Primjena GIS tehnologije u kartiranju prirodnih radionuklida

Radas, Tonka

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:355645

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Diplomski studij Geološkog inženjerstva

PRIMJENA GIS TEHNOLOGIJE U KARTIRANJU PRIRODNIH RADIONUKLIDA

Diplomski rad

Tonka Radas

Zagreb, 2024.

Sveučilite u Zagrebu RUDARSKO-GEOLOŠKO-NAPTNI PAKULTET HR-10002 Zagreb, Perotijeve 6. p.p. 390

 KLASA:
 602-01/24-01/131

 URBROJ:
 251-70-14-24-1

 U Zagrebu,
 20.09.2024.

Tonka Radas, studentica

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-01/24-01/131, URBROJ: 251-70-14-24-1 od 01.07.2024. priopćujemo vam temu diplomskog rada koja glasi:

PRIMJENA GIS TEHNOLOGIJE U KARTIRANJU PRIRODNIH RADIONUKLIDA

Za mentora ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada Izv.prof.dr.sc. Želimir Veinović nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu i komentora Izv.prof.dr.sc. Dario Perković.

Predsjednica povjerenstva za završne i diplomske ispite: Mentor Izv.prof.dr.sc. Ana Maričić Izv.prof.dr.sc. Želimir Veinović (titula, ime i prezime) (titula, ime i prezime) Prodekap za pastavu i studente: (potpis) (potpis) Izv.prof.dr.sc. Borivoje Izv.prof.dr.sc. Dario Perković Pašić (titula, ime i prezime) (titula, ime i prezime) OB 8.5.-1 SRF-1-13/0 Stranica: 1/1 Čuvanje (godina) Oznaka: Trajno

PRIMJENA GIS TEHNOLOGIJE U KARTIRANJU PRIRODNIH RADIONUKLIDA

Tonka Radas

Rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za geologiju i geološko inženjerstvo Pierottijeva 6, 10 000 Zagreb

Sažetak

U okviru rada izrađene su interpolacijske karte koncentracija prirodnih radionuklida na području bivše tvornice Jugovinil u Kaštelima. Izvor povišenih koncentracija su šljaka i pepeo dobiveni sagorijevanjem ugljena sa povišenim udjelom radioaktivnih nuklida. Za izradu karata korišteni su računalni sofveri *ArcMap 10.8.2* i *ArcGIS Pro 3.2.0*. Interpolacija je provedena korištenjem geostatističke metode *Empirical Bayesian Kriging*. Kartiranje je omogućilo uočavanje žarišnih točaka i potencijalnih izvora zagađenja.

Ključne riječi:	Prirodni radionuklidi, koncentracije, ArcMap, ArcGIS Pro, interpolacija, geostatistika, termoelektrana, pepeo
Završni rad sadrži:	38 stranice, 2 tablice, 26 slika, 0 priloga, i 0 reference.
Jezik izvornika:	Hrvatski
Pohrana rada:	Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb
Mentori:	izv.prof.dr.sc. Dario Perković izv. prof. dr. sc. Želimir Veinović
Ocjenjivači:	izv.prof.dr.sc. Dario Perković izv. prof. dr. sc. Želimir Veinović izv. prof. dr. sc. Uroš Barudžija
	doc. dr. sc. Ivan Medved doc. dr. sc. Helena Vučenović

APPLICATION OF GIS TECHNOLOGY IN MAPPING NATURAL RADIONUCLIDES

Tonka Radas

Thesis completed at: University of Zagreb Faculty of Mining, Geology and Petroleum Engineering Department of Geology and Geological Engineering Pierottijeva 6, 10 000 Zagreb

Abstract

As part of the thesis, interpolation maps of the concentrations of natural radionuclides in the area of the former Jugovinil factory in Kaštela were created. The sources of elevated concentrations are slag and ash produced by burning coal with a high content of radioactive nuclides. The computer software ArcMap 10.8.2 and ArcGIS Pro 3.2.0 were used to create the maps. The interpolation was performed using the geostatistical method Empirical Bayesian Kriging. Creating the maps enabled the identification of hotspots and potential sources of pollution.

Keywords: Natural radionuclides, concentrations, ArcMap, ArcGIS Pro, interpolation, geostatistics, thermal power plant, ash Thesis contains: 38 pages, 2 tables, 26 figures, 0 appendixes, i 0 references. Original in: Croatian Archived in: Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb Associate Professor Dario Perković, PhD Supervisors: Associate Professor Želimir Veinović, PhD **Reviewers:** Associate Professor Dario Perković, PhD Associate Professor Želimir Veinović, PhD Associate Professor Uroš Barudžija, PhD Assistant Professor Ivan Medved, PhD Assistant Professor Helena Vučenović, PhD

SADRŽAJ

1.	UVOD	1
2.	PRIRODNI RADIONUKLIDI	2
3.	GIS I INTERPOLACIJA PODATAKA	4
4.	PODRUČJE ISTRAŽIVANJA	5
5.	OBRADA PODATAKA I PRIMJENA GIS TEHNOLOGIJE	7
5.	<i>1</i> ArcMap	8
5.	2 ArcGIS Pro	12
6.	REZULTATI I RASPRAVA	17
7.	GOSPODARENJE REZIDUIMA	
8.	ZAKLJUČAK	
9.	LITERATURA	

POPIS SLIKA

Slika 2-1. Uranijski, torijski i aktinijski niz nuklearnog raspada (Ojovan i Lee, 2005)	2
Slika 4-1 Podjela područja istraživanja na istražne zone	6
Slika 5-1. Crtanje poligona zona područja istraživanja	8
Slika 5-2. Unos tabličnih podataka u ArcMap	9
Slika 5-3. Unos tabličnih podataka u ArcMap	9
Slika 5-4. Eksportiranje tabličnih podataka u Shapefile	10
Slika 5-5. Spremanje novog Shapefile-a	10
Slika 5-6. Labeliranje točaka mjerenja	11
Slika 5-7. Završna karta u ArcMap-u	11
Slika 5-8. Geostatistical wizard - odabir metode i podataka	12
Slika 5-9. Postavke kriginga	12
Slika 5-10. Eksportiranje interpolirane karte u raster	13
Slika 5-11. Postavke oblikovanja pojedinog rastera	14
Slika 5-12. Standardizacija rastera Standardize Field alatom	15
Slika 5-13. Zbrajanje rastera Raster Calculator alatom	16
Slika 5-14. Karta zbroja koncentracija svih elemenata	16
Slika 6-1. Interpolacijska karta koncentracije radija-226	18
Slika 6-2. Interpolacijska karta koncentracije olova-214	19
Slika 6-3. Interpolacijska karta koncentracije bizmuta-214	20
Slika 6-4. Interpolacijska karta koncentracije aktinija-228	22
Slika 6-5. Interpolacijska karta koncentracije bizmuta-212	23
Slika 6-6. Interpolacijska karta koncentracije talija-208	24
Slika 6-7. Interpolacijska karta koncentracije cezija-137	26
Slika 6-8. Interpolacijska karta koncentracije joda-131	27
Slika 6-9. Interpolacijska karta koncentracije berilija-7	29
Slika 6-10. Interpolacijska karta koncentracije kalija-40	30

