The influence of Fe-oxides and organic matter on surface properties of nanostructured microaggregates of the Terra rossa and Calcocambisol

Ružičić, Stanko; Durn, Goran; Sondi, Ivan; Cukrov, Nuša; Škapin, Srečo D.; Vdović, Neda

Source / Izvornik: Conference book / 9th Mid-European Clay Conference, 2018

Conference paper / Rad u zborniku

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:597399

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-30

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb
The influence of Fe-oxides and organic matter on surface properties of nanostructured microaggregates of the Terra rossa and Calcocambisol

Stanko Ružičić¹, Goran Durn¹, Ivan Sondi², Nuša Cukrov², Srečo D. Škapin³ and Neda Vdović²

¹University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, 10000 Zagreb, Croatia
(Stanko.Ruzicic@rgn.hr)
²Ruder Bošković Institute, Center for Marine and Environmental Research, 10000 Zagreb, Croatia
³Jožef Štefan Institute, Advanced Materials Department, 1000 Ljubljana, Slovenia

This study investigates the influence of Fe-oxides and organic matter on surface properties of nanostructured mineral microaggregates obtained from the Terra rossa and Calcocambisol developed on hard limestone and dolomite in Istria, Croatia.

The mineral composition and the morphology of samples (B horizon) were investigated using X-ray diffraction and field emission scanning electron microscope (FE-SEM), respectively. In order to determine the influence of Fe-oxides and organic matter coatings on surface properties of soils, samples were selectively dissolved. Particle size distribution, specific surface area (SSA), and electrophoretic mobility (EPM) were measured on the following soil subsamples: original samples, samples treated with H₂O₂, samples treated with H₂O₂+NH₄-oxalate, and samples treated with H₂O₂+NH₄-oxalate+Na-dithionite-citrate-bicarbonate. The obtained results showed that kaolinites (kaolinites which form intercalation compounds with DMSO-Kl₀ and kaolinites which do not intercalate with DMSO-Kl) (RANGE et al., 1969), illitic material (ŚRODÓN, 1984; ŚRODÓN & EBERL, 1984), and Fe-oxides are the main mineral components in the clay fraction of the terra rossa. Calcocambisol enriched in organic matter contains kaolinites, chlorite and vermiculite as main mineral phases. The main differences in surface properties between the Terra rossa and Calcocambisol were a consequence of diverse particle-size distribution, mineral composition, and the share of organic matter. FE-SEM analysis of the Terra rossa and Calcocambisol samples after removal of amorphous Fe-oxides and organic matter shows disintegration. This disintegration is evident in reducing particle size from 2 µm to 50 nm for the Terra rossa and from 1.8 µm to 50 nm for Calcocambisol, respectively. Kaolinite with particle size about 50 nm shows pseudohexagonal form in analysed soils. The SSA increased proportionally to the amount of the removed organic matter in both soils. After the removal of well-crystallized Fe-oxides the SSA slightly decreased in Calcocambisol and significantly increased in the Terra rossa due to major soil microaggregate decomposition. EPM measurements of investigated samples were diverse.

Acknowledgments
This study was financed by Croatian Science Foundation (grant 2504).

References: