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Featured Application: Modulus of elasticity for grain-supported carbonate rocks is successfully
estimated by using simple estimation models. The methodology and models described in this
paper can help engineers in the early design stages when they need a quick and easy estimate.

Abstract: The determination and estimation of elastic behaviour are essential in engineering practise,
especially in quarrying, mining, construction, and all engineering professions that perform operations
dealing with rock materials. Young’s modulus, or modulus of elasticity, is the most important
property describing the deformability of rock material. In this paper, grain-supported carbonates
from Croatia are described and their elastic modulus and significant physical and mechanical
properties are determined. The analysis of the collected data was performed in the R statistical
environment. Estimation models based on multiple linear regression and the regression tree model
were created. The methodology of model development and evaluation in R environment is described
in detail. According to the more stringent coefficients (RMSECV and adjusted R2) used to evaluate
the success of the estimation, simple regression tree models were found to perform well for the
preliminary estimation, while more complex models based on Bagging performed very well.

Keywords: modulus of elasticity; grain-supported carbonates; estimate; regression tree; R statisti-
cal environment

1. Introduction

The elastic behaviour of rock materials and the degree of their elasticity are essential
in engineering practise for solving problems in quarrying and mining [1], construction [2],
in civil engineering [3], or in tunnelling when the stress field changes due to excavation [4].
Although shear modulus, bulk modulus are used to determine the elastic behaviour of
rocks [5–7], this paper deals with Young’s modulus, which, along with Poisson’s ratio, is
the most important property in solving geomechanical problems [8,9].

The determination of the modulus of elasticity is one of the most demanding variants
of testing under uniaxial load due to the use of sophisticated measurement techniques. The
accuracy of the results is a major challenge for researchers and a quantitative methodology
is constantly proposed to correct them [10,11]. In addition to direct determination, in certain
engineering situations, it is necessary to estimate the modulus of elasticity. These estimate
models can be simple or very sophisticated. The simple ones are based on diagrams
and single regression equations, but sophisticated ones use platforms based on neural
networks, fuzzy logic and other sophisticated algorithms that are not available to a wider
range of engineering practice [12]. This shortcoming has been overcome by the authors
of this paper through the use of R, which is a free software environment and as such

Appl. Sci. 2021, 11, 6148. https://doi.org/10.3390/app11136148 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7810-8255
https://orcid.org/0000-0002-2678-4339
https://doi.org/10.3390/app11136148
https://doi.org/10.3390/app11136148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11136148
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11136148?type=check_update&version=2


Appl. Sci. 2021, 11, 6148 2 of 18

is available to a wider range of users. R is a programming language for implementing
various statistical and graphical techniques. It is extensible through many sets of functions
and therefore one of the leading statistical software used for data science analysis [13].
Moreover, simple models, such as regression equations and regression trees, as well as
complex models, such as the Random forest, can be created in it [14,15]. Random forest
modelling is increasingly used for a variety of purposes [16], and can also be used as a
variant of a regression tree to estimate the uniaxial compression strength for mudstone
and wackestone carbonates [17] and sandstones [18]. When it comes to elastic modulus,
simple regression equations [19–24] have been mostly used for its estimation, followed by
multiple regression equations [25–27], neural networks [28], and other modern platforms
for estimation are used with them [29–31].

The modelling of elastic behaviour may be based on one or more physical and mechan-
ical rock material properties. The most common properties on which it is estimated are the
Schmidt hardness and the uniaxial compressive strength [19–23], P-wave velocity [20–22],
porosity [32,33]. Density and point load test index are used in combination with the above
properties [25–27].

In previous papers [19,21], the rock material studied was determined in very general
geological terms, so that often only the basic lithology was found. The influence of mineral
grain on the strength and fracture behaviour of rock material has been recognised and
used for numerical studies [34–37]. However, there is an obvious need for a more detailed
evaluation of rock material petrological properties. In the case of carbonate rocks, these may
be depositional textural features. Sedimentological investigations of carbonate rocks and
determination of their physical and mechanical properties are continuously carried out in
Croatia [17,34,38–40], but also in other places in the world where these rocks occur [41–44].

Considering the origin and composition of rocks, different varieties of carbonate
sedimentary rocks are the most common in Croatia, while igneous and metamorphic rocks
are less represented than sedimentary rocks [45,46]. The origin of sedimentary rocks is
associated to the very thick deposits of Adriatic Carbonate Platform (AdCP) that include a
major part of the entire carbonate succession of the Croatian Karst and ranges in age from
the Middle Permian to the Eocene [47]. Rocks in Croatia are formed in environments with
various depositional conditions; this paper is focused on grain-supported carbonates with
packstone and grainstone depositional texture. Many engineering works in Croatia are
associated with different carbonates, and so in this way, it is possible to determine the rock
material more precisely and, based on this, to create estimation models that are specific to
these textures. The aim of this work is to take a step in this direction.