POPIS TABLICA

Tablica 5-1. Formatirani tablični podaci	7
Tablica 6-1. Pearson koeficijenti korelacije elemenata	31

1. UVOD

Prirodni radionuklidi prisutni su na Zemlji u značajnim količinama. Oni uključuju primordijalne radionuklide, poput ⁴⁰Kalija, ²³⁵Uranija, ²³⁸Uranija i ²³²Torija, te izotope nastale njihovim poluraspadom (IAEA, 2022). Kada se sirovine s niskim koncentracijama radionuklida koriste u industrijskim procesima, kao što je sagorijevanje prirodnog ugljena u termoelektrani, koncentracija radionuklida se u nastalim nusproizvodima, poput pepela i šljake, može višestruko povećati. U radu se kartiraju povišene koncentracije prirodnih radionuklida na području bivše tvornice Jugovinil u Kaštelanskom zaljevu. U sklopu tvornice je u pogonu bila termoelektrana na ugljen. Njenim dugogodišnjim radom proizvedena je velika količina otpada (pepela i šljake) koji su sadržavali povišene količine radionuklida. Otpad je odlagan u blizini tvornice te se područje nije u potpunosti saniralo. Upotreba GIS softvera učinkovita je pri analizi raspodjela koncentracija onečišćivala jer je podatke moguće geostatistički obraditi i jasno predočiti. Za interpolaciju koncentracija radionuklida preko cijelog područja istraživanja korištena je metoda *Empirical Bayesian Kriging*.

2. PRIRODNI RADIONUKLIDI

Prirodni radionuklidi definirani su prema IAEA (*International Atomic Energy Agency*) kao radionuklidi koji se prirodno nalaze na Zemlji u značajnim količinama. Pojam se obično koristi za primordijalne radionuklide (⁴⁰K, ²³⁵U, ²³⁸U, ²³²Th) i radionuklide koji su proizvodi njihovog raspada. U okolišu je prisutno više od 60 prirodnih radionuklida. Prema podrijetlu oni se dijele u dvije skupine: primordijalne i kozmogene. Primordijalni radionuklidi prisutni su u zemljinoj kori od njenog nastanka i nalaze se u stijenama i mineralima. Ova skupina uključuje tri dugovječna aktinidna nuklida (²³²Th, ²³⁵U i ²³⁸U). Raspad navedenih radionuklida ponovno stvara radionuklide kćeri, stvarajući nizove koji konačno završavaju u stabilnim izotopima olova (slika 2-1). Unutar ovih nizova radionuklida može se uočiti α-, β- i γ-zračenje. Za razliku od takvih nizova, niz kalija-40 se raspada tvoreći stabilne izotope ⁴⁰Ca i ⁴⁰Ar. Kozmogeni radionuklidi kontinuirano se proizvode u atmosferi bombardiranjem kozmičkim zrakama elemenata poput dušika, kisika i argona. Ovi radionuklidi dospijevaju na Zemljinu površinu putem oborina, suhih padalina ili kroz plinovite geokemijske procese. Tipični predstavnici su radiokarbon (¹⁴C), tricij (³H), te izotopi natrija (²²Na) i berilija (⁷Be).

Slika 2-1. Uranijski, torijski i aktinijski niz nuklearnog raspada (Ojovan i Lee, 2005).

Prirodni radionuklidi prisutni su u Zemljinoj kori, ali njihova distribucija nije ravnomjerna. Kada se sirovine koje sadrže relativno niske koncentracije prirodnih radionuklida uvedu u industrijski proces, tada se radionuklidi mogu koncentrirati u dobivenim nusproizvodima. (Kovacs et al., 2017). Takve aktivnosti uključuju rudarenje i preradu ruda, proizvodnju prirodnog plina i nafte, izgaranje fosilnih goriva i proizvodnju ugljenog pepela izgaranjem ugljena u elektranama (Francis i Nancharaiah, 2015). Materijal koji ostaje nakon industrijskog procesa, u čijem su sastavu ili koji je onečišćen prirodnim radionuklidima, je u Pravilniku o praćenju stanja radioaktivnosti u okolišu definiran kao rezidui.

3. GIS I INTERPOLACIJA PODATAKA

GIS (Geografski informacijski sustav) softver se često koristi u upravljanju i monitoringu onečišćenja jer je korištenjem softvera moguće analizirati i kartirati različite vrste prikupljenih podataka. U softveru je moguće kombiniranje različitih izvora podataka poput mjerenja kvalitete zraka, vode ili tla, satelitskih snimaka, georeferenciranih topografskih karata i sl. Karte izrađene u GIS-u korisne su pri identificiranju žarišta onečišćenja, praćenju promjena izmjerenih koncentracija u vremenu i modeliranju širenja utjecaja zagađivača. To omogućuje bolju procjenu rizika, ciljane intervencije i informirano donošenje odluka. Osim toga, GIS olakšava učinkovitu komunikaciju s javnošću kroz jasne vizualizacije temeljene na podacima.

Empirical Bayesian Kriging (EBK) je geostatistička metoda interpolacije koja se koristi u GIS softveru za procjenu vrijednosti na lokacijama gdje podaci nisu prikupljeni, na temelju poznatih podatkovnih točaka. Za razliku od običnog kriginga, uključuje dodatne informacije o prostornoj varijabilnosti iz cijelog skupa podataka, a ne samo iz susjednih točaka. Skup podataka dijeli se u podskupove kako bi se bolje razumjela prostorna varijabilnost unutar svakog podskupa što je posebno važno u složenim skupovima podataka gdje prostorni uzorci nisu ujednačeni. Zatim se procjenjuju parametri variograma. Variogram opisuje koliko su podaci povezani na različitim udaljenostima, zasebno za svaki podskup. Zasebnom obradom svakog podskupa točnije se obuhvaćaju specifične karakteristike svakog od njih. Takvom metodom moguće je fleksibilnije i prilagodljivije modelirati prostorne varijabilnosti u usporedbi s jednostavnim krigingom, koji može pretpostaviti samo jedan variogram za cijeli skup podataka (ESRI, 2024). EBK je posebno koristan u studijama o okolišu, kao što je kartiranje razina onečišćenja ili predviđanje kontaminacije tla, gdje je za analizu i mogućnosti sanacije, ključna preciznost.

4. PODRUČJE ISTRAŽIVANJA

Područje istraživanja nalazi se u sklopu bivše tvornice Jugovinil u Kaštelanskom zaljevu, između Kaštel Gomilice i Kaštel Sućurca. Područje pripada srednjem Jadranu i radi se o poluzatvorenom, niskoenergetskom okolišu ukupne površine 60 km², prosječne dubine 23 metra. Do ranih 1990-ih okolno područje bilo je gusto naseljeno i odlikovalo se najvećom razinom industrijalizacije duž istočne obale Jadrana. Kao posljedica intenzivne industrije pojavili su se mnogi izvori onečišćenja kao što su bivša kemijska tvornica Jugovinil, tvornica cementa, tvornica željeza, brodogradilište i postrojenje za galvanizaciju. Povrh toga, onečišćenju zaljeva pridonio je gust promet na glavnoj cesti u blizini obale (Lovrencic et al., 2005).

