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LOCI OF CENTERS IN PENCILS OF TRIANGLES IN THE
ISOTROPIC PLANE

Ema Jurkin

Abstract. In this paper we consider a triangle pencil in an isotropic
plane consisting of those triangles that have two fixed vertices, while the
third vertex is moving along a line. We study the curves of centroids,
Gergonne points, symmedian points, Brocard points and Feuerbach points
for such a pencil of triangles.

1. Introduction

In [7] the authors considered a triangle pencil in an isotropic plane con-
sisting of the triangles that have the same circumcircle. They studied the loci
of their centroids, Gergonne points and symmedian points, while in [6] the
loci of the first and second Brocards points where observed.

In this paper we will do a similar study for the triangles that have two
fixed vertices and a vertex moving along a line. Furthermore, we will extend
the study with the locus of Feuerbach points.

Let us start by recalling some basic definitions and facts about the
isotropic plane. It is a real projective plane where the metric is induced
by a real line f and a real point F incident with it. All lines through the
absolute point F are called isotropic lines, and all points incident with the
absolute line f are called isotropic points. Two lines are parallel if they are
incident with the same isotropic point, and two points are parallel if they lie
on the same isotropic line. In the affine model of the isotropic plane where
the coordinates of points are defined by x = x1

x0
, y = x2

x0
, the absolute line

has the equation x0 = 0 and the absolute point has the coordinates (0, 0, 1).
For two non-parallel points A = (xA, yA) and B = (xB , yB) the distance is
defined by d(A,B) = xB − xA, and for two non-parallel lines p and q, given
by the equations y = kpx + lp and y = kqx + lq, the angle is defined by
∠(p, q) = kq − kp (see [8], [9]). The midpoint of points A and B is given by
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156 E. JURKIN( 1
2 (xA + xB), 1

2 (yA + yB)
)
, while the bisector of lines p and q is given by the

equation y = 1
2 (kp + kq)x+ 1

2 (lp + lq). A circle is defined as a conic touching
the absolute line at the absolute point and it has an equation of the form
y = ax2 + bx+ c, a, b, c ∈ R.

2. Pencil of triangles

A pencil consisting of the triangles that have two fixed vertices A, B and
a vertex C moving along a line p is observed. Without loss of generality, by
a suitable choice of coordinate system, we may assume that A and B have
coordinates (−1, 0) and (1, 0). We have to distinguish between two cases: (i)
p is a non-isotropic line, (ii) p is an isotropic line. In every section we shall
first focus on the case (i) and assume that p is given by the equation y = kx+l
(with k, l ∈ R), and than we will give the results for the case (ii) when p is
the isotropic line with the equation x = l (with l ∈ R).

Let a triangle ABC with vertices

(2.1) A = (−1, 0), B = (1, 0), C = (c, kc+ l)

be given. Its sides AB, BC, CA have the equations

(2.2) y = 0, y = kc+ l

c− 1 x− kc+ l

c− 1 , y = kc+ l

c+ 1 x+ kc+ l

c+ 1 ,

respectively. Therefore, the midpoints of its sides are

(2.3) Am =
(
c+ 1

2 ,
kc+ l

2

)
, Bm =

(
c− 1

2 ,
kc+ l

2

)
, Cm = (0, 0),

and the angle bisectors bA, bB , bC are given by equations
(2.4)

y = kc+ l

2(c+ 1)x+ kc+ l

2(c+ 1) , y = kc+ l

2(c− 1)x− kc+ l

2(c− 1) , y = c(kc+ l)
c2 − 1 x− kc+ l

c2 − 1 ,

respectively.
This pencil contains four special (singular) triangles: when C coincides

with the point parallel to A or B, when C is the intersection point of p and
AB, and if C is the isotropic point of the line p.

In the case (ii) when the isotropic line p is given by the equation x = l,
l ∈ R, the vertices of the triangle ABC have the coordinates

(2.5) A = (−1, 0), B = (1, 0), C = (l, c),

and the sides have the equations

(2.6) y = 0, y = c

l − 1x− c

l − 1 , y = c

l + 1x+ c

l + 1 .
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3. Loci of centroids and symmedian points

It follows from (2.1) and (2.3) that the three medians AAm, BBm and
CCm of ABC in the case (i) are given by

(3.1) y = kc+ l

c+ 3 x+ kc+ l

c+ 3 , y = kc+ l

c− 3 x− kc+ l

c− 3 , y = kc+ l

c
x,

respectively, and they intersect at the point

(3.2) X2 =
(
c

3 ,
kc+ l

3

)
.

Instead of observing one triangle, we will observe the whole pencil of triangles.
When C runs along the line p, the centroid X2 runs along the curve kX2 which
is already parametrized by (3.2), Figure 1. Its equation y = kx+ l

3 is obtained
by eliminating c from equations

x = c

3 , y = kc+ l

3 .

Therefore, the following statement holds:

Theorem 3.1. Let the points A and B and the non-isotropic line p be
given. The trace of centroid of all triangles ABC such that C lies on p is a
line parallel to p.

The symmedians are the reflections of medians in the bisectors. Therefore,
we can easily calculate their equations

sA ... y = 2(kc+ l)
(c+ 1)(c+ 3)x+ 2(kc+ l)

(c+ 1)(c+ 3) ,

sB ... y = −2(kc+ l)
(c− 1)(c− 3)x+ 2(kc+ l)

(c− 1)(c− 3) ,(3.3)

sC ... y = (c2 + 1)(kc+ l)
c(c2 − 1) x− 2(kc+ l)

c2 − 1 .

They intersect in the symmedian point of ABC

(3.4) S =
(

4c
c2 + 3 ,

2(kc+ l)
c2 + 3

)
.

By eliminating c from the equations

x = 4c
c2 + 3 , y = 2(kc+ l)

c2 + 3 ,

the equation
(3.5) (3k2 + l2)x2 − 12kxy + 12y2 + 4klx− 8ly = 0
of the locus kS of symmedian points is obtained, Figure 1. Thus, we have
proved:
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Theorem 3.2. Let the points A and B and the non-isotropic line p be
given. The curve of symmedian points of all triangles ABC such that C lies
on p is an ellipse kS.

A B

C

p

X2

S

kX2

kS

x

y

Figure 1. The locus kX2 of centroids and the locus kS of
symmedian points for the pencil of triangles with two fixed
vertices A, B, and the third vertex C moving along the line
p.

In the isotropic plane the center of the conic is defined as the pole of the
absolute line with respect to the conic, while the axis of the conic is defined
as the polar of the absolute point (see [2]). Therefore, the conic kS has the
center in the point (0, l3 ) and the line with equation y = k

2x + l
3 is its axis.

Indeed,  0 2kl −4l
2kl 3k2 + l2 6k
−4l −6k 12

 1
0
l
3

 =

 4l2
3
0
0

 ∼

 1
0
0


and  0 2kl −4l

2kl 3k2 + l2 6k
−4l −6k 12

 0
0
1

 =

 −4l
−6k
12

 ∼

 l
3
k
2

−1

 .
The center (0, l3 ) of the locus kS obviously lies on the locus kX2 with the

equation y = kx+ l
3 .

The intersection points of the conic with its axis are called foci of the
conic (see [9, p. 72]). Thus, the foci of kS are points with coordinates(

± 2
√

3
3 , ±

√
3k+l
3

)
.
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Let us notice that the ellipse kS passes through the midpoint (0, 0) of the
line segment AB. The tangent line t at that point, given by the equation
y = k

2x, is parallel to the axis of the ellipse.

If the given line p passes through the midpoint (0, 0) of the line segment
AB, i.e., l = 0, the locus of symmedian points kS becomes a singular conic
with the equation (kx− 2y)2 = 0, the line t with multiplicity two.

We shall now observe the special case of pencil of triangles having two
fixed vertices A = (−1, 0), B = (1, 0), and a vertex C = (l, c) running along
the isotropic line p, and prove:

Theorem 3.3. Let the points A and B and the isotropic line p be given.
The curves of centroids and symmedian points of all triangles ABC such that
C lies on p are isotropic lines.

Proof. Let a triangle ABC with vertices (2.5) be given. Using similar
method as in the case (ii) we get the centroid and the symmedian point to be

X2 =
(
l

3 ,
c

3

)
, S =

(
4l

l2 + 3 ,
2c

l2 + 3

)
,

respectively. Therefore, the curves kX2 and kS have equations x = l

3 and

x = 4l
l2 + 3, respectively.