The need of engineers for a quick estimate of the elastic modulus in the field was
observed. Accordingly, a macroscopic petrographic analysis of different types of carbonates
in terms of their depositional textures was carried out. Then, the basic physical and
mechanical properties, including the elastic modulus, were determined. Based on the
obtained data, the elastic modulus was also estimated using the methods (multiple linear
regression, regression tree and their generalisations), which was the main objective of the
work. This method proved to be useful for rapid on-site estimation of elastic modulus in
engineering works.

2. Materials and Methods

The examined material came from eight locations in Croatia (Figure 1) and had a
depositional texture of grain-supported packstones or grainstones. During in situ sampling,
limestone and dolomite samples with different grain-support depositional textures were
collected. It was also important to consider the geographic distribution of all eight sites.
Dolomite samples were collected from two different sites, one from the Škrobotnik quarry
in the western part of Croatia and the other from the construction notch of the road near
Brušane in the central part of Croatia. Limestone samples were collected from six sites, four
of which are located on the Istrian peninsula. In Korenići and Kanfanar, the material was
taken from the roof deposits of the underground quarry, and in Salakovci and Trget, the
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material was taken from the construction excavation. In addition, limestone samples were
taken from quarries in Med̄urače (mainland Croatia) and in the Debelo brdo exploration
field (central part of Croatia).
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2.1. Grain-Supported Carbonates

Carbonate sedimentary rocks as petrographic group are represented by various types
of limestones and dolomites. Limestones and dolomites can be classified according to their
macroscopic characteristics by Dunham [48]. Dunham’s classification distinguishes and
describes different carbonate rocks according to their depositional textures. Limestones
are determined by the presence or absence of micrite (muddy calcareous particles < 4 µm),
the ratio of grain and micrite content, and signs of organogenic skeletal bonding. Dun-
ham’s classification distinguishes five basic types of limestones: mudstone, wackestone,
packstone, grainstone and boundstone.

Packstone and grainstone (Figure 2) are both grain-supported carbonates. In such
carbonates, different types of grains are mutually supporting each other while the gaps
between them are filled with carbonate mud (micrite) or carbonate cement (sparite). Both
packstones and grainstones have dimensions of grains lesser than 2 mm but with different
content of carbonate mud (micrite). While packstone contains micrite, grainstone has
less than 1% of micrite and pore spaces are dominantly filled with sparite cement (coarse
crystalline calcite cement). In order to use Dunham’s classification for dolomites, it is
important that the primary depositional texture was not destroyed during dolomitization,
adding the prefix dolo to the name [49].
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2.2. Methods for Determining Young’s Modulus and Other Properties

There are three different equivalent methods of determining the Young’s modulus of
elasticity for rock material under uniaxial pressure, and it can be calculated in three different
ways: as a tangent, as a secant, and as an average modulus [50]. The determination can
also be made during repetitive loading and unloading cycles or under monotonic loading
conditions [51]. Measurements were performed during testing under monotonic loading
conditions, from which stress and strain diagrams were constructed, and the values for
the modulus of elasticity were determined. The average Young’s modulus of elasticity is
defined as the slope of the straight-line portion (Figure 3a) of the stress-strain curve for the
particular test.
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Then the average Young’s modulus was calculated according to the Formula (1).

E = ∆σ/∆εa (1)
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where E is average Young’s modulus, and ∆σ is change in axial stress, and ∆εa is change in
axial strain. It is emphasised that the test interval for the average modulus of elasticity is
not fixed by ISRM recommendations and should be adjusted for common rock, depending
on how large the linear part of the stress-strain curve is.

In this study, axial deformation was measured using a Linear Variable Differential
Transformer (LVDT) based displacement transducer (Figure 3b). It is designed to provide
the average readings of three LVDTs that measure deformations in the axial direction. The
instrument is attached to the specimen by means of tightening screws located on the rings
around the specimen. Despite being robust, it measures with an accuracy of 2% and a
precision of 0.2% over the entire measurement field, which is ±2.54 mm. The entire testing
process, from load application to conditioning and acquisition of stress and strain data, was
carried out by implementing the virtual instrument described in paper [52] to determine
the uniaxial compressive strength and deformability of rock specimens.

Other properties were also determined according to ISRM recommendations [50].
These are common and well-known methods in rock mechanics that are widely used in
geoengineering, so the details of each test are not presented here; only important details are
pointed out. In this case, the uniaxial compressive strength (σc) was determined according
to the peak stress required for failure of the specimen. The stress load was 0.75 MPa per
second and was performed using an ELE ADR 2000 laboratory press.

Density and porosity were determined by saturation and calliper techniques, since the
samples could be prepared as regular geometric shapes and did not swell on contact with
water. Therefore, it was not particularly difficult to determine the total volume, and this
was done by measuring the dimensions of regular samples with a calliper. Saturation of
the samples was carried out with an apparatus capable of immersing the samples in water
at a pressure of less than 800 Pa for one hour. A laboratory balance with a reading capacity
of 0.01 g was used to determine the mass of the sample.

The point load test index was measured using the Digital Point Load Test Apparatus
77-0115. It has a load capacity of 55 kN, which was sufficient to break specimens in the
form of a 54 mm diameter disk. An axial type test was performed.

