Mogućnosti dizajniranja dubinskih mlaznih crpki u programu Prosper

Liović, Marin

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:519287

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-01

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Diplomski studij naftnog rudarstva

MOGUĆNOSTI DIZAJNIRANJA DUBINSKIH MLAZNIH CRPKI U PROGRAMU PROSPER

Diplomski rad

Marin Liović N406

Zagreb, 2023.

MOGUĆNOSTI DIZAJNIRANJA DUBINSKIH MLAZNIH CRPKI U PROGRAMU PROSPER

Marin Liović

Rad izrađen:Sveučilište u ZagrebuRudarsko-geološko-naftni fakultetZavod za naftno-plinsko inženjerstvo i energetikuPierottijeva 6, 10 000 Zagreb

Sažetak

U radu je odabrano naftno polje s bušotinom X, za koju se provodi analiza povećanja proizvodnih mogućnosti projektiranjem mlazne crpke u programu Prosper (Sveučilišna licenca za edukativne svrhe: #4186). Prosper je računalni program tvrtke Petroleum Experts koji služi za postavljanje proizvodnih modela bušotine, te za dizajn i optimizaciju različitih proizvodnih sustava. Prednost uporabe ovog računalnog alata je velika točnost i brza obrada podataka, kao i mogućnost široke primjene u praksi. Bušotinu X karakterizira dugogodišnja proizvodnja, pa se tlak ležišta smanjio, a udio vode u kapljevini popeo na 80%, te bi uskoro došlo do prestanka njenog eruptivnog rada. Pri postavljanju proizvodnog modela bušotini i ležištu. Proizvodno modeliranje se može podijeliti u nekoliko koraka, od unosa osnovnih ulaznih podataka za bušotinu s dubinskom crpkom, PVT karakteristika proizvodnog i pogonskog fluida, unosa podatka o opremi, kreiranja IPR i VLP krivulja, te konačnog odabira i dizajna dubinske mlazne crpke. Na kraju je provedena analiza osjetljivosti kako bi se odredile radne točke sustava tj. mogućnosti rada bušotine ukoliko bi došlo do daljnjeg povećanja udjela vode u proizvodnji, te za slučajeve ako bi se ležišni tlak nastavio smanjivati.

Ključne riječi:	proizvodno modeliranje bušotine, dubinska mlazna crpka, analiza osjetljivosti
Završni rad sadrži:	53 stranice, 11 tablica, 39 slika i 20 referenci.
Jezik izvornika:	Hrvatski
Pohrana rada:	Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb
Mentor:	Dr. sc. Sonja Koščak Kolin, docentica RGNF-a
Ocjenjivači:	1. Dr. sc. Sonja Koščak Kolin, docentica RGNF-a
	2. Dr. sc. Vladislav Brkić, izvanredni profesor RGNF-a
	3. Dr. sc. Borivoje Pašić, izvanredni profesor RGNF-a

POSSIBILITIES FOR THE DESIGN OF SUBMERSIBLE JET PUMP IN PROSPER SOFTWARE

Marin Liović

Thesis completed at: University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering Department of Petroleum and Gas Engineering and Energy Pierottijeva 6, 10 000 Zagreb

Abstract

In this thesis, an oil field with Well X was chosen for analysis, focusing on enhancing production capabilities through the design of a submersible jet pump using the Prosper program (University license for educational purposes: #4186). Prosper, a computer program developed by Petroleum Experts, is employed for creating production models for wells and optimizing various production systems. The program stands out for its high accuracy, fast data processing, and versatile practical applications. Well X exhibits long-term production, leading to a decline in reservoir pressure and an increase in water cut in the fluid, reaching 80%. The objective is to establish an optimal production system with a submersible jet pump based on the well and reservoir conditions. The production modeling involves several steps, including entering basic input data for a well with a submersible pump, defining PVT characteristics of the production and power fluid, inputting equipment data, creating IPR and VLP curves, and ultimately selecting and designing the submersible jet pump. To explore further possibilities, a sensitivity analysis was conducted to assess well operation under potential increases in water cut during production and scenarios where reservoir pressure continues to decrease.

Keywords:	well production modeling, submersible jet pump, sensitivity analysis		
Thesis contains:	53 pages, 11 tables, 39 figures and 20 references.		
Original in:	Croatian		
Archived in:	Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb		
Supervisors:	Assistant Professor Sonja Koščak Kolin, PhD		
Reviewers:	 Assistant Professor Sonja Koščak Kolin, PhD Associate Professor Vladislav Brkić, PhD 		
	3. Associate Professor Borivoje Pašić, PhD		

SADRŽAJ

1. UVOD		1
2. PRINC	TP RADA I DIJELOVI MLAZNE CRPKE	2
2.1. DI.	JELOVI MLAZNE CRPKE	4
2.2. Uc	GRADNJA CRPKE I ODABIR POGONSKOG FLUIDA	6
2.3. Pr	INCIP RADA MLAZNE CRPKE	8
2.3.1.	Kavitacija, erozija i emulzija	
2.3.1	.1. Kavitacija	15
2.3.1	.2. Erozija	16
2.3.1	.3. Emulzija	17
3. PRIMJ	ENA PROGRAMA PROSPER	
3.1. Di	ZAJNIRANJE MLAZNE CRPKE U PROGRAMU PROSPER	19
3.1.1.	Opis sustava	
3.1.2.	PVT podaci	
3.1.3.	Podaci o opremi	
3.1.4.	IPR podaci	
4. PROJE	EKTIRANJE PROIZVODNOG SUSTAVA S MLAZNON	M CRPKOM U
BUŠOTINI X.		
4.1. UL	AZNI PODACI ZA BUŠOTINU X	
4.1.1.	Podaci o opremi bušotine X	
4.1.2.	PVT podaci	
4.1.3.	Podaci za izračun IPR krivulje	
4.1.4.	Kriteriji za dizajniranje mlazne crpke	
4.2. Po	STAVLJANJE MODELA PROIZVODNE BUŠOTINE X	
4.2.1.	Analiza osjetljivosti i diskusija rezultata	
5. ZAKLJ	JUČAK	51
6. LITER	ATURA	

POPIS SLIKA

Slika 2-1. Shematski prikaz proizvodnje u sustavu s mlaznom crpkom	2
Slika 2-2. Shematski prikaz mlazne crpke	3
Slika 2-3. Shematski prikaz normalnog i reverznog toka kroz mlaznu crpku	4
Slika 2-4. Dijelovi mlazne crpke	4
Slika 2-5. Prikaz postavljanja i vađenja mlazne crpke	6
Slika 2-6. Promjena tlaka i brzine pogonskog fluida pri prolasku kroz mlaznu crpku	8
Slika 2-7. Shematski prikaz promjena u površini između grla i mlaznice	9
Slika 2-8. Nomenklatura mlazne crpke	9
Slika 2-9. Radne karakteristike mlaznih crpki	14
Slika 2-10. Odnos protočnog volumena i visine podizanja za različite omjere p	rotočne
površine grla i mlaznice	15
Slika 2-11. Shematski prikaz djelovanja pogonske kavitacije	16
Slika 3-1. Prikaz početnog prozora programa PROSPER	19
Slika 3-2. System summary prozor u programu PROSPER	22
Slika 3-3. PVT data prozor u programu PROSPER	23
Slika 3-4. Prikaz prozora Equipment data u programu PROSPER	24
Slika 3-5. Prikaz prozora Deviation Survey u programu PROSPER	25
Slika 3-6. Prikaz prozora Surface Equipment u programu PROSPER	26
Slika 3-7. Prikaz prozora Downhole equipment u programu PROSPER	27
Slika 3-8. Prikaz prozora Geothermal gradient u programu PROSPER	28
Slika 3-9. Prikaz Inflow performance relationship prozora u programu PROSPER	29
Slika 3-10. Prozor za unos podataka potrebnih za dimenzioniranje mlazne crpke	31
Slika 4-1. Podzemna oprema ugrađena u bušotinu X	32
Slika 4-2. Podaci o otklonu bušotine X	33
Slika 4-3. Poznati podaci potrebni za izračunavanje geotermalnog gradijenta	34
Slika 4-4. Prozor System Summary s ulaznim podacima o bušotini X	36
Slika 4-5. PVT - INPUT DATA prozor s unesenim podacima o bušotini X	37
Slika 4-6. Specifične topline nafte, plina i vode	38
Slika 4-7. Prozor IPR DATA s unesenim podacima o bušotini X	39
Slika 4-8. Podaci za izračun skina	40

Slika 4-9. Podaci za pješčani zasip	40
Slika 4-10. IPR krivulja	41
Slika 4-11. Ulazni podaci za proračun dubinske mlazne crpke	42
Slika 4-12. Proračunati podaci o mlaznoj crpki	42
Slika 4-13. Odabir dubinske mlazne crpke iz baze podataka programa prosper	43
Slika 4-14. Stvarne karakteristike mlazne crpke	44
Slika 4-15. Jet pump input data prozor	45
Slika 4-16. Analiza osjetljivosti za različite udjele vode	46
Slika 4-17. Analiza osjetljivosti za različite ležišne tlakove	48
Slika 4-18. VLP, IPR i krivulja potisnog tlaka crpke za slučaj 1 u Tablici 4-7	49

POPIS TABLICA

Tablica 2-1. Standardni promjeri i protočne površine sapnica i grla	5
Tablica 2-2. Prednosti i ograničenja nafte kao pogonskog fluida	7
Tablica 2-3. Prednosti i ograničenja vode kao pogonskog fluida	7
Tablica 2-4. Koeficijenti gubitaka prema različitim teorijama	12
Tablica 2-5. Standardizirani omjeri i njihove oznake	13
Tablica 4-1. Specifične topline nafte, plina i vode	33
Tablica 4-2. PVT podaci o ležišnom fluidu	34
Tablica 4-3. Osnovni podaci za izračun IPR krivulje	35
Tablica 4-4. Kriteriji za dizajniranje mlazne crpke	35
Tablica 4-5. Rezultati analize osjetljivosti za različite udjele vode	47
Tablica 4-6. Rezultati analize osjetljivosti za različite ležišne tlakove	49

Oznaka	Jedinica	Opis
Aj	m ²	površina otvora sapnice
As	m ²	dio protočne površine grla kojom protječe proizvodni fluid
At	m ²	protočna površina grla
E	%	djelotvornost mlazne crpke
g	m/s ²	gravitacijska konstanta
Н	m	potencijalna energija visine stupca
Н	-	omjer energija visine
K _d	-	koeficijent gubitaka u difuzoru
Kj	-	koeficijent gubitaka u mlaznici
Ks	-	koeficijent gubitaka prije ulaska u grlo
Kt	-	koeficijent gubitaka u grlu
L	J/s	Lorenzov gubitak energije u jedinici vremena
М	-	omjer protoka unutar crpke
р	bar	tlak
p _m	bar	tlak pogonskog fluida u mlaznici
p _u	bar	tlak fluida pri izlasku iz mlaznice (tlak usisa)
pg	bar	tlak fluida u grlu
pd	bar	tlak u difuzoru
q	m ³ /dan	protok
R	-	omjer protočnih površina mlaznice i grla
v	m/s	brzina
Vj	m/s	prosječna brzina pogonskog fluida kroz sapnicu
Vs	m/s	prosječna brzina pogonskog fluida prije miješanja s proizvodnim
Vt	m/s	prosječna brzina smjese fluida u grlu crpke

POPIS KORIŠTENIH OZNAKA I PRIPADAJUĆIH SI JEDINICA

1. UVOD

Ugljikovodici su glavni izvor energije modernog svijeta. S konstantnim povećanjem svjetske populacije raste i potražnja za energijom. Od početka proizvodnje nafte u 19. stoljeću razvile su se razne suvremene metode proizvodnje ugljikovodika. Primarna metoda je eruptivna proizvodnja. Ležišta ugljikovodika svojom "snagom" svladavaju otpore i podižu kapljevinu do ušća bušotine. Ležišna snaga očituje se u tlaku na kojem se ugljikovodici nalaze. Kapljevina se do ušća podiže zbog tlaka koji u ležištu stvaraju geološke strukture nad ležištem te prisutni voda i/ili plin. Kada je energija ležišta premala da bi se nastavilo eruptivno proizvoditi koriste se mehaničke metode. Mehaničke metode primjenjuju se kako bi se poboljšala proizvodnja i povećao iscrpak. Mehaničke metode su plinsko podizanje i korištenje dubinskih crpki. Postoje mnoge izvedbe dubinskih crpki kao što su klipne, koje su ujedno i najkorištenije, centrifugalne, vijčane, mlazne i druge. Mlazne crpke, za razliku od ostalih nemaju pokretnih dijelova i svoj rad ostvaruju prijenosom energije s pogonskog na proizvodni fluid. Najveća prednost mlaznih crpki, uz to što nemaju pokretnih dijelova, je što nemaju ni brtvećih dijelova koji su skloni trošenju. Zbog toga su povoljne za proizvodnju "nečistih" fluida koji u sastavu imaju plinove koji uzrokuju koroziju, onečišćeni su pijeskom ili su previskozni za druge vrste crpki. Uglavnom se koriste u visokoproduktivnim, zaplinjenim bušotinama. Unatoč svojim prednostima, mlazne crpke nisu primjenjive u svim bušotinama. Glavne dvije karakteristike mlaznih crpki koje ograničavaju njihovu primjenu jesu potreba za relativno visokim usisnim tlakom kako bi se izbjegla kavitacija, te njihova niska mehanička djelotvornost, što iziskuje višu pogonsku snagu nego u slučaju konvencionalne hidrauličke crpke (Zelić i Čikeš, 2006). Iz tog razloga potrebno je dobro ispitati ležište i dimenzionirati mlazne crpke kako bi proizvodnja bila ekonomski isplativa. S obzirom na to da su mlazne crpke relativno otporne na sve uvjete u ležištu, kao i na fizikalna te kemijska svojstva fluida, najbitniji faktor u dimenzioniranju je potrošnja energije za potiskivanje primarnog fluida. U ovom radu će se mlazna crpka dimenzionirati u programu Prosper u svrhu povećanja proizvodnih mogućnosti nafte na odabranoj bušotini X.

