja	44
Slika 5-10. Proračun modula deformabilnosti stijenske mase	
Slika 5-11. Hoek - Brownovo rješenje iz 2002	45
Slika 5-12. Hoek - Diedrichsovo rješenje iz 2006	45
Slika 5-13. Pojednostavljeno Hoek - Diedrichsovo rješenje iz 2006	45
Slika 5-14. Izbornik za upravljanje datotekama	45
Slika 5-15. Izbornik za pohranjivanje ulaznih parametara	46

Slika 5-16. Izbornik za pohranjivanje rezultata proračuna	. 46
Slika 5-17. Dijagram prikaza ulaznih i izlaznih parametara proračuna sekunda	rnih
naprezanja	. 47
Slika 5-18. Dijagram prikaza ulaznih i izlaznih parametara proračuna čvrstoće	. 49
Slika 5-19. Primjer ulaznih podataka proračuna sekundarnih naprezanja za $\theta = 0^{\circ}$. 51
Slika 5-20. Mreža konačnih elemenata - Plaxis	. 51
Slika 5-21. Radijalno naprezanje za $\theta = 0^\circ$ - RockStressCalc	. 52
Slika 5-22. Tangencijalno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc	. 53
Slika 5-23. Posmično naprezanje za $\theta = 0^{\circ}$ - RockStressCalc	. 53
Slika 5-24. Veće glavno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc	. 54
Slika 5-25. Manje glavno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc	. 54
Slika 5-26. Linijski dijagram sekundarnih naprezanja za $\theta = 0^{\circ}$ - RockStressCalc	. 55
Slika 5-27. Konturni prikaz većeg glavnog naprezanja za $\theta = 0^{\circ}$ - Plaxis	. 55
Slika 5-28. Linijski dijagram pomaka za $\theta = 0^{\circ}$ - RockStressCalc	. 56
Slika 5-29. Dijagram i iznos pomaka za $ heta=0^\circ$ - Plaxis	. 57
Slika 5-30. Linijski dijagram sekundarnih naprezanja za $\theta = 90^{\circ}$ - RockStressCalc	. 58
Slika 5-31. Linijski dijagram pomaka za $\theta = 90^{\circ}$ - RockStressCalc	. 59
Slika 5-32. Dijagram i iznos pomaka za $ heta=90^\circ$ - Plaxis	. 60
Slika 5-33. Naprezanja u kaloti tunela - RockStressCalc	. 61
Slika 5-34. Naprezanja u zidu tunela - RockStressCalc	. 62
Slika 5-35. Ulazni i izlazni podaci proračuna čvrstoće – RockStressCalc	. 63
Slika 5-36. Krivulja sloma za proračun čvrstoće - RockStressCalc	. 63
Slika 5-37. Ulazni i izlazni podaci za proračun čvrstoće - Plaxis	. 64

POPIS TABLICA

Tablica 3-1. Terenska i laboratorijska ispitivanja	
Tablica 3-2. Sustavi klasifikacije stijenske mase (Deb i Verma, 2016)	9
Tablica 3-3. Klasifikacija stijena na temelju RQD (Deb i Verma, 2016)	10
Tablica 3-4. RMR klasifikacijski parametri i raspon vrijednosti bodovanja (Bier	1iawski,
1989)	12
Tablica 3-5. Klasifikacija stijenske mase prema Q-sustavu (Deb i Verma, 2016)	15
Tablica 3-6. Vrijednosti ESR (Hoek, 2007)	16
Tablica 3-7. GSI klasifikacija (Deb i Verma, 2016)	
Tablica 4-1. Vrijednosti MR (Hoek i Diedrichs, 2006)	
Tablica 5-1. Ulazni podaci za proces validacije	50
Tablica 5-2. Iznosi naprezanja za $\theta = 0^{\circ}$ - RockStressCalc	52
Tablica 5-3. Iznos pomaka za $\theta = 0^{\circ}$ - RockStressCalc	56
Tablica 5-4. Iznosi naprezanja za $\theta = 90^{\circ}$ - RockStressCalc	58
Tablica 5-5. Iznos pomaka za $\theta = 90^{\circ}$ - RockStressCalc	59
Tablica 5-6. Naprezanja u kaloti i zidu tunela - RockStressCalc	61

POPIS KORIŠTENIH OZNAKA I JEDINICA

Oznaka	Mjerna jedinica	Opis
RQD	/	Indeks kvalitete stijene
J _n	/	Broj skupova pukotina
$J_{ m r}$	/	Indeks hrapavosti pukotina
J_{a}	/	Indeks promjene pukotine
$J_{ m w}$	/	Faktor pukotinske vode
SRF	/	Faktor redukcije naprezanja
De	m	Ekvivalentna dimenzija iskopa
ESR	/	Indeks podgrade
$\sigma_{ m v}$	Pa	Vertikalno naprezanje
$\sigma_{ m h}$	Pa	Horizontalno naprezanje
γ	N/m ³	Zapreminska težina
Ζ	m	Dubina
k	/	Koeficijent bočnog pritiska tla/stijene
$E_{ m h}$	Ра	Srednji modul deformabilnosti
Ε	Ра	Youngov modul elastičnosti
ν	/	Poissonov koeficijent
G	Ра	Modul posmika
$\sigma_{ m r}$	Ра	Radijalno naprezanje
σ_{0}	Ра	Tangencijalno naprezanje
$ au_{r\Theta}$	Ра	Posmično naprezanje
R	m	Radijus tunela
σ_1	Ра	Veće glavno naprezanje
σ_3	Pa	Manje glavno naprezanje
u _r	m	Radijalni pomak
u_{θ}	m	Tangencijalni pomak
$\sigma_{ m ci}$	Ра	Jednoosna tlačna čvrstoća
<i>m</i> , <i>s</i> , <i>a</i>	/	Konstante materijala
CSI	1	Geološki indeks čvrstoće (engl.
USI	/	Geological Strength Index)
Δ	1	Faktor poremećaja (engl. Disturbance
D	/	Factor)

$\sigma_{ m c}$	Ра	Tlačna čvrstoća
$\sigma_{ m t}$	Pa	Vlačna čvrstoća
$\sigma_{\rm n}$	Pa	Normalno naprezanje
τ	Pa	Posmično naprezanje
ϕ '	Pa	Kut trenja
c'	Ра	Kohezija
$\sigma_{ m cm'}$	Pa	Čvrstoća stijenske mase
	/	Koeficijent modula (engl. Modulus
MIK	7	Ratio)
DMD	/	Geomehanička klasifikacija (engl. Rock
ΜΜΛ	7	Mass Rating)
NCI	/	Norveški geotehnički institut (engl.
NUI	7	Norwegian Geotechnical Intitute)
PMS	/	Čvrstoća stijenske mase (engl. Rock
KMD	7	Mass Strength)
PMN	/	Broj stijenske mase (engl. Rock Mass
N <i>WW</i>	7	Number)
UCS	/	Jednoosna tlačna čvrstoća (engl.
UCS	7	Uniaxial Compressive Strength)
PI T	/	Indeks točkaste čvrstoće (engl. Point
1 1.1	1	Load Test)

1. UVOD

Tunelske građevine su značajan dio moderne infrastrukture jer pružaju rješenja za prijevoz, vodoopskrbu i odvodnju u urbanim i ruralnim sredinama. Projektiranje i izgradnja tunela zahtijevaju poznavanje geotehničkih i geoloških uvjeta lokacije, kao i karakteristika i ponašanja stijenske mase. Analiza naprezanja jedan je od najvažnijih aspekata projektiranja tunela jer se njenim pravilnim provođenjem i interpretacijom rezultata osigurava stabilnost i sigurnost tunela u različitim uvjetima opterećenja.

U svrhu istraživanja i dubljeg shvaćanja materije naprezanja, čvrstoće stijenske mase i stabilnosti tunelskih konstrukcija, u programskom jeziku Python napisan je program za proračun sekundarnih naprezanja uz kružni otvor u stijenskoj masi i čvrstoću stijenske mase.

U radu se u poglavljima 2. i 3. navode neka od najvažnijih geoloških i geotehničkih istraživanja, svojstva, ispitivanja i klasifikacije stijenske mase koja su potrebna za projektiranje kružnih tunela. Prikazane su ukratko in-situ i laboratorijske metode ispitivanja koje se koriste za određivanje svojstava stijenskih masa, te sustavi klasifikacije koji se koriste za kategorizaciju istih. U 4. poglavlju razrađena je problematika naprezanja, pomaka i čvrstoće materijala te su detaljno prikazana rješenja korištena prilikom izrade programa.

Jedna od ključnih metoda analize naprezanja koja je predmet istraživanja u ovom radu jest rješenje naprezanja oko ploče sa kružnim otvorom, predloženo od strane Kirscha. Ova metoda pruža analizu raspodjele naprezanja oko otvora tunela i koristi se u projektiranju tunela kružnog presjeka.

Cilj rada je izrada softvera (engl. *Software*) za proračun naprezanja tunela okruglog presjeka te usporedba rezultata proračuna sa rješenjima sofisticiranih programa koji svoju primjenu nalaze u području tunelogradnje. Osim toga, cilj rada je pružiti cjelovito razumijevanje analize naprezanja oko tunela kružnog poprečnog presjeka, važnosti geotehničkih i geoloških istraživanja, te svojstava i ponašanja stijenskih masa. Informacije iznesene u ovom diplomskom radu bit će dragocjene rudarskim inženjerima, geolozima i drugim stručnjacima koji se bave projektiranjem i gradnjom kružnih tunela. Namjera mu je poslužiti kao referenca za buduća istraživanja i kao vodič za praktičare u području tunelogradnje.

Prilikom određivanja opsega i hipoteze rada, pretpostavljeno je kako bi zadovoljavajuće razlike između rezultata proračuna dobivenih *RockStressCalc* i *Plaxis* softverima iznosile 10% u slučaju pretpostavke idealnih uvjeta (Škrlec, 2023).

2. OPĆENITO O TUNELIMA

Tunel je podzemna građevina koja služi za prolaz prometnica te provođenje vode ili komunalnih instalacija kroz prirodne ili umjetne zapreke ili ispod njih. Zbog povećanja broja stanovnika, širenja gradova, sve većih potreba za pitkom vodom, energijom i prijevozom, te sve većeg komunalnog standarda, potrebno je više prometnih, energetskih i komunalnih objekata. S druge strane, nedostatak rekreacijskih površina i širenje pješačkih zona u gradovima, izraženija ekološka svijest, nastojanje da se spriječi buka i vibracije, te zaštiti priroda nameću potrebu da se, gdje je to moguće, mnogi objekti izgrađuju podzemno (Magdalenić, 1997).

Vrste tunela razliku se prema namjeni, položaju, dubini i veličini poprečnog presjeka. Prema namjeni tuneli mogu biti: prometni, hidrotehnički i instalacijski. Osim toga, tuneli mogu biti plitki (do 10 m ispod površine) i duboki (više od 10 m ispod površine).

Prema položaju na terenu razlikuju se (Magdalenić, 1997):

- a) Brdski tunel najčešći je tip tunela, a gradi se obično s namjenom da se svladaju terenske zapreke, a katkad i radi smanjenja nagiba pri svladavanju visinskih razlika. Tunel koji prolazi kroz veliki brdski masiv može ujedno biti i vodorazvodni tunel. On se naziva bazni tunel kad je niskoležeći, dug, i kad spaja dvije doline približno iste nadmorske visine, ili je visokoležeći, kraći, s usponima s obje strane i s prijelomom trase u tunelu.
- b) Podvodni tunel gradi se kako bi se svladale vodene prirodne zapreke (rijeke, jezera, kanali, morski zaljevi i prolazi). On može biti probijen kroz tlo ispod vodene zapreke ili položen na njezino dno (*uronjeni tunel*).
- c) Gradski podzemni tunel najčešće služi za promet podzemne željeznice, a u velikim se gradovima grade i cestovni tuneli za prolaz ispod velikih prometnih čvorišta, luka, stambenih četvrti i sl. Osim prometnih tunela, u gradu su vrlo rašireni i instalacijski tuneli.

Prema duljini razlikuju se:

- a) sasvim kratki (do 50 m),
- b) kratki (50 500 m),
- c) srednji (500 2 000 m),
- d) dugi (2 000 4 000) i
- e) vrlo dugi tuneli (dulji od 4 000 m).

Prema veličini poprečnog presjeka tuneli se dijele na:

- a) tunelne potkope ili hodnike $(5 16 \text{ m}^2)$,
- b) tunele s malim profilom $(16 30 \text{ m}^2)$,
- c) srednjim $(30 60 \text{ m}^2)$,
- d) velikim $(60 80 \text{ m}^2)$,
- e) vrlo velikim profilom (više od 80 m²).

2.1. Geotehnička istraživanja u tunelogradnji

Geotehnika i geologija imaju ključnu ulogu u projektiranju i izgradnji tunela, utječući na ključne odluke kao što su izvedivost i trošak. Tlo ili stijena, koji okružuju tunel, za razliku od drugih građevinskih objekata, predstavljaju primarni nosivi sustav. Čvrstoća tla, odnosno stijene, održava iskop otvorenim do postavljanja potpornog sustava, a i nakon podgrađivanja značajno doprinosi nosivosti. Zbog toga se stijena ili tlo smatraju građevinskim materijalom čija su inženjerska svojstvima usporediva s betonom ili čelikom (Deb i Verma, 2016).

Dobro predviđanje svojstava tla i stijena, podzemne vode i primarnog stanja naprezanja ključno je za uspješno građenje i projektiranje tunela. Kako bi se to omogućilo potrebno je provesti istražne radove čije je cilj opis svih svojstava tla/stijene relevantnih za projektiranje tunela. Opseg istraživanja treba odgovarati veličini i svrsi tunela. Istražni radovi mogu se podijeliti na:

- a) preliminarna istraživanja,
- b) detaljna istraživanja,
- c) istraživanja za vrijeme građenja tunela.

Preliminarnim istražnim radovima obuhvaća se šire područje, a uključuje:

- a) pregled literature (geološke karte, hidrogeološke karte, seizmičnost područja, pregled podataka od projekata koji su na toj lokaciji ili u blizini),
- b) interpretaciju aero-foto snimaka kako bi se dobili podaci o topografiji, vegetaciji, upotrebi zemljišta, klizišta, rasjedi i sl.
- c) terenska istraživanja kojima se provodi površinska identifikacija stijena i tipova tla, strukturni detalji, glavne spojene točke i klizanja, rasjedna područja, hidrogeološka obilježja, geološke opasnosti (nestabilni obronci, područja sa značajnim uleknućima).

Na temelju rezultata preliminarnih istražnih radova određuje se opseg i količina potrebnih detaljnih istraživanja koja u pravilu uključuju:

a) geofizička istraživanja,

- b) istražno bušenje,
- c) uzorkovanje,
- d) in-situ ispitivanja,
- e) laboratorijska ispitivanja.

