Application for absolute permeability analysis based
on digital rock sample

Trgovec-Greif, Martin

Master's thesis / Diplomski rad
2021

Degree Grantor / Ustanova koja je dodijelila akademski / strucni stupanj: University of
Zagreb, Faculty of Mining, Geology and Petroleum Engineering / SveuciliSte u Zagrebu,
Rudarsko-geolosko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urm:nbn:hr:169:239632

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-05

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum
Engineering Repository, University of Zagreb

DIGITALNI AKADEMSKI ARHIVI I REPOZITORLIL

zir.nsk.hr

https://urn.nsk.hr/urn:nbn:hr:169:239632
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.rgn.unizg.hr
https://repozitorij.rgn.unizg.hr
https://zir.nsk.hr/islandora/object/rgn:1704
https://repozitorij.unizg.hr/islandora/object/rgn:1704
https://dabar.srce.hr/islandora/object/rgn:1704

UNIVERSITY OF ZAGREB
FACULTY OF MINING GEOLOGY AND PETROLEUM ENGINEERING

Master study of Petroleum Engineering

APPLICATION FOR ABSOLUTE PERMEABILITY ANALYSIS BASED ON
DIGITAL ROCK SAMPLE

Master thesis

Martin Trgovec-Greif

N346

Zagreb, 2021.

University of Zagreb Master Thesis
Faculty of Mining, Geology and Petroleum Engineering

APPLICATION FOR ABSOLUTE PERMEABILITY ANALYSIS BASED ON DIGITAL
ROCK SAMPLE

Martin Trgovec-Greif
Thesis completed in: University of Zagreb
Faculty of Mining, Geology and Petroleum Engineering
Department of Petroleum and Gas Engineering and Energy

Pierottijeva 6, 10000 Zagreb

Abstract

A new algorithm for fast absolute permeability calculation was developed and implemented into
computed code. The algorithm uses binarized digital micro-CT rock sample images as input
data and estimates sample permeability by analysing pore geometry.

Key words: Digital core physics, digital core, micro-CT 1mage analysis, fast permeability
calculation

Thesis consists of: 46 pages, 13 Figures, 3 Tables, 29 references, appendix
Thesis archived: Library of Faculty of Mining, Geology and Petroleum Engineering
Pierottijeva 6, 10000 Zagreb

Supervisor: PhD. Domagoj Vulin, associate professor
Co-supervisor: Marko Gacina, mag. ing. petrol.
Reviewers: 1. PhD. Domagoj Vulin, associate professor

2. PhD. Vladislav Brki¢, associate professor

3. PhD. Borivoje Pasi¢, associate professor

Date of defense: 16™ July 2021., Faculty of Mining, Geology and Petroleum Engineering,
University of Zagreb

SveuciliSte u Zagrebu Diplomski
rad

Rudarsko-geolosko-naftni fakultet

APLIKACIJA ZA ANALIZU PROPUSNOSTI NA TEMELJU DIGITALNOG UZORKA
STIJENE

Martin Trgovec-Greif
Diplomski rad izraden: Sveuciliste u Zagrebu
Rudarsko-geolosko-naftni fakultet
Zavod za naftno 1 plinsko inZenjerstvo 1 energetiku
Pierottijeva 6, 10000 Zagreb
Sazetak

Razvijen je, i implementiran u raCunalni kod, novi algoritam za brzi proraun apsolutne
poroznosti. Ulazni podatci ukljucuju digitalne binarizirane mikro-tomografske slike uzorka
stijene. Geometrijskom analizom mreZe pornog sustava, izraCunata je apsolutna propusnost
uzorka.

Kljucne rijeci: digitalna jezgra, digitalna fizika stijena, analiza mikro-tomografskih slika, brzi
proracun propusnosti.

Zavrsni rad sadrzi: 46 stranica, 13 slika, 3 tablice, 29 referenci 1 dodatak
Zavrsni rad pohranjen: Knjiznica Rudarsko-geolosko-naftnog fakulteta

Pierottijeva 6, 10000 Zagreb

Voditelj: Dr. sc. Domagoj Vulin, izvanredni profesor RGNF-a
Pomo¢ pri izradi: Marko Ga¢ina, mag. naft. rud.
Ocjenjiva¢i: 1. Dr. sc. Domagoj Vulin, izvanredni profesor RGNF-a

2. Dr. sc. Vladislav Brki¢, izvanredni profesor RGNF-a

3. Dr. sc. Borivoje Pasi¢, izvanredni profesor RGNF-a

Datum obrane: 16. srpnja 2021., Rudarsko-geolosko-nafini fakultet, Sveuciliste u Zagrebu

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude towards my supervisor prof. PhD Domagoj Vulin
and co-supervisor Marko Gacina, mag. ing. petrol. for the time they invested into me and my
professional development, for helping me discover my professional interests, for their non-stop

help during my studies and creation of this thesis, which made all of this possible.

TABLE OF CONTENTS

I. LIST OF FIGURES 5 A P Ry RI R I
II. LIST OF TABLES. 7 R ST e I
III. LIST OF ABBREVIATIONS AND SYMBOLSccccovvuvrenvnnens IT
1. INTRODUCTION.. - RRRR—— SO —— 1
2. METHODOLOGY. > AR A 3
2.1. Image processing and segmentation ceseeerrrasesssensssenenasnnane 3
2ol IR C OUDING ssssvivimsssseovvsimmsamssvvees s m o ST 3
Dalile CONERSE BRAGNEID iissssssssini s AR ARS8 A A SRR 4
2.1.3. IMAZE AENOISIING.eeeeeeeeeeei e e e ettt e e e e e e erre e e e e e e e er e aaaaaaees 4
B I | 1 ey T)] | U — 6

2.2, Pore space chardCteriZation i ssvsssiisssssiiisevnaissnmisissssammmnssin 8
2.2.1. Determining the representative elementary volume (REV)ccccccovviiiiinnnnn. 8
2.2.2. Porespace MOrPROIORY s 9
2.2.3. Pore area calculation in two-dimensional images...............cccceeeeeeeeeeevrueeeaann... 11
2.2.4. Pore perimeter calculation from two dimensional imagesccccceeeenen.... 11
2.2.5. Pore radius CalCULATION.oocooiiiiiiiiiiiiiiiiiii et 15

2.3. Absolute permeability calculation............. e ———— svassssas 1D
3. DEVELOPMENT OF APPLICATION FOR FAST PERMEABILITY
CALCULATION S — STV AP RNV 18
3.1. Backend T Trwee T N S PR 18
3.2. Frontend (Grafical User Interface) teeeesssseennnressesennssnnnnn .20
d; RESULTS AN D ESULTSSTUNN. i ssmssmansas s s sissmsess s 55558558 555 smiesmsss 22
5. CONCLUSION........ ERARERIERYY S I SR 28

6.

7.

REFERENCES........

APPENDIX - PYTHON CODE

7.1. binarization.py.

7.2. permeability.py

nnnnnnnnn

nnnnnnnnn

L LIST OF FIGURES

Figure 2-1. Morphological erosion and dilation; (a — original image, b — dilated image, ¢ —
eroded IMELE) verrmunmness s S s B T 5
Figure 2-2. Illustration of watershed algorithm: catchment basins (left) and two pores separated
by ridgeline (FIZRE) e 10
Figure 2-3. Influence of pore orientation on calculated perimetercccccoeevuiiiiciniinnnnn. 11

Figure 2-4. Pore perimeter by subtracting eroded image. Original image (left), eroded image

(middle), 1solated pore edges (TTZL)oooiiiiiiiii e e 12
Bigiire 25, C anwex hinll {rightyand enginal smapeilet) . cmenransamnnnnnmms 13
Figure 2-6. Voxel categorization mechanism and assigned weightscccoviiiiiiinnn. 14

Figure 3-1. Application folder structure, green boxes represent folders and red boxes represent

L T LT T L TP E T 18
Bigure.3-2, setings pane-ol the Gl ..ommmmmmsnmsssmumpanmrsmmunssspsmsessessmmms 21
Figure 4-1. Unprocessed and uncropped sample SHice...........ccooviiiiiiiiiiiiiiiiiiiniiiiicee 22
Figure 4-2. Cropped subsample used for the analysisccccoireiiiiiiriciirecc e, 23
Fipureal-3. Ninetal plaring HEOk oot o s o S 24
Figure 4-4. Manually binarized sample (left) vs. automatically binarized sample (right)........ 24
Figure 4-5. Autocorrelation function for the subsample.............occceiiiiiiiiiecii e, 25

IL. LIST OF TABLES

Tabled-1. Permeability ITOM POTE ATEA vuvvussivysnssaisssvssssyssssssees e sessssaas s ssisss8m 5y a5 ov s mmmss 25
Table 4-2. Permeability from pOre perimeter...........cccveeeeiiiieeeiiiieee e eeeeireeee s eeeeee s 26
Table 4-3. Calculated permeabilities for samples previously analysed by CFD methods........ 2

III. LIST OF ABBREVIATIONS AND SYMBOLS

A
Apores

cl

sample cross-section area
area of pores
circularity coefficient
Euclidian distance
equivalent pore diameter
geometric mean radius
hydraulic radius
voxel intensity
absolute permeability
sample length
volumetric flow rate

pore radius

autocorrelation function value

volume of equivalent capillary

tube

number of voxels within Ti

region divided by total number

of voxels
gamma value
pressure drop

porosity

fluid viscosity

mean voxel intensity within Ti

region

between-the-class variance

Pa

mPa s

II

1. INTRODUCTION

Because of limitations of traditional experimental core analysis methods, digital core
analysis has rapidly become a valuable, commercially used tool for calculations of rock
properties (Blunt et al., 2013; Fredrich et al., 2014). Furthermore, the value in digital core
analysis is not only in predicting petrophysical rock properties, but it also gives insight into
phenomena occurring at pore-scale. The main advantages of digital core analysis, in comparison

to traditional laboratory experiments are:

e less time required for sample preparation and analysis,

e lower costs for analysis,

e possibility of conducting multiple numerical experiments on the same sample,

e possibility of conducting multiple numerical experiments simultaneously, on the
same sample,

e possibility of examining multiple production strategies with the goal of maximizing
fluid recovery,

e quality and integrity of the sample remain unchanged by conducted experiments,

while some laboratory experiments can cause sample degradation or disintegration.

In the last fifteen or so years, micro-focused X-ray computed tomography (micro-CT) is
used to obtain digital rock samples for analysis of pore space structure and residual fluids in
porous medium. In the standard workflow, rock samples are scanned with micro-CT. The scan
represents spatial distribution of sample density which enables the distinguishment of pore space
and rock grains. The final product of the scanning is three-dimensional 1mage (stack of two-
dimensional 1images) that represents digital reconstruction of inner sample structures (Mukunoki
et al., 2016). This digital representation of a rock sample, if correctly prepared for further
analyses, is called a digital core, the term that whole branch of research derives its name from,

and that is digital core analysis.