2. PRINCIP RADA I DIJELOVI MLAZNE CRPKE

Mlazne crpke posebna su vrsta hidrauličkih crpki. Za hidrauličke crpke postoje dva temeljna sustava pogonskog fluida. Otvoreni sustav u kojemu se pogonski i proizvodni fluid miješaju u bušotini i na površinu se vraćaju kao smjesa te zatvoreni sustav u kojemu pogonski fluid cirkulira u zatvorenom krugu i ne miješa se s proizvodnim fluidom. S obzirom na to da se u mlaznoj crpki miješaju pogonski i proizvodni fluid svojstvena joj je primjena samo otvorenog sustava pogonskog fluida. Otvoreni sustav jednostavniji je i ekonomičniji. Ono što umanjuje ekonomičnost otvorenog sustava je potreba za kontinuiranim dodavanjem primjesa zbog miješanja fluida. Slika 2-1. shematski je prikaz proizvodnje s mlaznom crpkom.

Slika 2-1. Shematski prikaz proizvodnje u sustavu s mlaznom crpkom (Fetoui, 2017)

U otvorenom sustavu, kakav se primjenjuje pri korištenju mlaznih crpki, potrebno je imati dva protočna kanala u bušotini. Jedan je kanal potreban za dovođenje pogonskog fluida, a drugi kanal služi za iznošenje smjese pogonskog i proizvodnog fluida do površine. U sastavu opreme s mlaznom crpkom ta dva kanala su tubing i prstenasti prostor. Pogonski se fluid može utiskivati kroz tubing ili kroz prstenasti prostor ovisno o orijentaciji mlaznice na dnu bušotinskog sklopa. Na Slici 2-2. prikazana je tipična mlazna crpka s mlaznicom okrenutom

prema dolje. U takvom se sustavu uglavnom proizvodi anularno, a pogonski fluid utiskuje se kroz tubing.

Slika 2-2. Shematski prikaz mlazne crpke (Prime Tech, 2019)

Za pogonski fluid koristi se uglavnom proizvedena voda i nafta. Fluid prolazi kroz mlaznicu koja stvara suženje što rezultira smanjenjem tlaka i povećanjem brzine fluida. Fluid pri izlasku iz mlaznice stvara vakum koji povlači proizvodni fluid iz usisne komore. Pogonski i proizvodni fluid miješaju se u grlu mlaznice iz kojega smjesa fluida izlazi s velikom kinetičkom energijom. Zatim smjesa ulazi u difuzor u kojemu se kinetička energija fluida pretvara u potencijalnu tj. tlačnu. Taj je tlak dovoljno visok da podigne smjesu fluida do ušća bušotine. Slika 2-3. prikazuje mlazne crpke s obrnuto okrenutim mlaznicama. Princip rada isti je kao i na Slici 2-2. osim što se, u slučaju kada je mlaznica okrenuta prema gore, smjesa fluida iznosi kroz tubing, a pogonski fluid se utiskuje kroz prstenasti prostor.

STANDARNI TOK

REVERZNI TOK

Slika 2-3. Shematski prikaz normalnog i reverznog toka kroz mlaznu crpku (Fetoui, 2017)

2.1. Dijelovi mlazne crpke

Kao što je već rečeno, mlazna crpka nema pokretnih niti brtvećih dijelova. Njen dizajn je jednostavan i odlikuju ga tri glavna dijela. Slika 2-4. prikazuje glavne dijelove crpke i fluide i smjer toka fluida.

Slika 2-4. Dijelovi mlazne crpke (Khammassi, 2021)

Glavni dijelovi mlazne crpke su mlaznica, grlo i difuzor. Mlaznica je prepreka protjecanju i smatra se "motorom" mlazne crpke s obzirom na to da je odgovorna za pretvaranje kapljevine pod visokim tlakom (potencijalna energija) u kapljevinu velike brzine (kinetička energija) (Khammassi, 2021). Drugi dio podzemnog sklopa mlazne crpke je vrat koji je uobičajeno većeg promjera od promjera mlaznice. Zbog razlike u površini ulaz u vrat je otvoren i kroz zazor između vrata i mlaznice kapljevina iz ležišta ulazi u crpku. Kapljevina iz ležišta ulazi u grlo zbog pada tlaka koji stvara mlaznica. U grlu se pogonski i proizvodni fluid miješaju prije ulaska u difuzor. Ono mora biti dovoljno dugo kako bi se fluidi izmiješali, ali ne predugo zbog otpora koji nastaju zbog trenja. El-Sawaf et al. (2011) nalaze da je optimalna duljina grla jednaka 7,25 duljina njegovog promjera. Također, Prabkeao i Aoki (2005) zaključili su da se duljina grla treba smanjiti s povećanjem otvora mlaznice. Tablica 2-1. prikazuje standardne promjere i protočne površine sapnice i grla.

Mlaznica		Grlo			
Broj	Promjer, mm	Površina, mm ²	Broj	Promjer, mm	Površina, mm ²
1	1,745	2,391	1	2,726	5,837
2	1,951	2,989	2	3,048	7,297
3	2,181	3,736	3	3,408	9,121
4	2,438	4,670	4	3,810	11,401
5	2,726	5,837	5	4,260	14,251
6	3,048	7,297	6	4,963	17,814
7	3,408	9,121	7	5,325	22,267
8	3,810	11,401	8	5,953	27,834
9	4,260	14,251	9	6,656	34,793
10	4,763	17,814	10	7,441	43,491
11	5,325	22,268	11	8,320	54,364
12	5,953	27,834	12	9,302	67,955
13	6,656	34,793	13	10,400	84,944
14	7,441	43,491	14	11,627	106,179
15	8,320	54,364	15	13,000	84,944
16		67,955	16	14,534	165,905
17		84,944	17	16,250	207,382
18		106,180	18	18,168	259,227
19		132,725	19	20,312	324,034
20		165,905	20	22,709	405,043
			21	25,390	506,303
			22	28,387	632,879
			23	31,737	791,099
			24	35,483	988,873

Tablica 2-1. Standardni promjeri i protočne površine sapnica i grla (Zelić i Čikeš, 2006)

Posljednji dio mlazne crpke je difuzor koji kinetičku energiju pretvara u potencijalnu energiju tlaka. Difuzor je konusna cijev koja se širi od grla prema van, odnosno prema unutarnjem promjeru tubinga. Teamia et al. (2012) tvrde da bi kut širenja difuzora trebao biti 5,5°, ali je taj kut teško odrediti i to se uglavnom radi eksperimentalno.

2.2. Ugradnja crpke i odabir pogonskog fluida

Jedna od najvećih prednosti mlaznih crpki je način njihove ugradnje. Crpka se ugrađuje i vadi samo cirkulacijom što uvelike umanjuje troškove jer nema dugačkih pauza u radu ni potrebe za remontnim postrojenjem. Slika 2-5. prikazuje proces ugradnje mlazne crpke.

Slika 2-5. Prikaz postavljanja i vađenja mlazne crpke (Lake, 2007)

Nakon zatvaranja bušotine i cirkuliranja, crpka se postavlja u tubing i potiskuje pogonskim fluidom. Donji protupovratni ventil crpke prilikom ugradnje zatvoren je i omogućava "utiskivanje" crpke do sjedišta u koje odsjeda. Proces vađenja također je jednostavan i odrađuje se obrnutom cirkulacijom kada je gornji protupovratni ventil zatvoren i omogućava podizanje crpke. Za vrijeme crpljenja ugradbeni protupovratni ventil otvara se pomoću proizvodnog fluida koji se "usisava" u usisnu komoru.

Kao što je spomenuto, pogonski fluid može se dovoditi kroz tubing (engl. *Direct circulation system*) ili kroz prstenasti prostor (engl. *Reverse circulation system*). Što se tiče pogonskih fluida, svaki ima svoje prednosti. Tablice 2-2. i 2-3. prikazuju prednosti i ograničenja proizvedene vode i sirove nafte kao pogonskih fluida.

Prednosti	Ograničenja		
Nafta po svojoj prirodi podmazuje pa se	U slučaju izlijevanja ili curenja nafta je		
smanjuje trošenje podzemne i nadzemne	opasna zbog svoje zapaljivosti		
opreme			
Proizvedena nafta kompatibilna je s	U slučaju izlijevanja ili curenja postoji		
proizvodnim fluidom	opasnost od zagađenja		
	Prevelika viskoznost može izazvati otpore		
	zbog trenja		
	Problemi s parafinom		

Tablica 2-2. - Prednosti i ograničenja nafte kao pogonskog fluida (Brown, 1965)

Tablica 2-3. - Prednosti i ograničenja vode kao pogonskog fluida (Brown, 1965)

Prednosti	Ograničenja		
Znatno jeftinija od nafte jer nema potrebe za	Voda ne podmazuje pa bi se trebali dodati		
velikim spremnicima	lubrikatori		
Manja opasnost od požara ili zagađenja	Potrebno je dodati inhibitore korozije		
okoliša ukoliko dođe do izlijevanja ili			
curenja			
Voda je uvijek dostupna, nakon uklanjanja	Ukoliko je proizvedena voda visokog		
čestica proizvedena voda može se koristiti	saliniteta postoji opasnost od nakupljanja		
kao pogonski fluid	soli u ventilima ili drugim dijelovima		
	opreme		

Najbitnija karakteristika nafte u odnosu na vodu je ta što voda ne podmazuje kao nafta. To je bitno zbog pumpi na površini kod kojih puno kasnije dolazi do zamora materijala kada se koristi nafta. Također, nafta je stlačiva pa pumpe ne trpe hidrauličke udare. Mana nafte je što u slučaju da je previskozna izaziva velike gubitke zbog trenja zbog čega treba povećati snagu utisnih pumpi. Topivost vode ujedno je i ograničenje i prednost jer se u vodu mogu dodati surfaktanti i inhibitori korozije. Uz vodu i naftu kao pogonski fluid koristili su se i dizel i plin. Dizel se, osim toga što je skup, ne koristi zbog svoje zapaljivosti i zato što je zagađivač. Plinu se prolazom kroz mlaznicu smanjuje temperatura pa postoji opasnost od stvaranja hidrata i začepljenja crpke. Odabir pogonskog fluida dakle ovisi o više čimbenika. Najbitniji je kompatibilnost s proizvodnim fluidom zbog rizika od stvaranja stalnih emulzija. Zbog ekoloških razloga, ali i zbog jednostavnosti rada s vodom, voda se uglavnom koristi kao pogonski fluid.

2.3. Princip rada mlazne crpke

Kao što je već rečeno, pad tlaka nakon izlaska pogonskog fluida iz mlaznice uzrokuje "povlačenje" proizvodnog fluida u crpku. Protok kroz crpku i količina proizvedenog fluida ovise o odabiru promjera mlaznice i grla (Tablica 2-1.). Promjena tlaka i brzine pogonskog fluida pri prolasku kroz mlaznu crpku prikazan je na Slici 2-6.

Slika 2-6. Promjena tlaka i brzine pogonskog fluida pri prolasku kroz mlaznu crpku (Pugh, 2005)

Promjena tlaka označena je crvenom linijom i može se prikazati preko 4 tlaka:

- p_m: Tlak pogonskog fluida u mlaznici
- p_u: Tlak fluida pri izlasku iz mlaznice (tlak usisa)
- pg: Tlak fluida u grlu
- p_d: Tlak u difuzoru

Pogonski fluid koji velikom brzinom izlazi iz mlaznice uzrokuje povlačenje proizvodnog fluida u grlo pumpe zbog pada tlaka i trenja koje se ostvaruje pri njihovoj interakciji. Povlačenje je odgovorno za miješanje dvaju fluida u grlu crpke. Smjesa fluida iz grla odlazi u difuzor čije se protočna površina postepeno povećava i time stvara efekt suprotan onome mlaznice. Brzina smjese fluida pada, a tlak raste na razinu koja treba biti dovoljna da se smjesa iznese na površinu. Zbog gubitaka u procesu tlak koji smjesa fluida ima na izlasku iz difuzora nije jednak onom tlaku s kojim je pogonski fluid došao do mlaznice (Pugh, 2005). Rad mlazne pumpe zasniva se na Bernoulijevom principu iz kojeg slijedi da se povećanje brzine fluida događa u isto vrijeme kao i pad tlaka. Također, rad se opisuje i zakonima očuvanja mase i gibanja. Slika 2-7. prikazuje razlike u površinama dvaju poprečnih presjeka, u slučaju mlazne crpke, grla i mlaznice.

Slika 2-7. Shematski prikaz promjena u površini između grla i mlaznice (Apsley, 2005)

Iz jednadžbe kontinuiteta slijedi da fluid koji ulazi u cijev u istoj količini mora izaći van, u slučaju da nema gubitaka. Slika 2-8. prikazuje nomenklaturu mlazne crpke.

Slika 2-8. Nomenklatura mlazne crpke (Jia et al., 2023)

Na slici su prikazane oznake koje redom predstavljaju:

 A_j – površina otvora sapnice (m²);

As – dio protočne površine grla kojom protječe proizvodni fluid (m²);

 A_t – protočna površina grla (m²);

p_{1,2,3}, - tlakovi pogonskog fluida (1), smjese fluida(2) i proizvodnog fluida (3) (Pa);

 $q_{1,2,3}$ - protoci pogonskog fluida (1), smjese fluida (2) i proizvodnog fluida (3) (m³/s);

H_{1,2,3}, - visina podizanja pogonskog fluida (1), smjese fluida (2) i proizvodnog fluida (3) (m).