Svrha detaljnih istražnih radova je određivanje svih potrebnih informacija za projektiranje i dimenzioniranje tunela, izrada ponudbene dokumentacije, procjena opasnosti za okolne objekte. U fazi izgradnje tunela provode se istraživanja tijekom građenja koja uključuju: inženjerskogeološka snimanja čela i izradu uzdužnog profila tunela, mjerenja pomaka konture tunela i točaka u stijenskoj masi, promatranje nivoa podzemne vode i in-situ ispitivanja.

Prema (Bickel i dr., 1996) nepredviđene okolnosti tijekom izgradnje tunela mogu dovesti do skupih odgoda i komplikacija. Međutim, tuneli podvrgnuti temeljitom istraživanju mogu imati manja prekoračenja rokova gradnje te samim time i troškova gradnje. Korisna ispitivanja za procjenu izvedivosti, sigurnosti, dizajna i ekonomičnosti projekta tunela uključuju:

- Razvijanja sveobuhvatnog razumijevanja regionalne geologije i hidrogeologije za projektiranje i građenje.
- Definiranje fizičkih karakteristika materijala koji će utjecati na ponašanje tunela.
- Pomoć u određivanju izvedivosti projekta i upozoravanje inženjera i izvođača na potencijalne poteškoće koji se mogu pojaviti tijekom izgradnje u svrhu razvitka planova za nepredviđene situacije.
- Pružanje podataka za odabir alternativnih metoda iskopa i podgrade i, kada je to moguće, određivanje najekonomičnije trase i dubine.
- Pružanje specifičnih projektnih parametara za stijene, tlo i hidrogeologiju.
- Predviđanje kako će se tlo, odnosno stijena i podzemna voda ponašati prilikom iskopavanja i podupiranja različitim metodama.
- Utvrđivanje konačnih projektnih uvjeta tako da se "promijenjeni uvjeti" mogu pravedno identificirati i riješiti tijekom izgradnje
- Poboljšanje sigurnosti na radu.
- Pružanje iskustva u radu sa specifičnim tlom i/ili stijenom na gradilištu kroz opsežna ispitivanja ili preliminarna istraživanja, što može poboljšati kvalitetu projekta i terenskih odluka donesenih tijekom izgradnje.

 Pružanje specifičnih podataka potrebnih za pripremu procjena troškova, produktivnosti i rasporeda za odluke o projektu i za procjene troškova od strane investitora i izvođača.

2.2. Geološka istraživanja u tunelogradnji

Poznavanje geološkog sastava terena duž trase tunela od velike je važnosti za projektiranje, gradnju i uporabu podzemnih objekata. Rijetko koji inženjerski objekt iziskuje tako pažljivo i detaljno proučavanje inženjerskogeoloških prilika kao što to zahtjeva gradnja podzemnih objekata. Značenje je tih istraživanja to veće što je objekt dublje pod površinom terena (Magdalenić, 1997).

Prema geološkoj građi i geološkim uvjetima gradnje razlikuju se (Magdalenić, 1997):

- a) Laki tuneli su oni koji se grade u čvrstim stijenskim masama. To su magmatske stijene velike čvrstoće i žilavosti te sedimentne stijene (vapnenci i dolomiti) veće čvrstoće i žilavosti. Pri gradnji tunela u tim stijenskim masama nema većih deformacija iskopanih prostora, pa nije potrebno podgrađivanje.
- b) Srednje teški tuneli grade se kroz meke stijenske mase, kao što su meki glinoviti pješčenjaci, lapori, neki škriljavci, prapor i slični materijali. U takvim stijenama pojavljuju se nakon iskopa manji vertikalni pomaci, a katkad i bočni, koji opterećuju podgradu.
- c) *Teški tuneli* grade se u stijenama koje su u raspadanju. To mogu biti i jako zdrobljene stijene već spomenutih kategorija. U tim se tunelima pojavljuje utjecaj vode i zraka, prisutne su veće deformacije i tlakovi, što sve zahtijeva osiguranje iskopanog obrisa tunela uz oprezan rad.
- d) Vrlo teški tuneli grade se u terenima od pijesaka zasićenih vodom, raspadnutih glinovitih škriljavaca, glina muljevitih zemljišta. U njima je stijenska masa pokretljiva, pa može nastati urušavanje. Česte su i poteškoće s vodom. Zato je potrebna složena i jaka podgrada, te vrlo oprezan rad, jer se pri gradnji tunela u tim sredinama pojavljuju veliki tlakovi.

Gradnja podzemnih objekata ovisi o nizu inženjerskogeoloških čimbenika, koji se uklapaju u prognozni inženjerskogeološki profil. Cilj je istraživanja da prognozni profil bude što bliži stvarnom profilu. Prognozni inženjersko-geološki profil služi projektantu kao podloga za izradu projekta podzemne konstrukcije i građevne tehnologije. Istraživanja obuhvaćaju litološki sastav i tektonski sklop terena, hidrogeološke prilike, pojavu zapaljivih ili otrovnih plinova, temperaturu pri izbijanju tunela, fizikalno-mehanička svojstva stijena i prognozu podzemnih tlakova (Magdalenić, 1997).

Stijenske mase rijetko su kontinuirane, homogene ili izotropne, a često su ispresijecane raznim diskontinuitetima kao što su rasjedi i pukotine. Također se mogu sastojati od različitih vrsta stijena koje su prošle različite stupnjeve promjene ili trošenja. Ponašanje stijenske mase prilikom podzemnih iskopa ovisi o svojstvima stijenskog materijala i diskontinuiteta. Cjeloviti inženjerskogeološki opis stijenske mase uključuje pojedinosti o stijenskom materijalu i prirodnim diskontinuitetima, kao i procjenu potencijalnog utjecaja podzemnih voda. Strukturno kartiranje je također važno u projektiranju podzemnih iskopa, jer pomaže u određivanju orijentacije glavnih skupova pukotina i procjeni mogućih načina strukturalnog sloma kao što je prikazano na slici 2-1 (Hoek i dr., 2012).

Slika 2-1. Pružanje, kut nagiba, smjer nagiba (Hoek i dr., 2012)

3. ISPITIVANJA I KLASIFIKACIJE STIJENA

U ovom poglavlju ukratko su prikazana neka od terenskih i laboratorijskih mjerenja te klasifikacija stijenske mase koja su od posebnog značaja za iskop i gradnju tunela. Kvalitetna interpretacija i razumijevanje njihovih rezultata ključna su po pitanju osiguranja stabilnosti i sigurnosti tunela tijekom izgradnje i kroz cijeli vijek trajanja. Navedena ispitivanja i klasifikacije imaju velik utjecaj na softverske alate u tunelogradnji, poput *RockStressCalc* softvera, koji je razvijen u sklopu ovog rada.

Program je namijenjen da koristi ulazne parametre dobivene iz navedenih terenskih, laboratorijskih mjerenja i klasifikacija kako bi omogućio što preciznije analize naprezanja i pomaka u stijenskim masama. Kvaliteta ulaznih podataka, kao što su jedinična težina stijenske mase, Poissonov koeficijent, modul deformabilnosti te omjer horizontalnog i vertikalnog naprezanja za analizu naprezanja prema Kirschovoj jednadžbi, te Hoek-Brownovi parametri čvrstoće, izravno su ovisni o točnosti i pouzdanosti rezultata dobivenih metodama ispitivanja i klasifikacija.

Terenska ispitivanja obuhvaćaju prikupljanja podataka o svojstvima stijenske mase, a to su istražno bušenje i ispitivanje Schmidtovim čekićem koji ima namjenu indirektnog mjerenje čvrstoće stijena. Mjerenja in-situ naprezanja u stijenskim masama obuhvaćaju metodu tlačnih jastuka, pokus hidrauličnog frakturiranja ili ispitivanje deformacijskom sondom (engl. *U.S. Bureau of Mines*, USBM). Kako bi se dobila detaljna fizičko-mehanička svojstava stijenske mase provode se laboratorijska ispitivanja koja uključuju određivanje jednoosne tlačne čvrstoće, vlačne čvrstoće, troosna tlačna čvrstoća za analizu stijena pod višeosnim opterećenjem te indeks točkaste čvrstoće kao indikator stijenske čvrstoće. Neka od ispitivanja krutosti su opterećenje pločom, radijalno opterećenje, veliki tlačni jastuci te fleksibilni ili kruti dilatometar. Sustavi klasifikacije, kao što su indeks kvalitete stijenske mase (engl. *Rock Quality Designation*, RQD), geomehanička klasifikacija (engl. *Rock Mass Rating*, RMR), Q i geološki indeks čvrstoće (engl. *Geological Strength Index*, GSI), omogućuju procjenu kvalitete stijenske mase i odabir najprikladnije metode izgradnje tunela. U tablici 3-1 prikazan je sažetak potrebnih ispitivanja s ciljem što točnije interpretacije izlaznih podataka programa.

Terenska	In-situ mjerenja	Laboratorijska	Ispitivanja krutosti
ispitivanja	naprezanja	ispitivanja	
Istražno bušenie	Metoda tlačnih	Jednoosno tlačno	Ispitivanje opterećenja
	jastuka	ispitivanje	pločom
	Pokus hidrauličkog	Troosno tlačno	Pokus radijalnog
	frakturiranja	ispitivanje	opterećenja
Schmidtov čekić	USBM	Ispitivanje vlačne čvrstoće	Veliki tlačni jastuci
	CSIR ili CSIRO	Indeks točkaste	Fleksibilni dilatometar
sonda		čvrstoće	Kruti dilatometar

Tablica 3-1. Terenska i laboratorijska ispitivanja

3.1. Sustavi klasifikacije

Sustavi za klasifikaciju stijenskih masa koriste se za procjenu stabilnosti stijenskih konstrukcija te za odabir odgovarajućeg podzemnog potpornog sustava. Sustavi klasifikacije stijenske mase koriste numeričke vrijednosti za procjenu utjecaja specifičnih stijenskih parametara na ukupna svojstva stijenske mase. Numeričke vrijednosti koriste se za klasificiranje stijenske mase u skupinu na temelju njezine kvalitete. Ovi sustavi klasifikacije nisu namijenjeni zamjeni dublje analize ili terenskih promatranja, već pružaju način za brzu kategorizaciju kvalitete stijenske mase na temelju pojedinih mjerljivih parametara (Deb i Verma, 2016).

Postoje različiti sustavi klasifikacije stijenske mase koji koriste tri kategorije parametara: parametre pukotina (diskontinuiteta), parametre materijala i rubne uvjete. Neki od sustava klasifikacije prikazani su tablicom 3-2. Oznaka kvalitete stijene RQD često se koristi kao parametar u drugim sustavima klasifikacije stijenske mase. Geomehanička klasifikacija (RMR) i Q-sustav obično se koriste za projektiranje nosivih sustava stijena, dok se geološki indeks čvrstoće (GSI) koristi za procjenu projektnih parametara. GSI sustav je jedini sustav klasifikacije stijenske mase koji je izravno povezan s inženjerskim modelima ponašanja tla poput Hoek - Brownovih parametara čvrstoće (Deb i Verma, 2016).

Ime klasifikacije	Organizator i godina	Primjena
Teorija opterećenja stijene (engl. <i>Rock Load Theory</i>)	Terzaghi (1946)	Tuneli s čeličnom podgradom; Neprikladan za modernu tunelogradnju
Nova austrijska metoda tuneliranja (engl. <i>New Austrian</i> <i>Tunneling Method</i> , NATM)	Rabcewicz (1964-65, 1972)	Tunelogradnja u nekompetentnom tlu
Indeks kvalitete stijene (engl. <i>Rock Quality</i> <i>Designation</i> , RQD)	Deere, Hendron, Patton, Cording (1967)	Tunelogradnja; Osjetljiv na orijentacijske efekte
Geomehanička klasifikacija (engl. <i>Rock Mass Rating</i> , RMR)	Bieniawski (1973, 1989)	Tunelogradnja, rudarstvo
NGI / Q – sustav	Barton, Lien, Lunde (1974, 2002)	Tunelogradnja i široki podzemni otvori
Čvrstoća stijenske mase (engl. <i>Rock Mass Strength</i> , RMS)	Stille, Groth, Fredriksson (1982)	Modificirani RMR
Geološki indeks čvrstoće (engl. <i>Geological Strength Index</i> , GSI)	Hoek, Kaiser, Bawden (1995)	Tunelogradnja, rudarstvo
Indeks stijenske mase (engl. <i>Rock Index</i> , RMi)	Palmstrom (1995)	Tunelogradnja, rudarski otvori
Broj stijenske mase (engl. Rock Mass Number, RMN)	Singh, Goel (1999)	Q – sustav bez naprezanja

Tablica 3-2. Sustavi klasifikacije stijenske mase (Deb i Verma, 2016)

3.1.1. RQD

Indeks kvalitete stijenske mase (RQD) kreirali su Deere, Hendron, Patton i Cording 1967. godine. Izračunava se kao postotak dijelova jezgre bušotine dužih od 10 cm i ukupne duljine uzorka stijene koji se dobije istražnim bušenjem s uzorkovanjem. Na RQD uvelike utječe tehnika bušenja, kao što je prikazano u jednadžbi 3-1.

$$RQD = \frac{\sum Duljina \ dijelova \ jezgre > 10 \ cm}{Ukupna \ duljina \ jezgre}$$
(3-1)

RQD je jednostavan i brz način za mjerenje kvalitete stijenske mase i može se lako ugraditi u normalan proces istražnog bušenja bez značajnog povećanja troškova istraživanja lokacije. RQD ovisi o orijentaciji bušotine te ne uzima u obzir čimbenike poput orijentacije pukotina, razmaka i procjeđivanja, koji mogu utjecati na ponašanje stijenske mase oko podzemnih i površinskih iskopa. Klasifikacija stijena na temelju indeksa kvaliteta stijene iskazana je u tablici 3-3, dok je slikom 3-1 dan prikaz jezgre bušotine (Deb i Verma, 2016).

Slika 3-1. RQD (Deb i Verma, 2016)

Tablica 3-3. Klasifikac	ja stijena na	temelju RQD	(Deb i Verma,	2016)
-------------------------	---------------	-------------	---------------	-------

RQD (%)	Kvaliteta stijene
< 25	Vrlo loša
25-50	Loša
50-75	Srednja
75-90	Dobra
90-100	Odlična

3.1.2. Geomehanička ili RMR klasifikacija

Geomehaničku klasifikaciju ili RMR, razvio je prof. Z.T. Bieniawski 1976. godine, a modificiran je 1989. RMR zahtijeva samo nekoliko osnovnih parametara povezanih s geometrijom i mehaničkim svojstvima stijenske mase. Izvorni RMR sustav (1976.) uključivao je osam parametara, dok je modificiranoj verziji sustava predloženoj 1989., Bieniawski iznio šest parametara. Parametri koji čine modificirani RMR sustav (1989.) su sljedeći (Deb i Verma, 2016), a njihovo bodovanje iskazano je u tablici 3-4:

- a) Jednoosna tlačna čvrstoća (engl. *Uniaxial Compressive Strength*, UCS) ili indeks točkaste čvrstoće (engl. *Point Load Test*, PLT),
- b) RQD,
- c) razmak diskontinuiteta (pukotina),
- d) stanje diskontinuiteta (pukotina),
- e) orijentacija diskontinuiteta i
- f) stanje podzemne vode.