For the purpose of digital core analysis, numerical and computer methods are used for
determining rock properties like pore size distribution, absolute and effective porosity as well

as for some of the more complicated laboratory experiment simulations like mercury intrusion

capillary pressure analysis (MICP) and single or multiphase flow simulation for determining

permeability.

Digital core analysis workflow consists of image preparation, segmentation and
binarization, defining sub-volume of the sample on which the analyses and simulations are to
be performed and, if numerical simulations are performed, the necessary step is choosing the
numerical solver method and defining boundary conditions. Computing power and runtime
required for the analysis 1s dependent on the sample size, therefore, the choice of representative
elementary volume (REV) is of critical importance (Blunt et al., 2013; André et al., 2013a).
Since there 1s no standard workflow that could offer precise data for broad range of porosities
and permeabilities with acceptable runtime, the majority of challenges is connected to image
processing for pore space reconstruction. Even though there are technological possibilities for
sample scanning on nanoscale (using scanning electron microscope, SEM), these images are
inappropriate for numerical simulations and pore-scale sample analysis, because they either
require very high computing power or do not fulfil the condition that the sample is
representative. Very high image resolution implies that the digital sample is very small, often
smaller than the determined REV and, despite the fact that these images show more detail and
are more similar to real rock sample, using these images for rock properties estimation can lead
to results that show no value in practical application. To illustrate, while modern reservoir scale
models contain about 5-10° to 5-10° cells, CT sample with dimension of 1x1x1 cm with voxel

resolution of 1 um contains 10'* voxels.

The idea of this thesis is to determine absolute permeability of a rock sample by
analysing geometrical properties of interconnected pores. Usually, rock permeability is
determined by running numerical flow simulations (finite-element, finite-volume, Lattice-
Boltzmann method) (Neumann et al., 2021). While these methods may produce more precise
results, they are much more demanding in terms of computer power and runtime. The proposed
approach is suitable for fast calculations of absolute permeability, absolute and effective
porosity while also showing permeability data at pore-scale, which enables detecting restrictions

in flow paths.

2. METHODOLOGY

Standard digital rock physics workflow consists of:

1. image processing and analysis for pore and grain segmentation
2. computational grid generation

3. running numerical simulations for effective rock properties calculation

2.1. Image processing and segmentation

Image processing is usually performed in four steps: (1) cropping, (2) contrast

enhancing, (3) denoising, (4) segmentation.

After micro-CT scanning, images are processed by contrast enhancing, gamma
correction, brightness adjustment and/or histogram equalization (Verri et al., 2017). At the
present moment, there are several proposed techniques for automatic image processing and
segmentation (Schliiter et al., 2014; Iassonov et al., 2009; Eibenberg et al., 2008; Buades et al.,
2005; Huang and Chau, 2008), but porosity estimation for samples where significant fraction of
pore space is not detectable by CT scanning (pores that smaller than voxel resolution) is still
imprecise. Manual image thresholding usually targets the compromise value between the need
for conservation of pore geometry and low resolution-caused detail loss. With that in mind,
sample characterization is subject to high degree of uncertainty; comparative studies show that
porosity and permeability estimates vary by 30% for porosity and by 40% and more for
permeability (Andri et al., 2013a, b).

2.1.1. Image cropping
Since micro-CT obtained images contain not only the rock sample, but also black
background, these images need to be cropped before continuing with the analysis. These images
also contain artefacts on sample edges which need to be removed by cropping. The cropped

images are used for determining REV.

2.1.2. Contrast enhancing

There are several techniques for contrast enhancing of micro-CT images, some of which
are histogram equalization, gamma correction and brightness adjustment. Histogram
equalization is performed when voxel intensities (which range from 0-255 for 8-bit images) are
located in a narrow range of intensities. This is characterized by steep slope in cumulative
density of voxel intensities. Histogram equalization will distribute voxel intensities across the
whole intensity range. Micro-CT 1mages of rock samples contain a lot of voxels in dark-grey
colour range, but some minerals may luminesce under influence of X-rays. This phenomenon
causes very light grey or even white voxels to occur in the images. If this occurs, it is better to
use gamma correction than histogram equalization for contrast enhancing. Gamma correction
for 8-bit images is defined by following expression:

I' = 255 x (L)y 2-1)

255

where:

e [’is voxel intensity after applying gamma correction,
e [is original voxel intensity,

e yis gamma correction value.

Gamma corrected mmage 1s more suitable for automatic image thresholding if there are
very bright voxels occurring. Brightness adjustment increments every voxel intensity by a
constant, which translates the intensity histogram towards extreme values (0 if the constant is
below 0, 255 if the constant is greater than 0). This can cause accumulation of voxels in the
extreme value histogram bins. Although contrast enhancing causes loss of structural detail
(Schliiter et al., 2014), it is still a necessary step for increasing the quality of image segmentation,

especially if a global threshold is chosen (lassonov et al., 2009).

2.1.3. Image denoising
Image denoising is performed to improve signal to noise ratio. Techniques for denoising
usually include some sort of averaging between voxels, but that is not always the case.
Denoising also diminishes image details, by blurring edges of objects and removing small

objects on the image. In order to avoid significant loss of detail while still improving

segmentation possibilities, edge-preserving filters have been developed (Eibenberger et al.,
2008). Among these filters are Non-Local Means (NLM) filter and Bilateral filter (BF). The
main difference between the two is that the latter performs averaging around the target voxel,
while the former performs the averaging based on every voxel in the image. For that reason,
NLM is expected to be more robust than BF while processing images with low signal to noise
ratio (Buades et al, 2005). Three dimensional versions of these filters are also available, where
the averaging algorithm considers three consecutive two dimensional cross sections in three
main directions. Other filters using for image denoising are median filter and mean filter.
Median filter sets the targeted voxel’s intensity to the value of median of voxel intensities within
the specified radius, while mean filter sets the intensity to the value of mean of voxel intensities
within the specified radius. The main advantage of median filter, in comparison to mean filter,

is its lower sensitivity to extreme values (Mandzhieva, 2017).

Another approach to image denoising is using morphological operations such as dilation
and erosion. Both of these operations require a structuring element, often called a kernel. Kernel
represents a pattern by which image objects are modified. In case of dilation, image objects are
dilated by moving the structuring element along the edges of the object and changing voxel
values of voxels that are not part of the object, but overlap with structuring element, to the value
of targeted voxel within the object. Image erosion is an inverse procedure where object edges
are eroded by modifying their values to the values of neighbouring voxels outside the object.

Figure 2-1 illustrates these two operations.

/—\

\x
o

(a) Binary set X and (b) Dilation of X by B (c) Erosion of X by B
structuring element B

Vs
| =

Figure 2-1. Morphological erosion and dilation; (a — original image, b — dilated image, ¢ —
eroded image) (https://imagej.net/plugins/morpholibj)

These operations are often used in pair. If erosion is performed first, followed by
dilation, the operation is called morphological opening. On the contrary, if dilation is performed
first, followed by erosion, the operation is called morphological closing. Coupling erosion and
dilation gives a powerful tool for removing speckles from images while preserving object shapes

and dimensions.

2.1.4. Image segmentation

Image segmentation is the final step of image processing, and the main goal of
segmentation is identifying pore space of the sample. This is accomplished by image
thresholding. Images that underwent the process of thresholding are binary, meaning that there
are only two voxel values present, minimal and maximal values (0 and 255 for 8-bit images).
Therefore, this process is also called image binarization. After the threshold value is set, every
voxel intensity in the image below that value is set to 0, and every voxel with intensity greater
than that value is set to 255. There are several approaches to image thresholding. The simplest
and most widely used approach being setting a global threshold value. This means that the whole
image will be binarized using the same threshold value. Threshold value can be determined
manually or automatically. Manual thresholding usually results in more precise image
segmentation. General recommendation for manual thresholding is to pick a threshold value
near the first local minimum value on the intensity histogram. Automatic thresholding implies
using some algorithm for determining the threshold value. Most commonly used algorithm for
this purpose is Otsu’s binarization algorithm. Otsu’s method segments the image into two
regions, TO and T1, where region TO is a set of intensities from 0 to f and region T1 from ¢ to
255. Value 1 is the threshold value. Otsu’s method scans all the possible thresholding values and
searches for the value with maximum between-the-class variance which is defined by the

following expression:

Ug = WroWri (lro — Hr1) (2-2)
where:

o op’is between-the-class variance,

¢ Wrgis number of voxels in region TO divided by total number of voxels,

e Wr,is number of voxels in region T1 divided by total number of voxels,
e purois mean intensity of region TO and

e ur1is mean intensity of region T1.

Otsu’s thresholding method is more suitable for images with more complex, multimodal
intensity histograms, while it could produce unsatisfying results for simpler, bimodal histogram

images (Otsu, 1979; Yousefi, 2015).

Global threshold can be applied to the whole image stack, or the threshold value can be
adjusted for each thin section of the three-dimensional image. If the latter method is used, setting
the threshold manually for every image slice could be very time consuming and ineffective,
therefore it is recommended to use some sort of automatic thresholding, but it is also important
to consider that some image slices could still have significant artefacts which could impede

binarization quality even if the image has already undergone denoising process.

Adaptive thresholding is a thresholding method in which a separate threshold value 1s
calculated for each voxel. This technique is suitable for images that have significant variations
in illumination. Threshold values are determined by statistical data, like mean or median, of
neighbouring voxels within the specified radius. If the value of targeted voxel is lower than the
average/median by t percent of neighbouring voxels, where # is an arbitrary number, the voxel

value is set to black (0), otherwise it is set to white (255) (Bradley and Roth, 2007).

The quality of segmentation is heavily limited by image resolution. Voxels in the area
of microporosity (pores undetectable by micro-CT) are grey and are easily misclassified as pores
if global thresholding technique is applied. These voxels are usually the ones that make the ideal
boundary between pore space and rock grains. It is also possible that, if microporosity is present,
there are two valleys in low intensity area of intensity histogram. In that case, it is recommended
that the global threshold value is set near the second valley (Verri et al., 2017). If microporosity
is not classified as pore space, not only will it result in wrong porosity estimation, but it will
also lead to wrong pore connectivity interpretation. This can result in significant misestimation
of average pore radius and average flow velocity (Leu et al., 2014), but it may result in better
absolute permeability estimation if geometrical analysis is performed, because micropores do

not contribute much to flow and represent restrictions in pore network.