Jednadžba kontinuiteta glasi:

$$v_1 \times A_1 = v_2 \times A_2 = q = const \tag{2-1}$$

Iz jednadžbe (2-1) po nomenklaturi sa Slike 2-7. mogu se izraziti:

Jednadžba kontinuiteta za mlaznicu:

$$q_1 = A_j \times v_j \tag{2-2}$$

gdje je:

vj – prosječna brzina protoka pogonskog fluida kroz mlaznicu (m/s),

Jednadžba kontinuiteta za "usisni" dio koji se nalazi između otvora mlaznice i početka grla:

$$q_3 = A_s \times v_s \tag{2-3}$$

gdje je:

vs – prosječna brzina proizvodnog fluida prije miješanja s pogonskim (m/s),

Jednadžba kontinuiteta za grlo mlaznice:

$$q_{2} = A_{t} \times v_{t}$$
(2-4)
ili
$$q_{2} = q_{1} + q_{3} = A_{t} \times v_{t}$$
(2-5)

gdje je:

 v_t – prosječna brzina smjese fluida u grlu mlaznice (m/s), te se može izraziti:

$$A_t = A_s + A_j \tag{2-6}$$

Iz jednadžbi 2-5 i 2-6 slijedi da je:

$$v_t = \frac{q_1 + q_3}{A_t} = \frac{q_1 + q_3}{A_s + A_j}$$

Za stacionarni protok neviskoznog i nestlačivog fluida poznata je osnovna Bernoulijeva jednadžba koja glasi:

$$\frac{p}{\rho} + \frac{v^2}{2} + gH = konst.$$
(2-7)

gdje su:

p – tlak (Pa);

 ρ - gustoća fluida (kg/m³)

v - brzina (m/s)

g – gravitacijska konstanta (m/s²)

p/ρ - specifična potencijalna energija tlaka, tj. energija jedinice mase fluida poradi tlaka po kojim se fluid nalazi (J/kg);

 $v^2/2$ – specifična kinetička energija brzine, tj. energija jedinice mase fluida poradi brzine protjecanja fluida (J/kg);

gH – specifična potencijalna energija položaja, tj. energija jedinice mase fluida poradi geodetske visine fluida (J/kg).

Dijeljenjem jednadžbe 2-7 s gravitacijskom konstantom (g) dobiva se njen često rabljeni oblik:

$$\frac{p}{\rho g} + \frac{v^2}{2g} + H = konst.$$
(2-8)

iz kojeg se može izraziti H:

$$H = \frac{p}{\rho g} + \frac{v^2}{2g} \tag{2-9}$$

gdje su:

H – potencijalna energija visine stupca (m)

 $\frac{p}{\rho q}$ – potencijalna energija poradi tlaka pod kojim se fluid nalazi

 $\frac{v^2}{2a}$ – kinetičku energiju poradi brzine protjecanja fluida

Rad mlazne crpke ovisi o četiri parametra koja su bazirana na teoremima Gosline-a i O'Brien-a (1934) i na laboratorijskim ispitivanjima. Ti parametri su:

• M - omjer (M) koji je funkcija protoka u pumpi, a može se izraziti kao:

$$M = \frac{q_3}{q_1}$$
(2-10)

• R - omjer (R) koji je geometrijska karakteristika crpke, a računa se kao omjer protočnih površina mlaznice i grla:

$$R = \frac{A_j}{A_t} \tag{2-11}$$

11

 H - omjer (H) koji se računa kao odnos povećanja i gubitka tlaka pogonskog fluida tijekom protoka kroz pumpu. Aproksimiran je statičkim tlakovima u pumpi pa se računa kao:

$$H = (p_2 - p_3)/(p_1 - p_2)$$
(2-12)

• Djelotvornost pumpe (E) koja je definirana kao snaga koju pogonski fluid dobiva pa gubi pri prolasku kroz crpku:

$$E = \left(\frac{q_3}{q_1}\right) \times \left(\frac{p_2 - p_3}{p_1 - p_2}\right) \times 100$$
(2-13)

ili, analogno ostalim parametrima

$$E = M \times H \times 100 \tag{2-14}$$

Teoriju mlaznih crpki razvio je 1870. J.M.Rankine, a uz njegov rad te rad Goslinea i O'Briena za razmatranje rada mlaznih crpki bitan je i Lorenzov rad iz 1910., a njegov model "gubitka miješanja" općenito je prihvaćen (Zelić i Čikeš, 2006).

Lorenz (1910) u svojoj knjizi Technicsche Hydromechanik tvrdi da su gubitci energije zbog miješanja proporcionalni kvadratu razlike brzina miješajućih struja:

$$L = q_1 \times \rho \times \frac{(v_j - v_t)^2}{2} + q_3 \times \rho \times \frac{(v_s - v_t)^2}{2}$$

gdje su:

L – Lorenzov gubitak energije u jedinici vremena (J/s)

 ρ - gustoća smjese fluida (kg/m³)

Gubitci u mlaznim pumpama ovise o omjeru površina grla i mlaznice (R), protocima (Momjer) i o tlakovima. Mnoge su teorije koje predlažu različite koeficijente gubitaka, a s pripadajućim autorima prikazani su u Tablici 2-4.

Tablica 2-4. Koeficijenti gubitaka prema različitim teorijama (Coppes et al., 1988)

	Kj	Ks	Kt	K _d	K _t +K _d
Gosline i	0,15	0,0	0,28	0,1	0,38
O'Brien					
Cunningham	0,1	0,0	-	-	0,3
Petrie et al.	0,03	0,0	-	-	0,2
Sanger	0,09	0,008	0,098	0,102	0,2

gdje su:

- K_j koeficijent gubitaka u mlaznici (-);
- K_S koeficijent gubitaka prije ulaska u grlo (-);
- Kt-koeficijent gubitaka u grlu (-);
- K_d koeficijent gubitaka u difuzoru (-).

Različiti iznosi koeficijenata rezultat su različitih omjera protočnih površina grla i protočne površine mlaznice. Danas su promjeri grla i mlaznica standardizirani i prikazani su u Tablici 2-1. Protočne površine mlaznica postupno se povećavaju od broja 1 do 20 koracima jednakim faktoru 1,25. Mlaznica 2 ima 1,25 puta veću površinu od mlaznice 1 itd. Protočne površine mlaznica takve su da najmanja mlaznica omogućuje protok 30 do 50 m³/dan za tipičnu bušotinu, a najveća 2500 do 3000 m³/dan (Zelić i Čikeš, 2006). Jednako tako povećavaju se i protočne površine grla. Grla i mlaznice dimenzionirani su tako da njihove kombinacije vode do određenih omjera R. U slučaju da se broj mlaznice i grla odnosno mlaznice označi s X tada će:

- Kombinacija mlaznice broja X i grla broj X dati omjer R= 0,410
- Kombinacija mlaznice broja X i grla broj (X+1) dati omjer R= 0,328
- Kombinacija mlaznice broja X i grla broj (X+2) dati omjer R= 0,262
- Kombinacija mlaznice broja X i grla broj (X+3) dati omjer R= 0210
- Kombinacija mlaznice broja X i grla broj (X+4) dati omjer R= 0,168

Nazovu li se standardizirani omjeri kao u Tablici 2-5. moguće je prikazati radne karakteristike mlaznih crpki (Slika 2-9.).

Standardizirani omjer R	Oznaka	Maksimalna
		djelotvornost, %
0,410	A	22,6
0,328	В	24,6
0,262	С	25,4
0,210	D	25,6
0,168	Е	25,6

Tablica 2-5. Standardizirani omjeri i njihove oznake

Slika 2-9. Radne karakteristike mlaznih crpki (Zelić i Čikeš, 2006)

Na slici je vidljivo kako različiti standardizirani omjeri protočnih površina pokrivaju široki raspon crpki. A crpka ima veliku energiju visine i nju treba rabiti u dubokim bušotinama, a crpka E ima malu energiju visine, ali veliki omjer protoka fluida. Efikasnost crpke A najveća je kada je omjer protoka 0,5 što znači da protok pogonskog fluida treba biti dva puta veći od protoka proizvodnog fluida. Crpka E ima najveću efikasnost kada omjer protoka iznosi 1,5 što znači da će protok proizvodnog fluida biti 1,5 puta veći od protoka pogonskog fluida. Slika 2-10. prikazuje odnose podizanja i protoka za crpke s omjerima A, C i E.

Slika 2-10. Odnos protočnog volumena i visine podizanja za različite omjere protočne površine grla i mlaznice (Pugh, 2014)

2.3.1. Kavitacija, erozija i emulzija

2.3.1.1. Kavitacija

Pri odabiru mlazne crpke potrebno je obratiti pozornost na kavitaciju. Prolaskom pogonskog fluida kroz mlaznicu zbog pada tlaka započinje isparavanje i stvaranje mjehurića pare. Mjehurići prate kretanje kapljevine i pri dolasku u područje višeg tlaka, kada je apsolutni tlak kapljevine ponovno viši od tlaka zasićenja para, kondenziraju u obliku implozije, a njihove prostore popunjava kapljevina zbog čega nastaje hidraulički udar. Kavitacija za posljedicu ima razaranje materijala stijenki crpke te smanjenje visine podizanja, protoka i djelotvornosti. Za mlazne crpke postoje dva tipa kavitacije:

 "Proizvodna kavitacija" – kavitacija nastala kao rezultat pada tlaka proizvodnog fluida na ulazu u grlo zbog prevelikog protoka u odnosu na protočnu površinu. Po jednadžbi kontinuiteta, ako se poveća protok kapljevine kroz određenu nepromijenjenu površinu njena brzina će se povećati i doći će do pada tlaka. Tada se u toku proizvodnog fluida pojavljuju mjehurići nekada i u tolikoj mjeri da zatvore ulaz u grlo i blokiraju proizvodnju. Prava štete crpki nastaje kada mjehurići implodiraju, najčešće uz stijenku grla. Uz oštećenja materijala njihova implozija uzrokuje i vibracije i šumove. Ovaj tip kavitacije često se javlja i u centrifugalnim pumpama;

 "Pogonska kavitacija" – kavitacija koja nastaje u prostoru između grla i mlaznice, a javlja se zbog velikih brzina i pada tlaka pogonskog fluida nakon izlaza iz mlaznice. Pad tlaka javlja se i zbog interakcije toka pogonskog fluida i toka proizvodnog fluida koji ima malu brzinu i volumen (Pugh, 2005). "Pogonska kavitacija" može uzrokovati štetu u grlu ili u difuzoru kao što je prikazano na Slici 2-11.

Slika 2-11. Shematski prikaz djelovanja pogonske kavitacije (Batool i Arhamna, 2010)

Čak i najmanje geometrijske promjene u grlu i difuzoru izazvane kavitacijom povećavaju trenje, pojačavaju turbulencije i sveukupno gubitke. Također, promjena u omjeru protočnih površina grla i mlaznice izazvati će pad djelotvornosti, a nekada i lom opreme.

2.3.1.2. Erozija

Erozija je gubitak ili trošenje materijala s površine opreme, tubinga itd. U mlaznim crpkama dijelovi koji su najizloženiji eroziji su grlo i difuzor. Javljaju se tri vrste erozije:

- Trošenje materijala čvrstim česticama (engl. Solid particle erosion) erozija koju izaziva pijesak, ukoliko proizvodni fluid ima puno pijeska mješavina fluida iznositi će se kroz prstenasti prostor zbog zaštite tubinga;
- Trošenje materijala kapljicama fluida (engl. *Liquid droplet erosion*) erozija koja se javlja zbog sudara brzog fluida i površine materijala;
- Trošenje materijala zbog korozije (engl. *Erosion corrosion*)

Kako bi se izbjegla erozija osjetljivih dijelova mlazne crpke proizvode se od krutih materijala kao što je volframov karbid. Korištenje krutih materijala omogućuje crpki duži rad i manje održavanja.

2.3.1.3. Emulzija

Emulzija je pojava miješanja dvaju nemješivih fluida. Kapljice jednog fluida dispergirane su u drugom fluidu. Zbog miješanja fluida unutar mlazne crpke potrebno je dodavati deemulgatore.

Uz emulziju, kavitaciju i eroziju u obzir je potrebno uzeti i ograničenja površinske opreme. Zbog ograničenja utisne pumpe potrebno je izabrati mlaznu crpku takvu da utisna pumpa može izdržati tlakove i potrebnu dobavu. To znači da kombinacija pumpi koja nudi maksimalnu proizvodnju nije optimalna kombinacija (Keneth, 2007).

3. PRIMJENA PROGRAMA PROSPER

Prosper je računalni program tvrtke Petroleum Experts Ltd. koji služi za analizu poboljšanja proizvodnih mogućnosti bušotine, te za dizajn i optimizaciju različitih proizvodnih sustava (PROSPER User Manual, 2018). Ime programa dolazi od kratice "<u>PRO</u>duction and <u>Systems PER</u>formance analysis software" i dio je softverskog paketa IPM (engl. Integrated Production Modeling), koji se koristi za projektiranje, analizu i optimizaciju svih sustava u proizvodnom inženjerstvu nafte i plina. U softveru je omogućeno sljedeće:

- VLP (engl. Vertical lift performance) proračun dinamičkog tlaka u tubingu i grafički prikaz;
- IPR (engl. *Inflow performance relationship*) prikaz krivulja i određivanje modela utoka fluida iz ležišta u bušotinu;
- Dimenzioniranje tubinga i zaštitnih cijevi;
- Modeliranje svih vrsta potpomognutog podizanja kapljevine;
- Primjena Nodal analize za proračun pada tlaka;
- Dimenzioniranje površinskih komponenti (separatori, pumpe, cjevovodi);
- Analiza osjetljivosti.

Prosper je svjetski standard u modeliranju proizvodnih parametara bušotine, a koristi se u proizvodnji i razradi naftnih i plinskih ležišta za predviđanje hidrauličkih i temperaturnih promjena u uzlaznim i površinskim cjevovodima. Prednost uporabe ovog računalnog alata je velika točnost i brza obrada podataka, kao i mogućnost široke primjene u praksi. To se posebice odnosi na proračune kojima se optimira sadašnje stanje proizvodnih bušotina, kao i na mogućnost efikasne analize budućih promjena u cjelokupnom sustavu. Program omogućuje izradu pouzdanih modela bušotina i generiranje PVT, VLP i IPR krivulja s pomoću numeričkih metoda kojima se usklađuje, odnosno "mečira" ugrađene korelacije s izmjerenim podacima.

IPM je programski paket koji uz PROSPER sadrži i numerički simulator ležišta (Mbal), korelacije PVT svojstava ležišnih fluida (PVTp), program za nadzor cijelokupne integrirane proizvodnje (Resolve), specijalizirani simulator ležišta i pribušotinske zone (Reveal), te program za analizu površinskog sustava i višefaznog protoka (Gap). Navedene programe je moguće digitalno povezati u svrhu modeliranja i optimizacije cjelokupnog proizvodnog sustava (Vedriš, 2023).