4. Locus of Gergonne points

In order to determine the Gergonne point of the triangle ABC in case (i),
we should first calculate the equation of its incircle ki:

(4.1) 4(c2 − 1)y = (kc+ l)x2 + 2c(kc+ l)x+ c2(kc+ l).

It touches the sides BC, CA, AB at the points
(4.2)

Ag=
(
c+ 2, (c+ 1)(kc+ l)

c− 1

)
, Bg=

(
c− 2, (c− 1)(kc+ l)

c+ 1

)
, Cg=(−c, 0),

respectively. The lines AAg, BBg, CCg having the equations

AAg ... y = (c+ 1)(kc+ l)
(c− 1)(c+ 3) x+ (c+ 1)(kc+ l)

(c− 1)(c+ 3) ,

BBg ... y = (c− 1)(kc+ l)
(c+ 1)(c− 3) x− (c− 1)(kc+ l)

(c+ 1)(c− 3) ,(4.3)

CCg ... y = kc+ l

2c x+ kc+ l

2 ,
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respectively, intersect at one point, the Gergonne point G of the triangle ABC
(see [3]) with coordinates

(4.4) G =
(
c(c2 − 5)
c2 + 3 ,

(c2 − 1)(kc+ l)
c2 + 3

)
.

When C moves along the line p, the Gergonne point G moves along the curve
kG whose equation

(3k3 + kl2)x3 − (15k2 + l2)x2y + 24kxy2 − 12y3(4.5)
+(l3 − 5k2l)x2 + 8ly2 − (3k3 + kl2)x+ (15k2 + l2)y + 5k2l − l3 = 0

is obtained by eliminating c from equations

x = c(c2 − 5)
c2 + 3 , y = (c2 − 1)(kc+ l)

c2 + 3 .

This leads to:

Theorem 4.1. Let the points A and B and the non-isotropic line p be
given. The curve of Gergonne points of all triangles ABC such that C lies on
p is a rational curve of degree 3 passing through A and B.

Proof. Equation (4.5) is obviously the equation of a cubic. Also, it can
easily be checked that the coordinates of A = (−1, 0) and B = (1, 0) satisfy
that equation. A and B take the role of the Gergonne points of two special
triangles in the pencil, when C is a point on p parallel to B and A, respectively.

Figure 2 shows the incircle ki and Gergonne point G of a triangle ABC.
When the vertex C moves along the line p, the Gergonne point G moves along
the cubic kG.

The cubic kG intersects the absolute line at a real point and a pair of
conjugate imaginary points. To prove this fact, we switch to homogeneous
coordinates by setting x = x1

x0
, y = x2

x0
. Now, (4.5) takes the form

(3k3 + kl2)x3
1 − (15k2 + l2)x2

1x2 + 24kx1x
2
2 − 12x3

2 + (l3 − 5k2l)x2
1x0

+ 8lx2
2x0 − (3k3 + kl2)x1x

2
0 + (15k2 + l2)x2x

2
0 + (5k2l − l3)x3

0 = 0.

After inserting x0 = 0 we get solutions x2 = kx1 and x2 = 3k±
√

3li
6 x1, which

correspond to the isotropic points (0, 1, k) and (0, 1, 3k±
√

3li
6 ). The line p

touches kG at the isotropic point (0, 1, k).
After doing some elementary calculations and using the tools of differen-

tial geometry, we come to the conclusion that the cubic kG has a double point
in the point

D =
(

9k3 − 5kl2
l(3k2 + l2) ,

9k4 − 10k2l2 + l4

2l(3k2 + l2)

)
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A B

C

p

kG

ki

G

x

y

Figure 2. The locus kG of Gergonne for the pencil of tri-
angles with two fixed vertices A, B, and the third vertex C
moving along the line p.

and that D is a node, an isolated double point or a cusp depending on whether
l2 − k2 is greater than, less than, or equal to zero. If p passes through A
(l = k), the cusp coincides with B, and if p passes through B (l = −k), the
cusp coincides with A.

If the given line p passes through the midpoint (0, 0) of the line segment
AB, i.e., l = 0, two isotropic conjugate imaginary points of kG coincide with
the real isotropic point (0, 1, k2 ), the isolated double point of kG.

In the special case of pencil of triangles having two fixed vertices A, B,
and a vertex C running along the isotropic line p given by the equation x = l,
l ∈ R, the following result is obtained:
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Theorem 4.2. Let the points A and B and the isotropic line p be given.
The curve of Gergonne points of all triangles ABC such that C lies on p is
an isotropic line.

Proof. Let the triangle ABC with the vertices A = (−1, 0), B = (1, 0),
C = (l, c) be given. Using similar method as in the case (i) we obtain the
coordinates of the Gergonne point

G =
(
l(l2 − 5)
l2 + 3 ,

c(l2 − 1)
l2 + 3

)
and the equation of the curve kG

x = l(l2 − 5)
l2 + 3 .

5. Locus of Feuerbach points

In [1] and [10, pp. 109-115] the authors in different ways proved that in
a triangle in the isotropic plane the midpoints of the sides and the feet of
the altitudes lie on a circle, so-called Euler circle. They also proved that the
incircle ki and Euler circle ke touch each other in a point which is called the
Feuerbach point of the triangle ABC.

Let us now determine the equation of the Euler circle ke for the triangle
with vertices (2.1) and midpoints (2.3). It can be easily checked that ke has
the equation

(5.1) (c2 − 1)y = −2(kc+ l)x2 + 2c(kc+ l)x.

It follows from (4.1) and (5.1) that the Feuerbach point is

(5.2) Φ =
(
c

3 ,
4c2(kc+ l)
9(c2 − 1)

)
.

It can be noticed that Φ is parallel to the centroid X2 given by (3.2). By
eliminating c from the equations

x = c

3 , y = 4c2(kc+ l)
9(c2 − 1) ,

the equation

(5.3) 12kx3 − 9x2y + 4lx2 + y = 0

of the locus kΦ of Feuerbach points is obtained.
Figure 3 shows the incircle ki, Euler circle ke and Feuerbach point Φ of

a triangle ABC. When the vertex C moves along the line p, the Feuerbach
point Φ moves along the cubic kΦ.
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A B

kF

ki

ke

C

F

p

x

y

Figure 3. The locus kΦ of Feuerbach points for the pencil
of triangles with two fixed vertices A, B, and the third vertex
C moving along the line p.

Theorem 5.1. Let the points A and B and the non-isotropic line p be
given. The curve of the Feuerbach points of all triangles ABC such that C
lies on p is 2-circular rational curve of degree 3 having an ordinary double
point at the absolute point.

Proof. To determine the intersection points of the absolute line and kΦ,
we can write (5.3) in homogenous coordinates as
(5.4) 12kx3

1 − 9x2
1x2 + 4lx2

1x0 + x2x
2
0 = 0.

Since the absolute line is given by x0 = 0 we get two solutions, a double
solution x1 = 0 and solution x2 = 4

3kx1. Therefore, the absolute point
F = (0, 0, 1) is the intersection point with the intersection multiplicity 2, and
M = (0, 1, 4

3k) is the intersection point with the intersection multiplicity 1.
The absolute point F can have intersection multiplicity 2 in two ways, either
it is a double point of kΦ or it is a regular point in which kΦ touches the
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absolute line. We will prove that the first case is true and we will determine
the tangents of kΦ at F . Every line through F has the equation of the form
x = m, or in terms of homogeneous coordinates x1 = mx0. It intersects the
cubic (5.4) in the points whose coordinates (x0, x1, x2) satisfy equation
(5.5) x2

0
(
4m2(3km+ l)x0 + (1 − 9m2)x2

)
= 0.

Therefore, x0 = 0 is a double root and F is the intersection point counted
twice. The solution x0 = 0 will be a triple root and F , the intersection point,
counts three times if, and only if, m = ± 1

3 . We can conclude that F is a
node at which kΦ has tangents x = ± 1

3 . The absolute point takes the role of
the Feuerbach point of two special triangles in the pencil when C is the point
parallel to A or B, i.e., c = ∓1, respectively.

Let us now determine the tangent line of kΦ at its isotropic point M =
(0, 1, 4

3k). Every line through M has equation of the form y = 4
3kx + n, i.e.,

x2 = 4
3kx1 +nx0. It intersects the cubic (5.4) in the points whose coordinates

satisfy equation

x0

(
(4l − 9n)x2

1 + (4
3kx1 + nx0)x0

)
= 0.