U sklopu tvornice, od 1941. godine, u pogonu je bila termoelektrana za čiji se rad koristio ugljen. Postojalo je više izvorišta sagorijevanog ugljena neka od kojih su Raša u Istri (antracit), Drinovci i Širitovci kod Šibenika (mrki ugljen i lignit) te šire područje Livanjskog polja u Bosni i Hercegovini (mrki ugljen i lignit). Sav ugljen bio je izvor povišenih koncentracija uranija i drugih prirodnih radionuklida nastalih njegovim poluraspadom. Šljaka i pepeo, nastali radom termoelektrane, sadržavali povišene koncentracije prirodnih radionuklida, koja se procesom izgaranja višestruko povećala. Šljaka i pepeo odlagani su u blizini tvornice do 1973. godine, a zatim su premješteni na prikladniju lokaciju nekoliko stotina metara dalje, na rubu mjesta Kaštel Gomilica, gdje su prekriveni zaštitnom plastičnom folijom i slojem gline i humusa. Prostor je potom ograđen i prekriven travom. S vremenom je prostor između tvornice i starog skladišta postupno bio prekriven novim otpadnim materijalima koji su sadržavali trosku i pepeo (Oreščanin et al., 2005).

Za potrebe rada područje je podijeljeno na 7 zona, ovisno o svojedobnoj uporabi prostora (slika 4-1). Zona A – lokacija stare deponije rudne jalovine s povećanom prirodnom radioaktivnošću, sanirano 1973. uključujući materijal iskopan iz zone C, zona B – područje zatrpano pepelom kao i građevinskim otpadom i otpadom od rušenja tijekom 1970-ih i 1980-ih, zona Bn – servisno područje mola zatrpano 1990-ih, zona Bmt – područje očišćeno tijekom sanacije 1973. godine, zona Cug – odlagalište ugljena u funkciji od 1949. godine i zona D – područja s vjerojatnom akumulacijom pepela, bivša taložnica od posebnog interesa za istraživanje jer se na toj lokaciji skladištio pepeo i šljaka dobiveni iz ugljena korištenog u termoelektrani (Prlić et al., 2011; IMI i FZOEU, 2011).

Slika 4-1 Podjela područja istraživanja na istražne zone

5. OBRADA PODATAKA I PRIMJENA GIS TEHNOLOGIJE

Za grafički prikaz mjerenih koncentracija prirodnih radionuklida korišteni su računalni softveri *ArcMap 10.8.2* i *ArcGIS Pro 3.2.0.*, ovaj potonji je moderniji GIS softver koji je ESRI razvio kao zamjenu za *ArcMap (ArcGIS Desktop)* generaciju softvera.

Ulazni podaci za rad u softveru su koncentracije radionuklida mjerene i zabilježene u obliku *Microsoft Excel* tablice. Mjerenja su izvođena na području odlagališta pepela i šljake termoelektrane Jugovinil u Kaštelima, na stalnim i obilježenim lokacijama (Tablica 5-1). Točkama mjerenja su u *Excel* tablici pridružene koordinate, opis lokacije i naziv točke. Od podataka dobivenih u tablici korišteni su oni koji se odnose na prirodne radionuklide, budući da ista sadržava mjerenja i za mnoge druge elemente.

Kako bi se podaci mogli obrađivati u GIS-u, potrebno ih je pretvoriti u odgovarajući format. Dobivena tablica svedena je na novu, koja sadrži samo podatke koji su relevantni za rad i u obliku koji odgovara GIS obradi. Nova tablica prikazana je u tablici 5.1.