3.1. Dizajniranje mlazne crpke u programu PROSPER

Pri otvaranju PROSPER-a prikazuje se prozor kao na Slici 3-1.

Slika 3-1. Prikaz početnog prozora programa PROSPER

Prozor je podijeljen na sedam različitih dijelova tj. potprograma, koji su ovdje izvorno navedeni na engleskom jeziku, a u nastavku tekstualnog dijela su dani i na hrvatskom jeziku, pri čemu su za prijevod odabrani samo parametri čije značenje je ključno u postavljanju proizvodnog modela bušotine s dubinskom mlaznom crpkom:

- System summary
- PVT data
- Equipment data
- Analysis summary
- IPR data
- Well schematic
- Prozor koji prikazuje licencu

Dimenzioniranje bilo kojeg sustava potpomognutog podizanja kapljevine u PROSPER-u radi se u koracima. U daljnjem dijelu rada je korak po korak objašnjeno dimenzioniranje dubinske mlazne crpke.

3.1.1. Opis sustava

Otvaranjem prvog prozora prikazuju se opcije za unos podataka kao na Slici 3-2. System summary (hrv. opis sustava) je zapravo prozor u koji se unose osnovni podaci u bušotini. Prozor je i sam podijeljen na par dijelova. Opis proizvodnog fluida (engl. *Fluid description*) je dio u koji se unose podaci o proizvodnom fluidu. U izborniku fluid moguće je odabrati između nafte, nafte i vode, plina te kondenzata. Izbornik metoda (engl. *Method*) za proizvodnju nafte nudi dvije metode: Teška nafta (engl. *Black oil*) ili jednadžbu stanja (engl. *Equation of State*). Ovisno o odabranoj metodi, program nudi različite korelacije za usklađivanje s mjerenim podacima uz ugrađene metode linearne regresije. Za "Black oil" metodu nudi se sedam različitih korelacija, a za jednadžbu stanja izbor je sužen na Peng-Robinson ili Soave-Redlich-Kwong korelacije. Ukoliko se odabere neki drugi fluid, program će ponuditi ostale, poznate PVT korelacije. Pod opis fluida unosi se i tip separatora, stvaraju li se emulzije, odabire se viskoznost vode i modeli viskoznosti.

Dio prozora označen s "Well" služi kako bi se opisala bušotina. Definira se tip toka (engl. *Flow type*) koji opisuje kroz koji dio bušotine protječe proizvodni fluid. Program nudi tri opcije; tubing, zaštitne cijevi ili i jedno i drugo. Izbornik tipa bušotine (engl. *Well type*) nudi opcije za odabir između proizvodne, utisne, vodoutisne i bušotine koja proizvodi metan.

Umjetno podizanje (engl. *Artificial lift*) je dio prozora u kojemu se bira metoda umjetnog podizanja ukoliko postoji. Od cijelog niza ponuđenih metoda za plinsko podizanje neke od najpoznatijih su plinski lift (kontinuirani i povremeni), potopna ili uronjiva centrifugalna crpka, hidraulička i mlazna crpka, dubinska crpka s klipnim šipkama itd. Ovaj rad opisuje mlaznu crpku i njeno dimenzioniranje prikazano je u nastavku.

Dio prozora označen s "User information" (hrv. informacije o korisniku) služi kako bi tvrtke ili projektanti koji imaju veliku količinu projekata lakše pratili sve u stvarnom vremenu. Ovaj dio nema izbornika, osim za datum, već se svi podaci unose ručno.

Na desnoj strani prozora pri vrhu odabire se model računanja (*engl. Calculation Type*). Model se odnosi na tlak i temperaturu, u izborniku "Predict" bira se što će program aproksimirati. Ponuđeno je da program radi aproksimaciju samo tlaka ili tlaka i temperature. Ukoliko se odabere aproksimacija samo tlaka, temperaturu je potrebno ručno unijeti, a ukoliko je odabrana aproksimacija tlaka i temperature program će sam generirati tlačne i temperaturne profile. PROSPER temperaturu računa po tri modela: gruba pretpostavka (engl. *Rough Approximation*), entalpijska ravnoteža (engl. *Enthalpy Balance*) te napredna procjena (engl. *Improved Approximation*). Pri korištenju prvog modela unosi se koeficijent prijelaza topline, a PROSPER preko masenih protoka fluida u bušotini stvara temperaturni profil. Isto treba napraviti i ako se odabere napredna procjena temperature koja isto kao i opcija entalpijska ravnoteža prati promjene u sustavu. Zbog toga proračun kod ove dvije opcije traje duže, ali su dobre za praćenje promjena temperature u dugim cjevovodima itd. Iduća je sekcija "Well Completion" (hrv. bušotinsko opremanje) u kojoj se odabire tip opremanja bušotine. Izbornika tipa opremanja nudi "Cased hole" tj. zacijevljeni perforirani kanal bušotine ili "Open hole" u slučaju da je proizvodni interval otvoren tj. nezacijevljen.

Također, u toj sekciji je i izbornik kojim se bira kontrola utoka pijeska u bušotinu u slučaju da je takvo nešto ugrađeno. Reservoir (hrv. ležište) sekcija sadrži dva izbornika: izbornik za odabir broja proizvodnih kanala koji nudi Single Branch (hrv. jendnokalna bušotina) ukoliko bušotina ima jedan kanal ili Multilateral Well (hrv. višekanalna bušotina) ukoliko bušotina ima više proizvodnih kanala te izbornik u kojeg se unosi dolazi li do konusiranja plina ili ne. Posljednja je sekcija za ostaviti komentar ili napomenu kako bi se u slučaju promjene korisnika lakše shvatio razlog unosa podataka. Nakon unošenja svih podataka potrebno je odabrati Done (hrv. završeno) i time su uneseni svi osnovni podaci o bušotini.

System Summary (untitled)			- D X
Done <u>C</u> ancel	Report Export Help	Datestamp	
Fluid Description		Calculation Type	
Fluid	Oil and Water	Predict Press	ure and Temperature (offshore)
Method	Black Oil 💌	Model Rough	h Approximation 📃
		Range Full S	ystem 💌
Separator	Single-Stage Separator	Brine Modelling	
Emulsions	No	Brine Properties Correlation Defau	alt 🔽
PVT Warnings	Disable Warning		
Water Viscosity	Use Default Correlation		
Viscosity Model	Newtonian Fluid		
Well Flow Type Well Type	Tubing Flow	Well Completion Type Cased Sand Control None	d Hole
		· ·	
Artificial Lift Method	None		Branch
		Gas Coning No	• • • • • • • • • • • • • • • • • • •
User information		Comments (Cntl-Enter for new line)	
Company]		^
Field	J		
Location]		
Well			
Platform			
Analyst			
Date	13. studenog 2023.		
			~

Slika 3-2. System summary prozor u programu PROSPER

3.1.2. PVT podaci

Odabirom "PVT data" (hrv. PVT podaci) tipke otvara se prozor kao na Slici 3-3. Prozor s PVT podacima nudi niz opcija za unošenje podataka o fluidu. Prozor je podijeljen na pet dijelova. "Input data" (hrv. unos podataka) je dio prozora u koji se unose podaci o količini otopljenog plina u nafti GOR (engl. *Gas to oil ratio*), gustoća nafte i plina, salinitet vode (engl. *Water salinity*) te udio dušika, ugljikovog dioksida i sumporvodika. Odabiru se i korelacije za proračun tlaka zasićenja i faktora otopljenog plina i korelacija za računanje viskoznosti nafte. U donjem lijevom dijelu prozora nalazi se "Other data" (hrv. ostali podaci) dio je u kojemu je izbornik za odabir hidrauličkog modela fluida. Uz to, pri odabiru mlazne crpke potrebno je ispuniti podatke o pogonskom fluidu. Izbornik za odabir pogonskog fluida nudi vodu pri čemu treba unijeti njen salinitet i opciju "Other fluid" (hrv. drugi fluid) uz koju je potrebno unijeti sve podatke o fluidu. U desnoj gornjoj strani prozora prikazan je izbornik korelacija za proračun tlaka zasićenja i faktora otopljenog plina te korelacije za proračun viskoznosti nafte. U donjem desnom uglu nalazi se "Matching" sekcija koja služi za usklađivanje unesenih podataka metodom nelinearne regresije. U Matching odjeljak potrebno je unijeti dio podataka, barem udio otopljenog plina u nafti ili tlak zasićenja. Po

završetku unosa podataka potrebno je odabrati tipku Matching na gornjoj traci prozora kako bi se dobio pregled o točnosti odabranih korelacija. Ukoliko program izbacuje grešku ili vrijednosti koje se ne slažu s mjerenim podacima (ako postoje) potrebno je promijeniti odabir korelacija. Kada se dobiju zadovoljavajući podaci unos je potrebno završiti pritiskom na tipku Done. Unos PVT podataka bitan je za predviđanje varijacija tlakova i temperatura pri proizvodnji fluida.

PVT - INPUT DATA (untitled)				— 🗆 X
Dgne Cancel Match Data Matching Calculation	te Save Import Export	Help		Use Tables Tables
Input Data Input Options Composition Warnings		Pb, Rs, Bo Correlations Glaso Standing Lasater	Vazquez-Beggs Petrosky	Al-Marhoun De Ghetto
Solution GOR 0	scf/STB	Match Statistics Parameter	1 Parameter 2 Standard Deviation	Reset All
Oil Gravity 0	API	Bubble Point 1	0	Reset
Gas Gravity 0	sp. gravity	Oil FVF (Below Pb) 1	0	Reset
Water Salinity 0	ppm	Oil FVF (Above Pb) 1	0	Reset
Mole Percent H2S 0	percent	· · ·		
Mole Percent CO2 0	percent	Oil Viscosity Correlations Beal Beans Petrosky E	Fobogah Bergman-Sutton	De Ghetto De Ghetto Mod
Mole Percent N2 0	percent	Match Statistics	Standard	
Pb, Rs, Bo Correlation Glaso		Parameter	1 Parameter 2 Deviation	Reset All
Oil Viscosity Correlation Beal et al		Oil Viscosity 1	0	Reset
		Matching	1 1	
		Match Data Bubble Point Plot	Gas Oil Ratio Plot Oil FV	/F Plot Oil Viscosity Plot
Other Data Viscosity Emulsion Pump Power Fluid		Table Tempe 1 Image: Second secon	erature deg C e Point BARg	
Viscosity Modelling		Pressure	Gas Oil Ratio Oil	FVF Oil Viscosity
Viscosity Model Newtonian Fluid	•	(BARg)	(scf/STB) (RB/	(centipoise)
		1		
		2		
		3		v

Slika 3-3. PVT data prozor u programu PROSPER

3.1.3. Podaci o opremi

Nakon unosa i provjere podataka u fluidu za nastavak dimenzioniranja potrebno je otvoriti prozor Equipment data (hrv. podaci o opremi). Prozor nudi šest mogućih unosa podataka ovisno o njihovoj dostupnosti (Slika 3-4). Ti podaci su:

- 1. Deviation survey (hrv. otklon bušotine)
- 2. Surface equipment (hrv. površinska oprema)
- 3. Downhole equipment (hrv. podzemna oprema)
- 4. Geothermal gradient (hrv. geotermalni gradijent)
- 5. Average heat capacities (hrv. prosječne specifične topline)
- 6. Gauge details (hrv. detalji o ventilima)

EQUIPMENT DATA (untitled)						
Done Cancel All Report Export Reset Input Data Input Data Deviation Survey Surface Equipment Downhole Equipment Geothermal Gradient Average Heat Capacities Gauge Details	<u>E</u> dit Help	Summar	у			
Disable Surface Equipment No	•					

Slika 3-4. Prikaz prozora Equipment data u programu PROSPER

Odabirom prve opcije otvara se prozor za unos podataka o otklonu bušotine (Slika 3-5.). U prvi stupac prozora potrebno je unijeti mjerenu dubinu (engl. *Measured depth*), a u drugi stvarnu vertikalnu dubinu (engl. *True vertical depth*). Moguće je unijeti 20 točaka ukoliko postoji toliko podataka. U slučaju da je poznato više od 20 točaka PROSPER nudi opciju filtriranja (engl. *Filter*) smještenu na gornjoj traci prozora. Nakon filtriranja program bira točke koje najbolje opisuju putanju bušotine. Opcija Plot (hrv. nacrtaj) na gornjoj traci prozora omogućava prikaz trajektorije bušotine. Nakon unosa podataka pritiskom na tipku Done (hrv. završeno), unos je spremljen i program ponovno pokazuje prozor za unos podataka o opremi.

Done	Cancel	<u>M</u> ain	Help Filter	Plot
□ <->	TVD			
		Calo	tulate	
put Da	ata		1	1
Point	Measured Depth	True Vertical Depth	Cumulative Displacement	Angle
	(m)	(m)	(m)	(degrees)
1			0	0
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				

Slika 3-5. Prikaz prozora Deviation Survey u programu PROSPER

Nakon unosa podataka o otklonu bušotine potrebno je unijeti podatke o površinskoj opremi. U prozoru za površinsku opremu (Slika 3-6.) moguće je unijeti sve specifikacije površinske opreme. Duljina cjevovoda, koljena, sapnice, filtere i proširenja. Potrebno je unijeti i temperaturu radne okoline (engl. *Temperature of surroundings*) i koeficijent prijelaza topline (engl. *Overall heat transfer coefficient*). S obzirom na to da je u ovom slučaju pri dimenzioniranju mlazne crpke potrebno znati samo dinamički tlak na ušću, ova se opcija u ovom radu neće koristiti, a onemogućiti će se pri dnu Equipment data prozora u izborniku Disable surface equipment (hrv. onemogući površinsku opremu).

