Termodinamička parametrizacija ugljikovog dioksida u procesu njegovog trajnog skladištenja u vodom zasićena ležišta pri potkritičnom tlaku

Zahatek, Dario

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:590245

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-24

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij naftnog rudarstva

TERMODINAMIČKA PARAMETRIZACIJA UGLJIKOVOG DIOKSIDA U PROCESU NJEGOVOG TRAJNOG SKLADIŠTENJA U VODOM ZASIĆENA LEŽIŠTA PRI POTKRITIČNOM TLAKU

Diplomski rad

Dario Zahatek

N4321

Zagreb, 2024.

TERMODINAMIČKA PARAMETRIZACIJA UGLJIKOVOG DIOKSIDA U PROCESU NJEGOVOG TRAJNOG SKLADIŠTENJA U VODOM ZASIĆENA LEŽIŠTA PRI POTKRITIČNOM TLAKU

Dario Zahatek

Rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za naftno – plinsko inženjerstvo i energetiku Pierottijeva 6, 10 000 Zagreb

Sažetak

Ovaj rad prikazuje cjeloviti spregnuti model za termodinamičku parametrizaciju ugljikovog dioksida u procesu njegovog trajnog zbrinjavanja u vodom zasićena iscrpljena plinska ležišta pri potkritičnom tlaku. Utiskivanje u ležišta pri potkritičnom tlaku mogu zbog naglog pada tlaka u perforacijama i pribušotinskoj zoni dovesti do stvaranja hidrata ili smrzavanja ležišne vode uslijed Joule-Thomsonovog efekta. Zbog toga je potrebno provesti pripremu CO2 korištenjem površinske opreme u vidu povećanja tlaka radi ostvarivanja protoka i njegovog zagrijavanja. Proračun je proveden na jednom hipotetskom primjeru i rezultati pokazuju da model daje kvalitativno očekivana rješenja u smislu potrebne količine rada koja za transport CO2 cjevovodima iznosi iznad 150 kJ/kg, uz specifično odvedenu toplinu u iznosu od -200 kJ/kg, a za pumpanje CO2 prije utiskivanja oko 15 kJ/kg. S druge strane, zagrijavanje CO2 pri utiskivanju treba provesti sa specifičnom potrošnjom topline u iznosu od 250 kJ/kg.

Ključne riječi: trajno skladištenje ugljikovog dioksida u geološke formacije, specifična potrošnja energije, kompresija CO₂, pumpanje CO₂, predgrijavanje CO₂

Diplomski rad sadrži: 51 stranicu, 3 tablice, 14 slika, i 22 reference.

Jezik izvornika:	Hrvatski
Pohrana rada:	Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb
Mentor:	Prof.dr.sc Luka Perković, izvanredni profesor RGNF
Ocjenjivači:	Prof.dr.sc Luka Perković, izvanredni profesor RGNF Prof.dr.sc. Tomislav Kurevija, redoviti profesor RGNF

dr. sc. Marija Macenić, docent RGNF

Datum obrane: 30.09.2024., Rudarsko-geološko-naftni fakultet Sveučilišta u Zagrebu

University of Zagreb Faculty of Mining, Geology and Petroleum Engineering

Thermodynamic Parameterization of Carbon Dioxide in the Process of its Permanent Storage in Water-Saturated Reservoirs at Subcritical Pressure

Dario Zahatek

Thesis completed at: University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering Department of Petroleum and Gas Engineering and Energy Pierottijeva 6, 10 000 Zagreb

Abstract

This paper presents a complete coupled model for the thermodynamic parameterization of carbon dioxide in the process of its permanent disposal in watersaturated depleted gas reservoirs at subcritical pressure. Pressing into reservoirs at subcritical pressure can lead to the formation of hydrates or icing of reservoir water due to a sudden drop in pressure in the perforations and near-well zone due to the Joule-Thomson effect. For this reason, it is necessary to carry out the preparation of CO_2 using surface equipment in the form of increasing the pressure in order to achieve the flow and its heating. The calculation was carried out on a hypothetical example and the results show that the model provides qualitatively expected solutions in terms of the required amount of specific work, which for transporting CO_2 through pipelines is over 150 kJ/kg with specific cooling at around -200 kJ/kg, and for pumping CO_2 prior to injection around 15 kJ/kg. On the other hand, the heating of CO_2 during pressing should be carried out with a specific heat consumption in the amount of 250 kJ/kg.

Keywords:	Carbon capture and storage CCS, specific energy consumption, compression of CO_2 , pumping of CO_2 , preheating of CO_2
Thesis contains:	51 pages, 3 tables, 14 figures, and 22 references.
Original in:	Croatian
Archived in:	Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb
Supervisors:	Associate Professor Luka Perković, PhD
Reviewers:	Associate Professor Luka Perković, PhD
	Professor Tomislav Kurevija, PhD
	Assistant Professor Marija Macenić, PhD

Defence date: September 30, 2024, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	II
POPIS TABLICA	III
POPIS KRATICA	IV
POPIS KORIŠTENIH OZNAKA I JEDINICA	IV
1. UVOD	1
1.1. Važnost tehnologije CCS u smanjenju emisija stakleničkih plinova do 2	050.
godine	2
2. TEHNOLOGIJA HVATANJA, TRANSPORTA I SKLADIŠTENJA CO ₂	4
2.1. Hvatanje CO ₂	4
2.2. Transport CO ₂ cjevovodima	6
2.3. Skladištenje CO ₂	8
3. OPIS METODE	12
3.1 Matematički model površinske opreme pri transportu i pripremi CO	2 za
skladištenje	14
3.2 Matematički model strujanja CO ₂ u bušotini	27
3.3 Matematički model pada tlaka u perforacijama i pribušotinskoj zoni	29
3.4 Matematički model odziva tlaka ležišta pri utiskivanju CO ₂	36
3.5 Tijek proračuna	37
4. ANALIZA SLUČAJA: UTISKIVANJE CO2 U AKVIFER U UVJET	(MA
POTKRITIČNOG TLAKA	40
4.1 Postavke analize slučaja	40
4.2 Analiza rezultata: ovisnost o količini utisnutog CO ₂	41
4.3 Analiza rezultata u termodinamičkim p-h dijagramima	43
5. ZAKLJUČAK	48
LITERATURA	49

POPIS SLIKA

Slika 1-1. Očekivane emisije CO ₂ iz različitih sektora do 20502
Slka 1-2. Prognoze IEA o budućim smanjenjima emisija CO2 koja su potrebna za
stabilizaciju globalne atmosferske razine CO2 na 14 Gt3
Slika 2-1. Pregled procesa i sustava za hvatanje CO ₂ 4
Slika 2-2. Shematski prikaz izdvajanja CO2 iz dimnih plinova (nakon izgaranja)5
Slika 2-3. Fazni dijagrami za čisti CO ₂ i smjese CO ₂ 7
Slika 3-1. Shema procesa utiskivanja CO2 sa svim glavnim elementima i ključnim
pozicijama (pozicije 0, 1, 2, 3, 4, 5, w _f , R)12
Slika 3-2. Shema utiskivanja CO ₂ u području perforacija i pribušotinske zone30
Slika 1-3. Omjer otopljenog CO ₂ u vodi prema prema tlaku i temperaturi37
Slika 2-1. Glavni parametri procesa u ovisnosti o količini utisnutog plina42
Slika 4-2. Svojstva CO ₂ u termodinamičkom p-h dijagramu43
Slika 4-3. Termodinamički p-h dijagram procesa: višestupanjska kompresija s
međuhlađenjem i pumpanjem45
Slika 4-4. Termodinamički p-h dijagram procesa: transport CO2 cjevovodom do lokacije
utisa45
Slika 4-5. Termodinamički p-h dijagram procesa: pumpanje i zagrijavanje CO ₂ i transport u
bušotini46
Slika 4-6. Termodinamički p-h dijagram procesa: pad tlaka u perforacijama i izjednačavanje
s parametrima ležišta47

POPIS TABLICA

Fablica 4-1 . Postavke analize slučaja: parametri površinske opreme				40					
Tablica	4-2.	Postavke	analize	slučaja:	parametri	bušotine,	perforacija	i	pribušotinske
zone	•••••							•••••	40
Tablica	4-3.	Postavke a	nalize slu	učaja: pa	rametri leži	šta			41

POPIS KRATICA

- $IEA-International\ energy\ agency$
- IPCC Intergovermental Panel on Climate Change
- $CCS-Carbon\ Capture\ and\ Storage$
- MEA-monoetanolamin
- DEA dietanolamin
- EOS Equation of State
- °C Celzijev stupanj
- CO₂-ugljikov dioksid
- Re Reynoldsov broj
- Nu Nusseltov broj
- Pr Prandtlov broj

POPIS KORIŠTENIH OZNAKA I JEDINICA

Oznak	a Jedinica	Opis
<i>pco</i> ₂	Pa	tlak CO ₂ kroz različite faze u procesu
T_{CO2}	°C	temperatura CO2 kroz različite faze u procesu
h _{CO2}	kJ/kg	specifična entalpija CO2 kroz različite faze u procesu
SCO2	kJ/kgK	specifična entropija CO2 kroz različite faze u procesu
r_k	-	stupanj povišenja tlaka
CCO2	kJ/kgK	specifični toplinski kapacitet
g	m/s ²	gravitacijsko ubrzanje Zemlje
q_{mCO2}	kg/s	maseni protok CO ₂
W_k	kJ/kg	specifičan utrošak rada kompresije CO2
q_k	kJ/kg	specifična oduzeta toplina kondenzacijom CO2
f	-	koeficijent trenja u cjevovodu
L_p	m	duljina cjevovoda
ρ_{CO2}	kg/m ³	gustoća CO2 kroz različite faze u procesu
A_p	m^2	površina poprečnog presjeka cjevovoda
w	m/s	brzina strujanja CO ₂ u cjevovodu
q_H	kJ/kg	specifična dovedena toplina zagrijavanja CO ₂
Е	mm	apsolutna hrapavost cijevi
α	W/m^2K	koeficijent prijelaza topline
λ	W/mK	koeficijent toplinske vodljivosti

η_{is}	-	izentropski stupanj djelovanja
N _w	-	ukupan broj bušotina
Δp	Pa	ukupni pad tlaka između dna bušotine i ležišnog tlaka pri strujanju CO_2
Δp_{perf}	Pa	pad tlaka kroz perforacije
Δp_s	Ра	pad tlaka kroz pribušotinsku zonu uslijed skin efekta
Δp_R	Pa	protutlak ležišta
$q_{v,CO2}$	m ³ /s	volumni protok CO2 kroz perforacije
$B_{g,CO2}$	-	volumni faktor CO ₂ s obzirom na prosječnu gustoću $\overline{\rho_{CO2}}$ i gustoću pri

standardnim uvjetima

$\overline{\mu_{CO2}}$	Pas	prosječnua viskoznost CO ₂
k_R	mD	propusnost ležišta
h_R	m	debljina ležišta
D_{dp}	-	koeficijent turbulentnog protoka u zbijenoj zoni
β_{dp}	—	faktor turbulencije u zoni perforacije
I _{i,CO2}	kg/s/Pa	injektivnost CO ₂
r_w	m	polumjer bušotine
r _e	m	radijus područja odakle se crpi fluid (djelokrug utjecaja bušotine)
T_{wf}	°C	temperatura na dnu bušotine
T_R	°C	ležišna temperatura
p_R	Ра	trenutni tlak u ležištu
Z_R	-	faktor kompresibilnosti plina pri trenutnom tlaku ležišta
p_{Ri}	Ра	početni tlak u ležištu prije početka utiskivanja CO2
Z_{Ri}	—	faktor kompresibilnosti plina pri početnom tlaku ležišta
G_p	m^3	kumulativna proizvodnja plina iz ležišta
G	m ³	početna količina plina u ležištu
Α	-	faktor heterogenosti ležišta
ω	—	volumni faktor ležišne vode
G _{in}	m^3	količina utisnutog plina
Z_{CO2}	_	faktor kompresibilnosti za CO2 pri uvjetima u ležištu
S _{wi}	%	izvorna zasićenost ležišta vodom
S_{gi}	%	izvorna zasićenost ležišta plinom
C_f	_	faktor kompresibilnosti stijene

1. UVOD

Prema izvješćima Međuvladinog panela za klimatske promjene (engl. *Intergovernmental Panel on Climate Change*, IPCC) emisije ugljikovog dioksida glavni su uzročnik globalnog zagrijavanja, što dovodi do potrebe za istraživanjem mogućnosti njihove redukcije kroz tehnologije poput CCS-a (engl. *Carbon Capture and Storage*) (Intergovernmental Panel on Climate Change [IPCC], 2014). Kako bi se uhvatili u koštac s eksponencijalnim porastom globalnih emisija CO₂, IPCC je predložio ugljični budžet od 2900 Gt kako bi se ograničio porast prosječne globalne temperature na 2°C do kraja ovog stoljeća u odnosu na razine CO₂ iz predindustrijskog razdoblja. Osim smanjenja antropogenih emisija, sekvestracija ugljika može igrati značajnu ulogu u postizanju ovih ambicioznih ciljeva. Više od 500 Gt CO₂ morat će se pohraniti pod zemljom do kraja ovog stoljeća kako bi se postigao značajniji napredak (Verma et al., 2021). Globalni kapacitet za pohranu CO₂ daleko premašuje ovaj zahtjev, pri čemu većina kapaciteta leži u neistraženim dubokim akviferima. Dosad je globalno uspostavljeno nekoliko velikih komercijalnih CCS projekata, kao što su *Sleipner* i *Snøhvit* u Norveškoj, *Boundary Dam* u Kanadi i *Petra Nova* u SAD-u. Ovi projekti su uglavnom vezani za industrijske postrojenja i postrojenja za proizvodnju električne energije.