Nakon bodovanja stijensku masu je moguće klasificirati u pet kategorija:

- a) RMR (100 81) vrlo dobra stijenska masa,
- b) RMR (80 61) dobra stijenska masa,
- c) RMR (60 41) povoljna stijenska masa,
- d) RMR (40 21) slaba stijenska masa,
- e) RMR (≤ 21) vrlo slaba stijenska masa.

A)	A) Klasifikacijski parametri i bodovanje							
	Param	etri		I	Raspon vrijed	nosti		
1	Čvrstoća intaktne	PLT	>10	4-10	2-4	1-2	Preporuka: ispitivanje UCS	
	(MPa)	UCS	250	100-250	50-100	25-50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Bo	dovi	15	12	7	4	2 1 0	
2	RQI	D (%)	90-100	75-90	50-75	25-50	<25	
	Bo	dovi	20	17	13	8	3	
3	Razmak dis	kontinuiteta	> 2 m	0,6-2 m	200-600 mm	60-200 mm	< 60 mm	
	Bo	dovi	20	15	10	8	5	
4	4 Stanja diskontinuiteta		Vrlo hrapave površine. Nisu kontinuirani. Bez zijeva. Rastrošeni.	Neznatno hrapave površine. Zijev < 1 mm. Neznatno rastrošena stijenka zidova.	Neznatno hrapave površine. Zijev < 1 mm. Jako rastrošena stijenka zidova.	Skliske površine. Ispuna < 5 mm debljine. Zijev 1 – 5 mm. Kontinuirani.	Mekana ispuna > 5 mm debljine. Zijev > 5 mm. Kontinuirani	
	Bo	dovi	30	25	20	10	0	
	da	Dotok na 10 m duljine tunela (l/m)	Nema	< 10	10-25	25-125	> 125	
2 Podzemna vod	Podzemna vo	Odnos tlaka pukotinske vode i većeg glavnog naprezanja	0	< 0,1	0,1-0,2	0,2-0,5	> 0,5	
		Opći uvjeti	Kompletno suho	Vlažno	Mokro	Kapanje	Tečenje	
	Bo	dovi	15	10	7	4	0	

Tablica 3-4	RMR klasifikacii	iski narametr	i i raspon vri	iiednosti bodova	nia (Bieniawski	1989)
I abiica e ii	I WII KIUSIIIKUVI	johi paramen	r ruspon vn	ijeanosti ooaova	inju (Diemuwski,	1,0,1

B) Korekcija bodova s obzirom na orijentaciju diskontinuiteta							
Orijentacija diskontinuiteta		Vrlo povoljna	Povoljna	Dobra	Nepovoljna	Vrlo nepovoljna	
Bodovi .	Tuneli i rudnici	0	-2	-5	-10	-12	
	Temelji	0	-2	-7	-15	-25	
	Kosine	0	-5	-25	-50	-60	

C) Kategoriz	C) Kategorizacija stijenske mase na osnovi ukupnog broja bodova						
Ukupni bodovi	100-81	80-61	60-41	40-21	< 21		
Oznaka kategorije	Ι	II	III	IV	V		
Opis	Vrlo dobra stijena	Dobra stijena	Povoljna stijena	Slaba stijena	Vrlo slaba stijena		

D) Značenje	D) Značenje pojedinih kategorija							
Oznaka kategorije	Ι	II	III	IV	V			
Prosječno vrijeme postojanosti	20 god/15 m raspona	1 god/10 m raspona	1 tj/5 m raspona	10 h/2,5 m raspona	30 min/1 m raspona			
Kohezija stijenske mase (kPa)	> 400	300-400	200-300	100-200	< 100			
Kut trenja stijenske mase	> 45	35-45	25-35	15-25	< 15			

E) Vodič za klasifikaciju stanja diskontinuiteta							
Duljina diskontinuiteta	< 1	1-3	3-10	10-20	> 20		
Bodovi	6	4	2	1	0		
Zijev diskontinuiteta	Nema	< 0,1 mm	0,1-1 mm	1-5 mm	> 5 mm		
Bodovi	6	5	4	1	0		
Hrapavost diskontinuiteta	Vrlo hrapavi	Hrapavi	Neznatno hrapavi	Glatki	Skliski		
Bodovi	6	5	3	1	0		
Ispuna diskontinuiteta	Bez	Tvrda ispuna < 5 mm	Tvrda ispuna > 5 mm	Meka ispuna < 5 mm	Meka ispuna > 5 mm		
Bodovi	6	4	2	2	0		
Trošnost diskontinuiteta	Nerastrošen	Neznatno rastrošen	Umjereno rastrošen	Jako rastrošen	Potpuno rastrošen		
Bodovi	6	5	3	Ι	0		

F) Efekt orijentacije diskontinuiteta u tunelogradnji					
Pružanje ok	Pružanje okomito osi tunela		alelno osi tunela		
Iskop u smjeru	Iskop u smjeru				
nagiba diskontinuiteta	nagiba diskontinuiteta	Nagib 45-90°	Nagib 20-45°		
45-90°	20-45°				
Vrlo povoljno	Vrlo povoljno Povoljno		Dobro		
Iskop u smjeru	Iskop u smjeru				
suprotnom od nagiba	suprotnom od nagiba				
diskontinuiteta 45-90° diskontinuiteta 20-45°					
Dobro Nepovoljno		E	obro		

3.1.3. Q klasifikacija

Barton, Lien i Lunde s Norveškog geotehničkog instituta (engl. *Norwegian Geotechnical Institute*, NGI) predložili su indeks kvalitete stijenske mase *Q* 1974. godine kao način za određivanje karakteristika stijenske mase i zahtjeva za potporu tunela na temelju procjene brojnih povijesnih slučajeva podzemnih iskopavanja. Numerička vrijednost *Q* indeksa kreće se od 0,001 do najviše 1000 na logaritamskoj skali, a definira ju jednadžba 3-2:

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$
(3-2)

Gdje je:

RQD-indeks kvalitete stijene,

*J*_n – broj skupova pukotina,

J_r – indeks hrapavosti pukotina,

 $J_{\rm a}$ – indeks promjene pukotine,

 $J_{\rm w}$ – faktor pukotinske vode i

SRF - faktor redukcije naprezanja (engl. Stress Reduction Factor).

Q-sustav se sastoji od tri kvocijenta međusobno pomnoženih, kao što je prikazano izrazom 3-5. Prvi kvocijent (RQD/J_n) predstavlja strukturu stijenske mase, a gruba je mjera veličine bloka. Drugi kvocijent (J_r/J_a) iskazuje hrapavost, dok vrijednost posmične čvrstoće pukotina iznosi $tan^{-1}\left(\frac{J_r}{J_a}\right)$. Treći kvocijent (J_w/SRF) sastoji se od dva parametra naprezanja

i opisuj princip "aktivnog naprezanja". Klasifikacija stijenske mase prema Bartonu prikazana je tablicom 3-5.

Q - vrijednost	Klasa	Ocjena stijenske mase
400 - 1000	А	Izuzetno dobra
100 - 400	А	Ekstremno dobra
40 - 100	А	Vrlo dobra
10-40	В	Dobra
4 - 10	С	Povoljna
1-4	D	Loša
0.1 - 1.0	Е	Vrlo loša
0.01 - 0.1	F	Ekstremno loša
0.001 - 0.01	G	Izuzetno loša

Tablica 3-5. Klasifikacija stijenske mase prema Q-sustavu (Deb i Verma, 2016)

Barton i dr. (1974) definirali su parametar nazvan ekvivalentna dimenzija iskopa (D_e). kako bi se vrijednost Q povezalo sa zahtjevima stabilnosti i potpore podzemnih iskopa. Ekvivalentna dimenzija iskopa je omjer raspona, promjera ili visine zida iskopa i indeksa podgrade (engl. *Excavation Support Ratio, ESR*) iz jednadžbe 3-3 (Deb i Verma, 2016).

$$D_{\rm e} = \frac{Raspon\,iskopa, promjer, visina\,(m)}{ESR} \tag{3-3}$$

Gdje je:

*D*e – ekvivalentna dimenzija otkopa podzemne prostorije (m), *ESR* – indeks podgrade.

Vrijednost *ESR* povezana je s namjenom iskopa i stupnjem sigurnosti koji se zahtijeva od potpornog sustava instaliranog za održavanje stabilnosti iskopa. U tablici 3-6 se nalaze

predložene vrijednosti (Hoek, 2007). Na slici 3-2 nalazi se unaprijeđeni Q dijagram za odabir podgrade tunela u stijeni.

Kategorija iskopa	ESR
Privremeni rudarski iskopi	3-5
Trajni rudarski iskopi, vodeni tuneli za hidroenergiju (isključujući visokotlačne cjevovode), pilot tuneli, bušotine za velike iskope	1.6
Skladišta, postrojenja za pročišćavanje vode, manji cestovni i željeznički tuneli, vodne komore, pristupni tuneli	1.3
Elektrane, veliki cestovni i željeznički tuneli, podzemna spremišta, civilne podzemne komore i skloništa, portali	1.0
Podzemne nuklearne elektrane, metro, temelji sportskih i javnih objekata, tvornice	0.8

Tablica 3-6.	Vrijednosti	ESR	(Hoek,	2007)
--------------	-------------	-----	--------	-------

Barton i dr. (1980) definirali su vezu između duljine sidara (L_s), širinom iskopa (B) i indeksom podgrade (ESR) kao:

$$L_{\rm s} = \frac{2 + 0.15B}{ESR} \tag{3-4}$$

Gdje je:

Ls – duljina sidara (m), B – širina iskopa (m) i ESR – indeks podgrade.

Maksimalni nepodgrađeni raspon iznosi:

$$MNR = 2 \cdot ESR \cdot Q^{0.4} \tag{3-5}$$

Gdje je:

MNR - maksimalni nepodgrađeni raspon,

ESR - indeks podgrade,

Q-vrijednost dobivena klasifikacijom.

Slika 3-2. Unaprijeđeni Q - podgradni dijagram za odabir podgrade u tunelima i kavernama u stijeni (Deb i Verma, 2016)

3.1.4. GSI

Geološki indeks čvrstoće (engl. *Geological Strength Index*, GSI), koji je razvio Hoek 1994. i dodatno poboljšao u kasnijim radovima sa suradnicima, je pojednostavljeni klasifikacijski sustav stijenskih masa na temelju promatranja na terenu. Terenska promatranja se zasnivaju na procjeni litologije, strukture, i uvjeta površine diskontinuiteta u stijenskoj masi. GSI je numerička ljestvica koja se kreće od oko 5 za izrazito slabe stijenske mase do 100 za izuzetno jake stijenske mase. GSI karakteriziraju dva osnovna svojstva stijenske mase: blokovitost i značajke diskontinuiteta, kao što je prikazano slikom 3-3. U tablici 3-7 nalazi se klasifikacija stijenske mase na temelju dobivene GSI vrijednosti.

Slika 3-3. GSI (Hrženjak i Briševac, 2009)

Tablica 3-7. GSI klasifikacija (Deb i Verma, 2016)

Vrijednost GSI	76-95	56-75	36-55	21-35	< 20
Kvaliteta	Vrlo dobra	Dobra	Povoljna	Slaba	Vrlo
stijenske mase					slaba

4. ČVRSTOĆA I NAPREZANJA

U ovom djelu objašnjeni su pojmovi primarnih i sekundarnih naprezanja stijenskog materijala kao i samog kriterija čvrstoće korištenih u programu za analizu naprezanja tunela kružnog presjeka razvijenog u sklopu ovog rada.

4.1. In-situ naprezanja

Stijene u dubini podvrgnute su raznim naprezanjima, uključujući one uzrokovane težinom gornjih slojeva i one koje proizlaze iz tektonske aktivnosti. Stijena podvrgnuta inženjerskom zahvatu se nalazi u poremećenom polju naprezanja, a u okolnu se stijenu uvode nova naprezanja (sekundarna ili potaknuta naprezanja). Razumijevanje veličine i smjera ovih insitu i sekundarnih naprezanja ključno je u projektiranju podzemnih iskopa, budući da se čvrstoća stijene može premašiti i može doći do nestabilnosti.

Prema Hoeku (2007.) primarna naprezanja mogu se podijeliti na vertikalna i horizontalna. Razmatranjem elementa stijene na dubini *z* ispod površine dobije se izraz za vertikalno naprezanje. Naprezanje za navedeni element je umnožak zapreminske težine i dubine na kojoj se nalazi (4-1):

 $\sigma_{\rm v} = \gamma \cdot z$

Gdje je:

 σ_v – vertikalno naprezanje (kPa),

 γ – zapreminska težina (kN/m³),

z – dubina ispod površine (m).

Horizontalna naprezanja koja djeluju na element stijene na dubini z ispod površine puno je teže procijeniti nego vertikalna naprezanja. Obično se omjer prosječnog horizontalnog naprezanja i vertikalnog naprezanja označava koeficijentom k kao u jednadžbi 4-2 (Hoek, 2007).

$$\sigma_h = k \cdot \sigma_v = k \cdot \gamma \cdot z \tag{4-2}$$

Gdje je:

 $\sigma_{\rm h}$ – horizontalno naprezanje (kPa),

k – bočni potisak stijenske mase.

(4-1)

Terzaghi i Richart (1952) predložili su za stijensku masu pod gravitacijskim opterećenjem, bez bočnog naprezanja tijekom formiranja gornjih slojeva, konstantnu vrijednost k, neovisnu o dubini. Taj se izraz (4-3) naširoko koristio u ranoj mehanici stijena, ali se od tada pokazalo netočnim i danas se rijetko koristi (Hoek, 2007).

$$k = \frac{\nu}{1 - \nu} \tag{4-3}$$

Gdje je:

v – Poissonov koeficijent.

S obzirom da je izraz 4-3 primjenjiv u područjima nedavne sedimentacije te se tada može primijeniti teorija elastičnosti korištenjem izraza za koeficijent bočnog pritiska. Formulacija slijedi iz simetrije jednodimenzionalnog opterećivanja elastičnog materijala, gdje je uzeto u obzir nepostojanje horizontalnih deformacija. Stoga formula nema značaj za stijenske mase koje su prošle mnoge cikluse opterećenja i rasterećenja. Provođenjem mjerenja horizontalnih naprezanja u velikom broju podzemnih građevina i rudnika, pokazalo se da koeficijent bočnog pritiska ima veće vrijednosti u manjim dubinama, te da mu se vrijednost smanjuje povećanjem dubine. Sheorey (1993.) je razvio elasto-statički termalni model zemlje koji razmatra zakrivljenost zemljine kore i varijaciju elastičnih konstanti, gustoće i termalne ekspanzije zemljine kore, te je sukladno tome predložio jednadžbu 4-4 (Hoek, 2007).

$$k = 0.25 + 7 \cdot E_h \cdot \left(0.001 + \frac{1}{z}\right) \tag{4-4}$$

Gdje je:

 $E_{\rm h}$ - srednji modul deformabilnosti gornjeg dijela zemljine kore mjeren u vodoravnom pravcu (GPa).

Niti navedeni Sheoreyev pristup ne objašnjava pojave vertikalnih naprezanja većih od izmjerenih, pojave vrlo visokih horizontalnih naprezanja te pojave česte nejednakosti između dva mjerena horizontalna naprezanja na istoj lokaciji. Pretpostavlja se da je tomu razlog lokalne topografije i svojstava geologije koji se ne mogu uzeti u obzir u velikoj skali. Slika 4-1 grafički je prikaz vrijednosti *k* za omjer horizontalnih i vertikalnih naprezanja u ovisnosti o srednjem modulu deformabilnosti prema Sheoreyevoj jednadžbi 4-4.

Slika 4-1. Koeficijent k u ovisnosti o srednjem modulu deformabilnosti (Sheorey, 1993)

Poznavanjem stanja naprezanja, prema teoriji elastičnosti je moguće odrediti stanje deformacija (ali i obratno). Za dvodimenzionalni slučaj vrijednosti naprezanja su prikazane izrazima od 4-5 do 4-8 (Timoshenko i Goodier, 1951).

$$\sigma_x = \frac{E}{1 - \nu^2} \left[\varepsilon_{xx} + \nu \cdot \varepsilon_{yy} \right] \tag{4-5}$$

$$\sigma_y = \frac{E}{1 - \nu^2} \left[\varepsilon_{yy} + \nu \cdot \varepsilon_{xx} \right] \tag{4-6}$$

$$\tau_{xy} = G \cdot \gamma_{xy} = G \cdot 2 \cdot \varepsilon_{xy} \tag{4-7}$$

$$G = \frac{E}{2 \cdot (1+\nu)} \tag{4-8}$$

Gdje je:

- E Youngov modul elastičnosti (kPa),
- G Modul posmika (kPa),
- v Poissonov koeficijent.

4.2. Sekundarna naprezanja - Kirschovo rješenje

Naprezanje u stijeni na dubini *z* prije inženjerskog zahvata izazvano je masom gornjih naslaga i geološke povijesti. Polje primarnih naprezanja poremeti se uslijed inženjerskog zahvata u ili na stijenskoj masi što je prikazano na slici 4-2. Novonastalo poremećeno stanje naprezanja u njemačkoj se literaturi naziva sekundarnim naprezanjem, dok se u engleskoj literaturi navodi kao izazvano naprezanje (engl. *Induced stress*). Ponekad sekundarna

naprezanja mogu biti dovoljno visoka da premaše čvrstoću stijenske mase, te tako dovesti do gubitka stabilnosti i urušavanja otvora iskopa (Vrkljan, 2013).

Slika 4-2. Primarno i sekundarno polje naprezanja (Vrkljan, 2013)

Za proračun stanja naprezanja i deformacija otvor tunela na nekoj dubini promatra se kao otvor u beskonačnoj dubini. Naprezanja uz otvor objašnjava teorija elastičnosti uzimajući u obzir homogen, izotropan i elastičan materijal (Hrestak, 2010).

Kod tunela opterećenje djeluje u ravnini koja je okomita na uzdužnu os *z* i jednakog je intenziteta uzduž osi tunela. Poprečni presjeci nalaze se u istom stanju pa ih prikazujemo s dvije fiksne ravnine u jediničnom razmaku. Tako razdvojena ploča s otvorom (slika 4-3) nalazi se u stanju ravninske deformacije. U svakoj točki ravnine imamo tri komponente tenzora naprezanja σ_x , σ_y i τ_{xy} , kao funkcije koordinata x i y (naprezanja su označena prema teoriji elastičnosti) (Hrestak, 2010).

Slika 4-3. Ploča s kružnim otvorom beskonačne dubine (Hrestak, 2010)

Za čitav niz promatranja pojava oko profila podzemnih prostorija kao osnova mogu poslužiti zatvorena analitička rješenja prema teoriji elastičnosti, iako stijenska masa nema uvijek izrazito elastična svojstva. Pod zatvorenim analitičkim rješenjem podrazumijevaju se rješenja koja neki model ponašanja opisuju jednostavnim analitičkim jednadžbama za koje postoji jedinstveno rješenje. Veći broj tih rješenja pretpostavlja elastičan, homogen i izotropan medij, dok ostala rješenja mogu dati rezultate i za elasto-plastičan, elasto-ortotropni, linearno-viskoelastični i uslojeni anizotropni materijal.

4.2.1. Slučaj vertikalnog naprezanja

Kod određivanja stanja naprezanja i pomaka oko podzemnog otvora vrlo se često primjenjuje polarni koordinatni sustav, koji je osobito povoljan za promatranje pojava uz kružni otvor oko određenog medija. Polarni koordinatni sustav $r - \theta$, prikazan na slici 4-4 za slučaj djelovanja samo vertikalnog naprezanja, ima koordinate točke definirane s radijusvektorom r i kutom α (grč. *Alpha*). Za zadatke vezane uz profile podzemnih prostorija prikladnije je računati s kutom θ (grč. *Theta*), koji se uzima pozitivno u smjeru obrnutom od kazaljke na satu.

Slika 4-4. Model za slučaj djelovanja vertikalnog naprezanja (Frgić, 2013)

Osnovne komponente tenzora naprezanja i njihove definicije su:

 σ_r – radijalno normalno naprezanje, normalno na plohu koja je okomita na radijus,

 σ_{θ} – tangencijalno normalno naprezanje, naprezanje na plohi koja je paralelna s radijusvektorom, a vektor naprezanja usmjeren je okomito na radijus-vektor,

 $\tau_{r\theta}$ – posmično naprezanje.

Naprezanja u stijeni mogu se dobiti množenjem osnovnih jednadžbi (4-9 do 4-11) kartezijevog koordinatnog sustava matricom transformacije zbog primarnih i horizontalnih naprezanja (Frgić, 2013):

$$\sigma_{\rm r} = \sigma_z \cdot \cos^2\theta + \sigma_y \cdot \sin^2\theta \tag{4-9}$$

$$\sigma_{\theta} = \sigma_z \cdot \sin^2 \theta + \sigma_y \cdot \cos^2 \theta \tag{4-10}$$

$$\tau_{\rm r\theta} = \frac{\sigma_y - \sigma_z}{2} \cdot \sin 2\theta \tag{4-11}$$

Gdje je:

 $\sigma_{\rm r}, \sigma_{\theta}, \tau_{\rm r\theta}$ - komponente naprezanja polarnog koordinatnog sustava (kPa),

 σ_z , σ_y – komponente naprezanja kartezijevog koordinatnog sustava (kPa),

 θ - kut polarnog koordinatnog sustava (°).

Uslijed iskopa u stijenskoj masi dolazi do pojave sekundarnog stanja naprezanja te se mogu odrediti vertikalna naprezanja (Frgić, 2013):

$$\sigma_{\rm r} = \frac{\sigma_{\rm v}}{2} \cdot \left[1 - \frac{R^2}{r^2} + \left(1 - \frac{4R^2}{r^2} + \frac{3R^4}{r^4} \right) \cdot \cos 2\theta \right]$$
(4-12)

$$\sigma_{\theta} = \frac{\sigma_{\rm v}}{2} \cdot \left[1 + \frac{R^2}{r^2} - \left(1 + \frac{3R^4}{r^4} \right) \cdot \cos 2\theta \right] \tag{4-13}$$

$$\tau_{\mathrm{r}\theta} = \frac{\sigma_{\mathrm{v}}}{2} \cdot \left[1 + \frac{2R^2}{r^2} - \frac{3R^4}{r^4} \right] \cdot \sin 2\theta \tag{4-14}$$

Gdje je:

 $\sigma_{\rm r}$ – radijalno naprezanje (kPa),

 σ_{θ} – tangencijalno naprezanje (kPa),

- $\tau_{r\theta}$ posmično naprezanje (kPa),
- σ_v vertikalno naprezanje (kPa),
- R radijus tunela (m),
- r radijalna udaljenost od središta tunela (m),

 θ - kut polarnog koordinatnog sustava (°).
Promjena naprezanja u odnosu prema primarnim naprezanjima se u ovim izrazima lako gubi. Razlika između primarnih i sekundarnih naprezanja postaje manja od 5 % već na udaljenosti od r=3.5R. Iz istoga je vidljivo kako otvaranje profila podzemne prostorije ima neposredan utjecaj samo u okolini otvora.

Slika 4-5. Preraspodjela tangencijalnih naprezanja za slučaj vertikalnog opterećenja (Frgić, 2013)

Tangencijalna naprezanja σ_{θ} u horizontalnom presjeku dostižu najveću koncentraciju uz rub otvora i ta su naprezanja tri puta veća od osnovnog primarnog naprezanja. Istodobno u vertikalnom presjeku kroz os simetrije na gornjem rubu u kaloti postoje vlačna naprezanja koja su istog intenziteta, kao i primarno tlačno vertikalno naprezanje. Dijagram u ta dva karakteristična presjeka za σ_{θ} nalazi se u srednjem dijelu slike 4-5. Lijevi dijagram na slici prikazuje raspodjelu radijalnih naprezanja σ_{r} , koja će na nešto većoj udaljenosti od središta postati, u horizontalnom presjeku, jednaka nuli, a u vertikalnom presjeku primarnom tlaku σ_{1} . U desnom dijagramu slike 4-5, prikazan je dijagram tangencijalnih naprezanja σ_{θ} po obodu otvora, iz čega se vidi da je vlačna zona u kaloti ograničena na 60°, dok je ostali dio oboda u stanju povećanih tlačnih naprezanja (Frgić, 2013).

4.2.2. Slučaj vertikalnog i horizontalnog naprezanja

Superpozicijom se može rješenje proširiti na slučaj istovremenog djelovanja vertikalnog i horizontalnog naprezanja kako prikazuje slika 4-6.

Slika 4-6. Model prilikom djelovanja vertikalnog i horizontalnog naprezanja (Eberhardt, n.d.)

Prema Hudsonu i Harrisonu (1997) jednadžbe koje se koriste u slučaju djelovanja vertikalnog i horizontalnog naprezanja su sljedeće:

$$\sigma_r = \frac{\sigma_v}{2} \cdot \left[(1+k) \left(1 - \frac{R^2}{r^2} \right) - (1-k) \cdot \left(1 - \frac{4R^2}{r^2} + \frac{3R^4}{r^4} \right) \cdot \cos 2\theta \right]$$
(4-15)

$$\sigma_{\theta} = \frac{\sigma_{\rm v}}{2} \cdot \left[(1+k) \left(1 + \frac{R^2}{r^2} \right) + (1-k) \cdot \left(1 + \frac{3R^4}{r^4} \right) \cdot \cos 2\theta \right] \tag{4-16}$$

$$\tau_{\mathrm{r}\theta} = \frac{\sigma_{\mathrm{v}}}{2} \cdot \left[(1-k) \cdot \left(1 + \frac{2R^2}{r^2} - \frac{3R^4}{r^4} \right) \cdot \sin 2\theta \right]$$
(4-17)

Gdje je:

 σ_v – vertikalno naprezanje (kPa),

- σ_h horizontalno naprezanje (kPa)
- R radijus iskopa (m),
- r radijalna udaljenost od središta iskopa (m),

 θ - kut polarnog koordinatnog sustava (°).

k – bočni potisak stijenske mase, $\sigma_{\rm h}/\sigma_{\rm v}$.

4.2.3. Slučaj kvazihidrostatskog naprezanja

Osim navedenih stanja naprezanja prilikom vertikalnog opterećenja, te horizontalnog i vertikalnog opterećenja, na slici 4-7 prikazan je poseban slučaj kada je vertikalno naprezanje jednako horizontalnom naprezanju. Takvo stanje primarnih naprezanja naziva se *kvazihidrostatsko*, a rješenje je rotacijski simetrično, što znači da rješenja ne ovise o orijentaciji radijus-vektora *r* (Frgić, 2013). Rješenja koja se tada koriste dana su izrazima 4-18 do 4-20.

Slika 4-7. Kvazihidrostatsko naprezanje (Eberhardt, n.d.)

$$\sigma_{\rm r} = \sigma \cdot \left(1 - \frac{R^2}{r^2} \right) \tag{4-18}$$

$$\sigma_{\theta} = \sigma \cdot \left(1 + \frac{R^2}{r^2} \right) \tag{4-19}$$

$$\tau_{\rm r\theta} = 0 \tag{4-20}$$

Gdje je:

 σ – iznos naprezanja za slučaj $\sigma_v = \sigma_h (kPa)$

4.2.4. Glavna naprezanja i pomaci

Osim navedenih izraza za proračun sekundarnih naprezanja, potrebno je izračunati iznose glavnih naprezanja. Ona su ekstremne vrijednosti normalnih naprezanja kada nema posmičnih sila, odnosno iznosi većeg i manjeg glavnog naprezanja. Prema Hrženjaku i Briševcu (2009.) prikazani su izrazima 4-21 i 4-22.

$$\sigma_1 = \frac{\sigma_{\theta} + \sigma_r}{2} + \sqrt{\left(\frac{\sigma_{\theta} - \sigma_r}{2}\right)^2 + \tau_{r\theta}^2}$$
(4-21)

$$\sigma_3 = \frac{\sigma_{\theta} + \sigma_{\rm r}}{2} - \sqrt{\left(\frac{\sigma_{\theta} - \sigma_{\rm r}}{2}\right)^2 + \tau_{\rm r\theta}^2}$$
(4-22)

Gdje je:

 σ_1 - iznos većeg glavnog naprezanja (kPa),

 σ_3 —iznos manjeg glavnog naprezanja (kPa).

 $\sigma_{\rm r}$ – radijalno naprezanje (kPa),

 σ_{θ} – tangencijalno naprezanje (kPa),

 $\tau_{r\theta}$ – posmično naprezanje (kPa).

Konačno, nakon proračuna naprezanja moguće je preko izraza 4-23 i 4-24 izračunati vrijednosti radijalnih i tangencijalnih deformacija, odnosno vrijednosti pomaka (Eberhardt, n.d.).

$$u_{\rm r} = -\frac{\sigma_{\rm v} \cdot R^2}{4 \cdot G \cdot r} \cdot \left[(1+k) - (1-k) \cdot \left(4 \cdot (1-\nu) - \frac{R^2}{r^2} \right) \cos 2\theta \right]$$
(4-23)

$$u_{\theta} = -\frac{\sigma_{\rm v} \cdot R^2}{4 \cdot G \cdot r} \cdot \left[(1-k) \cdot \left(2 \cdot (1-2\nu) + \frac{R^2}{r^2} \right) \sin 2\theta \right]$$
(4-24)

Gdje je:

- *u*_r radijalni pomak (m),
- u_{θ} tangencijalni pomak (m),
- σ_v vertikalno naprezanje (kPa),
- ν Poissonov koeficijent,
- G modul posmika (kPa),
- R radijus tunela (m),

r – radijalna udaljenost od središta iskopa (m),

 θ - kut polarnog koordinatnog sustava (°)

k - bočni potisak stijenske mase, $\sigma_{\rm h}/\sigma_{\rm v}$.