	SURFACE	EQUIPMENT	(untitled)
--	---------	-----------	------------

Done	Cancel	Main Impor	t Export	Report	Pļot	Pipe Schedule	Help	
Coordina Choł	te System TVD, Leng ke Method ELF	յth	• •	Temper Overall Hea	ature of Surroun at Transfer Coeff	idings ficient	deg C W/m2/K	
nput Dat	aLabel	Туре	Pipe Length	True Vertical Depth	Pipe Inside Diameter	Pipe Inside Roughness	Rate Multiplier	1
			(m)	(m)	(m)	(inches)		1
1		Manifold		0				1
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								I
15								

Slika 3-6. Prikaz prozora Surface Equipment u programu PROSPER

Idući unos koji je potrebno unijeti je unos o ugrađenoj podzemnoj opremi (engl. *Downhole equipment*). Pritiskom na Downhole equipment otvara se prozor kao na Slici 3-7. U ovaj se prozor unosi sva oprema od proizvodnog intervala do ušća. To obuhvaća zaštitne cijevi, tubing, sigunosni ventil i svu ostalu opremu koja može poslužiti za naknadnu ugradnju dodatne opreme i opremu koja stvara restrikciju ugradnji nove opreme. Bitno je naglasiti da program zadnju unesenu dubinu smatra dubinom bušotine ili dubinom vrha ležišta. Potrebno je unijeti unutarnje i vanjske promjere tubinga i zaštitnih cijevi te njihovu hrapavost zbog izračuna pada tlaka pri protjecanju. Površinska oprema i podzeman oprema povezane su pa se podaci unesi u prozor za unos podzemne opreme trebaju poklapati s podacima u prozoru za unos površinske opreme.

Х

DOWNHOLE EQUIPMENT (untitled)

Done	e <u>C</u> an	cel M	ain <u>I</u> m	port	Export E	eport 1	ubing DB	Casing <u>D</u> B	Help	
Input Da	ata									
Point	Label	Туре	Measured Depth	Tubing Inside Diameter	Tubing Inside Roughness	Tubing Outside Diameter	Tubing Outside Roughness	Casing Inside Diameter	Casing Inside Roughness	Rate ^ Multipli
			(m)	(m)	(inches)	(m)	(inches)	(m)	(inches)	
1		Xmas Tree	0							
2										
3										
4										
5										
6										
7										
8										
9										
10										
12										
13										
14										
15										
16										~
<										>

Slika 3-7. Prikaz prozora Downhole equipment u programu PROSPER

Nakon unosa podataka o podzemnoj opremi programu je potrebno dati podatke za izračun temperaturnog gradijenta. Program proračunava temperaturu okolnih stijena prema unosu podataka o temperaturama fluida na određenim dubinama. Zbog toga je prije unosa dubina i mjerenih temperatura potrebno unijeti i specifične toplinske kapacitete za vodu, naftu i plin koji se unose u opciji Average Heat Capacities kojoj se pristupa iz prozora Equipment data. Kao što je vidljivo na Slici 3-8. moguće je unijeti 20 različitih dubina i temperatura prema kojima program radi profil temperaturnog gradijenta okolnih stijena i koristi ga u narednim proračunima. Potrebno je unijeti minimalno dvije dubine iako je poželjno unijeti ih više. Za unos ovih podataka potrebno je poznavati otklon bušotine jer se unosi stvarna vertikalna dubina ili mjerena dubina. Odabirom opcije Plot moguće je grafički prikazati temperaturni gradijent.

 \times

GEOTHERMAL GRADIENT (untitled) - C					
Done Cancel Main Import Export Plot Help					
Overal	Heat Transfer Coef	ficient	W/m2/K		
Formatio	on Gradient				
Dept	Reference RKB	Enter Measured D	epth 💌		
Point	Formation TVD	Formation Measured Depth	Formation Temperature		
	(m)	(m)	(deg C)		
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Slika 3-8. Prikaz prozora Geothermal gradient u programu PROSPER

S unesenim podacima za računanje geotermalnog gradijenta završen je unos podataka vezanih uz bušotinu. Kao što je vidljivo na Slikama za unos svih podataka osim podataka vezanih uz otklon bušotine, sve podatke je moguće uvesti (engl. *Import*) iz vanjskog programa ukoliko postoje u takvom obliku. To uvelike ubrzava i olakšava proces unosa podataka.

3.1.4. IPR podaci

Idući korak pri dimenzioniranju je unos podataka o ležištu u svrhu izračuna IPR ili indikatorske krivulje. S tim se počinje odabirom na IPR data (hrv. IPR podaci) opciju. Prozor koji se otvara prilikom IPR data opcije prikazan je na Slici 3-9.

Slika 3-9. Prikaz Inflow performance relationship prozora u programu PROSPER

U gornjem lijevom dijelu prozora potrebno je izabrati model ležišta. Po odabranom modelu računati će se IPR krivulja, skin faktor i podaci vezani uz opremu za kontrolu utoka pijeska. Model se bira prema dostupnosti podataka. Neki modeli traže veći unos podataka, a neki aproksimiraju unose koji im nedostaju. Nakon odabira modela poznate podatke o ležištu potrebno je unijeti u Model data sekciju koja se nalazi na desnoj strani ekrana. Ukoliko je bušotina zacijevljena može se odabrati između tri analitička modela za proračun utjecaja skin faktora koji će računati geometrijski i mehanički skin ovisno o duljini, promjeru i broju perforacija, propusnosti oštećene zone itd. Nadalje je potrebno odabrati metodu kontrole utoka pijeska ukoliko postoji. Ponuđen je odabir između pješčanog zasipa (engl. *Gravel pack*), predpakiranog filtra (engl. Prepacked screen), žicom omotanog filtra (engl. *Wire wrapped screen*) i prorezanog lajnera (engl. *Slotted liner*). Nakon unosa podataka i definiranja modela, potrebno je unijeti podatke o ležištu (engl. *Reservoir data*). Podaci koje je potrebno unijeti su ležišni tlak i temperatura, udio vode i omjer plina i kapljevine. Nakon unosa svih podataka program generira IPR krivulju koju se može pogledati u odjeljku Results (hrv. rezultati).

Idući je korak odabir crpke za ugradnju. Program sam radi proračun crpke nakon što se u prozoru analysis summary odabere "Jet pump design". Prikaz proračunatih podataka prikazan je na Slici 3-10.

IET PUMP DESIGN INPUT DATA (T32_Designing_A_Jet_Pump.Out) (Matched PVT)

Calculate Pump Duty Export Done Cancel Report Help Input Data Select Pump Test - Nozzle (1) Throat (1) An 0.004 At 0.009 R 0.410 • Pump Depth (Measured) 1828.8 Maximum OD 0.16256 Results Design (Liquid) Rate 635.949 Sm3/day Desired Actua Water Cut 80 percent Parameter Units Total GOR 141.76 Sm3/Sm3 Well Head Pressure (BARa) 11.3554 1.01325 Top Node Pressure 11.3554 BARa Flowing BH Pressure (BARa) 198.834 198.834 Surface Injection Rate 1589.87 Sm3/day (BARa) Surface Injection Pressure 138.908 Pump Intake Pressure 112.322 112.322 BARa Nozzle Loss Coefficient 0.15 Pump Intake Rate (m3/day) 775.653 774.63 Suction Loss Coefficient Free GOR Entering Pump (Sm3/Sm3) 84.4035 84.3125 Throat Loss Coefficient 0.28 Pump Discharge Pressure (BARa) 174.857 112.322 Diffuser Loss Coefficient 0.1 Pump Dischage Rate (m3/day) 2354.44 2354.44 Surface Equipment Correlation Beggs and Brill Total GOR Above Pump (Sm3/Sm3) 141.76 141.76 Vertical Lift Correlation Petroleum Experts 2 1.03 1.01 Mass Flow Rate (Kg/day) 654101 654101 Total Fluid Gravity (sp. gravity) 0.87949 0.84438 Pump Duty Average Downhole Rate (m3/day) 743.707 774.63 inlet Temperature 8g @ Pump Intake Head Required (m) 725.798 0 Fluid Injection Rate Fluid Surface Injection Pressu Fluid Power required 53,7109 51.4399 (kW) n Pressure Flow Ratio (M) GLR @ Pump Intake(V/V) 0.039027 0.13644 Bo @ Pump Intake (m3/Sm3) 1.17205 1.17206 Inlet Temperature (deg C) 87.031 Bg @ Pump Intake (m3/Sm3) 0.0094842 0.009484 Power Fluid Injection Rate (Sm3/day) 1598.71 1598.71 Power Fluid Surface Injection Pressure (BARa) 138,908 138,908 (BARa) Nozzle Injection Pressure 293,397 293.397 Dimensionless Flow Ratio (M) n Dj = 0.00371) 0.46516 Dimensionless Head Recovery Ratio (H) 0.52755 ax Dj = 0.25715) Pump Efficiency (No Gas) (percent) 24.5393 Pump Efficiency (Gas) (percent) 24,541 atic Gradient ction Gradier (bar) (bar) Surface Power Required (kW) 540.572 luid E Algebraic Constant (N) 0.494 Area Ratio (R) 0.41 0.5

Slika 3.10. Prozor za unos podataka potrebnih za dimenzioniranje mlazne crpke

Program koristi sve prethodno unesene podatke kako bi napravio optimalan dizajn crpke. U odjeljku "Input data" potrebno je ispuniti podatke o dubini crpke, najvećem vanjskom promjeru crpke, očekivanim protocima te udjelu plina u vodi. Također, s obzirom na to da su gubitci u pumpi uglavnom tajni podaci određeni eksperimentalno, u ovom radu gubitci će imati iznose prema teoriji Goslinea i O'Briena. Nakon unosa podataka pritiskom na tipku "Calculate Pump Duty" (hrv. proračun crpke) program proračunava koje crpke mogu zadovoljiti zadane uvjete. Na temelju izračunatih podataka potrebno je odabrati pumpu. Kako bi se odabrala dobra pumpa potrebno je pregledati bazu podataka mlaznih crpki i odabrati onu koja omogućuje dovoljno velik protok. Nakon toga potrebno se vratiti u prozor za unos podataka za dizajniranje mlazne crpke i u gornjem desnom kutu prozora odabrati pumpu. Kako bi se crpka ubacila u model potrebno se vratiti na početni prozor i u odjeljku "Jet Pump" potvrditi podatke koji su automatski preneseni iz prozora za unos podataka potrebnih za dimenzioniranje mlazne crpke. Tada je unos podataka završen, a rezultati su detaljno prikazani na donjem desnom dijelu prozora.

×

4. PROJEKTIRANJE PROIZVODNOG SUSTAVA S MLAZNOM CRPKOM U BUŠOTINI X

U projektiranju (engl. Design) se pretpostavlja da naftno polje s bušotinom X, koja je odabrana za analizu povećanja proizvodnih mogućnosti, proizvodi već dugi niz godina. Tlak ležišta se smanjio, a udio vode u kapljevini popeo se na 80%. U ovom poglavlju projektira se sustav proizvodnje s dubinskom mlaznom crpkom, kako bi se povećao protok bušotine X. Za dizajniranje dubinske mlazne crpke koriste se koraci opisani u poglavlju 3.

4.1. Ulazni podaci za bušotinu X

4.1.1. Podaci o opremi bušotine X

Bušotina X odobalna je bušotina stvarne dubine 2743,2 metra. Bušotina je zacijevljena, a uz zaštitne cijevi i tubing ugrađen je i sigurnosni ventil. Slika 4-1. prikazuje ugrađenu podzemnu opremu. Ušće bušotine nalazi se na dubini od 182,88 metara jer se nalazi na dnu mora.

DO\	DOWNHOLE EQUIPMENT (T32_Designing_A_Jet_Pump.Out)							o x		
Don	Done Cancel Main Import Export Report Tubing DB Casing DB									
Point	Label	Туре	Measured Depth	Tubing Inside Diameter	Tubing Inside Roughness	Tubing Outside Diameter	Tubing Outside Roughness	Casing Inside Diameter	Casing Inside Roughness	Rate ^ Multipli
			(m)	(m)	(mm)	(m)	(mm)	(m)	(mm)	
1		Xmas Tree	182.88							
2		Tubing	304.8	0.10292	0.01524	0.1143	0.01524	0.16256	0.01524	1
3		SSSV		0.094488						1
4		Tubing	1828.8	0.10292	0.01524	0.1143	0.01524	0.16256	0.01524	1
5		Casing	2827.02					0.16256	0.01524	1
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										~
										>

Slika 4-1. Podzemna oprema ugrađena u bušotinu X

U prozor za unos podataka o podzemnoj opremi bitno je unijeti vanjske i unutarnje promjere tubinga i zaštitnih cijevi kako bi se prstenasti prostor točno definirao. U ovom slučaju koriste se zaštitne cijevi unutarnjeg promjera 0,163 m te tubing vanjskog promjera 0,1143 m i unutarnjeg promjera 0,103 m. Ugrađeni sigurnosni ventil ima unutarnji promjer 0,01 m koji je unesen u stupcu za unos unutarnjeg promjera tubinga (engl. Tubing inside diameter). Bušotina ima određeni otklon, a podaci o njemu prikazani su na Slici 4-2. Kao što je objašnjeno, unose se mjerena dubina i stvarna vertikalna dubina, a program izračunava horizontalni otklon i kut otklona.

DEVI	DEVIATION SURVEY (T32_Designing_A_Jet_Pu — 🛛 🗙					
Done	Cancel	Main	Help Filter	Plot		
MD <->	TVD					
		Calc	ulate			
nput Da	ata					
Point	Measured Depth	True Vertical Depth	Cumulative Displacement	Angle		
	(m)	(m)	(m)	(degrees)		
1	0	0	0	0		
2	182.88	182.88	0	0		
3	306.324	304.8	19.3374	9.01245		
4	1242.06	1219.2	218.019	12.2587		
5	2346.96	2286	505.668	15.0902		
6	2827.02	2743.2	652.043	17.7528		
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Slika 4-2. Podaci o otklonu bušotine X

Uz ugrađenu opremu i poznate podatke o otklonu potrebno je unijeti i mjerene podatke o geotermalnom gradijentu (Slika 4-3.) te specifične topline vode, nafte i plina koji su prikazani u Tablici 4-1.

Tablica 4-1. S	pecifične	topline	nafte,	plina	i vode
----------------	-----------	---------	--------	-------	--------

Fluid	Specifične topline, J/kg/K
Nafta	2219
Plin	2135,27
Voda	4186,8

🕛 GEO	THERMAL GRADIE	NT (T32_Designing –	
D <u>o</u> ne	Cancel Main	Import Export	<u>P</u> lot <u>H</u> elp
Overa	ll Heat Transfer Coef	ficient 49.0755	W/m2/K
Formati Dept	on Gradient h Reference RKB	Enter Measured D	epth 💌
Point	Formation TVD	Formation Measured Depth	Formation Temperature
	(m)	(m)	(deg C)
1	0	0	15.5556
2	182.88	182.88	4.44444
3	2743.2	2827.02	98.8889
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Slika 4-3. Poznati podaci potrebni za izračunavanje geotermalnog gradijenta

4.1.2. PVT podaci

Poznati podaci o proizvodnom fluidu znani su iz prethodnih labaratorijskih testiranja i prikazani u Tablici 4-2.