When n = 4l
9 , x0 = 0 is a double root. Thus, the line with equation y =

4
3kx+ 4l

9 is the tangent line at the isotropic point M .
The curve kΦ intersects the fixed line AB in the points satisfying equations

(5.3) and y = 0. From 4x2(3kx+ l) = 0 we get intersection points Cm = (0, 0)
counted twice, and the point (− l

3k , 0). When C approaches the point in
which p meets AB, the Feuerbach point of the triangle ABC approaches the
obtained point (− l

3k , 0).
In the cases when p passes through A or B, the cubic kΦ splits onto an

isotropic line and a special hyperbola. To prove this fact, we will assume that
p passes through A which is precisely when l = k. The equation (5.3) turns
into

(3x+ 1)(4kx2 − 3xy + y) = 0.
The equation 3x + 1 = 0 represents an isotropic line, while the equation
4kx2 − 3xy + y = 0 represents the conic which intersects the absolute line at
the absolute point and the isotropic point of the line y = 4k

3 x. Similarly, if p
passes through B, kΦ splits onto the isotropic line with equation 3x − 1 = 0
and the special hyperbola with the equation 4kx2 − 3xy − y = 0.

In the case (ii) when the vertices of the triangle ABC have coordinates
given by (2.5), using similar method as above, we get the Feuerbach point to
be

Φ =
(
l

3 ,
4cl2

9(l2 − 1)

)
.
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The locus of Feuerbach points is, therefore, given by the equation

x = l

3
and the following theorem holds:

Theorem 5.2. Let the points A and B and the isotropic line p be given.
The curve of Feuerbach points of all triangles ABC such that C lies on p is
an isotropic lines.

We can see that the isotropic lines kX2 and kϕ coincide.

6. Loci of Brocard points

It was shown in [6] that for every triangle in the isotropic plane there exist
the first and second Brocard point, and they are unique. The first Brocard
point B1 is defined as the point such that its connections with the vertices
A,B,C form equal angles with the sides AB, BC, and CA, respectively. The
angle h is called the first Brocard angle. Analogously, the second Brocard point
B2 is defined as the point such that its connection lines with the vertices
A,B,C form equal angles with the sides AC, BA, and CB, respectively.
The angle is called the second Brocard angle and equals −h. The concept of
Brocard points was introduced in the isotropic plane as an analogue of the
concept of Brocard points in Euclidean plane given in [4].

If the vertices of the triangle ABC are given by (2.1), the first Brocard
point is

(6.1) B1 =
(
c2 + 4c− 1
c2 + 3 ,

4(c+ 1)2(kc+ l)
(c2 + 3)2

)
,

and the second Brocard point is

(6.2) B2 =
(

−c2 + 4c+ 1
c2 + 3 ,

4(c− 1)2(kc+ l)
(c2 + 3)2

)
.

Indeed, some elementary calculations show that

∠(AB1, AB) = ∠(BB1, BC) = ∠(CB1, CA) = −2(kc+ l)
c2 + 3 ,

and

∠(AB2, AC) = ∠(BB2, BA) = ∠(CB2, CB) = 2(kc+ l)
c2 + 3 .

The expressions

x = c2 + 4c− 1
c2 + 3 , y = 4(c+ 1)2(kc+ l)

(c2 + 3)2
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present the parametrization of the locus of the first Brocard points, an obvi-
ously rational quartic curve kB1. By eliminating c we get an implicit equation
of kB1:

(3k2 + l2)x4 + 4k(k + l)x3 + 4(l − 3k)x2y + 2(k − l)2x2(6.3)
− 8(k + l)xy + 16y2 − 4k(k + l)x+ 4(k − 3l)y − k2 − 4kl + l2 = 0.

Analogously, it can be shown that the equation of the locus of the second
Brocard points is

(3k2 + l2)x4 + 4k(l − k)x3 + 4(l + 3k)x2y − 2(k + l)2x2(6.4)
+ 8(l − k)xy + 16y2 + 4k(k − l)x− 4(k + 3l)y − k2 + 4kl + l2 = 0.

A

B

kB1

kB2

p

x

y

Figure 4. The locus kB1 of the first Brocard points and
the locus kB2 of the second Brocard points for the pencil of
triangles with two fixed vertices A, B, and the third vertex
C moving along the line p.
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Theorem 6.1. Let the points A and B and the non-isotropic line p be
given. The curve of the first Brocard points (the second Brocard points) of all
triangles ABC such that C lies on p is an entirely circular and rational curve
of degree 4 with a cusp at A (B). It touches p at the point parallel to B (A),
and the tangent line at B (A) is parallel to p.