4.3. Hoek - Brown kriterij čvrstoće

Hoek - Brown kriterij sloma razvijen je kako bi pružio osnovu za projektiranje podzemnih iskopa i kosina. U vrijeme objave izvornog kriterija nije bilo odgovarajućih metoda za procjenu čvrstoće stijenskih masa. Stoga je cilj bio formulirati jednadžbu koja bi se mogla povezati s geološkim informacijama koje se mogu dobiti na terenu (Hoek i Marinos, 2007). Jednadžba 4-25 izražava kriterij u njegovom izvornom obliku.

$$\sigma_1 = \sigma_3 + \sigma_{\rm ci} \left(m \frac{\sigma_3}{\sigma_{\rm ci}} + s \right)^{0.5} \tag{4-25}$$

Gdje je:

 σ_1 – veće glavno efektivno naprezanje (MPa),

 σ_3 – manje glavno efektivno naprezanje (MPa),

 $\sigma_{\rm ci}$ – jednoosna tlačna čvrstoća (MPa),

m, a – konstante materijala (s = 1, za intaktnu stijenu).

Izvorno, RMR (*Bieniawski*, 1976; *Bieniawski*, 1989) je korišten za povezivanje kriterija s geološkim terenskim opažanjima, jer je već bio široko rasprostranjen i dobro prihvaćen. Međutim, s vremenom je postala uočljiva teškoća primjene RMR-a u stijenskim masama loše kvalitete, zbog činjenice da se one značajno razlikuju od čvrste stijenske mase s čvrsto pričvršćenim blokovima, na kojima je formuliran izvorni kriterij, pa je odlučeno da se kriterij ažurira (jednadžbe 4-26 do 4-31) uvođenjem GSI kao zamjene za RMR (Hoek i dr., 1995).

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m \frac{\sigma_3}{\sigma_{ci}} + s \right)^a \tag{4-26}$$

Za GSI > 25:

$$\frac{m_{\rm b}}{m_{\rm i}} = e^{\left(\frac{GSI - 100}{28}\right)} \tag{4-27}$$

$$s = e^{\left(\frac{GSI-100}{9}\right)} \tag{4-28}$$

$$a = 0.5$$
 (4-29)

Za GSI < 25:

$$s = 0 \tag{4-30}$$

$$a = 0.65 - \frac{GSI}{200} \tag{4-31}$$

Gdje je:

 σ_1 ' – veće glavno efektivno naprezanje u trenutku sloma (MPa),

 σ_3' – manje glavno efektivno naprezanje u trenutku sloma (MPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktne stijene (MPa),

*m*_b – vrijednost konstante m za stijensku masu,

*m*_i-konstanta materijala za intaktnu stijenu,

s, a – konstante materijala (ovise o karakteristikama stijenske mase).

GSI-geološki indeks čvrstoće.

Hoek i dr. (2002.) napravili su važnu reviziju kriterija uključivanjem novih odnosa između parametara m_b , *s*, *a* i *GSI*. Revizijom je uklonjen uvjet za *GSI* vrijednost i uveden je u jednadžbe parametar naziva faktor poremećaja (*D*) (engl. *Disturbance factor*).

Generalizirani Hoek - Brown kriterij izražen je jednadžbama 4-32 do 4-35.

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a \tag{4-32}$$

$$m_{\rm b} = m_{\rm i} \cdot e^{\left(\frac{GSI-100}{28}\right)}$$
 (4-33)

$$s = e^{\left(\frac{GSI-100}{9-3D}\right)} \tag{4-34}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$
(4-35)

Gdje je:

 σ_1 ' – veće glavno efektivno naprezanje u trenutku sloma (MPa),

 σ_3' – manje glavno efektivno naprezanje u trenutku sloma (MPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktne stijene (MPa),

 $m_{\rm b}$ – vrijednost konstante m za stijensku masu,

*m*_i –konstanta materijala za intaktnu stijenu,

s, a – konstante materijala (ovise o karakteristikama stijenske mase),

GSI – geološki indeks čvrstoće,

D – faktor poremećaja stijenske mase.

Konstanta stijene m_i dobiva se statističkom analizom ispitivanja troosne tlačne čvrstoće. Ukoliko ju nije moguće provesti, može se procijeniti kao $\sigma_{ci} = \sigma_t$ (Hoek i dr. 2002). Slika 4-9 daje vrijednosti m_i za različite vrste intaktne stijene. Faktor poremećaja D ovisi o stupnju izmjene stijenske mase s obzirom na aktivnosti miniranja i/ili relaksacije naprezanja. Njegova vrijednost može biti u rasponu od 0 za nepromijenjene stijenske mase, do 1 za jako izmijenjene stijenske mase. Odabir parametara nalazi se na slici 4-10.

Jednoosna tlačna čvrstoća stijenske mase može se dobiti primjenom $\sigma'_3 = 0$, što rezultira jednadžbom 4-36. Na slici 4-8 nalazi se primjer krivulje sloma dobivene Hoek-Brownovim kriterijem čvrstoće.

$$\sigma_c = \sigma_{ci} \cdot s^a \tag{4-36}$$

Gdje je:

 $\sigma_{\rm c}$ – jednoosna tlačna čvrstoća stijenske mase (MPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa),

s, a – konstante materijala (ovise o karakteristikama stijenske mase).

Slika 4-8. Krivulja sloma prema Hoek-Brownovom kriteriju čvrstoće (Hoek, 1983)

Na isti način ($\sigma'_3 = 0$), dobiva se vlačna čvrstoća stijenske mase:

$$\sigma_t = -\frac{\sigma_{\rm ci}s}{m_{\rm b}} \tag{4-37}$$

31

Gdje je:

 σ_t – vlačna čvrstoća stijenske mase (MPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa),

m^b - vrijednost konstante m za stijensku masu,

s – konstanta materijala (ovisi o karakteristikama stijenske mase).

Jednadžba 4-37 je izvedena uzimajući uvrštavanjem izraza $\sigma'_1 = \sigma'_3 = \sigma_{tm}$ u jednadžbu (4-32). Izraz predstavljanja stanje dvoosnog naprezanja, a dokazano je kako za krte materijale jednoosna vlačna čvrstoća odgovara dvoosnoj (Hoek i dr., 2002).

Tin etilene	Klass	Gama		Tekst	ura	2
np sujene	Nasa	Grupa	Krupna	Srednja	Fina	Vrlo fina
			Konglomerat	Pješčenjak	Siltit (Prahovnjak)	Argilit (Glinjak)
	Klastično		(22)	19	9	4
	nias	uche	+	Grauv	aka 💳	*
HR I			·	18	6	
N1	Organske		-	Kred	a7	→
W				Ugijen (8-21)	<u>*</u>
E.		10000 00 1	Breča	Sparitni	Mikritni	
	Neklastične	Karbonatne	(20)	vapnenac	vapnenac	
			61. 94	(10)	8	
		Kemiske	-	Gips	Anhidrit	
				16	13	2
ш	Nočk	ave	Mramor	Hornfels (Rožnac) Kvarcit	
SFN.	Neskrijave		9	(19)	24	
Q	Slabo škriljave		Migmatit	Amfibolit	Milonit	
TAM			(30)	25-31	(6)	
WE	Škri	iave	Gnajs	Škriljavac	Filit	Slejt
1985	SAT	Jave	33	4-8	(10)	9
			Granit		Riolit	Opsidijan
			33		(16)	(19)
	Suijotlo	(Kicolo)	Granodiorit		Dacit	
2020	Ovijetie	(ruseie)	(30)		(17)	
3X			Diorit		Andezit	
AT			(28)		19	
GM			Gabro	Dolerit	Bazalt	
MA	Tames (Lužnate)	27	(19)	(17)	
	ranne (cuzitate)	Norit			
			22			
	Efuziani nin	oklastični tin	Aglomerat	Breča	Tuf	3
	E GENTI PIL	onication up	(20)	(18)	(15)	

* Vrijednosti za intaktnu stijenu ispitanu okomito na škriljavost. Vrijednost mi je značajno različita u slučaju da slom nastupa duž plohe škriljavosti. (Hoek, 1983).

Slika 4-9. Vrijednosti konstante *m*_i (Hoek, 2007)

Izgled stijenske mase	Opis stijenske mase	Preporučena vrijednost D
	Izvrsna kvaliteta kontroliranog miniranja ili iskopavanja TBM-om rezultira minimalnim poremećajem stijenske mase koja okružuje tunel.	<i>D</i> = 0
	Strojno ili ručno iskopavanje u stijenskoj masi loše kvalitete minimalno remeti okolnu stijensku masu. Tamo gdje problemi sa stiskanjem rezultiraju značajnim dizanjem poda, smetnja može biti ozbiljna osim ako se ne postavi privremeni invert [®] , kao što je prikazano na fotografiji. [®] Invert je struktura obrantog luka postavljena na dnu tunela kako bi se poboljali uvjeti naprezanja gomje potporne strukture.	D = 0 D = 0.5 Bez inverta
a tivenal a	Loša kontrola usmjeravanja bušenja, dizajna punjenja i slijeda detonacije rezultira vrlo lošim miniranjem tunela u tvrdim stijenama s velikim oštećenjima, koja se protežu 2 ili 3 m, u okolnoj stijenskoj masi.	<i>D</i> = 0.8
	Mala miniranja na kosinama rezultiraju skromnim oštećenjima stijenske mase kada se koristi kontrolirano miniranje. Nekontrolirano proizvodno miniranje može rezultirati značajnim oštećenjem stijene.	D = 0.7 Dobro miniranje D = 1.0 Loše miniranje
X	U nekim slabim stijenskim masama iskop se može izvoditi ripanjem i doziranjem. Oštećenja na padinama prvenstveno su posljedica rasterećenja. Vrlo velike kosine površinskih kopova trpe značajne poremećaje zbog teškog proizvodnog miniranja i smanjenja naprezanja od uklanjanja otkrivke.	D = 0.7 Mehanički iskop D = 1.0 Proizvodno miniranje

Slika 4-10. Vrijednosti parametra faktora poremećaja D (Hoek i Brown, 2018)

Normalna i posmična naprezanja su glavnim naprezanjima povezana prema jednadžbama 4-38 i 4-39 (Hoek i dr., 2002).

$$\sigma_{n}' = \frac{\sigma_{1}' + \sigma_{3}'}{2} - \frac{\sigma_{1}' - \sigma_{3}'}{2} \cdot \frac{\frac{d\sigma_{1}'}{d\sigma_{3}'} - 1}{\frac{d\sigma_{1}'}{d\sigma_{3}'} + 1}$$
(4-38)

$$\tau = (\sigma_1' - \sigma_3') \cdot \frac{\sqrt{\frac{d\sigma_1'}{d\sigma_3'}}}{\frac{d\sigma_1'}{d\sigma_3'} + 1}$$
(4-39)

Gdje je:

$$\frac{d\sigma_1'}{d\sigma_3'} = 1 + am_b \left(\frac{m_b \cdot \sigma_3'}{\sigma_{ci}} + s\right)^{a-1},\tag{4-40}$$

 σ_n ' – normalno naprezanje (MPa),

τ – posmično naprezanje (MPa).

4.3.1. Mohr - Coloumb parametri čvrstoće

S obzirom da većina geotehničkih programa još uvijek koristi Mohr-Coloumbov kriterij sloma, bitno je izračunati odgovarajuće kutove trenja i koheziju za stijensku masu. To se može postići uspostavljanjem prosječne linearne veze s krivuljom dobivenom iz izraza 4-32 (Hoek i dr., 2002).

Skup podataka vezanih za vrijednosti naprezanja manjeg glavnog naprezanja nalazi se u rasponu naprezanja $\sigma_t < \sigma_3 < \sigma_{3,max}$. Proces određivanja Mohr-Coloumbovih parametara čvrstoće prikazan je u jednadžbama 4-41 i 4-42.

$$\phi' = \sin^{-1} \left[\frac{6am_{\rm b}(s+m_{\rm b}\sigma'_{\rm 3n})^{a-1}}{2(1+a)(2+a) + 6am_{\rm b}(s+m_{\rm b}\sigma'_{\rm 3n})^{a-1}} \right]$$
(4-41)

$$c' = \frac{\sigma_{\rm ci}[(1+2a)s + (1-a)m_{\rm b}\sigma'_{\rm 3n}](s+m_{\rm b}\sigma'_{\rm 3n})^{a-1}}{(1+a)(2+a)\sqrt{1 + (1+(6am_{\rm b}(s+m_{\rm b}\sigma'_{\rm 3n})^{a-1}))/((1+a)(2+a))}}$$
(4-42)

Gdje je:

c' – kohezija (MPa), ϕ' – kut trenja (°), $\sigma'_{3n} = \frac{\sigma'_{3,max}}{\sigma_{ci}}.$

Mohr – Coloumbova posmična čvrstoća τ se za zadano normalno naprezanje σ dobije uvrštavanjem vrijednosti kuta trenja iz izraza 4-41 i kohezije iz izraza 4-42 u jednadžbu 4-43.

$$\tau = c' + \sigma \cdot tan\phi' \tag{4-43}$$

Gdje je:

τ – posmično naprezanje (MPa),

σ-normalno naprezanje (MPa),

c'-kohezija (MPa),

 ϕ' – kut trenja (°).

Prosječna linearna veza Hoek – Brownovog i Mohr – Coloumbovog kriterija, u pogledu većeg i manjeg glavnog naprezanja dana je izrazom 4-44.

$$\sigma_1' = \frac{2c'\cos\phi'}{1-\sin\phi'} + \frac{1+\sin\phi'}{1-\sin\phi'}\sigma_3'$$
(4-44)

Gdje je:

 σ_1' – veće glavno efektivno naprezanje u trenutku sloma (MPa),

 σ_3' – manje glavno efektivno naprezanje u trenutku sloma (MPa),

c' – kohezija (MPa),

 ϕ ' – kut trenja (°).

4.3.2. Čvrstoća stijenske mase

Prema Hoeku (2002.) razvijen je koncept globalne čvrstoće stijenske mase na temelju veze sa Mohr – Coloumbovim parametrima (iz jednadžbe 4-44) gdje su kohezija i kut trenja određeni iz raspona naprezanja $\sigma_t < \sigma'_3 < \frac{\sigma_{ci}}{4}$ dobije se izraz za čvrstoću stijenske mase (σ'_{cm}) 4-45.

$$\sigma'_{\rm cm} = \frac{2c'\cos\phi'}{1-\sin\phi'} \tag{4-45}$$

$$\sigma_{\rm cm}' = \sigma_{\rm ci} \cdot \frac{(m_{\rm b} + 4s - a(m_{\rm b} - 8s))(\frac{m_{\rm b}}{4} + s)^{a-1}}{2(1+a)(2+a)} \tag{4-46}$$

Gdje je:

 $\sigma_{\rm cm}$ ' – čvrstoća stijenske mase (MPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa),

*m*_b – vrijednost konstante m za stijensku masu

s, a – konstante materijala (ovise o karakteristikama stijenske mase),

- c'-kohezija (MPa),
- ϕ ' kut trenja (°).