Iako CCS tehnologija ima potencijal značajno smanjiti emisije CO₂, njen trenutni doprinos globalnom smanjenju emisija je relativno malen. Prema izvješću Međunarodne agencije za energiju (engl. *International Energy Agency*, IEA) iz 2022. godine, CCS tehnologije su trenutno zaslužne za hvatanje i skladištenje nekoliko desetaka milijuna tona CO₂ godišnje (International Energy Agency [IEA], 2022), što je daleko manje od potrebnih razina da bi se postigli klimatski ciljevi prema Pariškom sporazumu. Razvoj CCS-a suočava se s brojnim izazovima, uključujući visoke troškove, regulatorne prepreke, ograničenu svijest i podršku javnosti, te tehničke izazove vezane uz transport i skladištenje CO₂. Međutim, CCS se i dalje smatra ključnom tehnologijom u budućim strategijama smanjenja emisija, posebno u industrijama koje je teško dekarbonizirati, poput cementne i čelične industrije.

Cilj ovog diplomskog rada je prezentirati metodu za sustavno procjenjivanje termodinamičkih parametara CO₂ pri njegovom transportu i pripremi za trajno skladištenje (utiskivanje) u iscrpljeno plinsko ležište pri potkritičnom tlaku koje je djelomično zasićeno vodom (akvifer). Procjenom termodinamičkih parametara CO₂ moguće je procijeniti i energetske potrebe za specifičnim radom te specifičnom toplinskom i rashladnom energijom površinske opreme za ostvarivanje procesa utiskivanja.

1.1. Važnost tehnologije CCS u smanjenju emisija stakleničkih plinova do 2050. godine

Većina klimatskih promjena u posljednjih 50 godina uglavnom je rezultat ljudskih aktivnosti, a rast populacije je glavni pokretač emisija stakleničkih plinova. Zabilježeno je da oko 87 % emisija CO₂ koje proizvode ljudske aktivnosti dolazi od izgaranja fosilnih goriva. Slika 1-1 prikazuje procjenjene količine emisije CO₂ iz različitih sektora na globalnoj razini do 2050. godine.

Slika 1-1. Očekivane emisije CO₂ iz različitih sektora do 2050. (Roy et al., 2022)

Sa slike se jasno uočava da najveće emisije CO₂ potiču iz industrijskih procesa, sektora proizvodnje energije i transformacije energije. Ovi podaci naglašavaju ključnu potrebu za implementacijom CCS tehnologija, posebno u industrijskim procesima gdje se generiraju značajne količine emisija CO₂. Zbog toga, sve veća zabrinutost zbog globalnog zagrijavanja navela je različite jurisdikcije da pokrenu CCS inicijative u pokušaju borbe protiv klimatskih promjena. Unatoč raznim inicijativama za ublažavanje klimatskih promjena, emisije CO₂ iz energetskih sektora porasle su za 1,7 % u 2018. u usporedbi s prethodnom godinom i dosegle 33,1 milijardu tona. Godišnje globalne antropogene emisije CO₂ dosežu 32.000 milijuna tona, dok se trenutačno hvata i iskorištava samo 200 milijuna tona. Ova brojka ukazuje na značajan nesrazmjer između emisija i količine CO₂ koja se trenutno učinkovito koristi ili skladišti. Da bismo do 2050. godine postigli ravnotežu između emisija i uklanjanja CO₂ iz

atmosfere, potrebno je smanjiti globalne emisije po stopi od 3 % godišnje, što iznosi 37 Gt CO₂ (IEA, 2021). Uzimajući u obzir trenutne podatke, jasno je da je nužno povećati napore u hvatanju i skladištenju CO₂ kako bismo se učinkovito borili protiv klimatskih promjena. Međunarodna energetska agencija (IEA) pozvala je na godišnje skladištenje CCS od 6000 MtCO₂ do 2050. godine kako bi se borili protiv rastućeg globalnog zagrijavanja. Međutim, do 2040. godine potrebno je više od 2500 velikih CCS/CCU postrojenja kako bi se ograničio porast prosječne globalne temperature za 2 °C. Slika 1-2 prikazuje potrebna smanjenja emisije kroz različite tehnološke promjene od 2010 – 2050.

Slika 1-2. Prognoze IEA o budućim smanjenjima emisija CO_2 koja su potrebna za stabilizaciju globalne atmosferske razine CO_2 na 14 Gt (Eiken et al., 2013)

Sa Slike 1-2 je vidljivo da smanjenje emisija CO₂ kroz tehnologije hvatanja i skladištenja ugljika (CCS) treba iznositi otprilike 19% kako bi se ispunili klimatski ciljevi do 2050. godine.

2. TEHNOLOGIJA HVATANJA, TRANSPORTA I SKLADIŠTENJA CO2

Hvatanje i skladištenje ugljikovog dioksida (CO₂) je proces koji se sastoji od odvajanja CO₂ iz industrijskih i energetskih izvora, transporta do lokacije za skladištenje i dugoročne izolacije od atmosfere geološkim skladištenjem duboko pod zemljom. U nastavku diplomskog rada bit će ukratko opisana tehnologija CCS sa svojim glavnim komponentama: hvatanjem, transportom i skladištenjem CO₂. Detaljno će se objasniti proces hvatanja CO₂ iz industrijskih i energetskih izvora, njegov transport cjevovodima do skladišnih lokacija, te način na koji se CO₂ trajno skladišti u geološkim formacijama.

2.1. Hvatanje CO₂

Glavna primjena hvatanja CO_2 vjerojatno će biti na velikim izvorima emisija: termoelektranama na fosilna goriva, postrojenjima za preradu goriva i drugim industrijskim postrojenjima poput onih za proizvodnju željeza, čelika, cementa i raznih kemikalija. Postoje četiri osnovna sustava za hvatanje CO_2 iz korištenja fosilnih goriva (Metz et al., 2005):

- Hvatanje iz industrijskih procesnih struja
- Hvatanje nakon izgaranja
- Hvatanje CO₂ iz izgaranja u čistom kisiku
- Hvatanje prije izgaranja

Ovi sustavi su prikazani u pojednostavljenom obliku na Slici 2-1.

Slika 2-1. Pregled procesa i sustava za hvatanje CO₂ (Metz et al., 2005)

CO₂ se hvata iz industrijskih procesnih struja već 80 godina. Trenutni primjeri hvatanja CO₂ iz procesnih struja uključuju pročišćavanje prirodnog plina i proizvodnju sinteznih plinova koji sadrže vodik za proizvodnju amonijaka, alkohola i sintetičkih tekućih goriva. Većina tehnika korištenih za hvatanje CO₂ u navedenim primjerima slična je onima korištenim u hvatanju prije izgaranja.

Hvatanje CO₂ iz dimnih plinova koji nastaju izgaranjem fosilnih goriva i biomase u zraku naziva se hvatanjem nakon izgaranja. U ovom procesu, dimni plinovi koji izlaze iz procesa izgaranja sadrže CO₂ među ostalim plinovima (npr. N₂, O₂, H₂O). Ovi dimni plinovi se usmjeravaju u apsorber. U apsorberu, dimni plinovi u protustrujnom kretanju dolaze u kontakt s tekućom otopinom koja sadrži amine, kao što su monoetanolamin (MEA) ili dietanolamin (DEA). Amini u otopini reagiraju s CO₂ stvarajući karbonatne spojeve. Nakon što se CO₂ apsorbira u aminskoj otopini, otopina se prenosi u regenerator ili desorber. U ovom koraku, otopina se zagrijava ili se smanjuje tlak kako bi se CO₂ oslobodio iz aminskih spojeva. Uobičajeno se koristi zagrijavanje za povećanje temperature otopine, što uzrokuje otpuštanje CO₂. Kada se CO₂ oslobodi, aminska otopina se regenerira i spremna je za ponovno korištenje (Rackley, 2017). CO₂ se zatim komprimira i transportira do skladišta ili za daljnju uporabu. Cijeli process prikazan je na Slici 2-2.

Slika 2-2. Shematski prikaz izdvajanja CO₂ iz dimnih plinova (nakon izgaranja) (Rackley, 2017)

U procesima izgaranja s kisikom (engl. *oxy-fuel combustion*), koristi se gotovo čisti kisik za izgaranje umjesto zraka, što rezultira dimnim plinovima koji se pretežno sastoje od CO₂ i H₂O. Ako se gorivo sagorijeva u čistom kisiku, temperatura plamena postaje izuzetno visoka, ali se CO₂ i/ili H₂O bogati dimni plin može reciklirati u komoru za izgaranje kako bi se moderirala temperatura. Ovaj pristup značajno poboljšava učinkovitost hvatanja CO₂, jer dimni plinovi sadrže visoke koncentracije CO₂, čineći hvatanje jednostavnijim i učinkovitijim.

U procesu hvatanja CO₂ prije izgaranja, gorivo se miješa s kisikom ili zrakom i/ili vodikom. Ova reakcija stvara sintetski plin koji se sastoji od ugljičnog monoksida (CO) i vodika (H₂). Ugljični monoksid (CO) se zatim miješa s vodikom (H₂O) u katalitičkom reaktoru poznatom kao *shift konverter*. Ovdje, CO reagira s vodikom i prelazi u ugljični dioksid (CO₂) i dodatni vodik (H₂). Nakon što se CO₂ stvori u *shift konverteru*, odvaja se od ostatka plina (Rackley, 2017). Ovo se obično postiže fizičkim ili kemijskim apsorpcijskim procesima. Metode apsorpcije mogu uključivati korištenje aminskih otopina, soli, ili fizikalnih adsorbenata.

2.2. Transport CO₂ cjevovodima

U ovom odjeljku bit će opisan transport CO₂ cjevovodima, budući da će se cjevovod koristiti u metodi koja će biti opisana u nastavku. Osim cjevovodima, CO₂ se može transportirati i brodovima, željeznicom ili kamionima, ovisno o udaljenosti, količini plina i geografskim uvjetima. Svaka od ovih metoda ima svoje prednosti i izazove, pri čemu se cjevovodi najčešće koriste za velike količine CO₂ na duže udaljenosti, dok su druge metode prikladnije za kraće relacije ili manje količine.

Transport ugljičnog dioksida (CO₂) putem cjevovoda od mjesta hvatanja do geološki pogodnog mjesta za skladištenje ključan je dio lanca hvatanja i skladištenja CO₂. Ovaj način transporta CO₂ ima brojne prednosti u odnosu na druge metode poput prijevoza kamionom, željeznicom ili brodom. Cjevovodi omogućuju neprekidan transport CO₂ od mjesta hvatanja do skladišnog mjesta, što je ključno za transport količine CO₂ koja se hvata iz izvora poput npr. elektrana na fosilna goriva koje rade kontinuirano. Također, upotreba cjevovoda smatra se ekonomičnijom u odnosu na druge metode transporta CO₂. Međutim, postoje brojni izazovi za transport CO₂ putem cjevovoda koje treba riješiti kako bi se uspješno implementirali sustavi CCS. Najveći izazovi transporta CO₂ putem cjevovoda odnose se na

integritet cjevovoda, osiguranje protoka, kapitalne i operativne troškove, tehno-ekonomske analize, dizajna cjevovoda te faktore vezane uz zdravlje, sigurnost i okoliš (Lu et al., 2020).

Količina CO_2 koja se transportira putem cijevi najveća je u superkritičnoj fazi zbog visoke gustoće u ovoj fazi u usporedbi s drugim fazama. Osim toga, transport CO_2 u superkritičnoj fazi smatra se najisplativijom metodom transporta od točke hvatanja CO_2 do točke njegove upotrebe ili skladištenja putem cijevi. Količina CO_2 koja se transportira po jedinici volumena maksimalna je u ovoj fazi jer superkritična tekućina posjeduje gustoću tekućine i viskoznost plina (McKaskle et al., 2022).

Transport CO₂ osjetljiviji je na promjene temperature, tlaka i prisutnosti nečistoća u usporedbi s transportom prirodnog plina. Ovi čimbenici mogu inducirati promjene faze CO₂ tijekom transporta, što zahtijeva pažljivo praćenje i kontrolu. CO₂ u superkritičnoj fazi posebno je osjetljiv na prisutnost strmih uzvišenja i nečistoća. Razina i vrsta nečistoća ovise o izvoru CO₂-a i tehnologiji za njegovo hvatanje. Prisutnost nečistoća mijenja kritični tlak CO₂ struje zbog razlika u tlaku pare različitih sastavnih vrsta. To utječe na dinamiku fluida i termodinamičko ponašanje struje CO₂, rezultirajući različitim režimima protoka koji mijenjaju radne uvjete cjevovoda. Stoga, različite razine nečistoća rezultiraju različitim kritičnim točkama i oblicima faznog dijagrama kao što je prikazano na Slici 2-3.

Slika 2-3. Fazni dijagrami za čisti CO₂ i smjese CO₂ (Onyebuchi et al., 2017).

Dok CO₂ teče duž cijevi, tlak opada, tekućina povećava volumen, što rezultira povećanjem brzine, što dodatno povećava gubitak tlaka i mogućnost pojave dvofaznog toka. CO₂ se stoga obično drži iznad kritičnog tlaka (73,77 bara) tijekom cijele duljine cijevi kako bi se održale željene, stabilne i predvidljive karakteristike fluida, kao što su gustoća i niska viskoznost.

Slobodna voda (H₂O) u CO₂ struji smatra se najnepoželjnijom nečistoćom. To je zato što može uzrokovati formiranje hidrata u cjevovodu za transport CO₂, kao i reagirati s većinom kiselih plinovitih nečistoća. Kao rezultat, prisutnost slobodne vode može dovesti do razdvajanja faza koje, pak, može izazvati formiranje hidrata i blokadu cijevi, kao i koroziju cijevi.

Također, potrebna snaga za komprimiranje CO₂ struje s nečistoćama je veća nego za čisti CO₂. To je rezultat povećanja kritičnog tlaka smjese s povećanjem sadržaja nečistoća.