2.2. Pore space characterization

2.2.1. Determining the representative elementary volume (REV)

In order to reduce the required computing power for creation of a digital model and
running simulations and other calculations, it is necessary to choose the representative
elementary volume of the sample. REV is defined as the smallest subsample for which it is
justified to consider its geometrical characterization representative for the whole sample. REV
is determined by two-point correlation function, also called autocorrelation. Autocorrelation

function for statistically inhomogeneous system is defined as follows:

83 (r,m) = (U ()l (1)) 2-3)
where:

e Sh is the autocorrelation function value,

e rand r; are two arbitrary points in the system,
e angle brackets represent average value and

e 1i(r) is indicator function defined as:

1,if ris j phase

0, otherwise (2-4)

B = {

The value of autocorrelation function can be interpreted as probability that both points ry and r>
are in the phase j. For statistically isotropic medium, autocorrelation function value 1s dependant

solely on distance between the points r| and r,. Therefore, the function can be formulated as:
Sl = ¢; and lim Sir) = b7 (2-5)
where:

e ¢, is volume fraction of phase j.

The value of autocorrelation function can be easily evaluated by successively translating the
line of r voxels by one voxel at a time and spanning the whole image, counting the number of
successes of the two end points falling in phase j and dividing the number of successes by total
number of trials (which is also the system size). Trials are performed across a fixed cross section,

usually along the orthogonal directions. This process is repeated for different distances between

8

the two arbitrary points r; and r>. Autocorrelation function values are then plotted against line r
length. After certain length, the values of autocorrelation function will start to oscillate inside a
relatively narrow range of values. This length is considered the dimension of the representative
subsample. If the same process was repeated for the subsample, different REV dimensions
would be obtained, however, this difference is confirmed to be negligible for estimation of static
properties. On the contrary, for dynamic properties like permeability, larger subsample could

offer better pore interconnectivity data (Yeoung and Torquato, 1997).

2.2.2. Pore space morphology

Pore network models are used to describe complex pore structures with simple
geometrical shapes representing pore bodies and throats. Throats are defined as narrow passages

that connect pores together.

One of the methods for pore network modelling and extraction is maximal ball (MB)
method (also called maximum inscribed sphere algorithm) first developed by Silin and Patzek
(2006). This approach relies on the description of the pore space via clusters of inscribed spheres
and has been proven to be effective in pore networks extraction from tomographic images (Dong
and Blunt, 2009). The first step is to explore the entire domain to find the range of all possible
values of radii of the inscribed spheres. Since every sphere is centred within the cell and is in
contact with the cell wall, the range is limited by minimum and maximum distances between
the cell-centres and the nearest wall. Starting from the largest possible sphere, smaller and
smaller spheres are built, and if two of them touch, they are merged and clustered. At the end,
the whole pore space is filled, and it is possible to obtain average pore diameter by analysing
the sphere radii distribution. The average pore radius is calculated as a volume-weighted
average, so that the relative contribution of each diameter is calculated as a volume fraction of
occupation of the sphere. This value is then compared to theoretical estimation of the equivalent

diameter:

WVpore
Deq = pT (2-6)

assuming that the pore space is reduced to an equivalent capillary tube of volume Vpoe and

surface area S (Verri et al., 2017).

Another algorithm for pore network modelling and extraction is watershed algorithm. In
case of digital core analysis, at this point, the sample is already binarized. In order to apply
watershed segmentation algorithm, it is necessary to find a distance map. This is possible by
applying distance transform algorithm (Mandzhieva, 2017). Euclidian distance for each voxel
(xi, yi) inside the object is calculated from the nearest zero voxel. Euclidian distance is defined

as:

D= \/(xn—z - xi)z + (yn—z - yi)z (2'7)
where xnzand yn, are coordinates of the nearest zero-value voxel.

Since pores are represented as zero voxels (black), and grains are represented as
maximum value voxels (white), it 1s necessary to invert the image before applying distance
transform. After distance map is obtained, watershed algorithm for morphological segmentation
can be applied. To illustrate how the algorithm works, two objects with local deepest points in
their centres should be considered. These deeper areas are called catchment basins. If water
would start to come up in these basins, the first contact line, before the water from the two basins
would connect, is called watershed ridgeline. This line is considered a throat between two

separate pore bodies. The algorithm is illustrated in Figure 2-2.

T E

Figure 2-2. Illustration of watershed algorithm: catchment basins (left) and two pores
separated by ridgeline (right) (Rabbani et al., 2014)

Medial axis extraction algorithm can also be used for extracting the pore network. This
algorithm extracts flow paths using skeletonization. Skeletonization is a process of successively
eroding the three-dimensional image object until only one voxel of the object per slice is left.

What is then left 1s network of pore medial axes.

10

2.2.3. Pore area calculation in two-dimensional images

Pore area from binarized thin sections of the rock sample can be easily obtained.
Assuming that pore space in the binarized image is represented by voxels with value 1, pore
area is equal to the sum of all voxel intensities within that pore multiplied by squared voxel

resolution.

2.2.4. Pore perimeter calculation from two dimensional images

Unlike pore area, calculating pore perimeter is much more complex. The value of pore
perimeter varies heavily, depending on the chosen method for perimeter calculation. Perimeter
values also depend on image resolution as images with higher voxel resolution show more
morphological detail, and therefore detect more roughness along the pore edges which results
in greater calculated perimeters. This phenomenon is more pronounced in samples with greater
number of smaller pores (samples with lower permeability). Pore orientation within the sample
also plays a role in calculated perimeter, for example if perimeter is calculated simply by
counting pore edges, pore the size of two pixels that are arranged vertically result in smaller
perimeter than if the two pixels were aligned diagonally at 45° angle. Figure 2-3 (left) shows
that in the first case, calculated perimeter equals to 6, and in the second case (right), calculated
perimeter equals to 8 (Images are treated as binary matrices, with values of 1 representing pore

space, and values of 0 representing rock grain).

0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0

Figure 2-3. Influence of pore orientation on calculated perimeter

It 1s also questionable if pore elements on the sample edges should be considered when
calculating perimeter as the pore shape outside the analysed subsample sample is not known.
With all that in mind, twenty-two different methods for determining pore perimeter were

considered (some algorithms are developed internally at the faculty) for the purpose of this

11

thesis. These methods were implemented into a Python script for permeability estimation and

are described in the follow-up:

1. Pore edges are isolated by comparing the matrix without the first column to the matrix
without the last column. Perimeter is then incremented by 1 for each corresponding
voxel pair with different values. The process is repeated for the matrices without the
first and the last row. Finally, pore voxels on the sample edges are added to the total
perimeter. The problem of this method is that it overestimates perimeters, especially
for irregular pore shapes.

2. Pore perimeter 1s calculated similarly to the first method apart from adding pore voxels
on the sample edges to the total perimeter. Perimeter overestimation is still present in
this method.

3. Since pore orientation plays a role in calculated perimeter, this method calculates the
pore perimeter as in method number one and repeats the process for the matrix rotated
by 45°. Perimeter is then calculated as the average value between the two.

4. Perimeter is calculated as the average value of perimeter calculated by method number
2 and perimeter of the matrix rotated by 45° calculated by the same method.

5. Perimeter is calculated similarly to the method number 3, but minimal value between
the two is chosen as the perimeter, instead of calculating average value.

6. Perimeter is calculated similarly to the method number 4, but minimal value between
the two is chosen as the perimeter, instead of calculating average value.

7. Pore edges are isolated by subtracting the matrix obtained by binary erosion of the
original image from the original image (Figure 2-4). Perimeter then equals to the sum

of remaining voxels of value 1.

o|lofo|o|o0 oo |0 |0]|oO oo fo|o0|o0

o1 1|10 olo|o0o]|0]oO o|1]|1]|1]o
—

01| 1|1]0]| = 0o 10| 0] o1 |o|1]o0

g (a3 | |3 |- olo|o0o]|o0]|oO o1 |1]|1]o0

o|loflo|o]|o0 olo|o0o|o0]|oO olo|o|o]|o

Figure 2-4. Pore perimeter by subtracting eroded image. Original image (left), eroded image
(middle), isolated pore edges (right)

12

8. Perimeter is calculated as the average value between the perimeter obtained by method
number 7 and perimeter from the matrix rotated by 45° obtained by the same method.

9. Pore edges are isolated by subtracting the original matrix from the matrix obtained by
binary dilation of the original image. Perimeter is then equal to sum of remaining voxels
of value 1.

10. Perimeter is calculated as the average value between the perimeter obtained by method
number 9 and perimeter from the matrix rotated by 45° obtained by the same method.

11. Perimeter is calculated similarly as in method number 8, but minimal value between
the two is chosen, instead of calculating the average value.

12. Perimeter is calculated similarly as in method number 9, but minimal value between
the two is chosen, instead of calculating the average value.

13. Perimeter is calculated as in method number 1, but it is corrected by solidity coefficient.
Solidity coefficient describes degree of convexity of an object and is defined as a ratio
between object area and area of object’s convex hull. Convex hull of an object is the
smallest circumscribed convex polygon surrounding the targeted region (as shown in

Figure 2-5) (https://scikit-image.org/).

Original picture Transformed picture

Figure 2-5. Convex hull (right) and original image (left) (https://scikit-image.org/)

14. Perimeter is calculated as in method number 2, but corrected by solidity factor.

15. Perimeter is obtained by function bwperim from Python module Mahotas. Input data
for the function is a binary matrix (the image) and number of connections, which
represents the number or directions in which the nearest voxels are considered elements

of target voxel’s neighbourhood (4 if only orthogonal axes are considered or 8 if all 8

13

directions are considered). Every voxel that has a zero-value voxel in its neighbourhood
1s then considered an element of object perimeter and is added to total perimeter
(https://mahotas.readthedocs.io/en/latest/labeled.html).

16. Perimeter is calculated as average value of perimeters obtained by methods 7 and 9.

17. Perimeter is obtained by function measure.perimeter from Python module scikit-image.
First step in perimeter calculation via this function is object edge detection. This is
achieved by subtracting the matrix obtained by performing binary erosion on the
original image from the original image matrix. Remaining voxels are then categorized
in three categories based on directions in which they are connected to neighbouring
voxels of the object edges. For each category a weight is assigned, which represents
voxel’s induvial contribution to the total perimeter. Categorization mechanism is
shown in Figure 2-6 (Benkrid et al., 2000). Total perimeter is then equal to sum of

voxel in each category multiplied by corresponding voxel weight.

(a) and in which case the contribution of the pixel is C = 1.
g
(b) and / in which case the contribution of the pixel 1s C = ﬁ .
N /
(c) and r\ in which case the contribution of the pixel is C = (1+ I3)/2.
I N

Figure 2-6. Voxel categorization mechanism and assigned weights (Benkrid et al., 2000)

18. Perimeter is calculated by method number 17 and corrected by solidity coefficient.
19. Perimeter 1s calculated by method number 15 and corrected by solidity coefficient.
20. Perimeter is calculated by method number 16 and corrected by solidity coefficient.
21. Perimeter 1s calculated by method number 9 and corrected by circularity coefficient.

Circularity coefficient is defined as follows:

cl = 1 (pore area) (2-8)

am (pore perimeter)?

and represents degree of similarity of object shape to a circle. Value of 1 would mean
the object is completely circular in shape.

22. Perimeter is calculated by method number 1 and corrected by circularity coefficient.

14

Perimeters acquired by described methods are dimensionless (they only represent the number

of voxels that make up object perimeter) and it is necessary to multiply them by voxel resolution.

2.2.5. Pore radius calculation
When pore perimeters and areas are known, pore radii are calculated using the
expression for radius of a circle. If pore perimeter was calculated, the pore radius is calculated

as follows:

s POFEYCTETIRRER) (2-9)

21

Similarly, if pore area was calculated, the pore radius is calculated as follows:

r= f@ (2-10)

When calculating pore radius from area, the value of pore area can be corrected by

solidity or circularity factors beforehand. This will result in smaller pore radii.

Pore radius can also be calculated as hydraulic radius which is defined by following

expression:

2(pore area)

HR =

- (pore perimeter)

(2-11)

The purpose of hydraulic radius in to take pore shape into consideration when calculating pore
radius as pore cross-sections are obviously not circular and it is questionable if using the formula
for circle area/perimeter is valid when calculating pore radius. Similarly, another type of radius
estimation can be used when calculating pore radius, and that is geometric mean radius, which

is defined as:

GMR = \]HR- /@ (2-12)

2.3. Absolute permeability calculation

A new algorithm for sample’s average permeability estimation based on digital
tomographic images of rock samples was developed and is described in this thesis. The

algorithm analyses each individual flow path throughout the sample and detects restrictions

15

along these paths. As these restrictions are what determines sample’s permeability, it was
thought that analysing them at pore-scale level would give valuable insight into sample’s
hydraulic properties. No numerical flow simulations were performed while determining

permeability, as it was determined by exclusively analysing geometrical properties of pores.

After radius of each individual pore that contributes to fluid flow (interconnected pores)
has been determined via pore perimeter and/or area, pairs of two thin sections of three-
dimensional binary image are used to calculate permeability between them. If the same pore
exists in both slices, a pair of permeabilities is calculated using Hagen-Poiseuille’s law for
circular cross-sections and Darcy’s law for linear flow. Hagen-Poiseuille’s law for circular
cross-sections is defined as:

Q — Ap A%mres

P— (2-13)

where:

e Qs fluid flow rate through the pore, m¥/s,

e Ao is area of pores, assuming circular cross-section can be expressed as r/x, m?,
e Ap is pressure drop along the conduit, Pa,

e pis fluid viscosity and, mPa-s,

¢ L is conduit length, m

Darcy’s law for linear flow through porous media is defined as:

AA
Q=P (2-14)
where:
e A is area of sample cross-section and
e ks absolute permeability.
Area of sample cross-section can also be expressed as:
A = Zpores (2-15)

¢

16

where @ is sample porosity. By rearranging these equations (2-13, 2-14 and 2-15), it is possible

to express absolute permeability as:

=T X (2-16)

After permeability of a pore is calculated using equation 2-16 for both slices of a pair,
average pore permeability for the slice pair is calculated using the expression for permeability

for flow through series beds:

=
Il

T (2-17)
T

where:

e k is average permeability,

e L is sample length,

¢ nis a number of series for which average permeability is calculated,
e kiis current slice’s permeability and

e L,is current slices length.

This process is repeated for each pore in slice pair. After every pore’s average
permeability in slice pair is known, the average permeability for the whole slice is calculated by
expression for permeability for flow through layered (parallel) beds:

i1 kih

k= & (2-18)

where:

e h;is slice thickness,

¢ his total sample height.

This whole process is repeated for every slice pair. The number of obtained average
permeabilities at this point is equal to one half of number of slices. Since this method is not
applicable to samples with odd number of slices, for those cases last slice is duplicated. The last
step is to calculate total average sample permeability using the expression for permeability for

flow through series beds once again.

1y

3. DEVELOPMENT OF APPLICATION FOR FAST PERMEABILITY
CALCULATION

The algorithm described in section 2.3 was implemented into computer code. Python
programming language runs the backend of the application, while frontend is handled by EFEL
module (https://github.com/ChrisKnott/Eel) for creating Electron-like, html-based applications.
Application folder structure and scheme is shown in Figure 3-1.

| photon-entypo.eot | photon-entypo.tf |

s fonts Css e R

—— | frontend —— con.fig

- main.html

Main application folder

Pythen scripts

___________ R N N R

. config.py fileFormat_bin.py ;f binarization.py permeability.py default_config.py |

Figure 3-1. Application folder structure, green boxes represent folders and red boxes represent

files

3.1. Backend

As mentioned before, the application backend (which can be considered as the engine of
the application) is handled by Python programming language. Backend consists of several
scripts, each one handling another task. Config.py script’s main purpose is communication with

application’s frontend and running other scripts. If user did not specify certain input parameters,

18

it will load default values of these parameters which are specified in default_config.py script. It
also saves last used input parameters in a file inside config directory called user_config.p and
loads them when application is next started which is accomplished by using pickle module. That
way, every time the application is opened, the input parameters will automatically be set to last

used values.

Binarization.py (appendix 7.1) script is used if samples that are to be analysed are not
yet binary, but in grayscale. The script first loads the image stack in from user specified path.
The script gives several image processing options before thresholding. User can choose to
denoise images using median filter and/or non-local means filter or enhance contrast by applying
gamma correction. It is also possible to apply morphological operations like morphological
opening and closing. Image is finally run through thresholding process. Global threshold value
is determined by calculating the Otsu’s threshold value for each two-dimensional image slice
and then minimal value is selected as the threshold value for the whole stack of images. Images
are saved as text files in the user specified folder. Absolute porosity is also calculated after
thresholding, as a ratio between the number of zero voxels and total number of voxels. The
script uses numpy module (Harris et al.,, 2020) to represent images as three-dimensional

matrices. OpenCV and scikit-image modules are used for image pre-processing and binarization.

Several other utility scripts are used for applying in-house made and imported modules
into uniform format for futher digital rock sample analysis. FileFormat_bin.py script uses
numpy module to convert text images (binary images saved as text files) to compressed numpy
format (npz). This code also processes images before converting and prepares them for
permeability analysis. When images are binarized, output images contain only two voxel values,
0 and 255 (if used with 8-bit images). More appropriate for digital rock analysis is to replace
values of 255 to values of 1. At this point, pore space is represented by zeros, and rock grains
are represented as ones. This script can also invert the image (switch zeros and ones), if

necessary.

The purpose of permeability.py script is determining the absolute permeability of the
sample. This script heavily relies on numpy and scipy modules. The script first loads the image
as a three-dimensional matrix (numpy array) of user-specified dimensions from compressed npz

files created by fileFormat_bin.py script. If the number of slices is odd, the last slice of the image

19

is duplicated, as the number of slices needs be even for the script to successfully calculate
permeability between pairs of neighbouring slices. Then, pore connectivity is checked, and all
isolated pores are removed from the image. After pore connectivity, semantic analysis is
performed to give each pore a unique value. If that unique value is present in both first and the
last slice, this pore is accepted as the pore which can contribute the fluid flow from the first to
the last slice. All the other pores are removed by setting their voxel value to zero. At this point,
effective porosity of the sample is calculated as a ratio of number of non-zero voxels and total
number of voxels. The next step is to determine pore 2D areas. Pairs of slices are analysed, and
for each pore that is present in both slices an array of areas is created. That way it is possible to
track the changes in 2D area for each individual pore. This is again achieved by labelling the
pores with unique voxel values. Pore radii are then calculated as described in section 2.2.5. As
there are three different radii values when calculated from pore area (non-corrected, corrected
by solidity factor and corrected by circularity factor), three different permeability values are
calculated from pore areas (as described in section 2.3). Pore perimeters are then calculated
using user chosen perimeter calculation methods. The same principle is valid for perimeter
calculation, pairs of slices are analysed, and variation of every pore’s perimeter is tracked from
slice to slice. At this point it is possible to calculate pore radii from pore perimeters and also
hydraulic and geometric mean pore radii. That means that the number of permeabilities that are
now calculated equals to a number of chosen methods multiplied by three. The results are then
organized into a data frame, using pandas (McKinney, 2010) module for Python. This allows
for the results to be saved in the Microsoft Excel document at the user specified location on the

computer. The results spreadsheet is automatically opened when the script finishes running.

3.2. Frontend (Grafical User Interface)

The application uses EEL module to connect the calculation algorithms (i.e. backend)
with graphical user interface (GUI) as a kind of module based on Electron software framework
(ChrisKnott/Eel, 2021). EEL module allows to program the visual interactive part (frontend
GUI) as HTML/JavaScript page and to connect GUI and the backend engine in both directions.
Many modern applications are built with use of similar frameworks, namely MS Teams, Twitch,
Visual Studio Code, WhatsApp etc. EEL hosts a local webserver, then lets the user annotate

functions in Python so that they can be called from JavaScript and vice versa (ChrisKnott/Eel,

20

20211). Most of the frontend-backed communication is happening between config.py script and
sync.js which is a JavaScript file. Input parameters defined by user in the GUI are passed by
sync.js to Python. After buttons in the GUI are pressed, sync.js triggers the execution of the
corresponding Python script. Asynchronous functions inside this script are also defined and the
role of these functions is to await feedback from Python scripts. If the script executed correctly,
a success message 1s being passed to sync.js, which finally transcribes this message into the

GUL

The GUI is divided into panes. The first pane, named ‘actions’, contains buttons which
trigger the execution of the corresponding Python scripts (Figure 3-2). The ‘settings’ pane
queries the user about input parameters for calculations as well as file paths to data upon which

calculations are carried out.
@ DRP app - o x

ackons
¥ sefings
? help

—
Figure 3-2. 'settings' pane of the GUI
Another JavaScript file, menu.js, allows the user to toggle between different panes.

GUT’s visual style is designed by using Photon CSS (Cascading Style Sheets) library.

Photon library is specifically designed for building Electron-style applications
(http://photonkit.com/).

21

4. RESULTS AND DISCUSSION

Berea sandstone sample was used for the permeability analysis for the purpose of this
thesis. This particular sample was analysed by (5) Neumann et al. (2021). Micro-CT 8-bit
grayscale images of the sample were obtained with voxel resolution of 2.25 pm/voxel.
Uncropped and unprocessed sample slice is shown in Figure 4-1. Cylindrical plug sample
(height = 38 mm; radius = 19 mm) was characterized experimentally with porosity equalling

18.96% and permeability equalling 121 mD (Neumann et al., 2021).