Tablica 4-2. PVT podaci o ležišnom fluidu

GOR	$141,76 \text{ m}^3/\text{m}^3$
Gustoća nafte	839,76 kg/m ³
Relativna gustoća plina	0,76
Salinitet vode	23 000 ppm

Prilikom unosa PVT potrebnih PVT podataka biti će potrebno unijeti i podatke o pogonskom fluidu. U ovom slučaju pogonski fluid je voda saliniteta 75 000 ppm.

4.1.3. Podaci za izračun IPR krivulje

U Tablici 4-3. prikazani su osnovni podaci za izračun krivulje. Uz njih potrebno je unijeti i podatke o svemu ostalome što utječe na utok fluida iz ležišta, a to su u ovom slučaju podaci o skinu i pješčanom zasipu.

Tablica 4-3.	Osnovni	podaci	za izračun	IPR kri	ivulje
		1			

Ležišni tlak	238,9 bar
Ležišna temperature	100°C
Udio vode	80%
Ukupni GOR	$141 \text{ m}^3/\text{m}^3$

4.1.4. Kriteriji za dizajniranje mlazne crpke

U sljedećoj tablici (4-4.) nalaze se glavni kriteriji za ugradnju dubinske mlazne crpke

Tablica 4-4. Kriteriji za dizajniranje mlazne crpke

Mjerena dubina ugradnje crpke (engl. <i>Pump</i> <i>Depth (Measured)</i>)	1828,8 m
Najveći dozvoljeni vanjski promjer crpke (engl. Maximum OD)	0,16256 m
Dizajnirani protok crpke (engl. Design rate)	636 m ³ /dan
Udio vode (engl. Water Cut)	80%
GOR	$141 \text{ m}^3/\text{m}^3$
Tlak na ušću bušotine (engl. Top Node Pressure)	7,9 bar
Protok pogonskog fluida (engl. Surface Injection Rate)	1590 m ³ /dan
Tlak pogonskog fluida (engl. Surface injection pressure)	139 bar
Koeficijent gubitka na mlaznici (engl. Nozzle Loss Coefficient)	0,15
Koeficijent gubitka u grlu (engl. Throat Loss Coefficient)	0
Koeficijent gubitka u difuzoru (engl. Diffuser Loss Coefficient)	0,28
Korelacija za gradijente tlakova (engl. Vertical Lift Correlation)	Petroleum Experts 2

4.2. Postavljanje modela proizvodne bušotine X

Ovo poglavlje prikazuje dimenzioniranje mlazne crpke prema koracima opisanima u poglavlju 3. Dimenzioniranje počinje početnim zaslonom (Slika 3-1.). Prvo je potrebno popuniti prozor "System Summary". Slika 4-4. prikazuje prozor s ulaznim podacima vezanim uz bušotinu X.

Slika 4-4. Prozor System Summary s ulaznim podacima o bušotini X

Na slici je vidljivo kako se proizvode nafta i voda, a odabrana metoda za buduće proračune je Black Oil. Na površini je jednofazni separator i nema emulzija. Odabrana je standardna korelacija za viskoznost vode i model viskoznosti. Bušotina je proizvodna, a za metodu umjetnog podizanja odabrana je dubinska mlazna crpka. Pogonski fluid se utiskuje u prstenasti prostor, a na površinu dolazi zajedno s proizvodnim kroz tubing. U modelu se predviđaju i temperatura i tlak po modelu grube aproksimacije. Bušotina je jednokanalna, nema konusiranja plina i ugrađen je pješčani zasip.

Nakon unosa osnovnih podatka o bušotini potrebno je unijeti podatke o fluidima. U PVT prozoru unose se podaci iz Tablice 4-2. Također, kao što je već rečeno potrebno je definirati i pogonski fluid. Pogonski fluid definira se u odjeljku prozora označenim crvenim kvadratom na Slici 4-5.

PVT - INPUT DATA (T19_Matching_Well_Test_For_Oil_Well.Ou	t)				- 0	×
Dgne Gancel Match Data Matching Calo	ulate Save Import Expor	t <u>H</u> elp PVI	l is MATCHED		Use Tables	ables
Input Data		Pb, Rs, Bo Correlations -				
Input Options Composition Warnings		Glaso Standing	Lasater Vazquez-Beggs	Petrosky Al-	Marhoun De Ghette	•
Solution GOR 141.76	Sm3/Sm3	Match Statistics	Parameter 1 Parameter 2	Standard Deviation Rese	t All	
Oll Gravity 839.763	Kg/m3	Bubble Point	1.00882 30.341	0 Res	et	
Gas Gravity 0.76	sp. gravity	Solution GOR	0.99175 -11.9479	0.55178 Res	et	
Water Salinity 23000	pom	OI FVF (Below Pb)	0.99279 0.0031069	0.001225 Res	et	
Note Descent Little		Oil FVF (Above Pb)	1 0.13703	Res	iet	
Mole Percent H25 0	percent					
Mole Percent CO2 0	percent	Oil Viscosity Correlations				_
Mole Percent N2 0	percent	Beal Beggs Pet	rosky Egbogah Berg	man-Sutton De G	ihetto De Ghetto M	lod
Pb, Rs, Bo Correlation Glaso			Parameter 1 Parameter 2	Standard Rese	t All	
Oil Viscosity Correlation Beal et al		Oil Viscosity	1.00125 0.0047828	0.001084 Res	et	
		Matching				
		Match Data Bubble	Point Plot Gas Oil Ratio	Plot Oil FVF Plot	Oil Viscosity Plot	
Other Data		Table	Temperature 98.888	9 deg C		
Viscosity Emulsion Pump Power Fluid			Bubble Point 1242.33	BARG		
- Power Fluid Data		Point	re Gas Ol Ratio	OI FVF	Oil Viscosity	^
Power Fluid Type Water		(BARa) (Sm3/Sm3)	(m3/5m3)	(mPa.s)	_
Water Saleity 75000	_	1 276.804	141.76	1.42	0.364	- 11
ppm ppm		2 242.33	141.76	1.432	0.35	_
		3 207.856	116.066	1.352	0.403	_
		4 166.487	88.6	1.273	0.48	_
		5 69.9608	33.668	1.12	0.7205	~

Slika 4-5. PVT - INPUT DATA prozor s unesenim podacima o bušotini X

Za pogonski fluid odabrana je obrađena morska voda saliniteta 75000 ppm. Na desnoj strani prozora moguće je odabrati korelacije za određene parametre. Glaso korelacija je odabrana za P_b, GOR, R_s i B_o, a za viskoznost je odabrana Beal korelacija. Nakon unosa svih podataka potrebno je odabrati "Match Data" kako bi se svi podaci uskladili. Zeleni kvadratić u kojem piše "PVT is MATCHED" znači da je sve dobro usklađeno i prozor se može zatvoriti pritiskom na tipku Done. Nakon definiranja svojstava fluida, potrebno je unijeti podatke o opremi. S početnog zaslona pritiskom na "Equipment data" otvara se prozor kao na Slici 3-4. Podaci o otklonu, podzemnoj opremi i geotermalnom gradijentu prikazani su na Slikama 4-1., 4-2. i 4.3. Podaci o površinskoj opremi ne unose se jer ne utječu na dizajniranje dubinske mlazne crpke. Slika 4-6. prikazuje prozor s unesenim vrijednostima specifičnih toplina nafte, plina i vode.

Average Heat Capacities	s (T32 —	
Done Cancel Main	Export He	elp D <u>e</u> fault
Cp Oil	2.219	KJ/Kg/K
Cp Gas	2.13527	KJ/Kg/K
Cp Water	4. 1868	KJ/Kg/K

Slika 4-6. Specifične topline nafte, plina i vode

S unosom specifičnih toplina završen je unos podataka u opremi i odabirom tipke Done podaci se spremaju i prikazuje se početni prozor.

Posljednji unos podataka prije dizajniranja dubinske mlazne crpke je unos podataka za dobivanje IPR krivulje. Odabirom sekcije IPR data iz početnog zaslona prikazuje se prozor kao na Slici 3-9. Nakon unosa poznatih podataka o bušotini X prozor izgleda kao na Slici 4-7. Odabran je Darcy kao model ležišta, korelacije za skin te pješčani zasip kao metoda zaštite od utoka pijeska.

Slika 4-7. Prozor IPR DATA s unesenim podacima o bušotini X

Uz osnovne podatke o ležištu potrebno je unijeti i podatke koji određuju utok fluida u bušotinu vezane uz skin i pješčani zasip. Slika 4-8. pokazuje podatke vezane u skin koji se unose u odijeljku model data u kartici "Mech-Geo Skin".

	Karakas+Tar	iq Mechanical Skin Model
Calculate Perforation De	talis - API RP43 Calculate Perforation Details - SP01	
Reservoir Permeability	50	md
Shot Density	26.2467	1/m
Perforation Diameter	0.010922	m
Perforation Length	0.23368	m
Perforation Efficiency	0.9	fraction
Damaged Zone Thickness	0.2032	m
Damaged Zone Permeability	25	md
Crushed Zone Thickness	0.00508	m
Crushed Zone Permeability	12.5	md
Shot Phasing	120	degrees
Wellbore Radius	0.1079	m
Vertical Permeability	5	md

Slika 4-8. Podaci za izračun skina

la sljedećoj slici prikazani su ulazr	ni podaci za postavljanje pješčanog za	sipa.

Reservoir Mode	el Mech-G	Seom Skin Dev	PP Skin Sand Control R	el Perms Viscosity Compaction	
				Gravel Pack Sand Control Model	
	Typical Value	s	Convel Dark Dermarkility	35000	
Gravel Type	Mesh Size	Lab Permeability	Perforation Diameter	0.010922	m
Ottawa Sand	12/20	mDarcy 500000	Shot Density	26.2467	1/m
	20/40	150000	Gravel Pack Length	0.1524	m
	40/60	60000	Perforation Interval	30.48	m
Carbolite	50/70 20/40	30000 350000	Deviation	13	degrees
Isonas	16/20	500000	Perforation Efficiency	0.9	fraction
торас	20/40	110000	Beta Factor Method	Calculated	
			Beta Factor	152779	1/m
			Phase Choice	Multi Phase	

Slika 4-9. Podaci za pješčani zasip

Nakon unosa svih podataka potrebno je odabrati "Calculate" kako bi program mogao izračunao podatke za IPR krivulju, maksimalnu teoretsku proizvodnju (engl. *Absolute Open Flow*) te indeks proizvodnosti. U ovom slučaju program je izračunao da je maksimalna

teoretska proizvodnja 2413 m³/dan. Odabirom tipke "Plot" moguće je prikazati IPR krivulju (Slika 4-10.).

Slika 4-10. IPR krivulja

Sada kada su uneseni svi podaci vezani uz ležište i bušotinu moguće je dizajnirati dubinsku mlaznu crpku. Prozor za dizajniranje mlazne crpke otvara se s početnog prozora na kratici "Design" u kojoj se odabere "Jet pump". Slika 4-11. prikazuje prozor za dizajniranje mlazne crpke ispunjen podacima iz Tablice 4-4.

Calculate Pump Duty	Done	Cancel Re	port E	Export	Help				
Input Data			Select Pump	o					
Pump Depth (Measured) 1	1828.8	m							
Maximum OD 0	. 16256	m							
Design (Liquid) Rate 6	535.949	Sm3/day	Results						
Water Cut 8	30	percent		Para	meter	Units		Desired	
Total GOR 1	141.76	Sm3/Sm3							
Top Node Pressure 7	7.90801	BARa		Well Hea	d Pressure	(BARa)	7.90801		
Surface Injection Rate 1	1589.87	Sm3/day		Flowing B	H Pressure	(BARa)	198.834		
Surface Injection Pressure 1	138.908	BARa		Pump Inta	ke Pressure	(BARa)	112.324		
Nozzle Loss Coefficient 0	0.15			Pump In	take Rate	(m3/day)	775.649		
Suction Loss Coefficient 0)) ~~		F	Free GOR E	intering Pump	(Sm3/Sm3)	84.4019		
Diffuser Less Coefficient 0	1.20		P	ump Discha	arge Pressure	(BARa)	169.672		
Surface Equipment Correlation B	Regions and Brill			Pump Dis	chage Rate	(m3/day)	2357.12		
Vertical Lift Correlation P	Petroleum Experts 2.1	.03 1.01		Total GOR	Above Pump	(Sm3/Sm3)	141.76		
,				Mass F	low Rate	(Kg/dav)	654101		
Pump Duty				Total Elu	id Gravity	(m. gravity	0.97729		
Well Head Pressure Flowing BH_Pressure	7.90801 198.834	(BARa) (BARa)		Average Dr	wohole Pate	(m3/dau)	745 573		
Pump Intake Pressure	112.324	(BARa)	· · · · · ·	Average Do	Millione Rate	(III)(day)	743.373		
Pump Intake Rate Free GOR Entering Pump	775.649 84,4019	(m3/day) (Sm3/Sm3)		Head H	Required	(m)	667.256		
Pump Discharge Pressure	169.672	(BARa)		Fluid Pow	er required	(KW)	49.3786		
Total GOR Above Pump	141.76	(m3/day) (Sm3/Sm3)		GLR @ Pum	p Intake(V/V)		0.039025		
Mass Flow Rate	654101	(Kg/day)		Bo @ Pu	mp Intake	(m3/Sm3)	1.17206		
Average Downhole Rate	745.573	(m3/day)		Inlet Ter	mperature	(deg C)	87.0319		
Head Required	667.256 49.3786	(m) (kW)		Bg @ Pu	mp Intake	(m3/Sm3)	0.009484		
GLR @ Pump Intake(V/V)	0.039025		P	ower Fluid	Injection Rate	(Sm3/day)	1598.71		
Inlet Temperature	87.0319	(m3/5m3) (deg C)	Power F	Fluid Surfac	e Injection Pres	sure (BARa)	138.908		
Bg @ Pump Intake	0.009484	(m3/Sm3)	N	Nozzle Injec	tion Pressure	(BARa)	293.4		
Power Fluid Surface Injection Press	sure 138.908	(BARa)	Din	nensionless	Flow Ratio (M)		0.46632		
Nozzle Injection Pressure Dimensionless Flow Ratio (M)	293.4 0.46632	(BARa)	Dimensio	onless Head	d Recovery Rati	o (H)	0.4635		
Dimensionless Head Recovery Ratio	o(H) 0.4635		F	Pump Efficie	ency (No Gas)	(percent)	21.6139		
Pump Efficiency (No Gas) Pump Efficiency (Gas)	21.6139 21.6154	(percent) (percent)		Pumo Effic	tiency (Gas)	(nercent)	21,6154		
Surface Power Required	540.579	(kW)		Surface Do	wer Remired	(percenty)	540 579		
Area Ratio (R)	0.55561			Alashraic	Tenetant (hi)	()	0 62661		
Aj (Nozzle Area)	0.15049			Algebraic C	Lonstant (N)		0.55561		
Dj (Nozzle Diameter)	0.011118	(m)		Area H	(atio (K)		0.5		
Dt (Throat Diameter) Power Fluid Rate (Min Di = 0.0037)	0.015724	(m) (Sm3/day)		Aj (Noz	zle Area)		0.15049		
Power Fluid Rate (Actual)	1598.71	(Sm3/day)		At (Thr	oat Area)		0.30098		
Mc (Ic = 0.80)	0.70689	(Sm3/day)		Dj (Nozzk	e Diameter)	(m)	0.011118		
Mc (Ic = 1.35)	0.59984			Dt (Throa	t Diameter)	(m)	0.015724		
Power Fluid Static Gradient	165.42	(bar)	Power	Fluid Rate	(Min Dj = 0.003	(Sm3/day)	0.11421		
Power Fluid Friction Gradient	-10.9282	(bar)	P	Power Fluid	Rate (Actual)	(Sm3/day)	1598.71		
No Cavitation Problems.			Power	Fluid Rate	(Max Dj = 0.257	715) (Sm3/day)	548.684		
				Mc (Ic	= 0.80)		0.70689		
1				Mc (Ic	= 1.35)		0.59984		
1				Mc (Ic	= 1.67)		0.55625		
1			Po	ower Fluid S	Static Gradient	(bar)	165.42		
1			Po	wer Fluid Fi	riction Gradient	(bar)	-10.9282		