2.3. Skladištenje CO₂

Ubrizgavanje ugljičnog dioksida (CO₂) u duboke slane akvifere, iscrpljena ležišta ugljikovodika ili duboke, neeksploatabilne slojeve ugljena je obećavajuća opcija za geološko skladištenje CO₂ kako bi se smanjile antropogene emisije stakleničkih plinova u atmosferu. Geološko skladištenje CO₂ predstavlja posljednji korak u lancu CCS-a (hvatanje, transport i skladištenje CO₂). Cilj je trajno izolirati CO₂ od atmosfere tijekom stotina godina. Troškovi skladištenja CO₂ variraju jer ovise o geološkim mjestima, kapitalu, bušenju i drugim troškovima. Određivanje prikladnog, sigurnog i trajnog mjesta za skladištenje CO₂ zahtijeva optimalnu kombinaciju dubine skladišta, lokacije i kapaciteta. Učinkovitost skladištenja CO₂

Dubina skladišta trebala bi biti općenito veća od jednog kilometra. Glavni razlog za ovo je ponašanje CO₂-a i činjenica da povoljni uvjeti skladištenja pretpostavljaju superkritično stanje zbog gustoće nalik tekućini, ali s manjom viskoznošću i površinskim napetostima. Tlak i režimi protoka formacijskih voda u sedimentarnim bazenima su također važni čimbenici pri odabiru lokacija za skladištenje CO₂-a (Bachu i Adams, 2003).

Drugi ključni element je prikladna lokacija. Najbolja opcija za skladištenje CO₂-a je kada se nalazi unutar strukturne zatvorene zone, a najčešće se to osigurava antiklinom s nepropusnim pokrovnim stijenama. Kriteriji za prikladnost bazena za skladištenje CO₂-a uključuju i: osnovne karakteristike (vrsta sedimenata, geotermalni i hidrodinamički režimi, tektonska aktivnost), zrelost industrije i infrastruktura, razina razvoja, gospodarstvo, javno obrazovanje i stavovi.

Treći element je kapacitet skladištenja, potrebno je imati dovoljno prostora za trajno skladištenje svih ubrizganih CO₂-a, što se definira volumenom strukturnog zarobljavanja, poroznošću i kompresibilnošću sustava (kompresibilnost CO₂-a, slane vode i pora).

Prethodne studije i iskustva iz postojećih operacija skladištenja i poboljšanja proizvodnje nafte pokazale su da su tehnologija i dizajn bušotina za ubrizgavanje ugljičnog dioksida dobro razvijeni (Cooper et al., 2009). Međutim, trenutni portfelj operacija skladištenja ne pokriva dovoljno različita geološka okruženja i, što je još važnije, nema iskustva s ubrizgavanjem volumena mnogo većih od 1 Mt CO₂/god. Istodobno, postoji mnogo neizvjesnosti u vezi s tim u kojoj mjeri se potencijalni kapacitet može pretvoriti u upotrebljivi skladišni kapacitet, osobito kada se planira ubrizgavanje velikih volumena reda nekoliko megatona ugljičnog dioksida koje zahtijevaju više bušotina za ubrizgavanje. Sada se općenito prihvaća da, kako bi geološko skladištenje bilo učinkovita opcija za ublažavanje emisija stakleničkih plinova, infrastruktura (platforme, bušotine, cjevovodi, kompresori) za ubrizgavanje ugljičnog dioksida mora biti barem u rangu trenutnih naftnih instalacija. Informacije o kvaliteti ležišta posebno su oskudne za duboke slane akvifere, što rezultira velikim neizvjesnostima u procjenama skladišnog kapaciteta i predviđanjima mogućnosti ubrizgavanja. U većini slučajeva može se očekivati da će shema ubrizgavanja CO₂ morati uključivati više bušotina, potencijalno uključujući bušotine za praćenje i kontrolu tlaka. Stoga je ključno razviti učinkovite i isplative strategije ubrizgavanja koje minimiziraju broj bušotina i maksimiziraju volumen ubrizgavanja i mogućnost ubrizgavanja.

Kako bi se identificirala potencijalna mjesta za pohranu i kvantificirali njihovi kapaciteti za trajnu pohranu CO₂, potencijalni akviferi ili iscrpljena naftno – plinska ležišta trebaju se provjeriti na temelju petrofizikalnih i geomehaničkih svojstava koji utječu na zadržavanje CO₂ u poroznim stijenama. Eiken et al. (2013) u svojoj studiji navode da je poznavanje maksimalnog pornog tlaka koji se može podnijeti tijekom utiskivanja jedan je od, ako ne i najvažniji faktor za operacije skladištenja CO₂. Autori ističu da je ovaj faktor ključan za

uspješne operacije skladištenja, jer prekoračenje maksimalnog tlaka može dovesti do proboja nepropusnih slojeva i curenja CO2. Također, razumijevanje pornog tlaka pomaže u optimizaciji skladišnog kapaciteta. Učinkovito upravljanje tlakom osigurava da se CO2 ravnomjerno distribuira u poroznom prostoru ležišta, čime se povećava ukupna dostupna površina za skladištenje. Verma et al. (2021) u svojoj studiji daje analizu učinka svojstava stijena (poroznost, propusnost, anizotropija propusnosti, kompresibilnost pora i salinitet formacijske vode) i brzine injektiranja na dinamiku utiskivanja CO₂. Studija je otkrila da je najznačajnije svojstvo u analizi osjetljivosti propunost stijene. Viša propusnost omogućuje brži protok fluida, što pomaže u bržem vraćanju ravnoteže nakon promjena tlaka. U suprotnom, niska propusnost može otežati ili usporiti taj proces, što može dovesti do potencijalnih problema poput prekomjernog nakupljanja tlaka i povećanog rizika od loma stijena. Na taj način, razumijevanje propusnosti ključno je za procjenu učinkovitosti skladištenja CO₂ i upravljanje rizicima povezanim s tim procesom. Poroznost je također značajno utjecala na migraciju plinovite mase CO₂ pri čemu su veće poroznosti znatno usporavale horizontalnu i vertikalnu migraciju. Veća poroznost omogućava više prostora za pohranu CO₂, što može rezultirati sporijim migracijskim procesima. Kada je poroznost visoka, CO₂ se može akumulirati u više slojeva, čime se produžuje put do krovinske stijene. To može rezultirati sporijim horizontalnim i vertikalnim širenjem plina. Suprotno tome, niža poroznost može omogućiti brže kretanje CO2 kroz ležišne stijene jer postoji manje prostora za njegovo zadržavanje, što može dovesti do brže migracije. U tom smislu, poroznost igra ključnu ulogu u dinamičkoj interakciji između CO2 i ležišnih stijena. Brzina injektiranja važan je parametar u planiranju skladištenja CO₂. Brzina i količina fluida koja se injektira utječu na povećanje tlaka u ležištu, kako lokalno, tako i u daljem području. Odnosi između brzine injektiranja i tlaka pokazuju jasnu izravnu korelaciju: povećanje brzine injektiranja, a samim tim i ukupne količine injektiranog fluida, dovodi do linearog povećanja tlaka. Povećanjem kompresibilnosti pora, poroznost i propusnost ostaju gotovo nepromijenjene, što dovodi do vrlo malog povećanja migracije plinovite mase CO₂. U slučaju migracije CO₂ plinovite mase, suprotno očekivanjima, salinitet je imao gotovo zanemariv učinak na horizontalnu migraciju i vertikalno uspinjanje do krovinskih stijena. Ruana et al. (2013) su izradili studiju koja uzima u obzir učinke fluida prisutnih u prstenastom prostoru i prijenos topline s okolnim stijenama, kako bi se istražilo strujanje i toplinsko ponašanje CO₂ u utisnoj bušotini tijekom njezine geološke sekvestracije. Utvrđeno je da rad učinjen kompresijom CO₂ gubitak potencijalne energije i razmjena topline s okolnim stijenama predstavljaju tri glavna faktora koja dovode do povećanja temperature CO₂ na dnu bušotine u usporedbi s temperaturom injektiranja.

3. OPIS METODE

Metoda se sastoji od nekoliko podmodela koji nastoje opisati cjelokupni proces i svaki od podmodela se se opisuje zasebno, ali se proračun izvršava iterativno i spregnuto između svih podmodela. Podmodeli su:

- transport i priprema CO₂ za skladištenje u ležištu
- strujanje CO₂ u bušotini
- strujanje kroz perforacije i pribušotinsku zonu
- skladištenje u geološkoj strukturi (ležištu)

Cjelokupnu shemu zajedno sa ključnim elementima procesa prikazuje Slika 3-1.

Slika 3-1. Shema procesa utiskivanja CO_2 sa svim glavnim elementima i ključnim pozicijama (pozicije 0, 1, 2, 3, 4, 5, w_f, R)

Rezultirajući matematički model se rješava cjelovito korištenjem interpretera Python (The Python Language Reference, 2024) pri čemu su sve korištene skripte djelo autora ovog rada. Općenite pretpostavke i pojednostavljenja modela su:

 pretpostavlja se da je CO₂ idealno čist, bez prisutnosti primjesa drugih plinova ili nečistoća kako bi se pojednostavio termodinamički proračun

- izmjene topline tijekom međuhlađenja i zagrijavanja CO₂ pretpostavljaju izobarne procese
- proces je kvazistacionaran u matematičkom modeliranju ne uzimaju se u obzir vremenske derivacije, to znači da se ne razmatraju promjene termodinamičkih parametara u funkciji vremena
- kod izmjene topline se koristi pojednostavljeni izraz koji preko eksponenta 0.9 uzima u obzir toplinske gubitke u materijalu cjevovoda ili u bušotini
- temperatura ležišta se tijekom procesa utiskivanja CO₂ ne mijenja, odnosno nakon izlaska iz pribušotinske zone CO₂ poprima temperaturu ležišta u gotovo izobarnom procesu
- CO₂ prolazi kroz perforacije i pribušotinsku zonu relativno brzo, pa nagli pad tlaka u tim zonama u stvari predstavljaju prigušenje njegovog strujanja
- vanjska temperatura, kao i temperatura ležišta je konstantna u vremenu
- kod dijeljenja protoka protok se dijeli simetrično i nema međudjelovanja (interferencije) između bušotina

Predzadnja pretpostavka je grubo pojednostavljenje problema jer se u stvarnosti vanjska temperatura zraka mijenja, a tijekom utiskivanja u okolini bušotine dolazi do promjene temperature zbog izmjene topline između pribušotinske zone i CO₂ u strujanju. Zadnja pretpostavka je također grubo pojednostavljenje jer bi za točnije modeliranje trebalo upotrijebiti ležišne softvere koji mogu u obzir uzeti distribuirane parametre, geološki model ležišta i točan raspored bušotina.

Termodinamička svojstva za CO₂ su bazirana na jednadžbi stanja (Span & Wagner, 1996) koja se koristi putem modula CoolProp (Bell et al., 2014).

3.1. Matematički model površinske opreme pri transportu i pripremi CO₂ za skladištenje

Proces započinje s višestupanjskom kompresijom CO_2 s međuhlađenjem tako da se CO_2 komprimira u nekoliko stupnjeva kako bi se povećao tlak. Svaki stupanj kompresije koristi međuhlađenje kako bi se smanjio specifični utrošak rada kompresora i poboljšala energetska učinkovitost procesa. Početni uvjeti za CO_2 su početna temperatura $T_{CO2,0}$ i početni tlak $p_{CO2,0}$ dok je maseni protok $q_{m,CO2}$. Iz početnih uvjeta je moguće izračunati početnu entalpiju i gustoću:

$$h_{CO2,0}, \rho_{CO2,0} = f_{EOS}(p_{CO2,0}, T_{CO2,0})$$

gdje funkcija (engl. *Equation of State*, EOS) predstavlja jednadžbu stanja za CO₂ koja je jedna od konstitutivnih jednadžbi modela. Stupanj povišenja tlaka r_k za svaki od N_k stupnjeva kompresije moguće je izračunati ako je poznat zadani tlak nakon kompresije $p_{CO2,k}$ kao:

$$r_k = \sqrt[N_k]{\frac{p_{CO2,k}}{p_{CO2,0}}}$$
(3-1)

gdje su: r_k - stupanj povišenja tlaka,

 N_k - k-ti stupanj kompresije,

 $p_{CO2,k}$ - tlak nakon k-te kompresije (Pa),

 $p_{CO2,0}$ – početni tlak CO₂ (Pa).

Za svaki od j stupnjeva kompresije možemo zapisati model:

$$T_{CO2,k,1}^{j} = T_{CO2,k,3}^{j-1}; (3-2)$$

gdje su: $T_{CO2,k,1}^{j}$ - temperatura CO₂ na ulazu u j-ti stupanj kompresije (°C),

 $T_{CO2,k,3}^{j-1}$ - temperatura CO₂ na izlazu iz prethodnog, j-1- tog stupnja kompresije (°C).

Ova jednadžba označava da je temperatura CO₂ na početku trenutnog stupnja kompresije jednaka temperaturi na kraju prethodnog stupnja. Drugim riječima, nakon međuhlađenja, plin ulazi u sljedeći stupanj s temperaturom izlaza iz prethodnog. Analogno vrijedi i za ostale termodinamičke veličine, za tlak:

$$p_{CO2,k,1}^{j} = p_{CO2,k,3}^{j-1}; (3-3)$$

gdje su: $p_{CO2,k,1}^{j}$ - tlak CO₂ na ulazu u j-ti stupanj (Pa),

 $p_{CO2,k,3}^{j-1}$ - tlak CO₂ na izlazu iz prethodnog stupnja (Pa).

Entalpija na početku trenutnog stupnja jednaka je entalpiji na kraju prethodnog stupnja:

$$h_{CO2,k,1}^{j} = h_{CO2,k,3}^{j-1}; (3-4)$$

gdje su: $h_{CO2,k,1}^{j}$ - enthalpija CO₂ na ulazu u j-ti stupanj (kJ/kg),

$$h_{CO2,k,3}^{j-1}$$
 - entalpija CO₂ na izlazu iz prethodnog stupnja (kJ/kg).

te za gustoću:

$$\rho_{CO2,k,1}^{j} = \rho_{CO2,k,3}^{j-1} \tag{3-5}$$

gdje su: $\rho_{CO2,k,1}^{j}$ - gustoća CO₂ na ulazu u j-ti stupanj (kg/m³),

 $\rho_{CO2,k,3}^{j-1}$ - gustoća CO₂ na izlazu iz prethodnog stupnja (kg/m³).

Sljedeći zapis jednadžbi predstavlja detaljni matematički model za svaki stupanj kompresije CO₂, koristeći jednadžbu stanja EOS. Svaka od ovih jednadžbi prikazuje na koji način se različite termodinamičke veličine (entropija, tlak, entalpija, temperatura, gustoća) mijenjaju kroz proces kompresije. Jednadžba za promjenu entropije:

$$s_{CO2,k,2a}^{j} = s_{CO2,1}^{j} = f_{EOS} \left(p_{CO2,k,1}^{j}, T_{CO2,k,1}^{j} \right)$$
(3-6)

gdje su: $s_{CO2,k,2a}^{j}$ - entropija CO₂ nakon adijabatske kompresije (kJ/kgK),

$$s_{CO2,1}^{j}$$
 - entropija CO₂ na početku stupnja kompresije (kJ/kgK)

Ova jednadžba govori da je entropija nakon adijabatske kompresije jednaka entropiji na početku stupnja kompresije što zapravo znači da je proces kompresije adijabatski. Tlak CO₂ se mijenja prema:

$$p_{CO2,k,2}^{j} = p_{CO2,1}^{j} \cdot r_{k} \tag{3-7}$$

gdje su: $p_{CO2,k,2}^{j}$ - tlak nakon kompresije u j-tom stupnju (Pa),

 $p_{CO2,1}^{j}$ - početni tlak CO₂ na ulazu u j-ti stupanj (Pa),

 r_k - faktor povišenja tlaka kroz stupanj kompresije (Pa).

Ova jednadžba opisuje kako se tlak povećava u stupnju kompresije proporcionalno faktoru povišenja tlaka r_k . Za izračun entalpije nakon adijabatske kompresije CO₂ koristi se funkcijska ovisnost entropije $s_{CO2,k,2a}^j$ i tlaka nakon kompresije $p_{CO2,k,2}^j$:

$$h_{CO2,k,2a}^{j} = f_{EOS}(p_{CO2,k,2}^{j}, s_{CO2,k,2a}^{j})$$

Za dobivanje konačne entalpije koristi razlika između početne i adijabatske entalpije koristeći stupanj izentropskog djelovanja (koji opisuje koliko je stvarni proces kompresije blizu idealnom izentropskom procesu, u kojem nema gubitaka energije zbog trenja, disipacije topline itd.) kako prikazuje jednadžba 3-8:

$$h_{CO2,k,2}^{j} = h_{CO2,k,1}^{j} + \frac{h_{CO2,k,2a}^{j} - h_{CO2,k,1}^{j}}{\eta_{is}}$$
(3-8)

gdje su: $h_{CO2,k,2}^{j}$ - konačna entalpija nakon kompresije u j-tom stupnju (kJ/kg),

 $h_{CO2,k,1}^{j}$ - početna entalpija prije adijabatske kompresije (kJ/kg),

 $h_{CO2,k,2a}^{j}$ - entalpija CO₂ nakon adijabatske kompresije CO₂ (kJ/kg),

 η_{is} – stupanj izentropskog djelovanja.

Konačna temperatura i gustoća CO₂ nakon adijabatske kompresije funkcija je tlaka nakon kompresije $p_{CO2,k,2}^{j}$ i entalpije CO₂ nakon kompresije $h_{CO2,k,2}^{j}$:

$$(T_{CO2,k,2}^{j}, \rho_{CO2,k,2}^{j}) = f_{EOS}(p_{CO2,k,2}^{j}, h_{CO2,k,2}^{j})$$

Temperatura CO₂ nakon procesa međuhlađenja dobivaju se iz jednadžbi:

$$T_{CO2,k,3}^{j} = T_{k,set}$$
 (3-9)

gdje su: $T^{j}_{CO2,k,3}$ – temperatura CO₂ nakon procesa međuhlađenja (°C),

 $T_{k,set}$ - zadana temperatura nakon međuhlađenja u kompresijskom procesu (°C).

Pretpostavlja se, radi jednostavnosti procesa, da proces međuhlađenja vraća temperaturu na postavljenu vrijednost $T_{k,set}$. To je temperatura na koju se CO₂ hladi nakon svakog stupnja kompresije. Konačni tlak nakon međuhlađenja prikazuje jednadžba 3-10:

$$p_{CO2,k,3}^{j} = p_{CO2,k,2}^{j} \tag{3-10}$$

gdje su: $p_{CO2,k,3}^{j}$ - tlak nakon međuhlađenja (Pa),

 $p_{CO2,k,2}^{j}$ - tlak na kraju adijabatske kompresije (Pa).

Vidi se da je tlak nakon međuhlađenja $p_{CO2,k,3}^{j}$ jednak tlaku na kraju kompresije $p_{CO2,k,2}^{j}$, tj. proces međuhlađenja je izobaran proces.

Za dobivanje entalpije i gustoće CO₂ nakon procesa međuhlađenja koriste se tlak nakon međuhlađenja $p_{CO2,k,3}^{j}$ te temperatura nakon međuhlađenja $T_{CO2,k,3}^{j}$ kroz funkciju jednadžbe stanja:

$$(h_{CO2,k,3}^{j}, \rho_{CO2,k,3}^{j}) = f_{EOS}(p_{CO3,k,2}^{j}, T_{CO2,k,3}^{j})$$

17

Utrošak specifičnog rada w_k^j tijekom j stupnjeva kompresije dan je jednadžbom 3-11:

$$w_k^j = h_{CO2,k,2}^j - h_{CO2,k,1}^j \tag{3-11}$$

gdje su: w_k^j – utrošak specifičnog rada (kJ/kg),

 $h_{CO2,k,2}^{j}$ - specifična entalpija CO₂ na kraju adijabatske kompresije za stupanj j (kJ/kg),

 $h_{CO2,k,1}^{j}$ - specifična entalpija CO₂ na početku stupnja *j* kompresije (kJ/kg).

To je količina rada po kilogramu CO₂ potrebna za povećanje tlaka plina kroz taj stupanj kompresije. Specifična (oduzeta) toplina q_k^j za svaki segment *j* je dana jednadžbom (3-12):

$$q_k^j = h_{CO2,k,3}^j - h_{CO2,k,2}^j$$
(3-12)

gdje su: q_k^j – specifična (oduzeta) toplina. koja se oduzima tijekom međuhlađenja nakon stupnja kompresije *j* (kJ/kg),

 $h_{CO2,k,3}^{j}$ - specifična entalpija CO₂ nakon međuhlađenja (hlađenja na početnu temperaturu) za stupanj *j* (kJ/kg),

 $h_{CO2,k,2}^{j}$ - specifična entalpija CO₂ na kraju kompresije za stupanj j (kJ/kg).

Nakon zadnjeg stupnja kompresije slijedi hlađenje i ukapljivanje CO₂ do potpunog ukapljivanja pri zadanoj temperaturi $T_{k,set}$ i tlaku kondenzacije $p_{CO2,k}$. Jednadžbe koje opisuju proces ukapljivanja su:

$$p_{CO2,1} = p_{CO2,k} \tag{3-13}$$

gdje su: $p_{CO2,1}$ - tlak CO₂ na početku faze ukapljivanja (Pa),

 $p_{CO2,k}$ – tlak kondenzacije CO₂ (Pa).

Dakle, tlak CO₂ na početku faze ukapljivanja jednak je tlaku kondenzacije, tj. proces ukapljivanja CO₂ je izobaran.

Temperatura CO₂ na početku faze ukapljivanja je jednaka zadanoj temperaturi ukapljivanja $T_{k,set}$. Ovo je temperatura na kojoj će se CO₂ kondenzirati pri tlaku $p_{CO2,k}$. Dana je jednadžbom (3-14):

$$T_{CO2,1} = T_{k,set} \tag{3-14}$$

gdje su: $T_{CO2,1}$ - temperatura CO₂ na početku faze ukapljivanja (°C),

 $T_{k,set}$ – zadana temperatura ukapljivanja (°C).

Preostali termodinamički parametri vezani za ukapljivanje CO₂ (entalpija, entropija, gustoća) se izračunavaju pomoću jednadžbe stanja koja uzima $T_{CO2,1}$ i $p_{CO2,1}$ te izračunava odgovarajuće vrijednosti entropije, entalpije i gustoće:

$$(s_{CO2,1}, h_{CO2,1}, \rho_{CO2,1}) = f_{EOS}(p_{CO2,1}, T_{CO2,1})$$

Odvedena specifična toplina q_c se izračunava kao razlika između entalpije CO₂ nakon kondenzacije i entalpije CO₂ nakon zadnjeg stupnja kompresije prema jednadžbi 3-15. Ona predstavlja količinu topline koju treba oduzeti da bi se plin ukapljio:

$$q_C = h_{CO2,1} - h_{CO2,k,3}^N \tag{3-15}$$

gdje su: $h_{CO2,1}$ - entalpija CO₂ nakon hlađenja i kondenzacije (kJ/kg),

 $h_{CO2,k,3}^N$ - entalpija CO₂ nakon zadnjeg stupnja kompresije (kJ/kg).

Ukapljeni CO₂ se zatim pumpanjem dovodi na nazivni tlak cjevovoda $p_{p,set}$ uz relativno mali utrošak specifičnog rada:

$$p_{CO2,2} = p_{p,set}$$
 (3-16)

gdje su: $p_{CO2,2}$ – tlak CO₂ nakon ukapljivanja (Pa),

 $p_{p,set}$ - nazivni (zadani) tlak cjevovoda (Pa).

Entropija CO₂ nakon pumpanja ostaje ista kao i prije procesa pumpanja CO₂ (adijabatski process):

$$s_{CO2,2a} = s_{CO2,1} \tag{3-17}$$

gdje je: s_{CO2,2a} – entropija CO₂ prije procesa pumpanja (kJ/kgK),

$$s_{CO2,1}$$
 - entropija CO₂ nakon pumpanja (kJ/khK).

Korištenjem jednadžbe stanja f_{EOS} se iz entropije CO₂ nakon pumpanja $s_{CO2,1}$ te nazivnog tlaka cjevovoda $p_{p,set}$ izračunava entalpija nakon pumpanja:

$$h_{CO2,2a} = f_{EOS}(p_{p,set}, s_{CO2,2a})$$

Konačna entalpija se dobije korekcijom izentropske entalpije s obzirom na stvarnu efikasnost procesa prema jednadžbi 3-18:

$$h_{CO2,2} = h_{CO2,1} + \frac{h_{CO2,2a} - h_{CO2,1}}{\eta_{is}}$$
(3-18)

gdje su: $h_{CO2,2}$ – konačna entalpija CO₂ nakon pumpanja (kJ/kg),

 $h_{{\it CO2},1}$ - entalpija nakon kondenzacije (prije pumpanja) (kJ/kg),

 $h_{CO2,2a}$ - izentropska entalpija nakon pumpanja (kJ/kg),

 η_{is} - izentropski stupanj djelovanja.

Pomoću jednadžbe stanja (EOS) se izračunavaju temperatura nakon pumpanja $T_{CO2,2}$ i gustoća CO₂ nakon pumpanja $\rho_{CO2,2}$ na temelju poznatog tlaka nakon pumpanja $p_{CO2,2}$ te konačne entalpije CO₂ nakon pumpanja:

$$(T_{CO2,2}, \rho_{CO2,2}) = f_{EOS}(p_{CO2,2}, h_{CO2,2})$$

Nakon pumpanja, CO₂ se nalazi u tzv. dense fazi, što znači da je izložen natkritičnom tlaku (iznad kritičnog tlaka) i potkritičnoj temperaturi (ispod kritične temperature). U ovoj fazi, CO₂ se ponaša kao tekućina s relativno velikom gustoćom i niskom kinematičkom viskoznošću, što omogućava učinkovit transport kroz cjevovod. Nakon pumpanja CO₂ se transportira u cjevovodu duljine L_{pip} pri čemu dolazi do pada tlaka i izmjene topline s okolišem. Zbog duljine cjevovoda on se u modelu dijeli na *N* segmenata u kojima vrijede

zakoni očuvanja količine gibanja koji opisuju kako se tlak mijenja duž cjevovoda zbog trenja, ubrzanja ili promjene geometrije te zakon očuvanja energije koji opisuje promjenu entalpije i temperature CO₂ zbog izmjene topline s okolinom. Te jednadžbe , zajedno s dopunskim jednadžbama, tvore model protoka:

$$p_{CO2,p,1}^{j} = p_{CO2,p,2}^{j} + \frac{fL_{p}^{j}}{D_{p}} \frac{1}{2} \rho_{CO2}^{j} (w_{CO2}^{j})^{2}$$
(3-19)

gdje su: $p_{CO2,p,1}^{j}$ - tlak na početku *j*-tog segmenta cjevovoda (Pa),

- $p_{CO2,p,2}^{j}$ tlak na kraju *j*-tog segmenta cjevovoda (Pa), f - koeficijent trenja unutar cjevovoda (ovisi o hrapavosti cijevi i protoku fluida), L_{p}^{j} - duljina *j*-tog segmenta cjevovoda (m), D_{p} - promjer cjevovoda (m),
- ρ_{CO2}^{j} gustoća CO₂ u *j*-tom segmentu cjevovoda (kg/m³),
- w_{CO2}^{j} brzina protoka CO₂ u *j*-tom segmentu cjevovoda (m/s).

Ova jednadžba koristi se za izračun promjene tlaka između dva kraja segmenta cjevovoda uslijed trenja i brzine protoka CO₂. Pad tlaka $p_{CO2,p,1}^{j} - p_{CO2,p,2}^{j}$ uzrokovan je trenjem CO₂ na unutarnjoj stijenki cjevovoda. Izraz $\frac{fL_{p}^{j}}{D_{p}}$ predstavlja linijske gubitke zbog trenja, koji ovise o duljini i promjeru cjevovoda te koeficijentu trenja dok izraz $\frac{1}{2}\rho_{CO2}^{j}(w_{CO2}^{j})^{2}$ predstavlja dinamički tlak koji se mijenja s brzinom protoka i gustoćom CO₂. Pad tlaka u svakom segmentu cjevovoda u obzir uzima linijski pad tlaka preko faktora trenja koji se izračunava preko jednadžbe Colebrook-White, a koja povezuje hrapavost stijenke cjevovoda, brzinu strujanja, gustoću i fizikalna svojstva CO₂. Jednadžba je nelinearna i obično se rješava iterativno za *f*, a izgleda ovako:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3,7d_{pip}} + \frac{2,51}{Re\sqrt{f}}\right)$$
(3-20)

21

gdje su: f - koeficijent trenja (Darcy-Weisbachov koeficijent),

 d_{pip} – unutarnji promjer cjevovoda (m),

 ε - apsolutna hrapavost unutarnje stijenke cijevi (mm),

Re - Reynoldsov broj (bezdimenzionalni broj koji opisuje omjer inercijskih i viskoznih sila, određuje režim strujanja gdje niske vrijednosti *Re* označavaju laminarno, a visoke vrijednosti turbulentno strujanje).

Tlak na početku *j*-tog segmenta jednak je tlaku na kraju prethodnog segmenta *j*-1, što znači da tlak postupno opada kroz svaki segment cjevovoda:

$$p_{CO2,p,1}^{j} = p_{CO2,p,2}^{j-1}$$
(3-21)

gdje su: $p_{CO2,p,1}^{j}$ - tlak na početku *j*-tog segmenta (Pa),

$$p_{CO2.p,2}^{j-1}$$
 - tlak na kraju prethodnog segmenta *j*-1 (Pa).

Za određivanje specifične topline pri konstantnom tlaku $c_{CO2,p}^{j}$ i gustoće CO₂ $\rho_{CO2,p}^{j}$ (tijekom procesa transporta) na temelju tlaka $p_{CO2,p}^{j}$ i temperature $T_{CO2,p}^{j}$ koristi se funkcija EOS koja predstavlja jednadžbu stanja CO₂ koja povezuje ove parameter:

$$(c_{CO2,p}^{j}, \rho_{CO2,p}^{j}) = f_{EOS}(p_{CO2,p}^{j}, T_{CO2,p}^{j})$$

Sljedeća jednadžba izračunava prosječni tlak u segmentu cijevi uzimajući u obzir tlak na početku i kraju segmenta. Prosječni tlak koristi se za daljnje izračune kao što su brzina protoka, gustoća fluida i druge karakteristike koje ovise o tlaku:

$$p_{CO2,p}^{j} = \frac{1}{2} \left(p_{CO2,p,1}^{j} + p_{CO2,p,2}^{j} \right)$$
(3-22)

gdje su: $p_{CO2,p}^{j}$ - prosječni tlak u segmentu j cijevi (Pa),

 $p_{CO2,p,1}^{j}$ - tlak na početku segmenta j (Pa),

 $p_{CO2,p,2}^{j}$ - tlak na kraju segmenta j (Pa).

Brzina protoka CO₂ kroz segment *j* cijevi računa se prema 3-23:

$$w_{CO2,p}^{j} = \frac{q_{m,CO2}}{\rho_{CO2,p}^{j} A_{p}}$$
(3-23)

gdje su: $w_{CO2,p}^{j}$ - brzina protoka CO₂ kroz segment *j* cijevi (m/s),

 $q_{m,CO2}$ - maseni protok CO₂ (kg/s), $\rho_{CO2,p}^{j}$ - gustoća CO₂ u segmentu *j* cijevi (kg/m³), A_{p} - poprečni presjek cijevi (m²)

Sljedeća jednadžba opisuje prijenos topline između CO₂ unutar cjevovoda i vanjskog okoliša. Izmjena toplinskog toka u svakom segmentu cjevovoda je konvektivna:

$$\alpha A_{Cy,p} \Delta T_p = q_{m,CO2} c_{CO2}^j \left(\Delta T_p \right)^{0,9}$$
(3-24)

gdje su: α - koeficijent prijenosa topline između fluida (CO₂) i stijenki cjevovoda W/m²K),

 $A_{Cy,p}$ - površina stijenki cjevovoda kroz koje dolazi do prijenosa topline (m²),

 ΔT_p - razlika temperature između CO₂ u cjevovodu i vanjske temperature okoliša (°C),

 $q_{m,CO2}$ - maseni protok CO₂ kroz cjevovod (kg/s),

 c_{CO2}^{j} - specifični toplinski kapacitet CO₂ u segmentu *j*, (kJ/kgK).

Koeficijent prijelaza topline α računa se preko jednadžbe Dittus-Boeltera:

$$\alpha = \frac{Nu \cdot \lambda}{d_p} \tag{3-25}$$

gdje su: Nu - Nusseltov broj,

 λ - toplinska vodljivost fluida (CO₂) (W/mK),

 d_p - karakteristična dužina, u ovom slučaju promjer cijevi (m).

A Nusseltov broj, bezdimenzionalni broj koji opisuje intenzitet prijenosa topline (koeficijent konvekcije) u odnosu na kondukciju, računa se prema :

$$Nu = 0,023Re^{4/5}Pr^{0,3} \tag{3-26}$$

gdje su: Nu - Nusseltov broj,

Re - Reynoldsov broj,

Pr - Prandtlov broj, bezdimenzionalni broj koji povezuje prijenos topline i kinetičku viskoznost fluida.

Lijeva strana jednadžbe označava količinu topline koja se prenosi preko površine cjevovoda (oplošja cijevi) zbog razlike u temperaturi CO₂ u cjevovodu i vanjske temperature okoliša dok desna strana predstavlja promjenu entalpije CO₂ (maseni protok pomnožen sa specifičnim toplinskim kapacitetom i temperaturnom razlikom).

Korektivni faktor $(\Delta T_p)^{0,9}$ koji pokazuje kako razlika temperature ΔT_p $(T_{CO2,p}^j - T_{ok})$ utječe na proces prijenosa topline. Faktor 0,9 pokazuje da prijenos topline nije potpuno linearan, nego blago nelinearan u odnosu na razliku temperature.

Nakon procesa transporta CO₂ do željene lokacije utisa, tj. nakon izlaska iz cjevovoda CO₂ se nalazi na smanjenom, ali dovoljno visokom tlaku da ostane u području izvan dvofaznog toka, dakle ili u kapljevitoj ili u *dense* fazi. Termodinamičke veličine su sada: tlak nakon transporta cjevovodom je $p_{CO2,3}$, temperatura CO₂ nakon izlaska iz cjevovoda je $T_{CO2,3}$, entalpija CO₂ nakon izlaska iz cjevovoda je $h_{CO2,3}$ i gustoća CO₂ nakon izlaska iz cjevovoda je cjevovoda je $\rho_{CO2,3}$.

S tim parametrima CO₂ ulazi u iduću pumpu kojoj je cilj podići tlak prije ulaska u bušotinu. Tlak prije ulaska u bušotinu mora biti dovoljno visok da ostvari, zajedno s hidrostatskim tlakom u bušotini, dovoljan dinamički tlak na dnu kako bi se ostvario zadani protok CO₂. Taj tlak je unaprijed nepoznat, a njegova oznaka je $p_{CO2,4}$.

Sljedeći set jednadžbi koristi funkciju jednadžbe stanja (EOS) za izračunavanje termodinamičkih svojstava CO₂ nakon što prođe kroz pumpu i dostigne tlak prije ulaska u bušotinu. Entropija CO₂ nakon izlaska iz cjevovoda $s_{CO2,3}$ izračunava koristeći jednadžbu stanja za CO₂ pri tlaku $p_{CO2,3}$ i temperature $T_{CO2,3}$. Ova entropija se koristi za daljnje proračune nakon pumpe:

$$s_{CO2,3} = s_{CO2,4a} = f_{EOS}(p_{CO2,3}, T_{CO2,3})$$

Entalpija nakon pumpanja i prije ulaska u bušotinu:

$$h_{CO2,4a} = f_{EOS}(p_{CO2,4}, s_{CO2,4a})$$

Ovdje se entalpija CO₂ prije ulaska u bušotinu $h_{CO2,4a}$ izračunava koristeći jednadžbu stanja za CO₂ pri novom tlaku $p_{CO2,4}$ i entropiji $s_{CO2,4a}$ koja je prethodno izračunata.

Entalpija CO₂ nakon prolaska kroz pumpu $h_{CO2,4}$ izračunava tako da se uzme početna entalpija $h_{CO2,3}$ (na izlazu iz cjevovoda) i dodaju se izmjene entalpije prema izentropskoj učinkovitosti pumpe:

$$h_{CO2,4} = h_{CO2,3} + \frac{h_{CO2,4a} - h_{CO2,3}}{\eta_{is}}$$
(3-27)

gdje su: $h_{CO2,4}$ - stvarna entalpija nakon pumpe (kJ/kg),

 $h_{CO2,3}$ - entalpija prije pumpe (kJ/kg),

 $h_{{\it CO2},4a}$ - entalpija nakon pumpe prema jednadžbi stanja (EOS) (kJ/kg),

 η_{is} – izentropski stupanj djelovanja pumpe.

Nakon što su određeni tlak $p_{CO2,4}$ i entalpija CO₂ $h_{CO2,4}$ nakon pumpe, EOS se koristi za izračun temperature $T_{CO2,4}$ i gustoće CO₂ $\rho_{CO2,4}$ nakon procesa pumpanja:

$$T_{CO2,4}, \rho_{CO2,4} = f_{EOS}(p_{CO2,4}, h_{CO2,4})$$

Nakon konačnog pumpanja CO₂, potrebno ga je zagrijati kako bi nakon očekivanog značajnog pada tlaka u perforacijama ostao u plinovitoj ili natkritičnoj fazi. Uslijed naglog

pada tlaka i posljedičnog širenja CO₂ u potkitičnim uvjetima tlaka ležišta, očekuje je da će zbog Joule-Thomsonovog efekta temperatura CO₂ biti značajno snižena i ispod nula stupnjeva Celzijusa, pri čemu može doći do smrzavanja ležišne vode i blokiranja strujanja. Pojava kapljevite faze CO₂ čak i ako ne dođe do smrzavanja vode može blokirati strujanje pa takve termodinamičke režime treba izbjegavati. Grijanje CO₂ se odvija do temperature $T_{CO2,5}$ koja neće dovesti do kapljevite faze CO₂ nakon prolaska kroz perforacije niti do temperature koja bi mogla dovesti do zamrzavanja vode u ležištu.

Tlak CO₂ nakon zagrijavanja $p_{CO2,5}$ ostaje isti kao tlak nakon pumpanja $p_{CO2,4}$ jer se proces zagrijavanja smatra izobarnim procesom. Za određivanje gustoće i entalpije CO₂ nakon zagrijavanja koristi se jednadžba stanja (EOS). Na osnovu poznatog tlaka $p_{CO2,5}$ i temperature $T_{CO2,5}$ možemo izračunati gustoću $\rho_{CO2,5}$ i entalpiju CO₂ $h_{CO2,5}$ nakon procesa zagrijavanja:

$$(\rho_{CO2,5}, h_{CO2,5}) = f_{EOS}(p_{CO2,5}, T_{CO2,5})$$

Kada se CO₂ zagrijava nakon posljednje faze pumpanja, dovedena specifična toplina može se izračunati kao razlika između entalpije CO₂ prije i nakon zagrijavanja. To se zapisuje na sljedeći način:

$$q_H = h_{CO2,5} - h_{CO2,4} \tag{3-28}$$

gdje su: q_H - dovedena specifična toplina (kJ/kg),

 $h_{CO2,5}$ - entalpija CO₂ nakon što je zagrijana do temperature $T_{CO2,5}$ (kJ/kg), $h_{CO2,4}$ - entalpija CO₂ neposredno nakon pumpanja i prije zagrijavanja (kJ/kg).

3.2 Matematički model strujanja CO₂ u bušotini

U analizi protoka CO₂ kroz bušotinu, bušotina se može tretirati analogno cjevovodu i podijeliti na *N* segmenata. Svaki segment unutar bušotine može se analizirati pojedinačno kako bi se detaljno razumjeli parametri poput tlaka, temperature, i brzine protoka. Ovaj pristup omogućava precizno modeliranje i upravljanje protokom CO₂ kroz bušotinu, slično kao što se to radi s cjevovodom. Kada se bušotina dijeli na *N* segmenata, ukupni protok CO₂ raspoređuje se ravnomjerno među svim bušotinama, a protok kroz jednu bušotinu može se izračunati kao:

$$q_{m,CO2,1w} = \frac{q_{m,CO2}}{N_w}$$
(3-28)

gdje su: $q_{m,CO2,1w}$ – maseni protok CO₂ kroz jednu bušotinu (kg/s),

 $q_{m,CO2}$ – ukupni maseni protok CO₂ (kg/s), N_w - ukupni broj bušotina

Matematički model za strujanje CO₂ kroz bušotinu vrlo je sličan modelu strujanja kroz cjevovod. Glavne jednadžbe koje opisuju protok CO₂ i promjene u termodinamičkim parametrima kroz cjevovod također vrijede za bušotinu, s time da se indeksi i parametri zamjenjuju kako bi odgovarali specifičnostima bušotine. Konkretno, u jednadžbama za bušotinu potrebno je zamijeniti indekse p (koji se odnose na cjevovod) s indeksom w (koji se odnosi na bušotinu). Parametri se mijenjaju na sljedeći način:

$$D_p \to D_w$$
$$h_p \to h_w$$
$$A_p \to A_w$$
$$A_{cy,p} \to A_{cy,w}$$

pri čemu su d_w promjer bušotine, h_w visina hrapavosti, A_w poprečni presjek strujanja te $A_{cy,w}$ površina segmenta bušotine preko kojeg se izmjenjuje toplinski tok.