Mjesto	Oznaka	Sirina	Duzina	NmV	Datum	ois lokac	Istazne _zone	Ra226	Pb214	Bi214	Ac228	Bi212	TI208	K40	Cs137	I131	Be7
rina kast	IG1	5613981.35	4823167.077	1.90	.3.2010.	marina rt	Bnm	19.58	33.58	31.42	22.81	10.25	27.22	96.89	100.48	88.93	153.16
rina kast	IG2	5614025.517	4823184.49	2.06	.3.2010.	marina rt	Bnm	19.17	29.34	43.19	17.93	-6.60	18.77	26.20	96.68	78.30	133.66
rina kast	IG3	5614079.61	4823174.30	1.95	.3.2010.	marina rt	Bnm	20.44	19.90	36.19	28.77	11.36	48.19	133.97	116.02	74.94	115.34
Jugovini	IG4	5614181.62	4823198.25	3.39	.3.2010.	dogradili	Bmt	19.35	23.45	27.17	15.29	6.60	23.15	93.92	8.80	64.68	103.00
Jugovini	IG5	5614184.75	4823327.99	4.27	.3.2010.	to kod ku	В	285.46	587.74	860.88	29.66	32.40	38.80	74.64	378.51	261.79	391.02
Jugovini	IG6	5614172.07	4823361.11	3.63	.3.2010.	to kod ku	В	295.14	632.48	895.81	59.08	29.69	40.05	87.00	237.67	280.08	423.88
Jugovini	IG7	5614225.19	4823326.79	3.53	.3.2010.	to kod ku	В	95.15	183.45	331.03	25.94	27.11	16.90	49.93	434.25	225.32	323.37
Jugovini	IG8	5614236.90	4823275.09	3.56	.3.2010.	to kod ku	В	81.89	172.20	111.09	9.68	21.47	48.81	61.79	340.36	174.11	245.05
Jugovini	IG9	5614222.34	4823256.40	5.58	.3.2010.	ala talozn	Bmt	229.25	544.22	782.70	69.65	12.83	102.63	134.46	123.23	257.60	392.96
Jugovini	IG10	5614194.33	4823239.81	3.68	.3.2010.	ala talozn	Bmt	87.79	240.31	389.35	31.99	12.83	73.22	81.57	173.11	209.65	297.33
Jugovini	IG11	5614210.02	4823249.18	4.12	.3.2010.	ala talozn	Bmt	146.73	434.40	612.17	33.39	31.40	108.89	68.22	-240.60	236.25	336.14
Jugovini	IG12	5614179.19	4823231.88	4.15	.3.2010.	ala talozn	Bmt	120.63	301.49	460.33	45.51	2.57	42.55	115.18	132.04	217.82	280.73
Jugovini	IG13	5614154.73	4823277.70	3.87	.3.2010.	dogradili	Bmt	98.10	223.61	338.80	11.39	5.13	26.28	70.69	171.32	178.49	192.14
Jugovini	IG14	5614166.23	4823390.58	3.75	.3.2010.	e - sjever	в	276.62	623.05	922.43	27.97	35.87	45.68	81.57	129.10	284.35	206.06
Jugovini	IG15	5614225.37	4823397.13	3.53	.3.2010.	isne cest	В	25.68	78.14	119.62	48.37	16.99	20.65	104.80	296.35	124.85	66.83
Jugovini	IG16	5614495.30	4823366.60	1.47	.3.2010.	dište ugl	Cug	225.88	377.55	530.64	42.63	24.03	23.87	69.21	268.98	198.84	260.50
Jugovini	IG17	5614935.32	4823240.74	3.50	.3.2010.	taloznica	D	86.94	162.34	229.75	29.82	15.37	14.87	68.22	174.03	133.50	116.96
Jugovini	IG18	5614931.20	4823325.79	3.48	.3.2010.	taloznica	D	28.07	36.17	59.57	23.95	10.63	17.98	107.77	133.27	96.05	178.22
Jugovini	IG19	5614856.77	4823263.41	3.54	.3.2010.	taloznica	D	846.28	575.20	812.28	49.69	36.07	69.46	110.24	29.34	283.54	411.99
Jugovini	IG20	5614793.33	4823271.66	4.01	.3.2010.	taloznica	D	254.09	591.64	909.45	90.73	36.95	46.31	139.40	302.67	285.05	353.65
Jugovini	IG21	5614645.56	4823248.70	4.33	.3.2010.	taloznica	D	269.25	590.17	842.03	59.96	35.13	48.19	89.48	268.29	258.04	379.22
Jugovini	IG22	5614645.34	4823261.69	4.48	.3.2010.	taloznica	D	257.46	771.97	1089.00	40.98	39.58	46.93	102.33	260.87	301.18	373.14
Jugovini	IG23	5614596.01	4823229.40	3.93	.3.2010.	taloznica	D	206.10	510.47	740.18	61.94	22.36	26.28	111.23	325.58	253.67	368.86
Jugovini	IG24	5614619.07	4823218.68	3.95	.3.2010.	taloznica	D	168.83	454.22	588.95	35.81	26.13	18.77	60.80	161.20	188.94	280.42
Jugovini	IG25	5614707.90	4823223.86	4.25	.3.2010.	taloznica	D	167.78	373.74	513.16	49.58	23.79	28.79	139.90	184.46	194.91	268.77
Jugovini	IG26	5614807.59	4823227.45	4.17	.3.2010.	taloznica	D	226.73	539.20	617.02	64.51	23.48	20.65	76.62	210.94	190.90	245.05
Jugovini	IG29	5614310.51	4823224.55	3.51	.3.2010.	ontona -	С	43.16	114.83	144.60	13.84	12.08	15.15	76.62	243.53	114.80	153.16
Jugovini	IG30	5614285.04	4823296.35	3.68	.3.2010.	to kod ku	В	2.74	45.08	94.86	36.20	16.20	22.02	172.03	158.44	116.78	239.48
Jugovini	IG31	5614301.83	4823335.53	3.69	.3.2010.	to kod ku	В	55.58	120.37	175.07	22.31	18.16	15.43	107.27	246.47	129.13	105.82
Jugovini	IG32	5614416.90	4823209.20	3.60	.3.2010.	dogradili	С	27.71	66.72	93.77	13.97	13.12	10.64	74.15	140.84	97.24	144.80
Jugovini	IG33	5614578.37	4823217.72	3.65	.3.2010.	adno od	С	50.52	176.27	253.62	27.98	14.66	18.77	86.51	149.64	151.21	221.74
Jugovini	IG34	5614541.83	4823273.49	3.62	.3.2010.	adno od	С	103.15	217.46	294.22	33.70	20.52	18.15	109.74	58.68	157.52	213.62
lugovini	1635	5614526.35	4823285 56	3 75	3 2010	bo onber	C	10.53	47 42	88.46	17 92	10.94	0.30	84 53	70 42	97 24	149.65

TC 1 1'	7 1			4 1 1	1 · · ·	1 .
Tablica	D-1	. F	ormatirani	tab	licni	podaci.
10011000	-	• •				p =

5.1 ArcMap

Prvi dio GIS obrade odrađen je u softveru *ArcMap 10.8.2*. Prvi korak bio je georeferenciranje satelitskog snimka područja istraživanja. Dobivena tif datoteka dodaje se u softver te se pomoću *Georeferencing* alata smješta na odgovarajuću lokaciju u odabranom koordinatnom sustavu - HTRS96/TM. U softver se kao dodatna podloga, a i svojevrsna provjera provedenog georeferenciranja, dodaje i podloga Geoportala Digitalni ortofoto 2020 – WMS. Pomoću georeferencirane karte i podloge, područje istraživanja podijeljeno je na sedam zona, ovisno o svojedobnoj upotrebi područja. Za prikaz podjele poligoni su iscrtani korištenjem alatne trake *Editor* i *Create features* prozora (Slika 5-1).

Slika 5-1. Crtanje poligona zona područja istraživanja.

Idući korak je unos *Excel* podataka u softver, podaci se dodaju klikom na *File > Add XY Data* naredbe (Slika 5-2). Klikom se otvara izbornik u kojemu se odabire list iz obrađene *Excel* tablice te se odabiru stupci tablice koji predstavljaju X i Y polja, gdje se za X polje odabire stupac *Sirina*, a za Y polje stupac pod nazivom *Duzina*. *Sirina i Duzina* odnose na koordinate točaka mjerenja, te će točno smjestiti točke na georeferenciranu kartu (slika 5-3).

File	Edit View Bookmarks New Open	Insert Se Ctrl+N Ctrl+O	election	Geoprocessing 1:1.000	Customize	Windows		
	Save Save As Save A Copy Share As	Ctrl+S						
	Add Data	•	4	Add Data				
	Sign In ArcGIS Online		Add Basemap Add Data From ArcGIS Online					
	Page and Print Setup		*** * Y	Add XY Data				
	Print Preview Print		Ac #	Add XY Data				
	Export Map		sqi)					
	Analyze Map							

Slika 5-2. Unos tabličnih podataka u ArcMap.

Add XY Data		×									
A table containing \boldsymbol{X} and \boldsymbol{Y} coordinate data can be added to the map as a layer											
Choose a table from the map or browse for another table:											
Sedmorka_TR\$ 💽 🖻											
Specify the f	fields for the X, Y and Z coordinates:										
X Field:	Sirina	~									
Y Field:	Duzina	~									
Z Field:	<none></none>	~									
Coordinate S	System of Input Coordinates										
Projected Name: H1 Geographi Name: G0	Coordinate System: IRS96_Croatia_TM c Coordinate System: LS_HTRS96	~									
<		>									
Show De	tails	Edit									
☑ Warn me if	the resulting layer will have restricted	functionality									
About adding	XY data OK	Cancel									

Slika 5-3. Unos tabličnih podataka u ArcMap

Za daljnju obradu potrebno je podatke unesene u softver izvesti u *Shapefile* datoteku na način da se u tablici sadržaja, gdje su isti podaci sada dodani, tablica odabere desnim klikom te se odabere opcija *Data > Export data* (slika 5-4).

Export Data Export To CAD			
Export To CAD			
port Data			
Save this layer's data as a shapefi or geodatabase feature class			
S			

Slika 5-4. Eksportiranje tabličnih podataka u Shapefile.

Tada se u izborniku odabire koordinatni sustav novonastalog *Shapefile* -a, naziv te mapa u koju će se isti spremiti. Za koordinatni sustav bira se onaj u kojemu je i sam projekt (slika 5-5).

Export D	Jata	\times
Export:	All features	\sim
Use the s	same coordinate system as:	
this late	ayer's source data	
O the d	ata frame	
the fe	eature dataset you export the data into applies if you export to a feature dataset in a geodatabase)	
Output f	eature dass:	
C:\DIPI	LOMSKI_TR\shp\NAZIV_SHAPEFILEA.shp	2
C. (DIFI		

Slika 5-5. Spremanje novog Shapefile-a.

Nakon što su spremljeni, *Shapefile*-ovi se dodaju u tablicu sadržaja. Kada im se uključi vidljivost, na karti se pojavljuju točke mjerenja koncentracija, koje su označene žutim kružićem. U svrhu preglednosti podataka točke mjerenja su labelirane. Desnim klikom na

Shapefile odabire se *Properties* > *Labels*. U *Label Field* rubrici odabire se stupac tablice *Oznaka*, kako bi labele točaka odražavale njihove oznake u *Excel* tablici (slika 5-6).

iyer Plo	perties										
General	Source	Selection	Display	Symbology	Fields	Definition Query	Labels	Joins & Relates	Time	HTML Popup	
🗹 Labe	el features	in this layer	·								
Method	:	Label	all the fea	tures the sam	ie way		~				
All fea	tures will l	be labeled u	ising the o	ptions specifi	ed.						
-											
Text	t String	0	naka					Expression			
Labe	a riola.	02	laka				·	Expression			
Tex	t Symbol						10				
		AaBbY	vZz		O An	al		~			
			- -			• B <i>I</i> <u>U</u>	Syr	nbol			
Oth	er Options					Pre-de	fined Lab	el Style			
	Placeme	ent Propertie	s	Scale	Range		Lab	el Styles			

Slika 5-6. Labeliranje točaka mjerenja.

Krajnji rezultat rada u softveru *ArcMap* prikazan je na slici 5-7. Završena karta spremna je za daljnju obradu u softveru *ArcGis Pro*, u kojemu će biti izvršena interpolacija mjerenih vrijednosti koncentracija prirodnih radionuklida.

Slika 5-7. Završna karta u ArcMap-u.

5.2 ArcGIS Pro

Nastavak obrade podataka tj. izrada karte interpolacije, odvija se u softveru *ArcGIS Pro 3.2.0*. Karte su izrađene na baznoj karti prikazanom na slici 7., koju se importiralo u softver klikom na *Insert > Import map*, te odabirom odgovarajuće .mxd datoteke.

Postupak interpolacije provodi se klikom na *Analysis* > *Geostatistical Wizard*. Otvara se prozor sa slike 5-8. u kojemu se odabire metoda interpolacije (*Empirical Bayesian Kriging*) i podaci koji se obrađuju (*Desetorka*). Na slici 5-9. prikazane su postavke interpolacije koje su iste za svaki od deset elemenata.

Geostatistical Wizard - Empirical Bayesian Krig	ing		□ ×
Geostatistical methods	Input Dataset		
Empirical Bayesian Kriging	Source Dataset	Desetorka	- 🖻
 EBK Regression Prediction 	Data Field	Ac228	-
O Kriging / CoKriging			
 Areal Interpolation 			
3D Interpolation			
 Empirical Bayesian Kriging 3D 			
Interpolation with barriers			
 Kernel Interpolation 			
 Diffusion Interpolation 			
Deterministic methods			
 Local Polynomial Interpolation 			
 Inverse Distance Weighting 			
Empirical Bayesian Kriging (EBK)	1.12		
Empirical Bayesian Kriging (EBK) is a kriging-based interp many semivariograms from the input data. In addition, Er models on subsets of the input data.	oolation method tha npirical Bayesian Ki	it accounts for uncertainty in semivariogram estimation by iging can account for moderate nonstationarity by building	simulating Jocal
		Learn more about how Empirical Bayesian Kri	iging works
		< Back Next >	Finish

Slika 5-8. Geostatistical wizard - odabir metode i podataka.

Slika 5-9. Postavke kriginga.

Dobivena karta je po vrsti *shapefile-*a točka, te se za daljnju obradu mora eksportirati u raster. Na slici 5-10. prikazan je postupak.

Zone_Clip	Configure Pop-ups			
A 🗌 Zana	Export Layer >	To Points		
	Save As Layer File	🖽 To <u>R</u> asters		
▷	Share As Layer Package	7 To <u>C</u> ontours		
▷	Cross <u>V</u> alidation	To Polygons		
Empirical Bayesian Kriging 2	🖳 <u>P</u> roperties	To <u>M</u> ultidimensional Raster		
Digitalni ortofoto 2020 - WM	ЛS	To NetCDF/Voxel		

Slika 5-10. Eksportiranje interpolirane karte u raster.

U *Geoprocessing* prozoru koji se otvori potrebno je odrediti mapu u koju će se novonastali raster pohraniti i njegov naziv. Nakon eksportiranja raster je automatski dodan u prozor sadržaja. Zadnji korak u uređivanju karte pojedinog elementa je rezanje rastera prema obliku poligona područja istraživanja, napravljenog u *ArcMap*-u. Klikom na *Analysis* > *Tools* otvara se *Geoprocessing* prozor u kojemu se pomoću trake pretraživanja odabire alat *Clip Raster*. Klikom na alat otvara se prozor u kojemu se odabiru postavke oblikovanja rastera (slika 5-11). Odabire se raster i poligon prema kojemu se raster oblikuje – *Output Extent*. Potrebno je označiti rubriku *Use Input Features for Clipping Geometry*.

Geopro	cessing v + X	Geop
	Clip Raster 🕀	Inces
Paramete	ers Environments (?)	9 1110
Input Ra	ster	
Pb214_r	raster 🗸 📔	
Output E	Extent	
Zone_C	lip 👻 🖬 🖊 🗸	
Rectangl	le	
5		
❤ X an	id Y Extent	
Тор	4822974,38875426	
Left	492367,33842727	
Right	493360,32816955	
Bottom	n 4822675,49199847	
Output F	Raster Dataset	
Pb214_r	raster_Clip1	
✓ Use	Input Features for Clipping Geometry	
NoData	Value	
5,40+50		
	ntain Clipping Extent	
	🕟 Run 🗸	

Slika 5-11. Postavke oblikovanja pojedinog rastera.

Deset karata, dobivenih za pojedine elemente, potrebno je normalizirati u svrhu boljeg uspoređivanja i konačno njihovog zbrajanja. Klikom na *Analysis > Tools > Standardize Field* otvara se alat za standardizaciju, pri čemu je odabrana metoda *Minimum-maximum*. U rubrici *Input Table* odabire se sloj *Desetorka*, maksimalna vrijednost je 1, a minimalna 0 (slika 5-12).

U atributnoj tablici *Desetorke* tada će se dodati stupci *STAND 1-10*, čije su vrijednosti standardizirane vrijednosti pripadajućeg stupca koncentracije pojedinog elementa.

Geoprocessing - + ×							
Standard	lize Field 🕀						
This tool modifies the Input Table ×							
Parameters Environments							
Input Table							
Desetorka 🗸 🦢							
Standardization Method							
Minimum-maximum ~							
Minimum Value							
Maximum Value 1							
Field to Standardize							
Input Field 📀 🕸 🛛 Output Field Name							
Ra226 ~	STAND2						
Pb214 ~	STAND3						
Bi214 ~	STAND4						
Ac228 ~	STAND5						
Bi212 ~	STAND6						
TI208 ~	STAND7						
К40 ~	STAND8						
Cs137 ~	STAND9						
l131 ~	STAND10						
Be7 v	STAND11						

Slika 5-12. Standardizacija rastera Standardize Field alatom.

Novonastale standardizirane vrijednosti koriste se za izradu novih interpoliranih karata, istim postupkom kao i za izvorne vrijednosti (slike 5-8. – 5-11). Zadnji korak u obradi podataka predstavlja zbrajanje svih 10 interpolacijskih karata normaliziranih vrijednosti. Zbrajanje se radi klikom na *Analysis* > *Tools* > *Raster Calculator*. Odabiru se željeni rasteri i odgovarajući operator (+), te se odabire mapa za pohranjivanje i naziv izlaznog, zbrojenog rastera (Slika 5-13).

Slika 5-13. Zbrajanje rastera Raster Calculator alatom.

Završna karta dobivena svim dosad opisanim postupcima prikazana je na slici 5-14.

Slika 5-14. Karta zbroja koncentracija svih elemenata.

6. REZULTATI I RASPRAVA

Na idućim slikama prikazane su interpolacijske karte koncentracije deset elemenata uzorkovanih na području istraživanja. Na slikama se uočava raspodjela koncentracija u okviru promjene boje na karti, gdje crvene do žute boje označavaju višu koncentraciju, a plava boja označava nižu koncentraciju danog elementa. Vrijednosti su na svakoj karti i brojčano prikazane na priloženoj legendi.

Slika 6-1. Interpolacijska karta koncentracije radija-226.

Slika 6-2. Interpolacijska karta koncentracije olova-214.

Slika 6-3. Interpolacijska karta koncentracije bizmuta-214.

²²⁶Radij je član uranijskog radioaktivnog niza (slika 2-1). Peti po redu radionuklid u nizu, nastaje raspadom ²³⁰Torija i s vlastitim vremenom poluraspada od 1600 godina prelazi u ²²²Radon, prilikom čega emitira alfa zračenje. ²²⁶Radij je prirodno prisutan u svim stijenama i tlima u različitim količinama (Paschoa i Steinhäusler, 2010).

²¹⁴Olovo je osmi član uranijskog niza, nastaje raspadom ²¹⁸Polonija te s relativno kratkim vremenom poluraspada od 27 minuta, prelazi u ²¹⁴Bizmut koji nakon 19.7 minuta prelazi u ²¹⁴Polonij. Svojim poluraspadom ²¹⁴Olovo i ²¹⁴Bizmut oslobađaju beta zračenje (slika 2-1). Za sve susjedne radionuklide koji su članovi istog radioaktivnog niza, kao što su u ovom slučaju ²¹⁴Olovo i ²¹⁴Bizmut, može se očekivati negativna korelacija (tablica 6-2). Zbog prirode radioaktivnog raspada, količina ²¹⁴Bizmuta, prisutna u danom trenutku, točno je određena postojećom količinom ²¹⁴Olova koje se može u njega raspasti. To stvara inverzni odnos količine susjednih izotopa u radioaktivnom nizu. Kako se količina ²¹⁴Olova smanjuje njegovim poluraspadom, povećava se količina ²¹⁴Bizmuta jer je proizvod tog raspada. Unatoč opisanom odnosu, na interpolacijskim kartama moguće je opaziti da su povišene koncentracije oba izotopa rasprostranjene su na isti način (slike 6-2. i 6-3). Sličnu raspodjelu koncentracije može se zapaziti i na karti koncentracije ²²⁶Radija, s devijacijom u zapadnom kraju područja zone D (slika 6-1). Uzrok iste raspodjele je to što sva tri izotopa dijele isti izvor: pepeo ugljena povišene koncentracije uranija, čijim su poluraspadom nastali.

Slika 6-4. Interpolacijska karta koncentracije aktinija-228.

Slika 6-5. Interpolacijska karta koncentracije bizmuta-212.

Slika 6-6. Interpolacijska karta koncentracije talija-208.

²²⁸Aktinij je član torijskog niza. Kao treći član nastaje raspadom ²²⁸Radija, te ima vrijeme poluraspada od 6 sati, nakon čega se raspada u ²²⁸Torij prilikom čega se emitira beta zračenje (slika 2-1). Aktinij se u prirodi nalazi kao element u tragovima u rudama uranija i torija – u rudi koja sadrži uranij biti će prisutan izotop ²²⁷Aktinija, dok se ²²⁸Aktinij pronalazi u rudama torija, koje po jednoj toni torija sadrže oko pet nanograma ²²⁸Aktinija.

²¹²Bizmut je deveti član torijskog niza, nastaje beta raspadom ²¹²Olova. ²¹²Bizmut ima vrijeme poluraspada od 60 minuta, nakon kojih prelazi u ²⁰⁸Talij i oslobađa alfa zračenje (slika 2-1). Povišene koncentracije navedenih izotopa opažaju se u zonama A, Bmt i D. Zona A – lokacija stare deponije rudne jalovine, Bmt – područje očišćeno tijekom sanacije 1973. godine i D – područja s vjerojatnom akumulacijom pepela, bivša taložnica od posebnog interesa za istraživanje jer se na toj lokaciji skladištio pepeo i šljaka dobiveni iz ugljena korištenog u termoelektrani (slike 6-4., 6-5. i 6-6).

Slika 6-7. Interpolacijska karta koncentracije cezija-137.

Slika 6-8. Interpolacijska karta koncentracije joda-131.

Prirodna proizvodnja ¹³⁷Cs spontanom fisijom ne uzrokuje značajna prirodne koncentracije u okolišu zbog svojeg relativno kratkog vremena poluraspada. Međutim, antropogeni ¹³⁷Cs ispušten nakon nesreće u Černobilu bio je raširen po cijeloj Europi i mogao se detektirati na cijeloj sjevernoj hemisferi. Zbog troposferskog transporta i snažnog utjecaja vremenskih uvjeta utjecaj nesreće bio je nehomogen nad Europom (UNSCEAR, 2000).

Uslijed složene meteorološke situacije koja se zadržala nakon nesreće i relativno duge izloženosti reaktora atmosferi, radioaktivni materijali taloženi su na velikom području. U blizini elektrane taloženi su grafit i čestice iz uništenog reaktora, dok su sitnije čestice pronađene na znatnoj udaljenosti od izvorišta. Ovisno o prevladavajućem smjeru vjetra i padalinama u tjednima neposredno nakon nesreće, hlapljivi proizvodi kao što su ¹³¹Jod (vremenom poluraspada od osam dana) i dugoživući ¹³⁷Cezij (oko 30 godina) bili su rašireni tisućama kilometara (Izrael et al., 1996). ¹³¹Jod je umjetno proizveden fisijom ²³⁵Uranija tijekom detoniranja nuklearnog oružja, nadzemnih nuklearnih testiranja i radom nuklearnog reaktora. ¹³¹Jod nalazi se u tokovima plinovitog i tekućeg otpada nuklearnih elektrana, ali se ne ispušta u okoliš tijekom normalnog rada reaktora. Izgledno je da su koncentracije navedenih izotopa kartirane na slikama 6-7. i 6-8. porijeklom antropogeni.

Slika 6-9. Interpolacijska karta koncentracije berilija-7.

Slika 6-10. Interpolacijska karta koncentracije kalija-40.

⁷Berilij nastaje u atmosferi reakcijom između kozmičkih zraka (eng. high energy protons) i atoma prisutnih u atmosferi u plinovitom stanju, kao što su kisik i dušik. Nakon relativno kratkog vremena poluraspada od oko 53 dana, ⁷Be se raspada u ⁷Litij (Bolle et al., 1982). Nakon formiranja, ⁷Be se povezuje s prisutnim aerosolima te se putem kondenzacije i oborina taloži na površinu Zemlje, nakon čega se brzo apsorbira u čestice tla (Taylor et al., 2019). Raspodjela koncentracija ⁷Be prikazana je na slici 6-9.

⁴⁰Kalij je primordijalni radionuklid s vrlo dugim vremenom poluraspada od 1.25 milijardi godina, zbog čega je prisutan u Zemljinoj kori od nastanka planeta. Kao član skupine alkalijskih metala, ⁴⁰Kalij je široko rasprostranjenu okolišu, osobito u hidrosferi gdje čini preko 90% ukupne radioaktivnosti u morskoj vodi. U oko 89,28% slučajeva, ⁴⁰Kalij se raspada na ⁴⁰Kalcij uz emisiju beta zračenja. U oko 10,72% slučajeva raspada se na ⁴⁰Argon, čineći osnovu jedne od najčešće korištenih metoda za datiranje stijena, minerala, meteorita i drugih geoloških materijala (Bolle et al., 1982).

	Correlations (Kopija datoteke Samo_bitni_sheetovi_Tonka_Radas1) Marked correlations are significant at p < ,05000 N=33 (Casewise deletion of missing data)									
Variable	Ra226	Pb214	Bi214	Ac228	Bi212	TI208	K40	Cs137	1131	Be7
Ra226	1,000000	0,748665	0,742149	0,501543	0,656537	0,435646	0,086614	0,014928	0,735781	0,692324
Pb214	0,748665	1,000000	0,991151	0,672385	0,786061	0,481732	0,063128	0,182149	0,936287	0,827448
Bi214	0,742149	0,991151	1,000000	0,680181	0,780945	0,490674	0,094833	0,186051	0,952218	0,837759
Ac228	0,501543	0,672385	0,680181	1,000000	0,488775	0,356165	0,470296	0,193790	0,629776	0,615691
Bi212	0,656537	0,786061	0,780945	0,488775	1,000000	0,317118	0,099729	0,245135	0,773563	0,653662
TI208	0,435646	0,481732	0,490674	0,356165	0,317118	1,000000	0,171037	-0,359835	0,552962	0,573700
K40	0,086614	0,063128	0,094833	0,470296	0,099729	0,171037	1,000000	-0,053390	0,066803	0,122764
Cs137	0,014928	0,182149	0,186051	0,193790	0,245135	-0,359835	-0,053390	1,000000	0,251654	0,187706
1131	0,735781	0,936287	0,952218	0,629776	0,773563	0,552962	0,066803	0,251654	1,000000	0,884029
Be7	0,692324	0,827448	0,837759	0,615691	0,653662	0,573700	0,122764	0,187706	0,884029	1,000000

Tablica 6-1. Pearson koeficijenti korelacije elemenata.

7. GOSPODARENJE REZIDUIMA

Prema Strategiji zbrinjavanja radioaktivnog otpada, iskorištenih izvora i istrošenog nuklearnog goriva (NN 125/14) određene su smjernice za sanaciju lokacija na kojima se nalaze prirodni radioaktivni materijali u RH. U dijelu Strategije koji se odnosi na sanaciju lokacija na kojima se nalaze prirodni radioaktivni materijali (kao što je bivša tvornica Jugovinil) navodi se da je za takve slučajeve potrebno izraditi cjelovit program sanacije koji uključuje tehnološki sigurna rješenja koja su prihvatljiva za okoliš. Za izradu programa i osiguranje financijskih sredstava potrebnih za sanaciju odgovoran je vlasnik postrojenja.

Prema točki 6.8. Strategije, područje bivše tvornice Jugovinil mora biti pod regulatornim nadzorom. Za sanaciju područja ne treba planirati nikakva dodatna ili nova skladišta ili odlagališta na drugim lokacijama, ali ju je obavezno provoditi u skladu sa sigurnosnim standardima za zaštitu od zračenja i zaštitu okoliša prema zahtjevima Zakona i Direktive 2013/59. Namjena lokacija na kojima se nalaze prirodni radioaktivni materijali i programi sanacije moraju biti usklađeni s rezultatima odgovarajućih analiza rizika za zdravlje ljudi i okoliš (NN 125/14). U 2020. godini Ravnateljstvo civilne zaštite, Ministarstva unutarnjih poslova Republike Hrvatske odobrilo je Plan sanacije prema kojemu će se ista provesti u okviru izgradnje luke nautičkog turizma, a za kojeg će se provesti postupak Procjene utjecaja na okoliš (Eko Invest, 2020).

Također, prilikom izrade programa sanacije potrebno je razmotriti mogućnost ponovne upotrebe onih prirodnih radioaktivnih materijala koji se mogu osloboditi regulatornog nadzora. Dobar primjer ponovne upotrebe materijala je korištenje nastalog pepela i šljake za proizvodnju građevinskog materijala. Tako se optimizira zbrinjavanje nusproizvoda njihovom ponovnom upotrebom. Radioaktivnost navedenih prirodnih radioaktivnih materijala koji se mogu koristiti kao sirovina u građevinskoj industriji treba pratiti u skladu s Pravilnikom o praćenju stanja radioaktivnosti u okolišu (NN 121/13) (Veinović et al., 2019).