Proof. We will prove the theorem for the curve of the first Brocard
points. The curve kB1 given by (6.3) is obviously a curve of degree 4. There-
fore, it intersects every line in 4 points. This particularly holds for the absolute
line f . To study the behavior of kB1 at the absolute line, we need to switch
to homogenous coordinates, similarly as we did in the proof of Theorem 5.1.
After inserting x0 = 0 (intersection with the absolute line) into the equa-
tion of kB1, we get (3k2 + l2)x4

1 = 0. Thus, x1 = 0 is fourfold solution and
F = (0, 0, 1) is the only intersection point of kB1 and f . This proves that
kB1 is an entirely circular quartic. Detailed studies of circular quartics in the
isotropic plane were given in [5].

It can be easily checked that every line through A, i.e., the line with the
equation of the form y = mx + m, intersects kB1 in A counted two times.
Indeed, after inserting y = mx+m into (6.3), we get
(1+x)2

(
−k2−4kl+l2+ 4km−12lm + 1m2− 2(k2−2kl+l2+ 6km−2lm)x + (3k2+ l2)x2

)
=0.

This leads to the conclusion that x = −1 is a double solution. It is a triple
solution precisely when m = l−k

2 . Thus, the tangent line at the cusp A is
given by y = l−k

2 x+ l−k
2 .

The line through B parallel to p has the equation y = kx− k. From (6.3)
we get

(x− 1)2 (11k2 + 8kl + l2 − 2(k2 − 4kl − l2)x+ (3k2 + l2)x2) = 0.
Thus, B(1, 0) is the intersection point with intersection multiplicity 2. We
conclude that the tangent line of kB1 at B is given by y = kx− k.

To determine the intersection points of kB1 and p we need to insert y =
kx+ l into (6.3) and we get

(x− 1)2 (−k2 + 5l2 − 2(k2 − 4kl − l2)x+ (3k2 + l2)x2) = 0.
It follows that the line p touches kB1 in the point (1, k+ l) parallel to B. This
completes the proof.

Let us also notice that in the four special cases when C becomes parallel
to A, when C becomes parallel to B, when C becomes the intersection point
of p and AB, and when C becomes an isotropic point, the first Brocard point
of ABC is the point A, the point parallel to B (the contact point of kB1 and
p), the intersection point of kB1 and AB, and the point B, respectively.

We will now consider the cases when the loci of Brocard points degenerate.
When p passes through B, i.e., l = −k, the equation (6.3) turns into

4(kx2 − 2y − k)2 = 0.
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Thus, the curve kB1 of the first Brocard points degenerates onto a circle with
multiplicity two. The line p is the tangent line of the circle at B. Similarly, if
p passes through A, the curve kB2 of the second Brocard points degenerates
onto a circle with multiplicity two.

At the and observe the special case of pencil of triangles having two fixed
vertices A = (−1, 0), B = (1, 0), and a vertex C = (l, c) running along the
isotropic line p given by the equation x = l, l ∈ R.

Theorem 6.2. Let the points A and B and the isotropic line p be given.
The curves of Brocard points of all triangles ABC such that C lies on p are
isotropic lines.

Proof. Let a triangle ABC with vertices (2.5) be given. Using similar
method as in the previous sections we get the first and the second Brocard
point to be

B1 =
(
l2 + 4l − 1
l2 + 3 ,

4c(l + 1)2

(l2 + 3)2

)
, B2 =

(
−l2 + 4l + 1

l2 + 3 ,
4c(l − 1)2

(l2 + 3)2

)
,

respectively. Therefore, the curves kB1 and kB2 have equations x =
l2 + 4l − 1
l2 + 3 and x = −l2 + 4l + 1

l2 + 3 , respectively.
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Geometrijska mjesta središta u pramenovima trokuta u izotropnoj
ravnini

Ema Jurkin

Sažetak. U radu se promatra pramen trokuta u izotropnoj
ravnini koji sadrži trokute čija su dva vrha čvrsta, a treći leži
na danom pravcu. Proučavaju se krivulje težišta, Gergonnovih,
Brocardovih i Feuerbachovih točaka te sjecišta simedijana takvog
pramena.
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