Jednadžba promjene tlaka jedina ima strukturnu razliku (u odnosu na jednadžbu promjene tlaka duž cjevovoda) jer sada mora sadržavati i pribrojnik koji se odnosi na komponentu hidrostatskog tlaka:

$$p_{CO2,w,1}^{j} = p_{CO2,w,2}^{j} - \rho_{CO2,w}^{j} g \Delta L_{w}^{j} + \frac{f L_{p}^{j}}{D_{p}} \frac{1}{2} \rho_{CO2}^{j} \left(w_{CO2}^{j} \right)^{2}$$
(3-29)

gdje su: $p_{CO2,w,1}^{j}$ - tlak na početku segmenta j bušotine (na višoj visini) (Pa),

 $p_{CO2,w,2}^{j}$ -tlak na kraju segmenta j bušotine (na nižoj visini) (Pa),

 $\rho_{CO2,w}^{j}$ - gustoća CO₂ u segmentu *j* bušotine (kg/m³),

g - gravitacijsko ubrzanje, čija je vrijednost 9,81 m/s²,

 ΔL_w^j - visinska razlika (visina segmenta bušotine *j*) koja uzrokuje promjenu hidrostatskog tlaka (m),

f - faktor trenja u bušotini,

 L_p^j - duljina segmenta bušotine j (m),

 D_p – promjer bušotine (m),

 w_{CO2}^{J} - brzine strujanja CO2 u segmentu j (m/s).

Središnji dio jednadžbe koji uključuje pojam $\rho_{CO2,w}^{j} g\Delta L_{w}^{j}$ odnosi se na utjecaj visine segmenta bušotine na tlak. Kako CO₂ struji prema dolje u bušotini, povećanje visine segmenta *j* uzrokuje povećanje hidrostatskog tlaka. Desni dio jednadžbe $\frac{fL_{p}^{j}}{D_{p}} \frac{1}{2} \rho_{CO2}^{j} (w_{CO2}^{j})^{2}$ opisuje gubitak tlaka zbog trenja i brzine strujanja povezan je s Darcy-Weisbach jednadžbom i isti je kao i kod cjevovoda. Ovaj izraz opisuje gubitke tlaka uzrokovane trenjem fluida u cjevovodima (ili bušotinama) i daje doprinos ukupnom padu tlaka.

Kod izmjene toplinskog toka jednadžbe su iste kao i u slučaju cjevovoda, ali ovdje se razlika temperatura odnosi na temperaturu CO₂ u bušotini i temperaturu stijene u razini segmenta:

$$\Delta T_{w} = T_{CO2}^{j} - T_{R,w}^{j} \tag{3-30}$$

gdje su: ΔT_w – razlika u temperaturi između CO₂ i okolne stijene u *j*-tom segmentu (°C),

 T_{CO2}^{j} – temperatura CO₂ u bušotini u *j*-tom segment (°C),

 $T_{R,w}^{j}$ - temperatura okolne stijene koja okružuje bušotinu u *j*-tom segment (°C).

Ako je temperatura CO_2 viša od temperature tla, toplina će se prenositi iz CO_2 u tlo, dok će se u suprotnom slučaju toplina prenositi iz tla u CO_2 .

Izlazni parametri strujanja CO₂ na dnu bušotine, odnosno izlazni tlak u zadnjem segmentu $p_{CO2,w,2}^N$ jednak je dinamičkom tlaku na dnu bušotine p_{wf} dok je temperatura CO₂ na izlazu iz zadnjeg segmenta bušotine $T_{CO2,w,2}^N$ jednaka temperaturi CO₂ na dnu bušotine T_{wf}^N . Za izračun preostalih termodinamičkih parametara na dnu bušotine koristi se funkcija koja koristi jednadžbu stanja kako bi izračunala gustoću ρ_{wf} i entalpiju CO₂ h_{wf} na temelju poznatog tlaka na dnu bušotine p_{wf} te temperature na dnu bušotine T_{wf} prema:

$$(\rho_{wf}, h_{wf}) = f_{EOS}(p_{wf}, T_{wf})$$

3.3 Matematički model pada tlaka u perforacijama i pribušotinskoj zoni

Prolaz CO₂ iz područja dna bušotine u ležište odvija se kao rezultat razlike tlakova između dna bušotine i ležišnog tlaka. Ova razlika tlaka djeluje kao "pokretačka sila" koja omogućava strujanje CO₂ u ležište. Nagla promjena u geometriji protoka, kao što je prijelaz iz većeg promjera bušotine u puno uži promjer perforacija, može uzrokovati značajne promjene u tlaku i brzini strujanja CO₂. Dolazi do izrazitog lokalnog pada tlaka u području perforacija i pribušotinske zone (i do nekoliko stotina bara), a također dolazi do naglog smanjenja temperature CO₂ zbog Joule-Thomsonovog efekta. Joule-Thomsonov efekt je pojava pri kojoj se plin pri naglom širenju, bez izmjene topline s okolinom (adiabatsko širenje), hladi. U ovom slučaju, CO₂ prolazi kroz perforacije i naglo se širi, što uzrokuje pad tlaka i snižavanje temperature.

Pad tlaka u pribušotinskoj zoni uvjetovan je vrlo kratkim zadržavanjem CO₂ u ovom području, što stvara uvjete za brzu promjenu termodinamičkih svojstava. Ako temperatura CO₂ padne ispod točke smrzavanja vode prisutne u ležištu, postoji rizik od smrzavanja ležišne vode, što može blokirati protok CO₂. Važno je da CO₂ ostane izvan kapljevite faze kako bi se izbjegle blokade u ležištu. Glavne parametre modela pada tlaka u perforacijama i

pribušotinskoj zoni određuju se analizom kontrolnog volumena što prikazuje Slika 3-2, a proračun je baziran prema knjizi Proizvodno inženjerstvo nafte i plina (Čikeš, 2015).

Slika 3-2. Shema utiskivanja CO₂ u području perforacija i pribušotinske zone

Ukupni pad tlaka između dna bušotine i ležišnog tlaka pri strujanju CO₂ se sastoji od tri dijela:

$$\Delta p = \Delta p_{perf} + \Delta p_s + \Delta p_R \tag{3-31}$$

gdje su: Δp - ukupni pad tlaka između dna bušotine i ležišnog tlaka pri strujanju CO₂ (Pa),

 Δp_{perf} - pad tlaka kroz perforacije (Pa),

 Δp_s – pad tlaka kroz pribušotinsku zonu uslijed skin efekta (Pa),

 Δp_R – protutlak ležišta (Pa).

Pad tlaka kroz perforacije bušotine predstavlja gubitak tlaka zbog prolaska CO₂ kroz perforacije gdje uski promjer uzrokuje značajan pad tlaka, što može dovesti do značajnog hlađenja CO₂ zbog Joule-Thomsonovog efekta. Prolazak kroz perforacije može biti vrlo brz i može uzrokovati adijabatsko širenje CO₂, što rezultira smanjenjem temperature.

Pad tlaka zbog skin efekta odnosi se na pad tlaka koji nastaje zbog otpora u blizini bušotine, često zbog promjena u strukturi formacije blizu bušotine (smanjenja propusnosti). Ovaj otpor može dodatno pridonijeti hladenju CO₂, jer fluid mora prolaziti kroz područje s povećanim otporom, što može uzrokovati dodatno širenje i smanjenje temperature. Dakle, dominantna su prva dva člana u kojima dolazi i do značajnog hlađenja CO₂. Pojedini članovi se mogu izraziti preko bezdimenzijskih značajki:

$$\Delta p_{perf} = \frac{q_{\nu,CO2}B_{g,CO2}\overline{\mu_{CO2}}}{2\pi k_R h_R} \left(s_p + s_{dp} + D_{dp}q_{\nu,CO2} \right)$$
(3-32)

gdje su: Δp_{perf} - pad tlaka kroz perforacije bušotine (Pa),

 $q_{\nu,CO2}$ – volumni protok CO₂ kroz perforacije (m³/s),

 $B_{g,CO2}$ – volumni faktor CO₂ s obzirom na prosječnu gustoću $\overline{\rho_{CO2}}$ i gustoću pri standardnim uvjetima

 $\overline{\mu_{CO2}}$ - prosječnu viskoznost CO₂ (Pas), k_R – propusnost ležišta (mD),

 h_R – debljina ležišta (m),

 s_p – specifični gubici tlaka povezani s perforacijama obično su uključeni kao dio koeficijenata koji uzimaju u obzir turbulentne ili viskozne gubitke. To može biti uključeno u obliku gubitaka zbog trenja ili promjena brzine protoka kroz perforacije,

 s_{dp} – gubici tlaka zbog različitih strukturalnih promjena u perforacijama ili dodanih ili kompliciranih oblika perforacija,

 D_{dp} - koeficijent turbulentnog protoka u zbijenoj zoni.

Kod pada tlaka u perforacijama treba uzeti u obzir pad tlaka uslijed turbulentnog strujanja kao i pad tlaka uslijed smanjene propusnosti u zoni perforacija. Nadalje, potrebno je izračunati koeficijent turbulentnog protoka u zbijenoj zoni prema :

$$D_{dp} = \frac{k_R h_R \beta_{dp} \overline{\rho_{CO2}}}{2\pi \overline{\mu_{CO2}} r_p (L_p N_p)^2}$$
(3-33)

gdje su: k_R - propusnost ležišta (mD),

 h_R – debljina ležišta (m),

 β_{dp} – faktor turbulencije u zoni perforacije,

 $\overline{\rho_{CO2}}$ – prosječna gustoća CO₂ (kg/m³),

 $\overline{\mu_{CO2}}$ – prosječna viskoznost CO₂ (Pa·s)

 r_p – procijenjeni radijus perforacija, jednak polovini promjera perforacije (m),

 L_p - duljina perforacija (m),

 N_p – broj perforacija.

Član β_{dp} je faktor turbulencije u zoni perforacije, a dobiva se:

$$\beta_{dp} = \frac{8^{-8}}{k_{dp}^{1,2}} \tag{3-34}$$

gdje su: β_{dp} - faktor turbulencije u zoni perforacije,

 k_{dp} - propusnost u zoni perforacija (mD).

Pad tlaka u pribušotinskoj zoni Δp_s može se izraziti preko sljedećih beznačajki:

$$\Delta p_s = \frac{q_{\nu,CO2}B_{g,CO2}\overline{\mu_{CO2}}}{2\pi k_R h_R} \left(s_R + D\left(\left(\frac{\beta_s}{\beta_R} - 1\right) \left(1 - \frac{r_w}{r_e}\right) + 1\right) q_{\nu,CO2} \right)$$
(3-35)

gdje su: Δp_s - pad tlaka u pribušotinskoj zoni (Pa),

 $q_{\nu,CO2}$ - volumni protok CO₂ kroz perforacije (m³/s),

 $B_{g,CO2}$ - volumni faktor CO₂ s obzirom na prosječnu gustoću $\overline{\rho_{CO2}}$ i gustoću pri standardnim uvjetima,

 $\overline{\mu_{CO2}}$ - prosječna viskoznost CO₂ (kg/m³),

 k_R - propusnost ležišta (mD),

 h_R - debljina ležišta (m),

 s_R – parametar koji opisuje promjene u pribušotinskoj zoni koje mogu biti uzrokovane oštećenjem formacije, stimulacijom bušotine ili drugim geološkim efektima,

D – dodatni koeficijent povezan s korekcijom za radijalni protok,

 β_s – faktor turbulencije u pribušotinskoj zoni,

 β_R – faktor turbulencije u ležištu,

 r_w – polumjer bušotine (m),

 r_e - radijus područja odakle se crpi fluid (djelokrug utjecaja bušotine) (m),

 $q_{v,CO2}$ - volumni protok CO₂ (m³/s).

Članovi r_w i r_e predstavljaju polumjer bušotine i radijus crpljenja bušotine (treba ju zadati). Članovi β_s i β_R predstavljaju faktore turbulencije u pribušotinskoj zoni i ležištu, a prema Firoozabadi i Katzu (2003) izračunavaju se iz izraza:

$$\beta_s = \frac{8^{-8}}{k_s^{-1/2}} \tag{3-36}$$

gdje su: β_s - faktor turbulencije u pribušotinskoj zoni,

 k_s - označava propusnost stijena u zoni oko bušotine (pribušotinskoj zoni) (mD). i iz izraza:

$$\beta_R = \frac{8^{-8}}{k_R^{1,2}} \tag{3-37}$$

gdje su: β_R - faktor turbulencije u ležištu,

 k_R – propusnost ležišta (m).

Dok je propusnost ležišta k_R zadana i poznata, vrijednost propusnosti u pribušotinskoj zoni k_s se može odrediti iz izraza:

$$k_s = \frac{k}{s/ln\left(\frac{r_s}{r_w}\right)} \tag{3-38}$$

gdje su: k_s - vrijednost propusnosti u pribušotinskoj zoni (mD),

k - propusnost ležišta u području gdje nije došlo do promjena zbog bušenja ili drugih aktivnosti, tj. prirodna propusnost formacije (mD),

s – skin faktor,

 r_s - procijenjeni radijus pribušotinske zone promjenjive propusnosti (m),

 r_w - polumjer bušotine (m).

Pad tlaka u ležištu proporcionalan je bezdimenzijskom tlaku p_D prema izrazu:

$$\Delta p_R = \frac{q_{\nu,CO2}B_{g,CO2}\overline{\mu_{CO2}}}{2\pi k_R h_R} p_D \tag{3-39}$$

gdje su: Δp_R – pad tlaka u ležištu (Pa),

$$q_{\nu,CO2}$$
 – volumni protok CO₂ (m³/s),

 $B_{g,CO2}$ – volumni faktor CO₂ s obzirom na prosječnu gustoću $\overline{\rho_{CO2}}$ i gustoću pri standardnim uvjetima,

 $\overline{\mu_{CO2}}$ – prosječna viskoznost CO₂ (Pa·s),

 k_R – propusnost ležišta (mD),

 h_R - debljina ležišta (m),

 p_D – bezdimenzijski tlak.

Pad tlaka u ležištu proporcionalan je bezdimenzijskom tlaku p_D koji za pretpostavku konstantnog tlaka na vanjskoj granici izračunavamo iz izraza:

$$p_D = ln\left(\frac{r_W}{r_e}\right) \tag{3-40}$$

gdje su: p_D – bezdimenzijski tlak,

 r_w - polumjer bušotine (m),

 r_e - radijus područja odakle se crpi fluid (djelokrug utjecaja bušotine) (m).