8. ZAKLJUČAK

Istraživanje područja bivše tvornice Jugovinil u Kaštelanskom zaljevu pokazalo je da su industrijske aktivnosti, osobito rad termoelektrane na ugljen, rezultirale povišenim koncentracijama prirodnih radionuklida. Ugljen korišten za rad termoelektrane bio je bogat prirodnim radionuklidima poput uranija i torija, čijim raspadom mogu nastati svi prirodni radionuklidi njihovih nizova raspada. Otpadni materijali kao što su šljaka i pepeo, akumulirali su se u blizini tvornice, a sadržana koncentracija radionuklida dodatno je porasla kroz proces sagorijevanja. Tijekom sanacije 1973. ti materijali su premješteni na drugu lokaciju, no povišena radioaktivnost ostavila je tragove u određenim zonama istraživanja. Osim prirodnih izvora, istraživanje je također otkrilo prisutnost antropogenih izotopa, poput ¹³⁷Cezija i ¹³¹Joda, koji su povezani sa događajima poput nesreće u Černobilu i nuklearnog testiranja. Ovi izotopi proširili su se atmosferskim putem te su detektirani u manjim koncentracijama na analiziranom području. Kartiranje raspodjele koncentracija radionuklida omogućilo je bolje razumijevanje mogućih izvorišta zagađenja. Primjenom geostatističke metode Empirical Bayesian Kriging (EBK), dobivene su interpolacijske karte deset elemenata koji dijele zajedničke žarišne točke u zonama A, Bmt i D. Zona A bila je lokacija stare deponije rudne jalovine, na koju se 70-ih godina deponirao i otpad iz zone C. Zona Bmt označava područje koje je očišćeno od deponiranog otpada tijekom sanacije 1973. godine, dok je zona D lokacija bivše taložnice u kojoj se akumulirali pepeo i šljaka iz termoelektrane. Nad lokacijama sa zabilježenim povišenim koncentracijama prirodnih radionuklida potrebno je provoditi regulatorni nadzor i cjelovit program sanacije prilikom čega su dobivene karte dobar pokazatelj na područja od posebnog interesa.

9. LITERATURA

Web izvor 1: INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA (2022): Nuclear Safety and Security Glossary, Non-serial Publications, IAEA, Vienna URL: <u>https://doi.org/10.61092/iaea.rrxi-t56z</u>

Web izvor 2: ESRI , URL: Empirical Bayesian Kriging (Geostatistical Analyst)—ArcGIS Pro

Web izvor 3: URL: Zbog radioaktivne šljake bivšeg Jugovinila, Kaštel Sućurac je jedna od 9 crnih ekoloških točaka | Dalmatinski portal

FRANCIS A.J., NANCHARIAH Y.V. 2015. In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites, In Woodhead Publishing Series in Energy, Environmental Remediation and Restoration of Contaminated Nuclear and Norm Sites, str. 185-236.

PASCHOA A.S., STEINHAUSLER F. 2010. Radioactivity in the Environment, Chapter 3: Terrestrial, Atmospheric, and Aquatic Natural Radioactivity, Vol. 17, Elsevier, str 29-85.

BOLLE H. J., FUKAI R., de LEEUV J.W., van der PLOEG S.W.F., ROSSWALL T., SCHENCK P.A. i YOKOYAMA Y. 1982. Natural radionuclides in the environment. The Natural Environment and the Biogeochemical Cycles, Vol. 1, Springer, str 47-60.

EKO INVEST d.o.o. društvo s ograničenom odgovornošću za inženjering, organizacijske i tehološke usluge 2020. Plan sanacije pri privođenju namjeni prema prostornom planu lokacije uređene deponije pepela i šljake na prostoru bivše tvornice "Jugovinil".

IMI i FZOEU 2011. Provedba radioloških istraživanja u Gradu Kaštela na lokaciji bivše tvornice Jugovinil i okolini - završno izvješće projekta - svezak I. Elaborat.

IZRAEL, Y. A., De CORT, M., JONES, A. R., NAZAROV, I. M., FRIDMAN, S. D., KVASNIKOVA, E. V. i TSATUROV, Y. 1996. The atlas of cesium-137 contamination of Europe after the Chernobyl accident.

KOVLER, K., FRIEDMANN, H., MICHALIK, B., SCHROEYERS, W., TSAPALOV, A., ANTROPOV, S., BITUH T., NICOLAIDES D. 2017. Basic aspects of natural radioactivity, Naturally Occurring Radioactive Materials in Construction, Woodhead publishing, str. 13-36. LOVRENČIĆ, I., ORESČANIN, V., BARISIĆ, D., MIKELIĆ, L., ROŽMARIĆ-MAČEFAT, M., LULIĆ, S., PAVLOVIĆ, G. 2005. Characterization of tenorm and sediments of Kastela bay and the influence of tenorm on the quality of sediments. In Proceedings of the International Conference on Environmental Science and Technology, str. 891-896.

M.I. OJOVAN i W.E. LEE 2005. An Introduction to Nuclear Waste Immobilisation, Chapter 2 - Nuclear Decay, str 9.-21.

OREŠČANIN V., BARIŠIĆ D., LOVRENČIĆ I., MIKELIĆ L., ROŽMARIĆ-MAČEFAT M., PAVLOVIĆ G., LULIĆ S. 2005. The infuence of fly and bottom ash deposition on the quality of Kastela Bay sediments. Zagreb: Institut Ruđer Bošković, Laboratorij za radioekologiju, Environmental Geology, 49, 53-64

KOVACS, T., BATOR, G., SCHROEYERS, W., LABRINCHA, J., PUERTAS, F., HEGEDUS, M. iDOHERTY, R. 2017. From raw materials to NORM by-products. In Naturally Occurring Radioactive Materials in Construction, Woodhead Publishing, str. 135-182.

A. TAYLOR, W.H. BLAKE, A.R. IURIAN, G.E. MILLWARD, L. MABIT 2019. The Use of Be-7 as a Soil and Sediment Tracer. In: Mabit, L., Blake, W. (eds) Assessing Recent Soil Erosion Rates through the Use of Beryllium-7 (Be-7), Springer, str 1.-13.

VEINOVIĆ Ž., PRLIĆ I., KUJUNDŽIĆ T., SURIĆ MIHIĆ M., PERKOVIĆ D., DOMITROVIĆ D., KORMAN T., MOSTEČAK A., UROIĆ G. 2020. Gospodarenje reziduima u okviru Nacionalnog programa provedbe Strategije zbrinjavanja radioaktivnog otpada, iskorištenih izvora i istrošenog nuklearnog goriva Republike Hrvatske, Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske 69.3-4, str. 163-174.

Narodne novine, Pravilnik o praćenju stanja radioaktivnosti u okolišu, NN 121/13, 2013. Zagreb: Narodne novine d.d.

Narodne novine, Strategija zbrinjavanja radioaktivnog otpada, iskorištenih izvora i istrošenog nuklearnog goriva, NN 125/14, 2014. Zagreb: Narodne novine d.d.