Figure 4-1. Unprocessed and uncropped sample slice

The subsample of the plug (height = 30 mm; radius = 5 mm) was scanned using high-
resolution 3D X-ray microtomography. Each slice was 4904 x 3280 voxels in size. For the
purpose of this thesis, the sample was cropped to 500 x 500 x 500 voxel 3D subsample for

further processing and analysis (as shown in Figure 4-2).

The next step was to set a global threshold for the image stack in order to binarize it.

Two methods for this were applied and compared: manual and automatic thresholding. Manal

22

threshold was simply applied using ImageJ software for scientific image processing and analysis
(Schindelinet al., 2012). Automatic thresholding was achieved using the Python script described
in section 3-1. As significant artefacts were present in the image stack, more specifically, due
to minerals glaring, white or very bright regions occurred (Figure 4-3). Passing these images
directly to the automatic thresholding algorithm would lead to highly imprecise result with
almost no value. Image processing was therefore a necessary step, before a threshold was

applied.

Figure 4-2. Cropped subsample used for the analysis

Extremely bright regions, in mostly dark grey images, would shift the automatically
calculated threshold value towards higher values, which would result in significantly
overestimated porosity. To overcome this effect, gamma corrected image was used for threshold
calculation. Gamma correction with value of gamma equal to 1.5 was applied. That way, shades
of grey near each extreme value remained almost untouched by the operation, while in-between
values were distributed along the spectre. A threshold value for each slice was calculated using
Otsu’s method. As a list of threshold values was obtained, the minimal value from the list was
chosen as a global threshold value. It is important to mention that it was not the gamma corrected
image that was binarized, but the original image. Calculated threshold value was 13, meaning

every voxel with intensity below that was set to zero-intensity, while all other voxels were set

23

to a maximum intensity of 255. Comparison of the first slice binarized manually and

automatically is shown in Figure 4-3. Absolute porosity in both cases is 19.59 %.

Figure 4-3. Mineral glaring effect

< A ¢ o . D
v S & IR
. & T Yok
CU o~ e el el oy Vi N
i e ST

Figure 4-4. Manually binarized sample (left) vs. automatically binarized sample (right)

Autocorrelation function was calculated for the sample in order to check if the chosen subsample

is larger than REV. The results are shown in Figure 4-5.

24

04} B

Normalized Autocorrelation

1 1 1 1 1 1 1
20 40 60 80 100 120 140
Distance (pixels)

Figure 4-5. Autocorrelation function for the subsample

As the normalized autocorrelation function values start to oscillate around zero-value at
around 30 voxels sample-length, and the subsample is 500 voxels large in each orthogonal axis,
so it is evident that the subsample is much larger than the calculated REV. This means that the
subsample can be treated as representative, and by taking larger subsamples, porosity should

not change significantly.

Isolated pores have been filtered out of the sample and effective porosity was calculated.
The calculated effective porosity equals to 18.95% so there is almost perfect matching to
experimentally obtained effective porosity which equals to 18.96%. After filtering out isolated
pores, absolute permeability was calculated using several different methods. Results of

permeability calculation using pore areas are shown in Table 4-1.

Table 4-1. Permeability from pore area

radius obtained from: | pore area pore area - solidity pore area - circularity

permeability, k (mD) | 216.815 49.4 494

Three different perimeter types were chosen for pore radii calculation, types 18, 19 and

20. Other perimeter types were massively overestimated sample permeability to the point where

25

the results had no physical interpretation. Results of permeability calculation using pore

perimeter are shown in Table 4-2.

Table 4-2. Permeability from pore perimeter

perimeter | radius from pore perimeter, | hydraulic radius, mD | geometric mean
methodl type: — mD radius, mD

18 832.86 23243 372.24

19 1667.534 39.06 87.2

20 440.52 139.49 166.7

Although permeability calculated with hydraulic radius obtained by pore perimeter type 20 best
matches the experimental data, due to the inconsistency of perimeter-based methods on other
tested samples, permeability calculated from pore area is considered to be the most precise and

trustworthy.

Permeability was calculated for nine more samples and compared to results obtained by
CFD (Computational Fluid Dynamics) simulation results. The comparison is shown in Table 5-
3. All of the samples had 300 x 300 x 300 voxel shape. Permeabilities obtained by pore area
show the most consistency of all methods. The problem with pore perimeter method is that very
small pores, that have almost no or very little contribution to fluid flow through the sample can
still have a significant perimeter (calculated on a sample of limited resolution, and with the
assumption of circular shape of pore). This leads to overestimating permeability calculated by
using pore perimeters. Although in some cases, results calculated by using pore perimeter
(samples S1, S2, S5 and S6; perimeter type 20) matches expected values accurately, it is
important to notice that these are extremely permeable samples, that are almost never
encountered in oil and gas reservoirs. The pores in these samples are large, so the effect of
permeability overestimation is mostly annulled. Still, these methods do not show consistency,
as calculated permeability for the most permeable sample (S8) shows the biggest deviation from
the expected value. Permeability estimation using pore area shows promising results in high
permeability range, but significant deviations from the expected values are present when
estimating samples with lower permeability. Taking parameters like pore tortuosity into account

could lead to much more consistent and precise results as flow paths with higher tortuosity are

26

longer and therefore produce greater pressure drop through the sample. Lastly, CFD obtained
reference permeabilities are not necessarily very precise as well and unlike with experimental

method, many parts of data processing workflow like pore network extraction and image

segmentation are critical for proper sample characterization.

Table 4-3. Calculated permeabilities for samples previously analysed by CFD methods
permeability
Voxel CFD permeability . permeability permeability from

Sample | resolution, | permeability, | from area, F;;Lmeler from from hydraulic | geometric
um mD mD perimeter, mD | radius, mD E:;;m radius,
19 5569 837 1276
S1 8.638 1678 2027 18 2041 1583 gD
20 1588 2809 2358
19 14439 673 1393
S2 4956 3898 3019 18 7574 1406 2189
20 4004 2339 2621
19 3488 419 659
S3 9.1 224 1100 18 1799 1412 1628
20 1105 1249 1150
19 2675 341 528
S4 8.96 259 865 18 1369 983 1123
20 833 1013 921
19 12069 852 1617
S5 3907 4651 3144 18 6966 1478 21199
20 3455 2863 2995
19 44817 1669 3816
S6 Shel 10974 8919 18 27866 2803 5128
20 13181 5468 6988
19 26455 874 2194
S7 4.803 6966 5201 18 14121 1791 3451
20 7249 3124 4163
19 463821 613 3565
S8 4.892 13169 20990 18 264438 1050 4868
20 130326 2124 6780
19 5673 504 893
S9 34 3640 1640 18 3287 871 1223
20 1645 1667 1641

5. CONCLUSION

The developed method for fast permeability calculation shows promising results with

many advantages over numerical flow simulation methods, but also some drawbacks. The most

important advantages are:

Significantly shorter runtime. While numerical flow simulations can take more than a
day to complete, methods like this can be performed within hour.

Significantly less computing power and RAM memory required. These methods can be
successfully run on an average PC, while CFD methods often require high performance
server (cloud) computers to run.

These methods provide insight into phenomena that occur at the pore scale, which is
beneficial for understanding flow mechanisms that occur in porous media. Permeability
for each pore is available and bottlenecks in flow paths can be identified.

These methods are much easier to use because there is no need to define boundary

conditions or fluid/rock interaction data.

Some of the disadvantages of using these methods are:

Limited data that can be extracted from the sample. Only absolute permeability can be
estimated by analysing pore network geometry; flow simulation must be performed if
effective permeability or multiphase flow is being examined.

These methods are less trustworthy than CFD analysis.

More research needs to be done to validate algorithms for calculating permeability based

on restrictions. The inclusion of other pore network geometry parameters, such as tortuosity,

could lead to a significant improvement in these methods.

However, by examining various methods for perimeter calculation, which also take into

account pores that cannot be assumed to have circular shapes, the perimeter method 20, with the

hydraulic radius as an intermediate parameter, resulted with good agreement. It should be noted

that such results depend on the distribution of pore sizes, and most publicly available CT images

are for samples with much higher permeability (i.e., they were not reservoir rocks). Under such

conditions, verification of the methods is not consistent and more images of reservoir rocks

would confirm or deny the algorithms tested in this work. In addition, based on good data on

28

pore size distribution (from a high-resolution CT scan or very precise capillary pressure
measurements by mercury injection) and data on rock chemistry, some correction factors could
be derived, or other algorithms for perimeter calculation would work. If radii are calculated only
from the perimeter or only from the 2D pore area, information about the pressure drop due to
friction will be biased (or oversimplified). For this reason, the hydraulic radius (which
essentially evaluates the difference between the radius from the 2D pore area and the radius

calculated from the pore perimeter) is the most promising parameter for such calculations.

The work took heavy computing permeability problem with runtime optimization as an
objective. Many other core properties have been tested and obtained, such as absolute (sum of
ones in the 3D array) and effective porosity (sum of ones in the 3D array of connected pores) or
pore size distribution (corresponding to capillary pressure measurement), which opens a
tremendous possibility for rock analysis even if no standard size of the core is available or if the

core sample is damaged.

In this sense, the development of a code for digital core analysis is a valuable effort that opens
up many possibilities for the future of petrophysics in smaller laboratories, or when core

preparation, preservation, cleaning, and analysis are not economically feasible.

29

6. REFERENCES

10.

. Andri, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., ... & Zhan, X., 2013.

Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers &
Geosciences, 50, 25-32.

Andrd, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y.,
Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mikerji, T., Saenger, E. H., Sain, R,
Saxena, N., Ricker, S., Wiegmann, A., Zhan, X., 2013. Digital rock physics
benchmarkspart ii: computing effective properties, Computers&Geosciences, 50.
Benkrid, K., Crookes, D., & Benkrid, A., 2000. Design and fpga implementation of a
perimeter estimator. In Proceedings of the Irish Machine Vision and Image Processing
Conference (pp. 51-57).

Blunt, M. J.,, Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny,
A., Pentland, C., 2013. Pore-scale imageing and modelling, Advances in Water
Resources,str. 197-216.

Bradley, D., & Roth, G., 2007. Adaptive thresholding using the integral image. Journal
of graphics tools, 12(2), 13-21.

Buades, A., Coll, B., Morel, J. M., 2005. A non-local algorithm for image denoising,
Computer vision and Pattern Recognition, IEEE Computer Society Conference on, vol.
2

Dong, H., Blunt, M. J., 2009. Pore-network extraction from micro-compiterized-
tomography images, Phys. Rev., E80 (3).

Eibenberger, E., Borsdorf, A., Wimmer, A., Hornegger, J., 2008. Edge-perserving
denoising for segmentation in ct-images, Bildverarbeitung fiir die Medizin 2008.
Springer.