Volumni protok CO₂ dobijemo tako da maseni protok podijelimo sa prosječnom gustoćom:

$$q_{m,CO2} \frac{q_{m,CO2}}{\overline{\rho_{CO2}}} \tag{3-41}$$

gdje su: $q_{v,CO2}$ - volumni protok CO₂ (m³/s), $q_{m,CO2}$ - maseni protok CO₂ (kg/s),

$\overline{\rho_{CO2}}$ - prosječna gustoća CO₂ (kg/m³).

Svi uprosječeni fizikalni parametri su izračunati kao aritmetička sredina parametara na dnu bušotine i ležišnim uvjetima. Gustoća i viskoznost su funkcije tlaka i temperature. Stoga se koriste prosječne vrijednosti tlaka i temperature kako bi se izračunali uprosječeni fizikalni parametri pomoću jednadžbi stanja (EOS - Equation of State):

$$(\overline{\rho_{CO2}}, \overline{\mu_{CO2}}) = f_{EOS}(\overline{p}, \overline{T})$$

pri čemu su uprosječeni tlak:

$$\bar{p} = 0.5(p_{wf} + p_R)$$
 (3-42)

gdje su: \bar{p} – uprosječeni tlak (Pa),

 p_{wf} – dinamički tlak na dnu bušotine (Pa),

 p_R – ležišni tlak (Pa).

i uprosječena temperatura:

$$\bar{T} = 0.5(T_{wf} + T_R)$$
 (3-43)

gdje su: \overline{T} – uprosječena temperatura (°C),

 T_{wf} – temperatura na dnu bušotine (°C),

 T_R – ležišna temperatura (°C).

3.4 Matematički model odziva tlaka ležišta pri utiskivanju CO2

Ovaj model je baziran na radu Tan et al. (2023) i glavni cilj mu je procijeniti porast tlaka ležišta p_R u postupku utiskivanja CO₂. Kako utisnuti CO₂ utječe na porast tlaka ležišta mijenjaju se i uvjeti uzvodno od ležišta, odnosno parametri u bušotini i površinskoj opremi. Prema referenci, glavni izraz koji povezuje rezultirajući tlak ležišta i količinu utisnutog plina G_{in} je:

$$\frac{p_R Z_R}{p_{Ri} Z_{Ri}} = \frac{1 - \frac{G_P}{G} - A\omega + \frac{G_{in} Z_{CO2}}{G Z_R}}{1 + \frac{S_{wi}}{S_{gi}} r_{CO2} - \frac{(C_f + C_w S_{wi})(p_i - p_R)}{S_{gi}} + (r_{CO2} - 1)\omega}$$
(3-42)

gdje su: p_R – trenutni tlak u ležištu (Pa),

 Z_R – faktor kompresibilnosti plina pri trenutnom tlaku ležišta,

 p_{Ri} – početni tlak u ležištu prije početka utiskivanja CO₂ (Pa),

 Z_{Ri} – faktor kompresibilnosti plina pri početnom tlaku ležišta,

 G_p – kumulativna proizvodnja plina iz ležišta (m³),

G – početna količina plina u ležištu (m³),

A – faktor heterogenosti ležišta,

 ω – volumni faktor ležišne vode,

 G_{in} – količina utisnutog plina (m³),

 Z_{CO2} – faktor kompresibilnosti za CO₂ pri uvjetima u ležištu,

 S_{wi} – izvorna zasićenost ležišta vodom (%),

 S_{gi} - izvorna zasićenost ležišta plinom (%),

 r_{CO2} – predstavlja omjer otopljenog CO₂ u vodi i općenito je funkcija tlaka i temperature,

 C_f – faktor kompresibilnosti stijene,

 C_w – faktor kompresibilnosti vode.

Član r_{CO2} predstavlja omjer otopljenog CO₂ u vodi i općenito je funkcija tlaka i temperature:

$$r_{CO2} = f(T_R, p_R)$$

U ovome radu je korištena korelacija Khoshraftara i Ghaemija (2023) koju grafički prikazuje Slika 3-3.

Slika 3-3. Omjer otopljenog CO₂ u vodi prema prema tlaku i temperaturi (Khoshraftar i Ghaemi, 2023)

Članovi A i ω označavaju faktor heterogenosti ležišta i volumni faktor ležišne vode. Od svih članova koji su navedeni u ovom poglavlju za proračun je unaprijed potrebno navesti $T_R, S_{wi}, C_f, C_w, G, G_p, A A i \omega$.

3.5. Tijek proračuna

Gornji podmodeli se sastoje od matematičkih formula koje su u ovom radu spregnute u zajednički matematički model kojeg je potrebno, zbog nelinearnosti u sustavu, rješavati iterativno. Kako je već napomenuto, nepoznati fizikalni i termodinamički parametri CO₂ se računaju putem jednadžbe stanja za CO₂. Tijek proračuna je eksplicitna vremenska integracija u diskretnim koracima (marširajući tijek vremena). Eksplicitna integracija je moguća jer je pretpostavljno kvazistacionarno strujanje CO₂ koje ne uzima u obzir promjenu okolišnih parametara, nego uzima samo prosječne godišnje vrijednosti za, primjerice, okolišnu temperaturu zraka ili početne uvjete u spremniku CO₂. Tijekom integracije dolazi do promjene ležišnog tlaka, a time i svih ostalih parametara procesa.

Algoritam prvo učitava početni tlak ležišta, strukturu sustava (duljinu cjevovoda, dubinu bušotine, promjer bušotine, skin faktor i sl.) i procesne parametre (početnu temperaturu i tlak CO₂, okolišnu temperaturu i sl.). S obzirom na očekivani protok CO₂ rješenje spregnutog

sustava jednadžbi mora zadovoljiti neka ograničenja. Tlak nakon pripreme za transport cjevovodom mora biti na nazivnom tlaku cjevovoda:

$$p_{CO2,1} = p_{p,set}$$
 (3-43)

gdje su: $p_{CO2,1}$ – tlak nakon pripreme za transport cjevovodom (Pa),

 $p_{p,set}$ - nazivni tlak cjevovoda (Pa).

Tlak nakon pumpanja za utiskivanje CO₂ $p_{CO2,5}$ mora biti niži od maksimalno dozvoljenog $p_{CO2,4,max}$:

$$p_{CO2,5} < p_{CO2,4,max}$$

Temperatura nakon pada tlaka u perforacijama T_{perf} i pribušotinskoj zoni mora biti iznad minimalno dopuštene $T_{CO2,min}$:

$$T_{perf} > T_{CO2,min}$$

Minimalno dopuštena temperatura mora osigurati da ne dođe do nastajanja hidrata ili zamrzavanja ležišne vode, dok nije dozvoljeno niti prelazak CO₂ u kapljevito područje.

Rezultirajući maseni protok mora biti manji od maksimalno dopuštenog kako zbog prevelike brzine strujanja CO₂ ne bi došlo do erozije materijala cjevovoda ili bušotine:

$$q_{m,CO2} < q_{m,CO2,max}$$

Algoritam je razvijen i implementiran u integriranom skriptnom programu Python koji nudi mogućnost povezivanja s mnogobrojnim modulima, od kojih treba naglasili CoolProp (jednadžba stanja za CO2), NumPY (manipuliranje velikim nizovima brojeva), SciPY (numeričko iterativno rješavanje nelinearnih sustava jednadžbi) i Matplotlib (grafički prikaz rezultata).

CoolProp je biblioteka za proračun termodinamičkih svojstava fluida, kao što su plinovi i tekućine, pomoću jednadžbi stanja. Koristi se za precizno izračunavanje svojstava CO₂ (kao što su gustoća, entalpija, entropija, tlak, temperatura, itd.) u različitim fazama procesa, temeljeno na stvarnim termodinamičkim modelima.

NumPy je temeljna biblioteka za numeričke operacije u Pythonu. Omogućuje rad s velikim višedimenzionalnim nizovima (matricama) i pruža brze matematičke operacije. NumPy se koristi za izvođenje svih vrsta matematičkih operacija i manipulaciju podacima u velikim nizovima ili matricama. U algoritmu je ključan za obradu numeričkih podataka tijekom simulacija.

SciPy je znanstvena biblioteka koja sadrži napredne funkcije za optimizaciju, integraciju, integraciju, interpolaciju i rješavanje nelinearnih jednadžbi. U algoritmu SciPy je ključan za rješavanje nelinearnih sustava jednadžbi, kao što su jednadžbe koje se pojavljuju u modeliranju toka fluida kroz cjevovod ili bušotinu. Također može koristiti metode optimizacije i aproksimacije za rješavanje složenih problema koji nemaju analitičko rješenje.

Matplotlib je alat za vizualizaciju podataka. Omogućuje stvaranje različitih tipova grafova, kao što su linijski grafovi, histogrami, 2D i 3D dijagrami. Ova biblioteka se koristi za prikazivanje rezultata simulacije u obliku grafova. Na primjer, omogućuje vam da vizualno pratite promjene u tlaku, temperaturi ili brzini protoka CO₂ kroz segmente cjevovoda ili bušotine.

4. ANALIZA SLUČAJA: UTISKIVANJE CO₂ U AKVIFER U UVJETIMA POTKRITIČNOG TLAKA

Svrha ove analize slučaja je procjena termodinamičkih parametara i specifičnih utroška toplinske i električne energije u postupku utiskivanja CO₂ u ležište koje sadrži vodu, a time odgovara matematičkom opisu danom u prethodnom poglavlju. Iako je metoda predstavljena u ovome radu primjenjiva na široki spektar ulaznih parametara, za ovu analizu slučaja odabrani su neki tipični parametri temeljem iskustva i pregleda literature od strane autora.

4.1 Postavke analize slučaja

Postavke za numerički proračun su navedene u Tablici 4-1, Tablici 4-2 te Tablici 4-3, a vrijednosti su procijenjene uglavnom temeljem općeg znanja i literaturnih navoda.

Parametar	Vrijednost	Parametar	Vrijednost
<i>p</i> _{CO2,0}	7 bar	$p_{CO2,k}$	70 bar
<i>T_{CO2,0}</i>	25 °C	T _{k,set}	25 °C
q _{m,CO2,max}	15 kg/s	$p_{p,set}$	80 bar
N _k	5	L _{pip}	40 km
η_{is}	0,8	d_{pip}	0,5 m
$p_{CO2,4,max}$	150 bar	N	20
N _w	10	T _{ok}	25 °C
h_{pip}	0,05 mm		

Tablica 4-1. Postavke analize slučaja: parametri površinske opreme

Tablica 4-2. Postavke analize slučaja: parametri bušotine, perforacija i pribušotinske zone

Parametar	Vrijednost	Parametar	Vrijednost
d_w	0,2 m	N_p	72
L _w	1650 m	S	5
h_w	0,05 mm	r_s	0,3 m
r _p	6,5 mm		
L_p	30 cm		

Parametar	Vrijednost	Parametar	Vrijednost
p _{Ri}	190 bar	C _w	10,25e-4 MPa ⁻¹
T_R	70 °C	G _p	15e8 m3
k _R	2,5 mD	G	20e8 m3
h_R	50 m	Α	0,5
S _{wi}	0,25	ω	0,1
C_f	4,95e-4 MPa ⁻¹	r_e	250 m

Tablica 4-3. Postavke analize slučaja: parametri ležišta

S ovim vrijednostima se ulazi u proračun, a rezultati su prezentirani u idućem poglavlju. Minimalno dozvoljena temperatura nakon pada tlaka u perforacijama i pribušotinskoj zoni se može postaviti kao

$$T_{CO2,min} = max(5^{\circ}C, T''@p_{perf} + 5^{\circ}C)$$
(4-1)

gdje su: $T_{CO2,min}$ - minimalno dozvoljena temperatura nakon pada tlaka u perforacijama i pribušotinskoj zoni (°C),

 $T''@p_{perf}$ – temperatura suhozasićenog CO₂ pri tlaku p_{perf} (°C)

Riječima, minimalna dopuštena temperatura je maksimalna vrijednost između vrijednosti 5 °C i vrijednosti temperature suhozasićenog CO₂ pri tlaku p_{perf} uvećanom za 5 °C. Vrijednost od 5 °C osigurava praktični faktor sigurnosti.

4.2 Analiza rezultata: ovisnost o količini utisnutog CO2

Simulacija je provedena s vremenskim korakom od 5 godina, i u tom razdoblju ostvarena su ukupno četiri vremenska koraka koji su prikazani u analizi rezultata. Slika 4-1 prikazuje ovisnost glavnih parametara simulacije (tlak, temperatura, izmjenjeni specifični radovi i topline, kao i injektivnost CO₂) u ovisnosti o kumulativno utisnutoj količini CO₂ (G_{in}). Oznake na slici odgovaraju oznakama na shemi modela prikazanoj na Slici 3-1.

Specifični utrošak rada podijeljen je na specifični utrošak za pripremu transportom cjevovodom ($e_1 = \sum_{i=1}^{N_k} w_{k,i} + w_{p,1}$) i pripremu za utiskivanje u bušotinu ($e_2 = w_{p,2}$).

Injektivnost CO_2 je u ovom radu definirana kao omjer ukupnog masenog protoka CO_2 i razlike tlakova na dnu bušotine i ležišnog tlaka

$$I_{i,CO2} = \frac{q_{m,CO2}}{p_{wf} - p_R}$$
(4-2)

gdje su: $I_{i,CO2}$ – injektivnost CO₂ (kg/s/Pa), $q_{m,CO2}$ – maseni protok CO₂ (kg/s), p_{wf} – dinamički tlak na dnu bušotine (Pa), p_R - ležišni tlak (Pa).

S obzirom na to da se s vremenom povećava količina utisnutog plina, povećava se i protutlak ležišta kao i gustoća CO₂ na dnu bušotine, čime se prema rezultatima prikazanim u ovom radu, injektivnost CO₂ može u tom razdoblju povećavati.