Slika 4-11. Ulazni podaci za proračun dubinske mlazne crpke

Odabirom tipke "Calculate Pump Duty" program prikazuje proračunate podatke (Slika 4-12.)

Vell Head Pressure	7.90801	(BARa)
lowing BH_Pressure	199.314	(BARa)
Pump Intake Pressure	112.779	(BARa)
ump Intake Rate	774.967	(m3/day)
ree GOR Entering Pump	84.143	(m3/m3)
Pump Discharge Pressure	169.672	(BARa)
Pump Dischage Rate	2357.11	(m3/day)
otal GOR Above Pump	141.76	(m3/m3)
Mass Flow Rate	654101	(Kg/day)
Total Fluid Gravity	0.87757	(sp. gravity)
Average Downhole Rate	745.332	(m3/day)
Head Required	661.756	(m)
Fluid Power required	48.9716	(kW)
GLR @ Pump Intake(V/V)	0.038709	
Bo @ Pump Intake	1.17277	(m3/Sm3)
Inlet Temperature	87.0319	(deg C)
Bg @ Pump Intake	0.0094417	(m3/Sm3)
Power Fluid Injection Rate	1598.71	(m3/day)
Power Fluid Surface Injection Pressure	138.908	(BARa)
Nozzle Injection Pressure	293.4	(BARa)
Dimensionless Flow Ratio (M)	0.46617	
Dimensionless Head Recovery Ratio (H)	0.45983	
Pump Efficiency (No Gas)	21.4358	(percent)
Pump Efficiency (Gas)	21.4373	(percent)
Surface Power Required	540.577	(kW)
Algebraic Constant (N)	0.53817	
Area Ratio (R)	0.5	
Aj (Nozzle Area)	0.1507	
At (Throat Area)	0.3014	
Dj (Nozzle Diameter)	0.011126	(m)
Dt (Throat Diameter)	0.015735	(m)
Power Fluid Rate (Min Dj = 0.00371)	0.11405	(m3/day)
Power Fluid Rate (Actual)	1598.71	(m3/day)
Power Fluid Rate (Max Dj = 0.25715)	547.906	(m3/day)
Mc (Ic = 0.80)	0.70821	
Mc (Ic = 1.35)	0.6012	
Mc (Ic = 1.67)	0.55759	
Power Fluid Static Gradient	165.42	(bar)
Power Fluid Friction Gradient	-10 9282	(har)

Slika 4-12. Proračunati podaci o mlaznoj crpki

Kako bi se odabrala prava crpka potrebno je pregledati bazu podataka dubinskih mlaznih crpki i odabrati onu koja zadovoljava uvijete protoka pogonskog fluida. S obzirom na to da je za željeni protok kapljevine od 636 m³/dan (Tablica 4-4) potreban ukupan protok pogonskog fluida od 1590 m³/dan, treba odabrati crpku kojoj je taj protok između minimalnog i maksimalnog. U ovom slučaju odabrana je crpka s omjerom tipa A. Po klasifikaciji programa Prosper odabrana je mlaznica broj 18 promjera 0,011633 m te grlo broj jedan promjera 0,018169 m (Slika 4-13).

Done Cancel	Add Amend	Delete All	Import	Export Repo	ort	Create Import File	: <u>H</u> elp ≤	< ≥>		
Options GasLift	ESP HSP	PCP JET M	ultiPhase SF	RP						
Manufacturer	Pump Series	Pump Model	Ratio Type	Pump Size	Minimum Rate	Maximum Rate	Nozzle Number	Nozzle Diameter	Throat Number	Throat Diameter
Test	Sample	Pump #1	A	0.1143	31.8	47.7	1	0.0017457	1	0.0027264
lest .	Sample	Pump #1	A	0.1143	39.75	59.625	2	0.0019518	1	0.0030482
Test	Sample	Pump #1	A	0.1143	49.608	74.571	3	0.0021822	1	0.003408
Test	Sample	Pump #1	A	0.1143	62.01	93.174	4	0.0024397	1	0.0038102
Test	Sample	Pump #1	A	0.1143	77.592	116.388	5	0.0027277	1	0.0042599
Test	Sample	Pump #1	A	0.1143	96.99	145.485	6	0.0030497	1	0.0047628
Test	Sample	Pump #1	A	0.1143	121.158	181.896	7	0.0034096	1	0.0053249
Test	Sample	Pump #1	A	0.1143	151.368	227.37	8	0.0038121	1	0.0059535
Test	Sample	Pump #1	A	0.1143	189.21	284.292	9	0.004262	1	0.0066562
Test	Sample	Pump #1	A	0.1143	236.592	355.365	10	0.0047651	1	0.0074418
Test	Sample	Pump #1	A	0.1143	295.74	444.246	11	0.0053275	1	0.0083202
Test	Sample	Pump #1	A	0.1143	369.675	555.228	12	0.0059564	1	0.0093023
Test	Sample	Pump #1	A	0.1143	462.054	694.035	13	0.0066594	1	0.0104
Test	Sample	Pump #1	A	0.1143	577.488	867.504	14	0.0074454	1	0.011628
Test	Sample	Pump #1	A	0.1143	721.86	1084.38	15	0.0083243	1	0.013
Test	Sample	Pump #1	A	0.1143	902.325	1355.47	16	0.0093068	1	0.014535
Test	Sample	Pump #1	A	0.1143	1127.95	1694.3	17	0.010405	1	0.01625
Test	Sample	Pump #1	A	0.1143	1410.01	2117.88	18	0.011633	1	0.018169
Test	Sample	Pump #1	A	0.1143	1762.52	2647.35	19	0.013007	1	0.020313
Test	Sample	Pump #1	A	0.1143	2203.1	3309.11	20	0.014542	1	0.022711
Test	Sample	Pump #1	B	0.1143	31.8	47.7	1	0.0017457	2	0.0030482
Test	Sample	Pump #1	В	0.1143	39.75	59.625	2	0.0019518	2	0.003408
Test	Sample	Pump #1	В	0.1143	49.608	74.571	3	0.0021822	2	0.0038102
Test	Sample	Pump #1	В	0.1143	62.01	93.174	4	0.0024397	2	0.0042599
Test	Sample	Pump #1	В	0.1143	77.592	116.388	5	0.0027277	2	0.0047628
Test	Sample	Pump #1	В	0.1143	96.99	145.485	6	0.0030497	2	0.0053249
Test	Sample	Pump #1	B	0.1143	121.158	181.896	7	0.0034096	2	0.0059535
Test	Sample	Pump #1	B	0.1143	151.368	227.37	8	0.0038121	2	0.0066562
Test	Sample	Pump #1	B	0.1143	189.21	284.292	9	0.004262	2	0.0074418
Test	Sample	Pump #1	В	0.1143	236.592	355.365	10	0.0047651	2	0.0083202
Test	Sample	Pump #1	В	0.1143	295.74	444.246	11	0.0053275	2	0.0093023
Test	Sample	Pump #1	В	0.1143	369.675	555.228	12	0.0059564	2	0.0104
Test	Sample	Pump #1	В	0.1143	462.054	694.035	13	0.0066594	2	0.011628
Test	Sample	Pump #1	В	0.1143	577.488	867.504	14	0.0074454	2	0.013
Test	Sample	Pump #1	B	0.1143	721.86	1084.38	15	0.0083243	2	0.014535
Test	Sample	Pump #1	В	0.1143	902.325	1355.47	16	0.0093068	2	0.01625
Test	Sample	Pump #1	В	0.1143	1127.95	1694.3	17	0.010405	2	0.018168
Test	Sample	Pump #1	В	0.1143	1410.01	2117.88	18	0.011634	2	0.020313
Test	Sample	Pump #1	В	0.1143	1762.52	2647.35	19	0.013007	2	0.022711
Test	Sample	Pump #1	В	0.1143	2203.1	3309.11	20	0.014542	2	0.025391
Test	Sample	Pump #1	С	0.1143	31.8	47.7	1	0.0017457	3	0.0034106
Test	Sample	Pump #1	С	0.1143	39.75	59.625	2	0.0019518	3	0.0038131
Test	Sample	Pump #1	C	0.1143	49,608	74,571	3	0.0021822	3	0.0042632

Slika 4-13. Odabir dubinske mlazne crpke iz baze podataka programa prosper

Nakon pronalaženja pumpe koja zadovoljava protok pogonskog fluida potrebno se vratiti u prozor za dizajniranje mlazne crpke. Na desnoj strani izbornika potrebno je pronaći i odabrati željenu crpku kako bi program prikazao stvarne podatke u usporedbi sa željenima tj. projektiranima (Slika 4-14).

lect Pump			
st - Nozzle (18) Throat (1) An 0.165 At 0.	402 R 0.410		
sults			
Parameter	Units	Desired	Actual
Well Head Pressure	(BARa)	7.90801	9.11175
Flowing BH Pressure	(BARa)	199.314	199.314
Pump Intake Pressure	(BARa)	112.779	112.779
Pump Intake Rate	(m3/day)	774.967	773.946
Free GOR Entering Pump	(m3/m3)	84.143	67.168
Pump Discharge Pressure	(BARa)	169.672	171.524
Pump Dischage Rate	(m3/day)	2357.11	2357.11
Total GOR Above Pump	(m3/m3)	141.76	141.76
Mass Flow Rate	(Kg/dav)	654101	654101
Total Fluid Gravity	(sp. gravity)	0.87757	0.87623
Average Downhole Rate	(m3/day)	745.332	746.478
Head Required	(m)	661.756	684.346
Fluid Power required	(kW)	48.9716	50.6433
GLR @ Pump Intake(V/V)		0.038709	0.082112
Bo @ Pump Intake	(m3/Sm3)	1.17277	1.2232
Inlet Temperature	(deg C)	87.0319	
Bg @ Pump Intake	(m3/Sm3)	0.0094417	0.0074769
Power Fluid Injection Rate	(m3/day)	1598.71	1598.71
Power Fluid Surface Injection Pressure	(BARa)	138.908	138.908
Nozzle Injection Pressure	(BARa)	293.4	293.4
Dimensionless Flow Ratio (M)		0.46617	0.46689
Dimensionless Head Recovery Ratio (H)		0.45983	0.48201
Pump Efficiency (No Gas)	(percent)	21.4358	22.5044
Pump Efficiency (Gas)	(percent)	21.4373	22.5053
Surface Power Required	(kW)	540.577	540.577
Algebraic Constant (N)		0.53817	0.52291
Area Ratio (R)		0.5	0.40999
Aj (Nozzle Area)		0.1507	0.16476
At (Throat Area)		0.3014	0.40185
Dj (Nozzle Diameter)	(m)	0.011126	0.011633
Dt (Throat Diameter)	(m)	0.015735	0.018169
Power Fluid Rate (Min Dj = 0.00371)	(m3/day)	0.11405	0.11413
Power Fluid Rate (Actual)	(m3/day)	1598.71	1598.71
Power Fluid Rate (Max Dj = 0.25715)	(m3/day)	547.906	548.327
Mc (Ic = 0.80)		0.70821	1.01917
Mc (Ic = 1.35)		0.6012	0.86518
Mc (Ic = 1.67)		0.55759	0.80242
Power Fluid Static Gradient	(bar)	165.42	165.42

Slika 4-14. Stvarne karakteristike mlazne crpke

Iz prikazanih rezultata je vidljivo da crpka pri dinamičkom tlaku na ušću bušotine od 7,9 bar ostvaruje traženi protok proizvodnog fluida uz dinamički tlak na dnu od 199,31 bar, pri čemu je tlak smjese tj. potisni tlak (engl. discharge) 169,72 bar. Prema ovim podacima modeliran je proizvodni sustav bušotine, kako bi se mogla provesti analiza osjetljivosti za buduće promjene u sustavu, pa se primjerice kod rezultata u Tablici 4-6 vidi da program kod računatih vrijednosti radnih točaka sustava postavlja one vrijednosti koje su približne navedenima, odnosno da se dinamički tlak na dnu samo neznatno razlikuje i iznosi 198,63 bar, što znači da model sustava ima visoku točnost od oko 99%.

Nakon odabira crpke i prikaza stvarnih podataka potrebno je završiti unos pritiskom na tipku Done. Da bi se crpka ubacila u model potrebno je s početnog prozora otvoriti prozor "Jet Pump Input Data" (Slika 4-15.) u koju će biti preneseni podaci o prethodno odabranoj crpki.

📧 JET PUMP INPUT DATA (T19_Matching_Well_Test_For_Oil_Wel 🗕 🛛 🗙								
Dgne Cancel Report Export Help								
Input Data								
Pump Depth (Measured) 1828.8 m								
Maximum OD	0.16256	m						
Surface Injection Rate	1589.87	Sm3/day						
Surface Injection Pressure	138.908	BARa						
Nozzle Loss Coefficient	0.15							
Suction Loss Coefficient	0							
Throat Loss Coefficient	0.28							
Diffuser Loss Coefficient 0.1								
Current JET Pump Test - Nozzle (18) Throat (1) An 0.165 At 0.402 R 0.410								

Slika 4-15. Jet pump input data prozor

Pritiskom na tipku Done, crpka je ubačena u model i moguće je napraviti modeliranje proizvodnog sustava tj. proračun IPR i VLP krivulja te analizu osjetljivosti.

4.2.1. Analiza osjetljivosti i diskusija rezultata

Izračunata IPR krivulja za sustav s ugrađenom dubinskom mlaznom crpkom prikazana je na Slici 4-10. U ovom poglavlju su prikazane radne točke proizvodnog sustava i napravljena je analiza osjetljivosti, koja se provodi u svrhu prognoziranja rada bušotine u promijenjenim ležišnim uvjetima, koji se mogu očekivati u budućnosti. Za potrebe ovog rada napravljene su analize osjetljivosti s obzirom na promjenu tj. povećanje udjela vode u proizvodnji te, odvojeno, u slučaju promjene tj. pada ležišnog tlaka. Slika 4-16. prikazuje IPR i VLP krivulje te krivulje potisnog tlaka crpki za tri različita slučaja udjela vode u nafti. Pretpostavljeno je da bi udio vode mogao rasti s trenutnih 80%, pa su uz osnovni u iznosu od 80%, prikazani i udjeli od 90% i 95%. Ova analiza osjetljivosti predviđa koliko će se ugljikovodika proizvoditi u slučaju da ležišni tlak ne pada s trenutnih 242 bara, dok bi udio vode rastao.

Slika 4-16. Analiza osjetljivosti za različite udjele vode

Slučaj	Udio	p ₃ ,	p ₂ ,	q ₃ ,	q _w ,	q _o ,
	vode, %	bar	bar	m ³ /dan	m ³ /dan	m ³ /dan
1	80	198,63	169,92	643,36	514,69	128,67
2	90	204,17	177,16	574,52	517,07	57,45
3	95	207,34	180,85	531,81	505,22	26,59

Tablica 4-5. Rezultati analize osjetljivosti za različite udjele vode

Rezultati se odnose na nomenklaturu mlazne crpke i već opisane oznake uz Sliku 2-8., s time da program, osim grafičkog prikaza radnih točki na Slici 4-16., rezultate daje i preciznije tj. tabelarno. Stoga su u svrhu diskusije rezultata u Tablici 4-5. izdvojene samo ključne vrijednosti, pri čemu je u zadnje dvije kolone protok proizvodnog fluida, q₃, iskazan kao suma protočne količina vode, q_w, i proizvedene nafte, q_o. Slučaj 1 odnosi se na proizvodne mogućnosti crpke za koje je postavljen cjelokupni proizvodni model, a glavni zaključak ove analize je da bi odabrana crpka radila i kod povećanih udjela vode, ali uz znatno niže količine proizvedene nafte. U slučaju 2 proizvodnja nafte bila dva puta manja u odnosu na 1. slučaj i iznosila bi 57,45 m³/dan, a u slučaju 3 bi bila samo 26,59 m³/dan.

Radna točka proizvodnog sustava bušotine s dubinskom mlaznom crpkom odnosi se na protok i dinamički tlak bušotine (q_3 , p_3). Pri tome je p_3 tlak na IPR krivulji, ali se ova točka na Slikama 4-16 i 4-17 ne očitava kao kod eruptivnog rada bušotine na presjecištu VLP i IPR krivulja, već na presjecištu VLP-a i krivulje potisnog tlaka crpke (q_3 , p_2), jer proizvodne uvjete bušotine (q_3 , p_3) ostvaruje crpka i to uz tlak i protok pogonskog fluida (q_1 , p_1) iz Tablice 4-4 te uz projektirane karakteristike crpke na Slici 4-14.

Sljedećom analizom osjetljivosti određuje se koliko bi crpka proizvodila ukoliko bi se ležišni tlak tijekom vremena rada bušotine smanjivao, a udio vode bi ostao na 80% (Slika 4-17). Za potrebe rada odabrani su ležišni tlakovi u iznosima od 200 bar i 230 bar (slučajevi 1 i 2 u Tablici 4-6) u odnosu na trenutni tlak od 242 bar (slučaj 3), koji je isti kao i slučaj 1 u Tablici 4-5, ali se navodi i ovdje radi usporedbe rezultata.

Slika 4-17. Analiza osjetljivosti za različite ležišne tlakove

Slučaj	Ležišni	p ₃ ,	p ₂ ,	q ₃ ,	q _w ,	q ₀ ,
	tlak, bar	bar	bar	m ³ /dan	m ³ /dan	m ³ /dan
3	242	198,63	169,92	643,36	514,69	128,67
2	230	191,36	170,4	562,39	449,91	112,48
1	200	176,94	174,56	323,37	258,69	64,67

Tablica 4-6. Rezultati analize osjetljivosti za različite ležišne tlakove

Iz rezultata u Tablici 4-6. je slučajem 3 najprije prikazano trenutno stanje proizvodnih mogućnosti bušotine za koje je postavljen proizvodni model u programu Prosper, a slučaj 1 predstavlja najnepovoljniji prognostički model iz kojeg slijedi da bi crpka pri padu ležišnog tlaka na 200 bar i dalje mogla proizvoditi, ali bi protok nafte bio dva puta manji i iznosio bi 64,67 m³/dan. Ovaj dijagram izdvojeno je prikazan i na Slici 4-18., a iz presjecišta krivulja koje definiraju radnu točku, kao što je objašnjeno kod prethodne analize osjetljivosti, slijedi da su ovo ujedno i krajnji uvjeti rada odabrane crpke, u kojima ujedno dolazi i do smanjene efikasnosti.

Slika 4-18. VLP, IPR i krivulja potisnog tlaka crpke za slučaj 1 u Tablici 4-7

U svih šest slučajeva crpka ima efikasnost između 19,5% i 22% (Slika 4-14) izuzev najnepovoljnijeg u kojemu je efikasnost 17%. Dubinske mlazne crpke omjera A (Tablica 2-5) mogu imati maksimalnu djelotvornost od 22,6%, pa se ovakve vrijednosti smatraju zadovoljavajućima.

5. ZAKLJUČAK

Dubinske mlazne crpke se koriste u visokoproduktivnim, zaplinjenim bušotinama, a za razliku od ostalih dubinskih crpki nemaju ni pokretnih niti brtvećih dijelova koji su skloni trošenju. Zbog toga su povoljne za proizvodnju "nečistih" fluida koji u sastavu imaju plinove koji uzrokuju koroziju, onečišćeni su pijeskom ili su previskozni za druge vrste crpki. Primjenu im ograničava potreba za relativno visokim usisnim tlakom kako bi se izbjegla kavitacija, te njihova niska mehanička djelotvornost, što iziskuje višu pogonsku snagu nego u slučaju konvencionalne hidrauličke crpke. Iz tog razloga je pri projektiranju mlazne crpke potrebno dobro ispitati ležište, kako bi proizvodnja nafte bila i ekonomski isplativa.

Opisani koraci dizajniranja sustava dubinske mlazne crpke teško se provode ručno, pa je primjena program Prospera najčešća u praksi. Iteracijom je potrebno doći do optimalnog dizajna koji će omogućiti ostvarenje tražene proizvodnje tj. protoka fluida kroz duži period. Potrebno je pretpostaviti početne parametre u projektiranju, a podaci koji su neophodni za dizajniranje ovisni su jedni o drugima, te je cijeli proces složen i nepraktičan bez upotrebe specijaliziranih programa. U radu je pokazan primjer dizajniranja jednog takvog fiktivnog sustava. Program ima ugrađene modele i korelacije, kao i mogućnost njihovog usklađivanja s mjerenim podacima, što povećava točnost modeliranja i konačnih rezultata dizajna dubinske crpke. U dizajniranju pomažu i baze podataka tj. katalozi za odabir dostupnih mlaznih crpki na tržištu, koje su pri radu u programu lako pristupačne. Povezivanjem svih unesenih informacija, poput IPR krivulja, VLP krivulja i svih ostalih potrebnih parametara za dizajniranje dubinske crpke, Prosper stvara precizan model koji se dalje može koristi za prognoziranje rada bušotine, odnosno za analizu osjetljivosti.

Proizvodne mogućnosti bušotine X analizirane su kroz šest slučajeva osjetljivosti u kojima je određeno do kojeg povećanja udjela vode u proizvodnji se odabrana crpka može efikasno koristiti, odnosno do kojeg pada ležišnog tlaka se može očekivati da će crpka biti djelotvorna.

6. LITERATURA

- 1. APSLEY, D., 2005. Hydraulics 1, University of Manchester
- COPPES, J. L. R., GRUPPING, A. W., GROOT, J. G., 1988. Fundamentals of oilwell jet pumping. SPE Production Engineering, 3(01), 9-14.
- 3. BATOOL, A., ARHAMNA, H., 2010., JEMS Made Easy, Application Engineer-Artificial Lift Systems Weatherford
- 4. BROWN, B., 1965., Water power fluid for hydraulic oil wells pumping, Journal of petroleum technology SPE.
- EL-SAWAF, I. A., HALAWA, M. A., YOUNES, M. A., & TEAMIA, I. R., 2011., Study of the different parameters that influence on the performance of water jet pump. In Fifteenth international water technology conference, IWTC (Vol. 15).
- 6. GOSLINE, J.E., O'BRIEN, M.P., 1934. The water jet pump, volume 3 University of California Press
- JIA, X., LIAO, H., HU, Q., HE, Y., WANG, Y., NIU, W., 2023. Optimization Method of Jet Pump Process Parameters and Experimental Study on Optimal Parameter Combinations. Processes, 11(10), 2841.
- 8. KENETH, E.,2007. Petroleum engineering handbook volume 3_Facilities and construction, Society of Petroleum Engineers
- KHAMMASSI, C. 2021. Jet pump performance analysis and optimization plan, Doktorska disertacija, Sveučilište Leoben
- LAKE, L., W., 2007., Petroleum Handbook, volume IV, Society of Petroleum Engineers
- 11. LORENZ, H. (1910). Technische hydromechanik, Volume 3, Oldenburg
- PUGH, T., 2005. First ever sub-sea hydraulic jet pump system used to optimize single well development offshore Tunisia. Offshore Mediterranean Conference and Exhibition
- 13. PUGH, T., 2014. Hydraulic Lift Systems, WEATHERFORD
- 14. PROSPER USER MANUAL, 2018. Petroleum Experts, Version 15. Edinburgh.
- TEAMIA, I. R., YOUNES, M. A., EL SAWAF, I. A., HALAWA, M. A., 2012. Experimental Study of the Effect of Mixing Chamber Length and Diffuser Angle on the Performance of Dredging Jet Pump. In Sixteenth international water technology conference (No. 16).

- VEDRIŠ, K., 2023., Mogućnosti dizajniranja dubinskih crpki s klipnim šipkama u programu prosper, Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu, str. 12.-25., Zagreb
- 17. ZELIĆ, M., ČIKEŠ, M., 2006. Tehnologija proizvodnje nafte dubinskim crpkama. Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu

Internet izvori:

- 18. Fetoui, I., 2017. How does a Jet pump work?. URL: <u>https://production-</u> technology.org/jet-pump-work/ (15.11.2023.)
- Prabkeao, C., AOKI, K., 2005., Study on the optimum mixing throat length for drive nozzle position of the central jet pump. URL: <u>https://link.springer.com/article/10.1007/BF03181554</u> (15.11.2023.)
- 20. Prime Tech, 2019. URL: <u>https://primetechejectors.com/downhole_jetpump.htm</u>

IZJAVA:

Izjavljujem da sam ovaj rad izradio samostalno na temelju znanja i vještina stečenih na Rudarsko-geološko-naftnom fakultetu, Sveučilišta u Zagrebu, služeći se navedenom literaturom.

Marin Livrie

Marin Liović

Sveučilšle u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET HR-10002 Zagreb, Pieroltijeva 6, p. p. 390

KLASA:602-01/23-01/205URBROJ:251-70-12-23-2U Zagrebu,17.01.2024.

Marin Liović, student

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-01/23-01/205, URBROJ: 251-70-12-23-1 od 23.11.2023. priopćujemo vam temu diplomskog rada koja glasi:

MOGUĆNOSTI DIZAJNIRANJA DUBINSKIH MLAZNIH CRPKI U PROGRAMU PROSPER

Za mentoricu ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada doc. dr. sc. Sonja Koščak Kolin nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu.

Mentorica:

(potpis)

doc. dr. sc. Sonja Koščak Kolin

(titula, ime i prezime)

Predsjednica povjerenstva za završne i diglomske ispite:

(potpis)

izv. prof. dr. sc. Karolina Novak Mavar (titula, ime i prezime)

Prodekap za nastavu i studente: e (potpis)

izv. prof. dr. sc. Borivoje Pašić (titula, ime i prezime)

Oznaka: OB 8.5.-1 SRF-1-13/0

Stranica: 1/1

Čuvanje (godina) Trajno