4.3.3. Modul deformabilnosti stijenske mase

Prema Hoeku i dr. (2002.) modul deformabilnosti stijenske mase određuje se iz izraza 4-47:

$$E_{rm} (GPa) = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{\left(\frac{GSI - 10}{40}\right)}$$
(4-47)

Gdje je:

 $E_{\rm rm}$ – modul deformabilnosti stijenske mase (GPa),

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa),

GSI-geološki indeks čvrstoće,

D – faktor poremećaja stijenske mase.

Na temelju velikog broja provedenih ispitivanja Hoek i Diedrichs (2006.) su u svojem radu prezentirali dvije nove jednadžbe za proračun modula deformabilnosti. Izraz 4-48 se preporuča koristiti kad je poznata vrijednost GSI (ili RMR ili Q). Izraz 4-49 se koristi kada su poznate vrijednosti intaktnog modula deformabilnosti ili čvrstoće intaktnog materijala.

$$E_{\rm rm} (MPa) = 100,000 \left(\frac{1 - \frac{D}{2}}{1 + e^{(\frac{75 + 25D - GSI}{11})}} \right)$$
(4-48)

$$E_{\rm rm} (MPa) = E_i \left(0.02 + \frac{1 - \frac{D}{2}}{1 + e^{(\frac{60 + 15D - GS}{11})}} \right)$$
(4-49)

Gdje je:

Erm – modul deformabilnosti stijenske mase (MPa),

*E*_i- intaktni modul deformabilnosti (MPa).

GSI – geološki indeks čvrstoće,

D – faktor poremećaja stijenske mase.

Intaktni modul deformabilnosti određuje se iz jednadžbe 4-50 gdje vrijednost MR predstavlja koeficijent modula (engl. *Modulus Ratio*), a dobivena je na temelju mnogobrojnih ispitivanja. Vrijednosti MR dane su tablicom 4-1.

$$E_{\rm i} = MR\sigma_{\rm ci} \tag{4-50}$$

Gdje je:

Ei- intaktni modul deformabilnosti (MPa),

MR - koeficijent modula deformabilnosti,

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa).

Tip	Vlaca	Grupo		Tekstur	ra	
stijene	Klasa	Orupa	Krupna	Srednja	Fina	Vrlo fina
ntna	Klas	tična	Konglomerat (300-400) Breča (230- 350)	Pješčenjak (200-350)	Siltit (350- 400) Grauvaka (350)	Glinjak (200-300) Škriljevac (150-250) Lapor (150-200)
Sedime		Karbonatna		Sparitični vapnenac (600- 800)	Mikritični vapnenac (800-1000)	Dolomit (350-500)
	Neklastična	Evaporitna		Gips (350)	Anhidrit (350)	
		Organska				Kreda (1000+)
orfna	Bez fo	lijacije	Mramor (700-1000)	Kornit (400- 700) Metapješčenjak (200-300)	Kvarcit (300-450)	
letamc	Blago fo	lijacijske	Migmatit (350-400)	Amfibolit (400- 500)	Gnajs (300- 750)	
W	Folija	ncijske		Škriljavci (250- 1100)	Filit/ Tinjac (300-800)	Slejt (400- 600)
	Distanska	Svijetle	Granit (300- 550) Grandior	Diorit (300- 350) it (400-450)		
ka	Flutoliske	Tamne	Gabro (400- 500)	Dolerit (300- 400)		
Igmats	Hipoa	Hipoabisalne		iri (400)	Dijabaz (300-350)	Peridotit (250-300)
M	Vulkanske	Lava	Anglomorat	Riolit (300- 500) Andezit (300- 500)	Dacit (350- 450) Bazalt (250-450) Tuf (200	
		Piroklasti	(400-600)	breča (500)	400)	

Tablica 4-1. Vrijednosti MR (Hoek i Diedrichs, 2006)

4.3.4. Određivanje vrijednosti $\sigma'_{3,\max}$

Problem određivanja odgovarajuće vrijednosti $\sigma'_{3,max}$ za korištenje u izrazima 4-41 i 4-42 ovisi od primjene područja proračuna. Prema Hoeku i dr. (2002.) dana su dva rješenja, za tunele i kosine, ali je u ovom radu prikazan samo izraz 4-51 za tunele. Vrijednost $\sigma_{3,max}$ daje ekvivalentne karakteristične krivulje za dva kriterija sloma, a primjenjuje se za duboke tunele ili ekvivalentne profile slijeganja plitkih tunela. Iznimno, za slučajeve u kojima horizontalno naprezanje premašuje vrijednosti vertikalnog naprezanja preporuča se zamijeniti vrijednost γz iznosom horizontalnog naprezanja.

$$\frac{\sigma'_{3,\max}}{\sigma'_{\rm cm}} = 0.47 \left(\frac{\sigma_{\rm cm}}{\gamma z}\right)^{-0.94} \tag{4-51}$$

Gdje je:

 $\sigma'_{\rm cm}$ - čvrstoća stijenske mase (MPa),

 γ – zapreminska težina (MN/m³),

z – dubina ispod površine (m).

5. PROGRAM ZA PRORAČUN NAPREZANJA OKO KRUŽNOG OTVORA I ČVRSTOĆE STIJENE

U ovom poglavlju nalazi se detaljniji način rada programa kao i validacija rezultata.

5.1. Općenito

U svijetu inženjerstva malo je područja kritično za projektiranje i izvođenje radova kao što je analiza naprezanja. Bilo da je riječ o projektiraju podzemnih prostorija, zgrada, mostova ili zrakoplova, inženjeri nastoje predvidjeti ponašanje materijala i strukture u različitim uvjetima. Razumijevanje ponašanja projektiranog okruženja jedno je od najvećeg po važnosti za osiguranje sigurnosti i stabilnosti. Godinama su se inženjeri oslanjali na razne alate i tehnike analize naprezanja koji se kreću od jednostavnih proračuna do sofisticiranih računalnih simulacija, od kojih svaka ima svoje prednosti i nedostatke.

U svrhu istraživanja prilikom pisanja ovog rada napravljen je program naziva *RockStressCalc*. Napisan u programskom jeziku *Python*, program koristi standardni dodatak *Tkinter* za grafičko korisničko sučelje (engl. *Graphical User Interface*, GUI). *NumPy* je dodatak za znanstvene proračune koji pruža podršku za višedimenzionalne nizove i matrice, zajedno s mnoštvom matematičkih funkcija. U programu se koristi za numeričke proračune Hoek-Brownovog kriterija čvrstoće te naprezanja oko kružnog otvora temeljenih na Kirschovoj jednadžbi. *Pandas* je korišten prilikom manipulacije i analize podataka. U programu se koristi za rukovanje i pohranjivanje rezultata sekundarnih naprezanja i Hoek-Brown proračuna te za ispis rezultata u tabličnom obliku. *Matplotlib* omogućava vizualizaciju podataka koja pruža širok raspon statičnih i interaktivnih dijagrama. U programu se koristi za stvaranje vizualizacija kao što su dijagrami sekundarnih naprezanja, normalnog naprezanja u odnosu na posmično naprezanje, ali i pohranjivanje rezultata kao slikovnih datoteka.

Na slici 5-1 nalazi se pojednostavljeni dijagram toka programa sa ulaznim i izlaznim podacima u dvije grane proračuna.

Slika 5-1. Pojednostavljeni dijagram RockStressCalc programa

5.2. Način rada

RockstressCalc je podržan na operativnom sustavu *Windows*, a omogućava korisniku zasebno razmatranje sekundarnih naprezanja na podzemnim prostorijama kružnog otvora (npr. hidrotehnički tunel) i kriterija čvrstoće stijenske mase. Ulazni i izlazni parametri proračuna su u potpunosti neovisni kao i njihov ispis u tabličnom i/ili slikovnom obliku. Provođenjem obje analize moguće je izračunati faktor stabilnosti budući da je za stijensku masu isti određen omjerom čvrstoće materijala iz Hoek-Brownovog kriterija i naprezanjem u točki promatranja iz Kirschovih jednadžbi.

Prilikom pokretanja programa otvara se početni zaslon naziva *Induced Stress – Input* prikazan na slici 5-2. Ovaj dio proračuna namijenjen je unosu podataka za provedbu analize sekundarnih naprezanja i pomaka. Ulazni podaci podijeljeni su u četiri grupe:

- 1. geometrija (engl. Geometry),
- 2. tunel,
- 3. elastična svojstva stijenske mase (engl. Rock mass elastic properties) i
- 4. in situ naprezanja i kut promatranja (engl. Observation angle).

Induced Stress-Input Induced Stress-Plot Fail	ure Criterion
Geometry	
Number of points [>10]:	8
Boundary limit [m]:	3
Tunnel	
Depth [m]:	8
Radius [m]:	8
Unit Weight [MN/m³]:	2 Andesite
Rock Mass Elastic Prope	erties
Poisson's ratio [0.01 - 0.49]:	3
Modulus of deformation [MPa]:	2
	adla
In-Situ & Observation A	igie
In-Situ & Observation Ar k = σh/σν:	

Slika 5-2. Ulazni parametri sekundarnih naprezanja i pomaka

U sklopu navedenog prozora nalazi se popis stijena u padajućem izborniku na slici 5-3 koji služi kao ulazni podatak jedinične težine okolne stijenske mase. Popis stijena je dan kako bi korisniku olakšao analizu, a dobiven je temeljem podataka prosječne gustoće pojedine vrste stijena. U padajućem izborniku se odabirom opcije ostalo (engl. *Other*) unosi proizvoljna vrijednost. Nakon unosa podataka potrebno je odabrati naredbu *Calculate Induced Stresses* kako bi se pristupilo odabiru vizualnog prikaza sa idućeg prozora (slika 5-4).

Slika 5-3. Popis jediničnih težina stijenske mase

Nakon unosa podataka i odabira izvršenja proračuna pristupa se prozoru *Induced Stress* – *Plot* sa slike 5-4. Unutar njega se nalaze dvije vrste načina prikaza podataka (više na slici 5-17), a to su konturni prikaz i dijagramski prikaz. Kvaliteta konturnog prikaza je određena ulaznim parametrima vezanim za geometriju, odnosno polarnu mrežu. Dijagramski prikaz određen je predefiniranim područjem promatranja u rasponu vrijednosti R/r = 1.00 do R/r = 6.00. Prozor se sastoji od tri grupe podataka za prikaz, a to su:

- 1. sekundarna i glavna naprezanja oko radijusa otvora konturni prikaz,
- 2. radijalna i tangencijalna naprezanja u kaloti i zidovima tunela konturni prikaz,
- 3. naprezanja i pomaci u kaloti i zidovima tunela dijagramski prikaz.

Induced Stress	-Input Induced Stress-Plot Failure Criterion
Plot Indu	ced or Major stresses around opening
	Chours store contours
	Snow or stress contours
	Show $\sigma\theta$ stress contours
	Show $\tau_r \theta$ stress contours
	Show σ_1 stress contours
	Show σ_a stress contours
	A.1
Plot Crow	n or Sidewall stresses around openin
Plot Crow	n or Sidewall stresses around openin Show o, Sidewall stress contours
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours
Plot Crow	n or Sidewall stresses around openin Show σ _r Sidewall stress contours Show σ _r Crown stress contours Show σθ Sidewall stress contours
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours Plot diagrams
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours Plot diagrams
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours Plot diagrams Show Crown stress diagram
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours Plot diagrams Show Crown stress diagram
Plot Crow	n or Sidewall stresses around openin Show σ, Sidewall stress contours Show σ, Crown stress contours Show σθ Sidewall stress contours Show σθ Crown stress contours Plot diagrams Show Crown stress diagram Show Sidewall stress diagram

Slika 5-4. Mogućnosti prikaza sekundarnih naprezanja i pomaka

Posljednji prozor proračunava čvrstoću stijenske mase, a naziva se *Failure Criterion*. Unutar prozora nalazi se četiri grupe podataka od kojih prva čini ulazne podatke, dok preostale tri predstavljaju parametre čvrstoće, a to su (slika 5-5):

- 1. ulazni podaci za generalizirani Hoek-Brown kriterij čvrstoće,
- 2. proračun Hoek-Brown parametara čvrstoće,
- 3. proračun svojstava stijenske mase i
- 4. proračun faktora sigurnosti (zahtjeva proračun sekundarnih naprezanja i čvrstoće stijenske mase).

nduced Stress-Input Induced Stress-PI	ot Failure Criterion	
Generaliz	ed Hoek Brown	
GSI, Geological Strength Index [0-100]:	I	3
oci, Uniaxial compressive strenght [MPa]:	no.
mi, Material constant [2-35]:		8
D, Disturbance factor[0-1]:		8
Number of tests [σ₃min-σ₃max]:		3
Select an application field:	Select the field of application	
Rock Mass Modulus:	Select calculation method	_
	Calculate Hoek-Brown	
Hoek Bro	own parameters	
Hoek Bro	own parameters	a:
Hoek Bro	s:	a:
Hoek Bro ^{mb:} Rock Ma	s: s: ass properties	a:
Hoek Bro mb: Rock Ma ¢', Friction angle (*):	own parameters s: ass properties c', Cohesion [MPa]:	a:
Hoek Bro mb: Rock Ma ¢', Friction angle [*]: ot, Tensile strength [MPa]:	s: ass properties c', Cohesion [MPa]:	a:
Hoek Bro mb: Rock Μ i φ', Friction angle [*]: σt, Tensile strength [MPa]: σc, Uniaxial compressive strength [MPi	own parameters s: ass properties c', Cohesion [MPa]: a]:	a:
Hoek Brc mb: φ', Friction angle [*]: σt, Tensile strength [MPa]: σc, Uniaxial compressive strength [MPa]:	own parameters s: ass properties c', Cohesion [MPa]:	a:
Hoek Bro mb: ¢', Friction angle [*]: ot, Tensile strength [MPa]: ocm, Rock Mass Strength [MPa]: Em, Modulus of deformation [MPa]:	own parameters s: ass properties c', Cohesion [MPa]: a):	a:
Hoek Bro mb: Rock Ma ¢', Friction angle (*): at, Tensile strength [MPa]: acm, Rock Mass Strength [MPa]: Em, Modulus of deformation [MPa]:	own parameters s: ass properties c', Cohesion [MPa]: a):	a:
Hoek Bro mb: @, Friction angle [*]: ot, Tensile strength [MPa]: oc, Uniaxial compressive strength [MPa]: Em, Modulus of deformation [MPa]: Em, Modulus of deformation [MPa]:	ewn parameters s: ass properties c', Cohesion [MPa]: a]:	a:
Hoek Bro mb: ¢', Friction angle [*]: ot, Tensile strength [MPa]: oc, Uniaxial compressive strength [MPa]: Em, Modulus of deformation [MPa]: Factor Factor of stability:	s: ass properties c', Cohesion [MPa]: a): r of stability	a:
Hoek Bro mb: ¢', Friction angle [*]: at, Tensile strength [MPa]: ac, Uniaxial compressive strength [MPa]: acm, Rock Mass Strength [MPa]: Em, Modulus of deformation [MPa]: Factor Factor of stability:	even parameters s: ass properties c', Cohesion [MPa]: e): r of stability	a:

Slika 5-5. Proračun čvrstoće stijenske mase

Prije proračuna dvije ili tri grupe parametara navedenog prikaza potrebno je definirati područje primjene kriterija (engl. *Application field*) i način proračuna modula deformacije stijenske mase (engl. *Rock Mass Modulus*). Na slici 5-6 nalazi se padajući izbornik kojim se odabire područje primjene. Tri su moguća područja primjene:

- 1. naizmjenično (engl. Random) slika 5-7,
- 2. općenito (engl. General) slika 5-8 i
- 3. tunelogradnja slika 5-9.