Fredrich, J. T., Lakshtanov, D., Lane, N., Liu, E. B., Natarajan, C., N1, D. M., Toms, J.,
2014. Dagital rocks: developing an emerging technology through to a proven capatibility
deployed in the business, SPE Annual Technical Conference and Exhibition, Society of
Petroleum Engineers.

Harris, C.R., Millman, K.J., van der Walt, S.J. et al., Array programming with NumPy.
Nature 585, 357-362 2020. DOI: 0.1038/s41586-020-2649-2. (Publisher link).

30

11.

12,

13;

14.

13,

16.

17,

18.

19

20.

21

Huang, Z. K., Chau, K. W., 2008. A new image thresholding method based on gaussian
mixture model, Applied Mathematics and Computation, 205.

Iassonov, P., Gebrenegus, T., Tuller, M., 2009. Segmentation of x-ray computed
tomography images of porous materials: a crucial step for characterization and quantitive
analysis of pore structures, Water Resources Research 45 (W09415).

Leu, L., Berg, S., Enzmann, F., Armstrong, R., Kersten, M., 2014. Fast x-ray
tomography of mulitphase flow in berea sandstone: a sensitivity analysis on image
processing, Transport in Porous Media, ISSN: 0169-3913 105(2).

Mandzhieva, R., 2017. Introduction to digital core analysis: 3D reconstruction,
numerical flow simulations and pore network modeling, Norwegian University of
Science and Technology.

McKinney, W., 2010. Data structures for statistical computing in python. In Proceedings
of the 9th Python in Science Conference (Vol. 445, pp. 51-56).

Mukunoki, T., Miyata, Y., Mikami, K., Shiota, E., 2016. X-ray CT analysis of pore
structure in sand, Solid Earth, 7.

Neumann, R. F., Barsi-Andreeta, M., Lucas-Oliveira, E., Barbalho, H., Trevizan, W. A.,
Bonagamba, T. J., & Steiner, M. B., 2021. High accuracy capillary network
representation in digital rock reveals permeability scaling functions. Scientific reports,
11(1), 1-8.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1), 62-66.

Rabbani, A., Jamshidi, S., & Salehi, S., 2014. An automated simple algorithm for
realistic pore network extraction from micro-tomography images. Journal of Petroleum
Science and Engineering, 123, 164-171.

Schindelin, J., Arganda-Carreras, 1., Frise, E., Kaynig, V., Longair, M., Pietzsch, T, ...
Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nature
Methods, 9(7), 676-682. doi:10.1038/nmeth.2019.

Schliiter, S., Sheppard, A., Brown, K., Wildenschild, D., 2014. Image processing of
multiphase images obtained via x-ray microtomography; a review, Water Resources

Research 50 (4).

31

22,

23

24.

25,

26.

27.

28,
29.

Silin, D., Patzek, T., 2006. Pore space morphology analysis using maximal inscribed
spheres, Physica A: Statistical Mechanics and its Applications, ISSN: 038-4371 371 (2).
Verri, 1., Della Torre, A., Montenegro, G., Onorati, A., Duca, S., Mora, C. A., Radaelli,
F., Trombin, G., 2017. Development of a Digital Rock Physics workflow for the analysis
of sandstones and tight rocks, Journal of Petroleum Science and Engineering 156.
Yeoung, C. L. Y., Torquato, S., 1998. Reconstructing random media, Physical review E
57(1).

Yousefi, J., 2011. Image binarization using Otsu thresholding algorithm. Ontario,

Canada: University of Guelph.

Web references:

Scikit image; Image processing in Python: https:/scikit-image.org/ (accessed on
13.6.2021.)

Mahotas: Computer vision n Python:
https://mahotas.readthedocs.io/en/latest/labeled.html (accessed on 13.6.2021.)

Imagel: https://imagej.net/ (accessed on 19.6.2021.)

ChrisKnott/Eel, A little Python library for making simple Electron-like HTML/JS GUI
apps: https://github.com/ChrisKnott/Eel (accessed on 19.6.2021.)

32

7. APPENDIX - PYTHON CODE

7.1.

binarization.py

import cv2 as cv

import numpy as np

from tgdm import tgdm

from skimage import img as_ float, exposure, io

def

def

def

def

def

def

loadImage (path) :

img = np.uint8((cv.imreadmulti (path) [1]))
return (img)

loadImage (path) :

#loads greycale image

img = io.imread (path)

img = exposure.adjust_gamma (img, 1.5, 2)
return (img)

denoise(img, type=["nlm"], i=0):

if "nlm"™ in type:

clean = cv.fastNlMeansDenoisingMulti (img, i, 1, None, 4, 7, 35)
if 'median' in type:

clean = cv.medianBlur (img, 3)
return (clean)

thresh (img) :

gamma = exposure.adjust_gamma (img, 1.5, 2)

ret, th = cv.threshold(gamma, 0, 255, cv.THRESH BINARY+cv.THRESH OTSU)
return (ret)

morpho (img, it=1, structure=1, operation='open'):
mnn
open = erosion + dilation
close = dilation + erosion
mon
if structure == 1:
kernel = np.ones ((3, 3), np.uint8)
if structure == 2:
kernel = np.array([[0, 1, 01,
[, 1, 11,
[0, 1, O]], np.uint8)
if operation == 'open':

opened = cv.morphologyEx (img, cv.MORPH OPEN, kernel, iterations=it)
return (opened)

if operation == 'close':
closed = cv.morphologyEx (img, cv.MORPH _CLOSE, kernel, iterations=it)
return (closed)

main () :

import pickle

configDir = 'config\\'

userConfigFile = 'user_config.p'

ucf = configDir + userConfigFile # full path to user cofig file

with open(ucf, 'rb') as f:

33

userConfig = pickle.load (f)
filters=[]

path=userConfig['imgpath']
savepath=userConfig['sourceDir']

if int (userConfig['NLM']) == 1:
denois = True
filters+=["nlm']

elif int (userConfig['MedianFilter'])

Il
I
=

denois = True

filters+=['median']
else:

denois = False

numberDigits = userConfig['numberDigits']
img = loadImage (path)
if denois:

clean=np.zeros (np.shape (img), np.uint8§)
for i in tgdm(range(len(clean))):

clean[i] = denoise(img, filters)

else:

clean = img
numberFormat = '0'+ str (numberDigits) + 'd'
binary = np.zeros (np.shape (img), np.uint8)
ret = np.zeros (len(clean))
for i in tgdm(range(len(binary))):

ret[i] = thresh(clean[i])
thr = np.min(ret)

for i in tgdm(range (len(binary))):
binary[i] = np.array(clean[i] > thr) * 255
np.savetxt (savepath+str (format (i, numberFormat))+'.txt', binary[i], fmt="'%1i")

porosity = np.sum((binary==0)*1) /np.size (binary)
import eel

@eel.expose

def sendporo():

return (porosity)

sendporo ()
eel.refresh()

return(img, binary, ret, thr)

34

7.2. permeability.py

import numpy as np

from scipy.ndimage import label
from scipy import ndimage

from numba import jit

from tgdm import tqgdm

import mahotas

import cv2 as cv

from skimage import measure
import pickle

def load3DMatrix (nz, nx, ny, imageDir = '\\img'):
print ("loading 3D matrix...")
m = np.zeros ([nz, ny, nx])
for i in tgdm(range(l, nz+l)):
slice = np.load(imageDir + str(i-1)+'.input.npz') ['arr_0']

m(i-1, : , :] = slice[:ny, :nx]
return (m)

@jit (nopython=True)

def binaryToImage (im) :
img = im.astype (np.uint8) * 255
return (img)

def labelPores (myImage, pattern = 2):
if pattern ==
pattern 3D = np.array ([
(e, 1,

1, 1,
if pattern ==

pattern 3D np.array ([

[ro, 1, o1,
[y As 1],
(6, 1, 011,

(ro, 1,01,
(r, 1, 11,
[0, 1, 011,

rro, 1, 01,
[l 1, 214,
[0, 1, 0111)

labeledArray, numFeatures = label (myImage>0,

return (labeledArray, numFeatures)

def rotatedArray(array2D):

newArray = ndimage.rotate(array2D, 45,

return (newArray)

structure

reshape = False)

pattern_3D)

oo

def connectedPores (myArray) :
connected pores = myArray.copy ()
test_elements = np.unigque (connected pores[-1].flatten()).copy ()
connected pores = connected pores* (1*np.isin(connected pores, test elements)
test_elements = np.unique (connected pores[0].flatten()) .copy ()
connected pores = connected pores* (l*np.isin(connected pores, test_elements))
return (connected pores)

@jit (nopython=True)
def perimeter (slice, voxelResolution, boundary = True):
if boundary:

p = np.sum(slice[:,1:] != slice[:,:-1]) + np.sum(slice[l:,:] != slice[:-1,:])
\
+ np.sum(slice[0,:]) + mnp.sum(slice[:,0]) + np.sum(slice[-1,:]) +
np.sum(slice[:,-1])
else:
p = np.sum(slice[:,1:] != slice[:,:-1]1) + np.sum(slice[l:,:] != slice[:-1,:])

return (p * voxelResolution)

@jit (nopython=True)

def perimeterCvV(slice, voxelResolution):
img = binaryToImage (slice)
ret,thresh = cv.threshold(img,127,255,0)
contours,hierarchy = cv.findContours (thresh, 1, 2)
cnt = contours[0]
p = cv.arclength(cnt,True)
return (p * voxelResolution)

def perimeterScikit (slice, voxelResolution = 1):
pPr = measure.perimeter(slice)
if pr == 0: pr = le-30
return (pr*voxelResolution)

def perimeterE (slice, voxelResolution):
eroded = ndimage.binary erosion(slice) .astype(slice.dtype)
al = np.sum(eroded)
a2 = np.sum(slice)
p = az-al
return (p * voxelResolution)

def perimeterD(slice, voxelResolution):
dilated = ndimage.binary dilation(slice).astype (slice.dtype)
al = np.sum(dilated)
a2 = np.sum(slice)

p = al-az2
return (p * voxelResolution)

def circularity(area, perimeter):
cl = 4*3.14159265359*area/ (perimeter**2)
if area is 1 pixel:
radius from perimeter will be smaller than radius from area
if el>1: cl=1 # this would be the radius of 2 pixel object
return (cl)

36

perimeterTypeDesc=[
'perimeter with boundaries',
'perimeter without boundaries’',
'perimeter with boundaries, averaged value with rotated',
'perimeter without boundaries, averaged value with rotated',
'perimeter with boundaries, min value compared with rotated’,
'perimeter without boundaries, min wvalue compared with rotated',
'perimeter eroded = perimeter as pixels in pore - pixels in eroded
pore’',
'perimeter ercded averaged with rotated 45 degrees’',
'perimeter dilation',
'perimeter dilation averaged with rotated 45 degrees',
'minimum of eroded and rotated 45 degrees',
'minimum of dilated and rotated 45 degrees',
'perimeter with boundaries * solidity',
'perimeter without boundaries * solidity’',
'mahotas perimeter’',
'(dilated + eroded)/2',
'scikit image perimeter',
'scikit image perimeter * solidity'’,
'mahotas perimeter * solidity’,
'((dilated + eroded) /2) *solidity’,
‘dilated * circularity’',
'perimeter with boundaries * circularity’
]
def perimeterTypes (slice, voxelResolution, perType=1l):
if perType == 0:
perimeter with boundaries
pr = perimeter(slice, voxelResolution, True)
if perType == 1:
perimeter without boundaries
pr = perimeter (slice, voxelResolution, False)
if perType == 2:
perimeter with boundaries, averaged value with rotated

pr = perimeter(slice, voxelResolution, True)
pr = 0.5*(pr + perimeter (rotatedArray(slice), voxelResolution, True))
if perType == 3:

perimeter without boundaries, averaged value with rotated
pr = perimeter(slice, voxelResolution, False)
pr = 0.5*(pr + perimeter (rotatedArray(slice), voxelResolution, False))
if perType == 4:
perimeter with boundaries, min value compared with rotated
pr = min(perimeter(slice, voxelResolution, True),
perimeter (rotatedArray(slice), voxelResolution, True))
if perType == 5:
perimeter without boundaries, min value compared with rotated
pr = min(perimeter (slice, voxelResolution, False),
perimeter (rotatedArray(slice), voxelResolution, False))
if perType == 6:
perimeter eroded = perimeter as pixels in pore - pixels in eroded pore
pr = perimeterE(slice, voxelResolution)
if perType == 7:
perimeter eroded averaged with rotated 45 degrees
pr = 0.5* (perimeterE (slice, voxelResolution) +

b/

if

1f

1f

if

if

if

af

1

3

if

if

if

3:f

perimeterE (rotatedArray(slice), voxelResolution))
perType == 8:
perimeter dilation
pr = perimeterD(slice, voxelResolutiocn)
perType ==
perimeter dilation averaged with rotated 45 degrees
pr = 0.5* (perimeterD(slice, voxelResolution) +
perimeterD (rotatedArray(slice), voxelResolution))
perType == 10:
minimum of eroded and rotated 45 degrees
pr = min(perimeterE (slice, voxelResolution),
perimeterE (rotatedArray(slice), voxelResolution))
perType == 11:
minimum of dilated and rotated 45 degrees
pr = min(perimeterD(slice, voxelResolution),
perimeterD (rotatedArray(slice), voxelResolution))
perType == 12:
perimeter with boundaries * solidity
S = measure.regionprops(slice) [0].solidity
pr = perimeter (slice, voxelResolution, True) *s
perType == 13:
perimeter without boundaries * solidity
S = measure.regionprops(slice) [0].solidity
pr = perimeter (slice, voxelResolution, False)*s
perType == 14:
mahotas perimeter
pr = np.sum(mahotas.bwperim(slice, n=8)*1) *voxelResolution
perType == 15:
(dilated + eroded) /2
pr = 0.5* (perimeterD(slice, voxelResolution)+
perimeterE(slice, voxelResolution))
perType == 16:
Scikit
pr = perimeterScikit (slice, voxelResolution)
perType == 17:
Scikit * solidity
s = measure.regionprops(slice) [0].solidity
pr = perimeterScikit (slice, voxelResolution) *s

perType == 18:

mahotas perimeter * solidity

s = measure.regionprops(slice) [0].sclidity

pr = np.sum(mahotas.bwperim(slice, n=8) *1) *voxelResolution*s

perType == 19:
((dilated + eroded)/2) *solidity
s = measure.regionprops(slice) [0].solidity
pr = s*0.5* (perimeterD (slice, voxelResolution)+
perimeterE (slice, voxelResolution])

perType == 20:
dilated * circularity
o0 = perimeterD(slice, 1)
p = np.sum(slice)
cl = circularity(p, o)

38

pr = o*cl*voxelResolution

if perType == 21:
perimeter with boundaries
o = perimeter(slice, 1, False)
p = np.sum(slice)
cl = circularity(p, o)
pr = o*cl*voxelResolution
return (pr)

def printSlices (myArray, showImage=False):
if len(myArray)>5: showImage = False
if showImage: import matplotlib.pyplot as plt
for slice in myArray:
print(slice)
if showImage:
plt.figurel]
plt.imshow (slice, cmap='Greys', interpclaticon='none')
plt.show()
return (True)

def radiusFromArea (area) :
return ((area/3.14158265359) **(_.5)

def perimeterGroups (labConPores, voxelResolution, perimeterType=1):
Pg = np.zeros (len(labConPores), dtype=object)
i =
while i < len(labConPores):

conPores, numPores = labelPores (labConPores[i-1:i+1], 2)
perimetersl, perimeters2 = [], []
for pore in np.intersectld(conPores[0], conPores[1])[1l:]:
perimetersl.append (perimeterTypes ((conPores [0]==pore) *1, voxelResolution,
perimeterType))
perimeters2.append (perimeterTypes ((conPores [1]==pore) *1, voxelResolution,
perimeterType))
pgli-1]1, pg [i] = perimetersl.copy(), perimeters2.copy/()
i+= 2

return (pg)

def weightedAreas (areaGroups, voxelResoclution):
ai = (areaGroups/np.sum(areaGroups)) *voxelResolution**2
return (ai)

def areaGroups (labConPores, voxelResolution):
ag = np.zeros(len(labConPores), dtype=object)
1 =k
while i < len(labConPores) :
conPores, numPores = labelPores (labConPores[i-1:i+1], 2)

areasl, areas2 = [], []

for pore in np.intersectld(conPores[0], conPores[1])[1l:]:
areasl.append (np.sum(conPores[0]==pore) *1 * voxelResolution**2)
areas?.append (np.sum(conPores[1l]==pore) *1 * voxelResolution**2)

agl[i-1], ag [i] = np.array(areasl.copy()), np.array(areas2.copy())

i += 2

return (ag)

a4

def solidityGroups (labConPores):
ag = np.zeros(len(labConPores), dtype=object)
i=1
while i < len(labConPores) :

conPores, numPores = labelPores(labConPores[i-1:i+1],

solsl, sols2 = [], []

2)

for pore in np.intersectld(conPores[0], conPores([1])([1l:]:

sl = measure.regionprops ((conPores [0]==pore) *1) [0].solidity

solsl.append(sl)

s2 = measure.regionprops ((conPores[l]==pore)*1) [0].solidity
sols?2.append (s2)
agl[i-1], ag [i] = np.array(solsl.copy()), np.array(sols2.copy())
i+4= 2

return (ag)

def circularityGroups (labConPores, perimeterType=20):

Measure of similarity of the pore area and the equivalent circle area

cl = 4 * pi * area /(perimeter**2)
Parameters
labConPores : numpy array

3D array of connected pores
perimeterType : integer

Algorithm for calculating perimeter.

Note: not recommended for changing as the area

is calculated as

sum of pixels, so it could result with c>1

Returns

cl : numpy array of arrays

circularities for all pores connected to next slice
In each slice, pores are detected and analyzed for circularity.

mnn

cl = np.zeros(len(labConPores), dtype=object)
i=1

while i1 < len(labConPores) :

conPores, numPores = labelPores(labConPores[i-1:i+1], 2)

cirecsl, cirecs2 = [1, []

for pore in np.intersectld(conPores[0], conPores[1l])([1l:]:
regionl = (conPores|[0]==pore) *1
region2 = (conPores|[l]==pore)*1

perimeterl = perimeterTypes (regionl, 1, perimeterType)
perimeter?2 = perimeterTypes (region2, 1, perimeterType)

circsl.append(circularity(np.sum(regionl) ,perimeterl))
circs2.append(circularity(np.sum(region2) ,perimeter?2))

cl[i-1], cl[i] = np.array(circsl.copy()), np.array(circs2.copy())

i 4= 2
return (cl)

def permeabilityFromPG (perGroups, A slice, Li, hTotal):
1, pi = 3, 314159265359
nslices = len(perGroups)
c = pi/(8*A_slice)
sliceGroupPerm = np.ones (np.int(nslices/2))

isgp=20
seriesk = []
while i < len(perGroups) :
npores = len(perGroups[il])
k_avg _series = np.ones (npores)
for pn in np.arange (npores):
Erys
rl = perGroups[i-1][pnl/ (2*pi)
r2 = perGroups([i] [pn]/ (2*pi)
k1 (ELF*d)i*g
k2 (r2**4)*¢
k _avg series[pn] = np.nan _to num((2*Li) / (Li/kl + Li/k2))

except:
k_avg_series[pn] = 0
seriesk.append(k_avg series)
sliceGroupPerm[i sgp] = Li*np.sum(k_avg series) /hTotal
i sgp +=1
i += 2
k avg = np.nan_to num(nslices*Li/(np.sum(Li/sliceGroupPerm)))
return (k_avg, sliceGroupPerm, seriesk)

def permeabilityFromHR (perGroups, aGroups, A _slice, Li, hTotal):

mun

Parameters
perGroups : TYPE

groups of pore perimeters
aGroups : TYPE

groups of pore areas
A slice : TYPE

area of one slice
Li : TYPE

width of one slice (voxel dimension)
hTotal : TYPE

total dimension in Z direction

k_avg : real
average permeability
sliceGroupPerm : array
permeability for each slice group
seriesk : list of arrays
DESCRIPTION.
mnn
hydraulic radius : the ratio of the cross-sectional area of a channel or pipe
in which a fluid is flowing to the wetted perimeter of the conduit

i, pi =1, 3.14159265359

nslices = len(perGroups)

c = pi/(B*A slice)

sliceGroupPerm = np.ones (np.int (nslices/2))
i sgp =0

seriesk = []

41

def

while i < len(perGroups):
npores = len(perGroups([i])
k_avg_series = np.ones (npores)
for pn in np.arange (npores):
try:

try is needed for more complex perimeter types (rotation etc)

rl = 2*aGroups[i-1] [pn]/perGroups[i-1] [pn]

r2 = 2*aGroups[i] [pn]/perGroups[i] [pn]
k1 = (rl**4)*c
k2 = (z2**4)*¢
k_avg _series[pn] = np.nan_to num((2*Li) / (Li/kl + Li/k2))
except:
k_avg_series[pn] = 0
seriesk.append(k_avg series)
sliceGroupPerm[i sgp] = Li*np.sum(k_avg series) /hTotal
i sgp +=1
i+=2

k_avg = np.nan_to_num(nslices*Li/(np.sum(Li/sliceGroupPerm]])
return (k_avg, sliceGroupPerm, seriesk)

permeabilityFromGMR (perGroups, aGroups, A slice, Li, hTotal):

LRTRT]

Parameters
perGroups : TYPE

groups of pore perimeters
aGroups : TYPE

groups of pore areas
A slice : TYPE

area of one slice
Li : TYPE

width of one slice (voxel dimension)
hTotal : TYPE

total dimension in Z direction

Returns
k_avg : real

average permeability
sliceGroupPerm : array

permeability for each slice group
seriesk : list of arrays

permeabilities of each pore in each slice-pair
mun
i, pi =1, 3.14159265359
nslices = len(perGroups)
c = pi/(B*A slice)
sliceGroupPerm = np.ones (np.int (nslices/2))
i sgp =0
seriesk = []
while i < nslices:

npores = len(perGroups([i])

k_avg_series = np.ones (npores)

for pn in np.arange (npores):

try:

42

def

def

try is needed for more complex perimeter types (rotation etc)

hrl = 2*aGroups[i-1][pn]/perGroups[i-1] [pn]
rl = pow (hrl* (pow((np.abs (aGroups[i-1][pn]))/pi,0.5)),0.5)
hr2 = 2*aGroups[i] [pn] /perGroups([i] [pn]

r2 = pow (hr2* (pow((np.abs (aGroups[i] [pnl])) /pi,0.5)),0.5)
k1 = (rl**4)*c
k2 = (r2**4)*c
import pdb ; pdb.set_ trace()
k_avg _series[pn] = np.nan_to num((2*Li) / (Li/kl + Li/k2))
except:
k_avg_series[pn] = 0
seriesk.append(k_avg series)
sliceGroupPerm[i_sgp] = Li*np.sum(k_avg_series) /hTotal
i sgp +=1

i+4=2
k avg = nslices*Li/(np.sum(Li/sliceGroupPerm))
return (k_avg, sliceGroupPerm, seriesk)

permeabilityFromArea (aGroups, A slice, Li, hTotal):
i, pi =1, 3.14159265359
nslices = len(aGroups)
c = pi/(8*A_slice)
sliceGroupPerm = np.ones (np.int (nslices/2))
i sgp =0
seriesk = []
while i < len(aGroups):
npores = len(aGroups[il])
k_avg_series = np.ones (npores)
for pn in np.arange (npores):

rl = radiusFromArea (aGroups[i-1] [pn])
r2 = radiusFromArea (aGroups|[i] [pn])
kl = (rl**4)*c

k2 = (r2**4)*c
if k1==0 or k2==0:

k_avg_series[pn] = 0
else:
k_avg _series[pn] = np.nan_to num((2*Li) / (Li/kl + Li/k2))
seriesk.append (k_avg_series)
sliceGroupPerm[i_sgp] = Li*np.sum(k_avg_series) /hTotal
i sgp +=1
i+4=2

k_avg = np.nan_to_num(nslices*Li/(np.sum(Li/sliceGroupPerm])J
return (k_avg, sliceGroupPerm, seriesk)

permeabilityFromAreaSolidity (aGroups, A slice, Li, hTotal):
i, pi = 1, 3.14159265359
nslices = len(aGroups)
c = pi/(8*A slice)
sliceGroupPerm = np.ones (np.int (nslices/2))
isgp =20
seriesk = []
while i < len(aGroups):
npores = len(aGroups[i])
k_avg_series = np.ones (npores)
for pn in np.arange (npores):

43

rl = radiusFromArea (aGroups[i-1] [pn])
r2 = radiusFromArea (aGroups([i] [pn])
kl = (ri1**4)*c

k2 = (r2**4)*c

if k1==0 or k2==0:

kX _avg_series[pn] = 0
else:
k_avg _series[pn] = np.nan_to num((2*Li) / (Li/kl + Li/k2))
seriesk.append(k_avg series)
sliceGroupPerm[i sgp] = Li*np.sum(k_avg_series) /hTotal
i sgp +=1
i+=2

k_avg = np.nan_to_num(nslices*Li/(np.sum(Li/sliceGroupPerm]])
return (k_avg, sliceGroupPerm, seriesk)

def main () :
#EDIT 9.6.2021.
configDir = 'config\\'
userConfigFile = 'user config.p'
ucf = configDir + userConfigFile # full path to user cofig file

with open(ucf, 'rb') as f:
userConfig = pickle.load(f)

npzImgDir = userConfig(['targetDir']

import time

np.seterr(all='raise')

t0 = time.time ()

nz, nx, ny = int(userConfig['nz']), int(userConfig['nx']), int (userConfig['ny'])
a = load3DMatrix(nz, nx, ny, imageDir = npzImgDir)

res = flcat(userConfig|['voxelResolution']) * le-6

print (f'time elapsed:{time.time()-t0} s')

t0 = time.time ()

if len(a) & Oxl:
print ('odd number of slices cannot be processed, adding copy of the last
slice...")
a = np.concatenate((a, [al-11]1), axis=0)
printSlices(a)
labeledPores, poreNumber = labelPores(a, 1) # pattern: 1 = 3x3 (full),
2 = cross
labeledConnectedPores = connectedPores (labeledPores)
areas = areaGroups (labeledConnectedPores, res)
A =nx * ny * res**?
h = res * nx
kFromA = userConfig['kFromA']
effective_porosity = (np.sum((labeledConnectedPores>0) *1) /
labeledConnectedPores.size)
print (f'effective porosity: {effective porosity}')

resultsA=np.ones ([1,3])
if kFromA:

44

k_ar, paralelk ar, serialk ar = permeabilityFromArea (areas, A _slice = A,
Li=res, hTotal = h)

print (f'time elapsed{np.int (time.time()-t0)} s')

print (f'k_ar = {np.int(k_ar* 1.01325 * lel5)} mD')

t0 = time.time ()

resultsA[0,0]=k_ar*resultsA[0,0]

solidities = solidityGroups (labeledConnectedPores)
k_car, paralelk car, serialk car = permeabilityFromArea (areas*solidities,
A slice = A, Li=res,
hTotal = h)
resultsA[0, 1l]l=resultsA[0,1]*k_car
print (f'time elapsed{np.int(time.time()-t0)} s')
print (f'solidity corrected area k_car = {np.int(k _car* 1.01325 * lel5)} mD'")
t0 = time.time ()
circularities = circularityGroups (labeledConnectedPores, perimeterType=20)
k_car2, paralelk carZ2, serialk_car2 =
permeabilityFromArea (areas*circularities,
A slice = A,
Li=res, hTotal = h)
print (f'time elapsed:{np.int (time.time()-t0)} s"')
print (f'circularity corrected area k_car2 = {np.int(k_car2* 1.01325 * lel5)}

mD"'")
resultsA[0, 2]=resultsA[0,2]*k_car
t0 = time.time ()
#calcRange=range (0, 22) # range of perimeter types
calcRange = userConfig['calcRange']
results = np.ones([len(calcRange), 3])
for i, pt in enumerate (calcRange) :
print ('\n perimeter type: %s (%s) ' %(pt, perimeterTypeDesc[pt]))
perimeters = perimeterGroups (labeledConnectedPores,
voxelResolution=res,
perimeterType=pt)
k p, parallelk p, serialk p = permeabilityFromPG(perimeters, A slice = A,
Li=res, hTotal = h)
results[i,0] = results[i,0]1*k_p
k_hr, parallelk_hr, serialk_hr = permeabilityFromHR (perimeters, areas,
A slice = A, Li=res, hTotal = h)
results([i,1] = results(i,1]*k hr
k_gmr, parallelk_gmr, Serialg_gmr = permeabilityFromGMR (perimeters, areas,
A slice = A, Li=res, hTotal = h)
results[i,2] = results[i,2]*k_gmr
print(f'time elapsed:{np.int (time.time()-t0)} s')
print (f'permeability from perimeter, k p = {np.int(k p * 1.01325 * lel3)}
mD"')

print (f's permeability from hydraulic radius k_hr = {np.int(k_hr* 1.01325 *#
lel5)} mD')

print (f's GMR k_gmr = {np.int(k_gmr* 1.01325 * lel5)} mD"')

t0 = time.time ()

import pandas as pd

dfResults = pd.DataFrame(results* 1.01325 * 1el5, columns = ['k_p, mD','k_hr, mD',
'k gmr'l])

45

calcRange=np.array (calcRange)

dfResults['copis'] = [perimeterTypeDesc[i] for i in calcRange]
#dfResults.to_excel (userConfig['results']+"compared_results.xlsx")
if kFromA:

dfResultsA = pd.DataFrame (resultsA * 1.01325 * 1lel5, columns = ["k_ar, mD",

"k _car, mb", "k _carZ, mD"])
dfResultsA['opis'] = ['pore area']
with pd.ExcelWriter (userConfig['results']+"compared results.xlsx") as writer:
dfResults.to_excel (writer, sheet name='perimeter')
if kFromA:
dfResultsA.to_excel (writer, sheet name='area')

import os
os.system("start EXCEL.EXE " + userConfig['results'] + "compared results.xlsx")

import eel

@eel.expose

def send() :

return('Permeability calculated successully. Go to results directory to view

results. ')

send ()

eel.refresh()

print (f'effective porosity: {effective_porosity}')

return (effective porosity)

46

IZJAVA:

Izjavljujem da sam ovaj rad izradio samostalno na temelju znanja stecenih na Rudarsko —
geolosko — naftnom fakultetu sluze¢i se navedenom literaturom

Mfwﬂﬁ%

Martin Trgovec-Greif

\ Sveutiliste u Zagrebu
@ R et T T uLTeT OBRAZAC SUSTAVA UPRAVLJANJA KVALITETOM

KLASA: 602-04/21-01/93
URBROJ: 251-70-12-21-2
U Zagrebu, 12.7.2021.

Martin Trgovec-Greif, student

RJESENJE O ODOBRENJU TEME

Na temelju vaseg zahtjeva primljenog pod KLASOM 602-04/21-01/93, URBROJ: 251-70-12-21-1 od
21.4.2021. priop¢ujemo vam temu diplomskog rada koja glasi:

APPLICATION FOR ABSOLUTE PERMEABILITY ANALYSIS BASED ON DIGITAL ROCK
SAMPLE

Za voditelja ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada
Izv.prof.dr.sc. Domagoj Vulin nastavnik Rudarsko-geolosko-naftnog-fakulteta Sveucilista u Zagrebu

Predsjednik povjerenstva za
Voditelj: zavrsne i diplomske ispite:

(dotpis) (potpis)

Izv.prof.dr.sc. Domagoj Vulin Izv.prof.dr.sc. Vladislav Brki¢

(titula, ime i prezime) (titula, ime i prezime)

nastavu i studente:

Y

(potpis) =" _

Izv.prof.dr.sc. Dalibor
Kuhinek

(titula, ime i prezime)

[0znaka: [OB 8.5.-1 SRF-1-13/0 | [Stranica: [1/1 | [Cuvanje (godina) [Trajno