Slika 4-1. Glavni parametri procesa u ovisnosti o količini utisnutog plina

Vidljivo je kako tlak ležišta raste s porastom utisnutog CO₂, a raste i njegova injektivnost. Specifični utrošak energije je približno isti za sve radne točke, a količina potrebne dovedene specifične topline je sve manja. To se može objasniti na način da porastom tlaka ležišta pad tlaka u perforacijama i pribušotinskoj zoni sve manji pa je rezultirajuća temperatura nakon prigušenja strujanja uslijed Joule-Thomsonovog efekta sve viša s većom količinom utisnutog CO₂. Rezultirajući realizirani maseni protok kroz jednu bušotinu je oko 11 kg/s, odnosno 110 kg/s ukupno za svih 10 bušotina.

4.3 Analiza rezultata u termodinamičkim p-h dijagramima

Uobičajeni način detaljnog prikaza termodinamičkih procesa je pomoću p-h (tlakentalpija) dijagrama, koji omogućava jasno praćenje različitih faza fluida tijekom njegovog kretanja kroz sustav. Na p-h dijagramu, prikazan na Slika 4-2, mogu se prikazati fazni prijelazi, od tekuće faze, preko dense faze, sve do natkritične faze.

Slika 4-2. Svojstva CO₂ u termodinamičkom p-h dijagramu

Dense faza (gusta faza) odnosi se na stanje fluida u kojem se njegova gustoća značajno povećava, ali još uvijek ne prelazi u tekuće stanje. To je prijelazno stanje između plinovite i

tekuće faze, gdje se fluid ponaša kao visoko komprimirani plin, zadržavajući neke karakteristike plina, poput niske viskoznosti, dok pokazuje veću gustoću, sličnu tekućinama. U ovoj fazi, CO₂ se može efikasno transportirati kroz cjevovode jer kombinira prednosti niske energije potrebne za kompresiju s visokim volumenom transporta. Natkritična faza nastaje kada fluid prijeđe kritičnu točku, koja predstavlja specifičnu kombinaciju temperature i tlaka (za CO₂, kritična temperatura je oko 31°C, a kritični tlak oko 73,8 bara). U natkritičnoj fazi CO₂ više nema jasnu razliku između tekućeg i plinovitog stanja. Njegova gustoća je slična tekućini, dok se njegova viskoznost i difuzivnost približavaju karakteristikama plinova. To omogućava visoku učinkovitost u transportu i skladištenju, jer se CO₂ može komprimirati do relativno malog volumena, a da pri tome nije potrebno koristiti previše energije za kompresiju, kao što bi to bio slučaj u plinovitoj fazi.

P-h dijagram nudi i praktičnu prednost jer omogućava precizno određivanje utrošenog rada kompresije i pumpanja CO₂, odvedene topline tijekom kondenzacije, odvedene topline tijekom transporta te utrošene toplinske energije za zagrijavanje CO₂ prije utiskivanja u ležište. To se u p-h dijagramu jednostavno vidi kao razlika u entalpiji između početnog i završnog termodinamičkog stanja pojedinog procesa. Na ovaj način možemo točno pratiti energetske tokove unutar sustava, što je ključno za optimizaciju energetske učinkovitosti u transportu i kompresiji CO₂. Cjelokupni proces je prikazan na Slikama (4-3 – 4-6), a odnose se na svaku zasebnu fazu modeliranja: (1) priprema za transport cjevovodom, (2) transport cjevovodom na lokaciju utisa, (3) pripremu CO₂ za utiskivanje i strujanje u bušotini i (4) strujanje između dna bušotine i ležišta kroz perforacije i pribušotinsku zonu.

Proces počinje pripremom CO₂ za transport cjevovodom, kako prikazuje Slika 4-3. Vidljiv je proces višestupanjske kompresije s međuhlađenjem pri čemu se plinoviti CO₂ dovodi na tlak $p_{CO2,k}$ i hlađenjem na konačnu temperaturu $T_{k,set}$. Nakon ukapljivanja pumpanjem se kapljeviti CO₂ prevodi u *dense* fazu na natkritični tlak $p_{p,set}$. Ukupni specifični utrošak rada svih stupnjeva kompresije je 150 kJ/kg, a pumpanja 1,6 kJ/kg. Specifična odvedena toplina pri ukapljivanju na tlaku kondenzacije je veća od -200 kJ/kg. Ovaj dio procesa je isti za sve radne točke jer ovisi isključivo o parametrima za transport CO₂.

Slika 4-3. Termodinamički p-h dijagram procesa: višestupanjska kompresija s međuhlađenjem i pumpanjem

Termodinamički prikaz transporta je u *dense* fazi, pri čemu transportirani CO₂ popirima temperaturu okoline (T_{ok}), a zbog viskoznosti dolazi i do pada tlaka, pri čemu je moguć prelazak u kapljevitu fazu. Proces prikazuje Slika 4-4.

Slika 4-4. Termodinamički p-h dijagram procesa: transport CO₂ cjevovodom do lokacije utisa

Nakon transporta CO₂ na lokaciju utisa treba ga pripremiti za utiskivanje, Slika 4-5, tlačenjem na povišeni tlak (radi ostvarivanja većeg protoka) i zagrijavanjem kako bi se izbjeglo područje preniskih temperatura nakon ekspanzije između dna bušotine i ležišnih uvjeta.

Slika 4-5. Termodinamički p-h dijagram procesa: pumpanje i zagrijavanje CO₂ i transport u bušotini

Kod pumpanja CO₂ vidljiv je porast entalpije od 15 kJ/kg, što nije značajan utrošak rada, ali je zato specifični utrošak topline u svim točkama procesa iznad 250 kJ/kg. To je iznimno važno zbog pada tlaka u perforacijama i pribušotinskoj zoni kojeg prikazuje Slika 4-6.

Slika 4-6. Termodinamički p-h dijagram procesa: pad tlaka u perforacijama i izjednačavanje s parametrima ležišta

Vidljivo je kako je procjenjeni pad tlaka u perforacijama iznosi gotovo 200 bar u prvom koraku, te se postupno smanjuje kako tlak ležišta u idućim koracima raste. Pad temperature je također značajan, ali procjenjena temperatura na izlazu iz perforacija i pribušotinske zone nije niža od $T_{min,CO2}$, niti je CO₂ ušao u fazno područje kapljevine.

5. ZAKLJUČAK

Ovaj rad predstavlja spregnuti model proračuna termodinamičkih svojstava CO₂ pri njegovom komprimiranju, pumpanju i zagrijavanju za potrebe transporta i utisa u iscrpljeno plinsko ležište zasićeno vodom. Proračun je proveden na jednom hipotetskom primjeru, a rezultati pokazuju kvalitativno očekivani trend u termodinamičkim svojstvima CO₂. Specifični utrošak energije za grijanje je u svim radnim točkama procesa bio iznad 250 kJ/kg, što predstavlja određeni trošak kojeg treba uzeti u obzir prilikom utiskivanja CO₂ u ležište potkritičnog tlaka. Specifični utrošak topline pada s porastom ležišnog tlaka. Specifična potrošnja energije za potrebe transporta CO₂ je dominantno na strani višestupanjske kompresije, pri čemu iznosi iznad 150 kJ/kg, dok pumpanje odnosno povećavanje tlaka CO₂ u kapljevitom stanju ne zahtijeva značajne količine energije. Značaj razvoja ovakvih modela je i u činjenici da se mnogi parametri u ležištu određuju posredno putem hidrodinamičkih mjerenja, te ne postoji drugi način da se odredi potrebna specifična toplina zagrijavanja CO₂ prije ulaska u bušotinu osim modeliranjem.

Buduća istraživanja bi mogla uključiti i druge podmodele za pad tlaka u perforacijama, kao i drugačije opisivanje ležišta koje primjerice ne mora imati konstantan tlak na svojim granicama. Također, potrebno je provesti i analizu osjetljivosti na numeričke parametre kao što su broj podjela u segmente ili veličina vremenskog koraka. Uz to, treba napomenuti kako će točnost modela ovisiti i o kvaliteti ulaznih podataka koji su često stručna procjena temeljem iskustva.

LITERATURA

1. BACHU S., & ADAMS, J.J. (2003). Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44(20), 3151-3175.

2. BELL, I., WRONSKI, J., QUOILIN, S., LEMORT, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res., 53, 6, 2498–2508.

3. BRENNAN, S.T., & BURRUSS, R.C. (2003). Specific sequestration volumes: A useful tool for CO2 storage capacity assessment. U.S. Department of the Interior, U.S. Geological Survey.

4. COOPER, C., et al. (2009). A Technical Basis for Carbon Dioxide Storage. Prepared by the CO2 Capture Project. CPL Press, London and New York.

5. ČIKEŠ, M. (2015). Proizvodno inženjerstvo nafte i plina. Sveučilišni udžbenik. Rudarskogeološko-naftni fakultet, Sveučilište u Zagrebu.

6. EIKEN, O., RINGROSE, P., HERMANRUD, C., NAZARIAN, B., TORP, T.A. and HOIER, L. (2013). Importance of pressure management in CO2 storage. Energy Procedia, 1(1), pp.5541-5548.

7. FIROOZABADI, A., KATZ, D. (2003). An Analysis of High-Velocity Gas Flow Through Porous Media. J Pet Technol, 31(02), 211–216. Paper Number: SPE-6827-PA doi:10.2118/6827-PA.

8. INTERNATIONAL ENERGY AGENCY (IEA). (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. URL: <u>https://www.iea.org/reports/net-zero-by-2050</u>

9. INTERNATIONAL ENERGY AGENCY (IEA). (2022). CCUS in Clean Energy Transitions. URL: <u>https://www.iea.org/reports/ccus-in-clean-energy-transitions</u>

10. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). (2014). Climate Change 2014: Mitigation of Climate Change. URL: <u>https://www.ipcc.ch/report/ar5/wg3/</u>

11. KHOSHRAFTAR, Z., & GHAEMI, A. (2023). Prediction of CO2 solubility in water at high pressure and temperature via deep learning and response surface methodology. Case Studies in Chemical and Environmental Engineering, 7, 100338. doi:10.1016/j.cscee.2023.100338.

49

12. LU, H., MA, X., HUANG, K., FU, L., & AZIMI, M. (2020). Carbon dioxide transport via pipelines: A systematic review. Journal of Cleaner Production. URL: https://doi.org/10.1016/j.jclepro.2020.121994.

13. MCKASKLE, R., BEITLER, C., DOMBROWSKI, K. and FISHER, K., 2022. The Engineer's Guide to CO2 Transportation Options. Available at SSRN 4278858.

14. METZ, B., DAVIDSON, O., DE CONINCK, H., LOOS, M., & MEYER, L. (ur.). (2005). Special Report on Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change (IPCC). URL: <u>https://archive.ipcc.ch/pdf</u>.

15. ONYEBUCHI, V.E., KOLIOS, A., HANAK, D.P., BILIVOK, C., and MANOVIC, V. (2017). A systematic review of key challenges of CO2 transport via pipelines. Renewable and Sustainable Energy Reviews, 74, pp. 846-857. URL: <u>http://dx.doi.org/10.1016/j.rser.2017.06.064</u>

16. RACKLEY, S.A. (2017). Carbon Capture from Power Generation. In: Carbon Capture and Storage, 2nd ed. Elsevier, pp. 75-101. URL: <u>https://doi.org/10.1016/B978-0-12-812041-5.00004-0</u>

17. ROY, P., MOHANTY, A., & MISRA, M. (2022). Prospects of carbon capture, utilization and storage for mitigating climate change. Environmental Science Advances, 1(4), pp. 411. DOI: 10.1039/D2VA00236A.

RUANA, B., XUA, R., WEI, L., OUYANGA, X., LUOA, F., and JIANGA, P. (2013).
 Flow and thermal modeling of CO2 in injection well during geological sequestration.
 International Journal of Greenhouse Gas Control, 19, pp.271–280.

19. SPAN, R. & WAGNER, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509–1596. doi:10.1063/1.555991.

20. TAN, X., SHI, J., HUI, D., LI, Q., & WU, T. (2023). Material balance method and dynamic pressure monitoring for water-bearing gas reservoirs with CO2 injection. Energies, 16(12), 4592. doi:10.3390/en16124592.

21. THE PYTHON LANGUAGE REFERENCE. n.d. [online] URL: <u>https://docs.python.org/3/reference/</u> [26.05.2024].

22. VERMA, Y., VISHAL, V., and RANJITH, P.G. (2021). Sensitivity analysis of geomechanical constraints in CO2 storage to screen potential sites in deep saline aquifers. Frontiers in Climate, 3, p.720959. URL: <u>https://doi.org/10.3389/fclim.2021.720959</u>

IZJAVA

Izjavljujem da sam ovaj rad izradio samostalno na temelju znanja stečenih na Rudarsko-geološko-naftnom fakultetu služeći se navedenom literaturom.

Durio Zahatek

Dario Zahatek

Sveučilšte u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET HR-10002 Zagreb, Pierotlijeva 6, p. p. 390

KLASA:602-01/24-01/173URBROJ:251-70-12-24-2U Zagrebu,26. 9. 2024.

Dario Zahatek, student

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-01/24-01/173, URBROJ: 251-70-12-24-1 od 25.09.2024. priopćujemo vam temu diplomskog rada koja glasi:

TERMODINAMIČKA PARAMETRIZACIJA UGLJIKOVOG DIOKSIDA U PROCESU NJEGOVOG TRAJNOG SKLADIŠTENJA U VODOM ZASIĆENA LEŽIŠTA PRI POTKRITIČNOM TLAKU

Za mentora ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada Izv. prof. dr. sc. Luka Perković nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu.

Mentor: 0. (potpis)

lzv. prof. dr. sc. Luka Perković

(titula, ime i prezime)

Predsjednica povjerenstva za završne i diplomske ispite:

(potpis)

Izv. prof. dr. sc. Karolina Novak Mavar (titula, ime i prezime)

Prodekan za nastavu studente: (potpis)

Izv. prof. dr. sc. Borivoje Pašić (titula, ime i prezime)

Oznaka: OB 8.5.-1 SRF-1-13/0

Stranica: 1/1

Čuvanje (godina) Trajno