Odabirom opcije naizmjenično moguće je unijeti podatak izmjerenog najvećeg manjeg glavnog naprezanja $\sigma_{3,max}$. Izborom općenitog područja primjenjuje se izraz 5-1.

$$\sigma_{3,max} = \frac{\sigma_{ci}}{4} \tag{5-1}$$

Gdje je:

 σ_{ci} – jednoosna tlačna čvrstoća intaktnog materijala (MPa).

Prilikom primjene u tunelogradnji za potrebe proračuna je potreban unos vrijednosti jedinične težine okolne stijenske mase i dubine iskopa budući da je za proračun iste korišten izraz (4-51).

Slika 5-9. Područje primjene kriterija čvrstoće – Tunelogradnja

Sukladno određivanju područja primjene nužno je odabrati način proračuna modula deformabilnosti stijenske mase za koji također postoje tri mogućnosti (slika 5-10 do slike 5-13). Proračun sa slike 5-11 određen je izrazom 4-47, dok su proračuni sa slika 5-12 i 5-13 određeni izrazima 4-49 i 4-48.

Rock Mass Modulus:	Select calculation method 🛛 🛁

Slika 5-10. Proračun modula deformabilnosti stijenske mase

	Rock Mass Modulus:	НВ2002 —
5-11 . I	Hoek - Brownovo rješenje iz 2002.	
R	ock Mass Modulus: Enter the Modulus Ratio (MR):	HD2006
5-12 . I	Hoek - Diedrichsovo rješenje iz 2006.	
	Rock Mass Modulus:	simpleHD2006 —

Slika 5-13. Pojednostavljeno Hoek - Diedrichsovo rješenje iz 2006.

Slika

Slika

U svrhu pohrane ulaznih podataka i ispisa rezultata, unutar sučelja nalazi se padajući izbornik za upravljanje datotekama (engl. *File*) prikazan na slici 5-14. Unutar izbornika je moguće izabrati novu datoteku za rad (engl. *New file*) prilikom čega trenutni podaci i polja unosa postaju prazna. Izborom na unos (engl. *Import*) ubacuju se ulazni podaci jednog ili oba odabrana proračuna. Naredbom za spremanje ulaznih podatka (engl. *Save Inputs*) sa slike 5-15 moguće je iste pohraniti kao tekstualnu datoteku (formata ".*txt*"), dok je na slici 5-16 prikazan izbornik za pohranu. Na njemu vidljiva su tri moguća načina pohranjivanja ulaznih i izlaznih parametara proračuna u *Excel* tablicu. Formati za ispisu u tablicu su ".*xlsx*" i ".*csv*".

Slika 5-14. Izbornik za upravljanje datotekama

Choose input type			×
Select the inj	puts to s	ave:	
🕅 Kirsch			
Generalized HB			
San	ve		
Can	icel		

Slika 5-15. Izbornik za pohranjivanje ulaznih parametara

Save Kirsch Exports to Excel Save Hoek-Brown Exports to Excel Save Kirsch+HB Exports to Excel

Slika 5-16. Izbornik za pohranjivanje rezultata proračuna

5.3. Ulazni podaci

Ovim poglavljem su pobliže objašnjeni ulazni parametri za proračun sekundarnih naprezanja, pomaka i čvrstoće stijenske mase.

5.3.1. Proračun naprezanja i pomaka

Na slici 5-1 prikazan je pojednostavljeni dijagram toka *RockStressCalc_*programa te su navedene grupe ulaznih podataka. S obzirom da su ulazni podaci i njihovo određivanje ključni za dobivanje kvalitetnih izlaznih rezultata u ovom djelu rada će biti više riječi o njima kao i o korištenim formulama za proračune naprezanja, pomaka i čvrstoće. Slikom 5-17 prikazano je pet grupa ulaznih podataka za proračun sekundarnih naprezanja i pomaka. Plavom bojom u dijagramu označeni su podaci koji nakon provedbe proračuna daju konturne dijagrame naprezanja, dok su zelenom bojom prikazani parametri za kreiranje linijskih dijagrama. Razlika između kreiranih dijagrama je područje promatranja naprezanja i pomaka. Naime, granicu ispisa naprezanja konturnih dijagrama određuje sam korisnik s obzirom na ulazni podatak granice ispisa, dok je granica promatranja naprezanja kod linijskih dijagrama postavljena na maksimalno 6 metara od prostorije otvaranja. Razlika u prikazu naprezanja je unutar dijagramima određena i kutom promatranja (θ). Naime, prilikom ispisa konturnih dijagrama cijelo područje oko tunelske prostorije se uzima u razmatranje (0° do 360°), dok je prilikom ispisa linijskih dijagrama ono određeno unesenim podatkom za kut θ od strane korisnika.

Slika 5-17. Dijagram prikaza ulaznih i izlaznih parametara proračuna sekundarnih naprezanja

Za proračun naprezanja i prikaz konturnih dijagrama korišteni su izrazi izneseni u radu. Izrazi uključuju proračun radijalnih (4-15), tangencijalnih (4-16) i posmičnih naprezanja (4-17). Jedina odstupanja korištenih izraza u samom programskom jeziku je vezana za horizontalna naprezanja koja su u *Pythonu* izvedena preko koeficijenta k kojeg korisnik sam određuje za proračun. Koeficijent k se dobije iz izraza 4-2 u kojem je njegova vrijednost jednaka omjeru horizontalnog i vertikalnog naprezanja u homogenom mediju. Nadalje, korištene formule za proračun većeg i manjeg glavnog naprezanja u radu su prikazane izrazima 4-21 i 4-22. Za proračun radijalnih i tangencijalnih pomaka u prethodnom poglavlju su prikazani izrazi 4-23 i 4-24.

5.3.2. Proračun čvrstoće

Referentno na sliku 5-1 na kojoj se nalazi pojednostavljeni dijagram toka *RockStressCalc* programa, na slici 5-18 prikazan je detaljniji dijagram proračuna čvrstoće, a korišteni kriterij čvrstoće je generalizirani Hoek – Brownov. Preko unesenih vrijednosti za geološki indeks čvrstoće (*GSI*), jednoosnu tlačnu čvrstoću intaktnog materijala (σ_{ci}), konstantu materijala (m_i) i faktora poremećaja (*D*), program napravi dio proračuna parametara čvrstoće. U poglavlju 4. su prikazani izrazi za proračun čvrstoće, a dani su formulama 4-33 do 4-35. Ulazni podatak za broj točaka označava područje prikaza Hoek-Brownove krivulje sloma. Osim toga, potrebno je odabrati područje primjene kriterija, odnosno odrediti najveću vrijednost manjeg glavnog naprezanja. Na korisniku je odabrati hoće li navedena vrijednost poprimiti nasumičan iznos, općeniti iznos (izraz 5-1) te područje za primjenu proračuna u tunelogradnji čiji je izraz dan jednadžbom (4-51). Konačno, moguće je izabrati između tri proračuna modula deformacije stijenske mase. Izrazi za proračun modula deformabilnosti su: izraz 4-47 iz Hoekovog i Brownovog rada 2002. godine te izrazi 4-48 i 4-49 iz Hoekovog i Diedrichsovog rada 2006. godine.

Slika 5-18. Dijagram prikaza ulaznih i izlaznih parametara proračuna čvrstoće

Konačno, referencirane su formule ovog diplomskog rada koje se odnose na izlazne podatke Hoek-Brownovog proračuna, a koje su korištene prilikom izrade programa:

- 1) kut trenja (jednadžba 4-41),
- 2) kohezija (jednadžba 4-42),
- 3) tlačna čvrstoća (jednadžba 4-36),
- 4) vlačna čvrstoća (jednadžba 4-37),
- 5) čvrstoća stijenske mase (jednadžba 4-46) i
- 6) modul deformabilnosti (jednadžbe 4-47, 4-48, 4-49).

5.4. Validacija rezultata

S ciljem potvrde ispravnosti rezultata proračuna dobivenih *RockStressCalc* programom korištena je usporedba s rezultatima proračuna geotehničkog programa *Plaxis2D*, koji se temelji na metodi konačnih elemenata. U nastavku će biti zasebno prikazani dijelovi proračuna vezano za sekundarna naprezanja i kriterij čvrstoće. U tablici 5-1 prikazani su ulazni parametri u oba korištena programa na temelju kojih je provedena potvrda točnosti rješenja.

RockSt	ressCalc	Plaxis2D		
Sekundarna	n naprezanja	Sekundar	rna naprezanja	
Broj točaka	1000	Broj točaka	> 5000	
Granica prikaza naprezanja (m)	16	Granica prikaza naprezanja (m)	< 30	
Dubina (m)	50	Dubina (m)	50	
Radijus (m)	5	Radijus (m)	5	
Jedinična težina (MN/m ³)	0.022	Omjer naprezanja <i>k</i>	0.40	
Poissonov koeficijent	0.25			
Modul deformabilnosti (MPa)	10 980			
Omjer naprezanja k	0.40			
	0			
Kut promatranja (°)	45			
	90			
Kriterij	čvrstoće	Kriterij čvrstoće		
GSI	70	GSI	70	
σ _{ci} (MPa)	75	$\sigma_{ci}(MPa)$	75	
mi	10	mi	10	
D	0.8	D	0.8	
Broj točaka	25	Poissonov koeficijent	0.5	
Područje primjene (σ _{3,max}) - Tunel	Jedinična težina (MN/m ³) = 0.022 Dubina (m) = 50	Područje primjene (σ _{3,max}) - Tunel	Jedinična težina (kN/m ³) = 22	
Modul deformabilnosti – Hoek i Diedrichsov izraz 4-49	MR = 500	Modul deformabilnosti (kN/m ²)	10.986	

Tablica 5-1. Ulazni podaci za proces validacije

5.4.1. Validacija naprezanja i pomaka

Potvrda proračuna sekundarnih naprezanja provedena je za dva kuta promatranja (0° i 90°). Na slici 5-19 nalazi se prikaz ulaznih parametara u *RockStressCalc* korištenih prilikom validacije naprezanja i pomaka za kut promatranja od 0°.

Induced Stress-Input Induced Stres	s-Plot Failure Criterio	n		
Geome	etry			
n, Number of points [>10]:	1000	8		
lim, Boundary limit [m]:	2	8]	
Tunn	el			
z, Depth [m]:	50	3		
R, Radius [m]:	5	8]	
γ, Unit Weight [<mark>MN/m³</mark>]:	0.022	8	Other	~
Rock Mass Elast	ic Properties			
v, Poisson's ratio [0.01 - 0.49]:	0.25	8		
E, Modulus of deformation [MPa]:	10980	8]	
In-Situ & Observ	ation Angle			
k = σh/σv:	0.4	2		
0. Observation and a 10° 00°1	0	2	1	

Slika 5-19. Primjer ulaznih podataka proračuna sekundarnih naprezanja za $\theta = 0^{\circ}$

Prilikom pristupanju usporedbi rezultata sa *Plaxisom* potrebno je istaknuti zasebnosti proračuna ovom metodom konačnih elemenata. Naime, *Plaxisom* se generira gusta mreža točaka prilikom čega korisnik ima uvid u naprezanja i pomake točaka. Na slici 5-20 nalazi se primjer mreže i dviju promatranih točki unutar *Plaxisa*. Prikazane točke su korištene prilikom validacije rezultata pomaka.

Slika 5-20. Mreža konačnih elemenata - Plaxis

5.4.1.1. Slučaj $\theta = 0^{\circ}$

Konturni dijagrami sekundarnih naprezanja *RockStressCalc* programa prikazani su slikama 5-21 do 5-23, dok se linijski dijagram sekundarnih naprezanja nalazi na slici 5-26.

Konturni dijagram većeg i manjeg glavnog naprezanja nalaze se na slikama 5-24 i 5-25 te je zbog usporedbe naprezanja u *Plaxisu* priložena slika 5-27 na kojoj se nalazi iznos većeg glavnog naprezanja. Tablicom 5-2 prikazani su iznosi naprezanja dobivenih programom izrađenim u sklopu diplomskog rada.

R/r	σ_r	$\sigma_{ heta}$	$ au_{r heta}$	σ_1	σз
1.00	0	2.86	0	2.86	0
1.25	0.39	2.00	0	2.00	0.39
1.50	0.49	1.64	0	1.64	0.49
1.75	0.51	1.46	0	1.46	0.51
2.00	0.52	1.35	0	1.35	0.52
2.50	0.50	1.25	0	1.25	0.50
3.00	0.49	1.20	0	1.20	0.49
3.50	0.48	1.17	0	1.17	0.48
4.00	0.47	1.15	0	1.15	0.47
4.50	0.46	1.14	0	1.14	0.46
5.00	0.46	1.13	0	1.13	0.46
6.00	0.45	1.12	0	1.12	0.45

Tablica 5-2. Iznosi naprezanja za $\theta=0^\circ$ - RockStressCalc

Slika 5-21. Radijalno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-22. Tangencijalno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-23. Posmično naprezanje za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-24. Veće glavno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-25. Manje glavno naprezanje za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-26. Linijski dijagram sekundarnih naprezanja za $\theta = 0^{\circ}$ - RockStressCalc

Usporedbom konturnih dijagrama dobivenih *RockStressCalc* programom i *Plaxisom* uočavaju se sličnosti iznosa naprezanja. Potrebno je napomenuti da su ekstremne vrijednosti naprezanja dobivene *Plaxisom* negativnog predznaka zbog orijentacije koordinatnog sustava. Očita li se vrijednosti maksimalnog glavnog naprezanja iz tablice 5-2 za slučaj *R/r* = 1.0 (2.86 MPa) i usporedi s vrijednošću najvećeg glavnog naprezanja dobivenu iz *Plaxisa* sa slike 5-27 (2852 kN/m²), može se zaključiti kako razlika između proračuna softvera iznosi 0.28 %.

Slika 5-27. Konturni prikaz većeg glavnog naprezanja za $\theta = 0^{\circ}$ - Plaxis

Za promatrani slučaj prikazane su u tablici 5-3 vrijednosti pomaka pomoću kojih je dobiven linijski dijagram pomaka (slika 5-28) iz *RockStressCalc* programa.

R/r	u _r (m)	u ₀	u _r	u ₀
		(m)	(mm)	(mm)
1.00	-0.000063	0	-0.063	0
1.25	0.000004	0	0.004	0
1.50	0.000028	0	0.028	0
1.75	0.000037	0	0.037	0
2.00	0.000039	0	0.039	0
2.50	0.000038	0	0.038	0
3.00	0.000035	0	0.035	0
3.50	0.000031	0	0.031	0
4.00	0.000028	0	0.028	0
4.50	0.000026	0	0.026	0
5.00	0.000024	0	0.024	0
6.00	0.000020	0	0.020	0

Tablica 5-3. Iznos pomaka za $\theta = 0^{\circ}$ - RockStressCalc

Slika 5-28. Linijski dijagram pomaka za $\theta = 0^{\circ}$ - RockStressCalc

Za usporedbu rezultata pomaka u *Plaxisu* je promatrana točka koja se nalazi najbliže referentnoj točki (0°) na obodu kružnog tunela. Na slici 5-29 prikazan je dijagram ukupnih pomaka dobiven u *Plaxisu* te je moguće očitati vrijednost najvećeg pomaka.

Slika 5-29. Dijagram i iznos pomaka za $\theta = 0^{\circ}$ - Plaxis

Usporede li se vrijednost ukupnog pomaka iz *Plaxisa* sa slike 5-29 (0.0000645 m) i radijalnog pomaka (za R/r = 1.0 iz tablice 5-3) iz *RockStressCalca*. Dobije se razlika u proračunima od 2.95 %.

5.4.1.2. Slučaj $\theta = 90^{\circ}$

Konturni dijagram naprezanja iz *RockStressCalc* za slučaj kuta promatranja od 90° odgovaraju vizualno naprezanjima prikazanim na slikama 5-21 do 5-25, dok se linijski dijagram naprezanja nalazi na slici 5-30. Tablicom 5-4 prikazani su iznosi naprezanja.

R/r	σ_r	$\sigma_{ heta}$	$ au_{r heta}$	σ_{I}	σз
1.00	0	0.22	0	0.22	0
1.25	0.17	0.53	0	0.53	0.17
1.50	0.37	0.59	0	0.59	0.37
1.75	0.52	0.59	0	0.59	0.52
2.00	0.64	0.57	0	0.64	0.57
2.50	0.79	0.54	0	0.79	0.54
3.00	0.88	0.51	0	0.88	0.51
3.50	0.94	0.50	0	0.94	0.50
4.00	0.97	0.48	0	0.97	0.48
4.50	1.00	0.48	0	1.00	0.48
5.00	1.02	0.47	0	1.02	0.47
6.00	1.04	0.46	0	1.04	0.46

Tablica 5-4. Iznosi naprezanja za $\theta = 90^{\circ}$ - RockStressCalc

Slika 5-30. Linijski dijagram sekundarnih naprezanja za $\theta = 90^{\circ}$ - RockStressCalc

Za promatrani slučaj prikazane su u tablici 5-5 vrijednosti pomaka pomoću kojih je dobiven linijski dijagram pomaka (slika 5-31) iz *RockStressCalc* programa.

R/r	<i>u</i> _r (m)	$u_{ heta}$	u_r	$u_{ heta}$
		(m)	(mm)	(mm)
1.00	-0.000814	0	- 0.814	0
1.25	-0.000705	0	- 0.705	0
1.50	-0.000612	0	- 0.612	0
1.75	-0.000537	0	0.537	0
2.00	-0.000477	0	- 0.477	0
2.50	-0.000389	0	0.389	0
3.00	-0.000327	0	- 0.327	0
3.50	-0.000282	0	- 0.282	0
4.00	-0.000248	0	- 0.248	0
4.50	-0.000221	0	0.221	0
5.00	-0.000199	0	0.199	0
6.00	-0.000166	0	- 0.166	0

Tablica 5-5. Iznos pomaka za $\theta = 90^{\circ}$ - RockStressCalc

Slika 5-31. Linijski dijagram pomaka za $\theta=90^\circ$ - RockStressCalc

U *Plaxisu* je promatrana točka koja se nalazi najbliže referentnoj točki (90°) na kaloti kružnog tunela. Na slici 5-32 prikazan je dijagram ukupnih pomaka dobiven u *Plaxisu* te je moguće očitati vrijednost najvećeg pomaka.

Slika 5-32. Dijagram i iznos pomaka za $\theta = 90^{\circ}$ - Plaxis

Usporede li se vrijednost ukupnog pomaka iz *Plaxisa* sa slike 5-32 (0.0007836 *m*) i radijalnog pomaka (za R/r = 1.0 iz tablice 5-5) iz *RockStressCalca* dobije se da je razlika u proračunima 3.73 %.

Konačno, tablicom 5-6 su prikazani iznosi radijalnih i tangencijalnih naprezanja u kaloti tunela (90°) i zidu (0°), dok su slikama 5-33 i 5-34 prikazani linijski dijagrami naprezanja za odabrane točke.
R/r	$\sigma_{r,zid}$	$\sigma_{r,kalota}$	$\sigma_{ heta,zid}$	$\sigma_{ heta,kalota}$
1.00	0.39	0.17	2.00	0.53
1.25	0.49	0.37	1.64	0.59
1.50	0.51	0.52	1.46	0.59
1.75	0.52	0.64	1.35	0.57
2.00	0.50	0.79	1.25	0.54
2.50	0.49	0.88	1.20	0.51
3.00	0.48	0.94	1.17	0.50
3.50	0.47	0.97	1.15	0.48
4.00	0.46	1.00	1.14	0.48
4.50	0.46	1.02	1.13	0.47
5.00	0.45	1.04	1.12	0.46
6.00	0.39	0.17	2.00	0.53

Tablica 5-6. Naprezanja u kaloti i zidu tunela - RockStressCalc

Slika 5-33. Naprezanja u kaloti tunela - RockStressCalc

Slika 5-34. Naprezanja u zidu tunela - RockStressCalc

5.4.2. Validacija čvrstoće

Prilikom validacije kriterija čvrstoće slikom 5-35 iskazani su ulazni parametri kao i proračunate vrijednosti iz *RockStressCalc* programa. Krivulja sloma za dane vrijednosti nalazi se na slici 5-36. Usporedbom rezultata proračuna čvrstoće *RockStressCalc* na slici 5-35 s rezultatima *Plaxisa* na slici 5-37 moguće je zaključiti da se izračunate vrijednosti parametara čvrstoće i svojstava stijenske mase podudaraju.

U slučaju usporedbe rezultata tlačne i vlačne čvrstoće između dvaju programa, potrebno je uzeti u obzir orijentaciju koordinatne osi zbog kojih dolazi do razlika u predznaku čvrstoća.

RockStressCalc		
File About		
Induced Stress-Input Induced Stress-Plot Failure	Criterion	
Generalized Ho	oek Brown	
GSI, Geological Strength Index [0-100]:	70	8
σci, Uniaxial compressive strenght [MPa]:	75	8
mi, Material constant [2-35]:	10	8
D, Disturbance factor[0-1]:	0.8	2
Number of tests [σ₃min-σ₃max]:	25	3
Unit Weight [MN/m³]:	0.022	
Tunnel Depth [m]:	50	
Select an application field:	Tunnel —	1
Rock Mass Modulus:	HD2006	
Enter the Modulus Ratio (MR):	500	2
	Calculate Hoek-Brown	
Hoek Brown p	arameters	
mb: 1.6768	s: 0.0106	a: 0.5014
Rock Mass p	roperties	
φ', Friction angle [°]: 54.25	c', Cohesion [MPa]: 1.19	
ot, Tensile strength [MPa]: -0.4748		
σc, Uniaxial compressive strength [MPa]: 7.6799		
σcm, Rock Mass Strength [MPa]: 14.0142		
Em, Modulus of deformation [MPa]: 10980.08		

Slika 5-35. Ulazni i izlazni podaci proračuna čvrstoće – RockStressCalc

Slika 5-36. Krivulja sloma za proračun čvrstoće - RockStressCalc

I - Hoek-Brown - Vapnenac			
🔊 📋			
	-	*-18-4	
Mechanical Groundwate	er Thermal Interfaces	Initial	
operty	Unit Value		
Material set			
Identification	Vapnenac		
Soil model	Hoek-Brown	*	
Drainage type	Drained		
Colour	RGB 161,	226, 232	
Comments	200 - 100		
Unit weights			
Yunsar	kN/m³	22,00	
V	kN/m³	22.00	
- Hoek-Brown - Vapnenac		22/00	
s H			
eral Mechanical Groundwater T	hermal Interfaces Initial		Anshein In J
perty	Unit Value		Todi
Stiffness			
Em	ktV/m²	10,98E6	
v (nu)		0,2500	
Alternatives			-7.0E4
G _{ref}	kN/m²	4,392E6	
Strength			-6,0E4
Uniaxial compressive strengt	th of inta		-5,0E4
ļσ _{ci} ļ	kN/m ² 75,00E3		5 -4 0E4
Hoek-Brown parameters			Z
Determination	Derived		-3,0E4
m _b		1,677	0 -2,0E4
5		0,01062	1054
ă		0,5014	-1,054
m		10,00	0,04
GSI		70,00	0,0 -5,0E3 -1,0E4 -1,5E4
D		0,8000	σ's [kN/m²]
Rock mass parameters	Later.	1000	
U.C.	szu/m+	474,8	
σ _e	id4/m=	-7680	

Slika 5-37. Ulazni i izlazni podaci za proračun čvrstoće - Plaxis

Konačno, validacijom čvrstoće između programa, može se zaključiti da je potvrđena pretpostavka poklapanja rezultata do 10% u slučaju idealnih uvjeta. Prema Škrlec (2023.) potvrda se temelji na sljedećim uvjetima prilikom analize:

- 1. homogeni i izotropni materijal koji okružuje tunelski otvor,
- 2. linearno-elastično ponašanje materijala,
- 3. ravninsko stanje naprezanja,
- 4. beskonačno polje,
- 5. savršena geometrija.

6. ZAKLJUČAK

U radu je iznesen uvid u analizu naprezanja, geotehnička i geološka istraživanja, te svojstva i ponašanje stijenskih masa prilikom iskopa kružnog otvora u stijenskoj masi.

Kroz istraživanje je proučena analiza sekundarnih naprezanja, pomaka i čvrstoće stijenske mase kod tunela kružnog presjeka te su rezultati dobiveni korištenjem rješenja razvijenog u sklopu programskog jezika *Python* uspoređeni s rješenjima geotehničkog programa *Plaxis*. Analizirani su pojedini rezultati proračuna na temelju zadavanja istih ulaznih vrijednosti u oba programa, gdje je to bilo moguće. S obzirom da je *RockStressCalc*, program razvijen u sklopu rada temeljen na analitičkom rješenju, dok *Plaxis* daje numeričko rješenje u vidu metode konačnih elemenata, usporedba rezultata se odnosila na različit kut promatranja točke na rubu tunela kružnog otvora.

Za kut promatranja od 0°, rezultati usporedne analize su sljedeći:

- Razlika od 0.28% između vrijednosti većih glavnih naprezanja ukazuje na zanemarivo odstupanje, što potvrđuje pouzdanost programa u analizi sekundarnih naprezanja.
- Razlika od 2.95% u vrijednostima pomaka također pokazuje zadovoljavajuće rezultate.

Za kut promatranja od 90°, razlika od 3.73% u vrijednostima pomaka je pokazala najveće odstupanje od savršenog podudaranja, ali se također pokazuje pouzdanom uzimajući početnu hipotezu u obzir.

Konačno, usporedba kriterija čvrstoće je neovisna o kutu promatranja te je za istu dobiveno potpuno podudaranje izlaznih vrijednosti dvaju programa.

Rezultati ovog istraživanja potvrđuju visok stupanj podudaranja između pojedinih rezultata dobivenih *RockStressCalc* softverom i *Plaxisom* u slučaju idealnih uvjeta te pouzdanost i primjenjivost razvijenog programa za proračun sekundarnih naprezanja i čvrstoće stijenske mase kod tunela kružnog presjeka.

LITERATURA

Bickel, J., Kuesel, T., King, E. 1996. *Tunnel Engineering Handbook*.(2). Massachusetts: Kluwer Academic Publishers.

Bieniawski, Z.T. 1989. Engineering Rock Mass Classification. New York: John Wiley & Sons.

Bieniawski, Z.T. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp. 1, str. 97-106. Cape Town: Balkema.

Deb, D., Verma, A.K. 2016. *Fundamentals and Applications of Rock Mechanics*. Delhi: PHI Learning Private Limited.

Eberhardt, E. n.d. *Stress Analysis Around Underground Openings*. Predavanje. Međunarodno društvo za mehaniku stijena (ISRM) URL: <u>https://www.eoas.ubc.ca/courses/eosc547/lecture-material/2007/Topic3-</u> <u>GroundReactionCurves.pdf</u> (15.1.2023.)

Frgić, L. 2013. *Tuneli*. Interna skripta. Zagreb: Sveučilište u Zagrebu, Rudarsko-geološkonaftni fakultet.

Hoek, E. 1983. Strength of Jointed Rock Masses. Géotechnique 33(3), str. 187-223.

Hoek, E., Kaiser, P.K., Bawden, W. 2012. *Support of Underground Excavations in Hard Rock.* (3). CRC Press.

Hoek, E., Carranza-Torres, C., Corkum, B. 2002. *Hoek-Brown Failure Criterion*. Proc. NARMS-TAC Conference, Toronto, 2002, 1, str. 267 – 273.

Hoek, E., Diedrichs, M.S. 2006. *Empirical Estimation of Rock Mass Modulus*. International Journal of Rock Mechanics and Mining Sciences, 43(2), str. 203-215.

Hoek, E. 2007. Practical Rock Engineering.

URL: <u>https://www.rocscience.com/learning/hoeks-corner</u> (5.1.2023.)

Hoek, E., Marinos, V. 2007. *The Geological Strength Index (GSI):* A characterization tool for assessing engineering properties of rock masses. Underground works under special conditions, Lisabon: Taylor & Francis.

Hoek, E., Brown, E.T. 2018. *The Hoek–Brown failure criterion and GSI – 2018 edition*. Journal of Rock Mechanics and Mining Sciences, 11(3), str. 445-463.

Hrestak, T. 2010. *A Contribution to Securing Low Overburden Tunnel Excavations*. PhD Thesis. Zagreb: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering.

Hudson, J.A., Harrison, J.P. 1997. *Engineering Rock Mechanics*. Oxford: Elsevier Science Ltd.

Hrženjak, P., Briševac, Z. 2009. *Upute i predlošci za laboratorijske vježbe i programe iz mehanike stijena*. Interna skripta. Zagreb: Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet.

Magdalenić, A. 1997. *Tehnička enciklopedija, svezak 13, Tunel.* Zagreb: Nacionalna i sveučilišna knjižnica, str. 203-209.

Sheorey, P. 1993. A Theory for In Situ Stresses in Isotropic and Transverseley Isotropic Rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.

Škrlec, V. 2023. Osobna komunikacija tijekom izrade rada, 20.1.2023.

Terzaghi, K., Richart, F.E. 1952. *Stresses in rock about cavities*. Géotechnique 3, str. 57-90.

Timoshenko, S., Goodier, J.N. 1951. *Theory of Elasticity*. (2). Palo Alto: McGraw-Hill Book Company.

Vrkljan, I. 2013. *Podzemne građevine i tuneli*. Građevinski fakultet. Sveučilište u Rijeci, Institut građevinarstva Hrvatske d.d., Zagreb.