Schmidt rebound hardness was determined using a Proceq SilverSchmidt L-type
digital Schmidt hammer, which has an impact energy of 0.735 Nm, suitable for rock testing.
The lower impact energy ensures that the specimens are not damaged for further testing.

P-wave velocity was measured using the device Cns Farnell Pundit plus, which is one
of the high-frequency ultrasound devices that operate at a frequency of 1 MHz. It allows
easy measurement of velocity on core-shaped samples, which were later used to determine
the modulus of elasticity.

2.3. Use of R Statistical Environment for Estimating Youngs Moduli

Data analysis was performed in the R statistical environment. R is a free software
environment used in the academic community for modelling and graphics. In this paper,
version 4.1.0 on 64-bit Windows 10 operating system was used. In addition, some extra
packages were used: leaps for displaying all linear models according to R2, tree for the
random tree analysis, and randomForest for bagging and the random forest model.

Linear regression is a very simple and straightforward approach for predicting a
response variable Y based on a predictor X. It is assumed that there is a linear relationship
between Y and X which is described by (2)

Y = β0 + β1X, (2)

where β0 and β1 are constants.
As a linear function is determined by precisely two different points and a dataset is

always bigger, the sign “=” in the last equation is changed to “≈”. In other words, for each
point, there is an error. There are many points (usually all of them) that the linear function
does not pass through. We say that the response variable Y is approximately modelled by
the predictor variable X.
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This idea can be easily generalised for more than one predictor. A multiple linear
regression model can be stated as follows. It is assumed that there are p predictors X1,
X2, . . . , Xp and a response variable Y. The model is given by the Formula (3)

Y = β0 + β1X1 + β2X2 + . . . + βpXp + ε (3)

where β0, β1, . . . , βp are regression coefficients and ε is a random error term with zero
mean. The coefficient β0 is also known as the intercept term. The interpretation of the
coefficients is as follows. If Xi increase for one unit, holding all other predictors fixed, the
regression coefficient βi equals the average change of Y. In practice, the coefficients are
unknown and estimated using the least squares method [14]. In the case of one predictor
(k = 1), the data are organised in a set of points (xi, yi) where xi is a measurement of X and
yi is a measurement of Y that corresponds to xi. The least squares method gives “the best”
line that fits the data—so that yi ≈ β0 + β1 xi, for i = 1, . . . , n. In the case of two predictors
(k = 2), the method gives “the best” plane that fits the data. In the case of more than two
predictors, there is a lack of intuition and imagination, but the model is still correct and
interpretable in the described way.

After the appropriate model is fitted, the goodness of model fit is required. There
are a few measures of goodness of model fit which can be useful for model selection. The
quantity which is often used as a measure of the quality of the model fit is the coefficient of
determination, denoted by R2 and given by (4)

R2 = (TSS− RSS)/TSS = 1− RSS/TSS (4)

RSS =
n

∑
i=1

(yi − ŷi)
2 (5)

TSS =
n

∑
i=1

(yi − y)2 (6)

where RSS is the residual sum of squares calculated according to Formula (5), TSS is the
total sum of squares calculated according to Formula (6), ŷi is the predicted value for yi
using xi and a statistical method, and y is the overall sample mean.

Total variance in the response variable (TSS) can be divided into the variance explained
by the fitted model (TSS-RSS) and the variance that is left unexplained (RSS). The R2

statistic takes the form of the proportion of the variability in the response variable that is
explained by the model. If R2 takes the value close to 1, that indicates that a large amount
of variability in the response variable has been explained by the fitted model. However, it
is clear that R2 will increase when more variables are added to the model. If adding some
new predictor to the model leads to just a tiny increase in R2, then it can be dropped from
the model [14]. Adding such predictors to the model also leads to overfitting. Therefore, it
is useful to have more measures of goodness of model fit.

One such measure is an improved version of R2, called adjusted R2, which adjusts
thevpreviously described R2 by taking into account the size of the dataset and number of
parameters in the model. It is given by (7).

adj R2 = 1− RSS/(n− d− 1)
TSS/(n− 1)

(7)

where n is a number of observations and d number of included parameters.
RSS always decreases as the number of predictors in the model increases, but RSS/

(n − d − 1) may increase or decrease, due to the presence of d in the denominator. Once
all of the correct variables have been included in the model, adding additional “needless”
variables will lead to a very small decrease in RSS.

There are some measures of model performance that are more computationally exhaus-
tive. One of them is a root mean square error of cross-validation (RMSECV). It is based on
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a cross-validation. The cross-validation procedure splits the dataset into a training set and
test set finitely many times (the number of splitting is set in advance). The leave-one-out
cross-validation puts a single observation in the test set, while other observations make up
the training set. A statistical method is repeated n times on n − 1 observations, and each
time a prediction is made for one particular observation that is left out. In every repeat, the
squared error is calculated. The estimate for the overall mean squared error is the average
of these n errors, denoted by CV(n) (9) [14]. RMSECV is given by (8).

RMSECV =
√

CV(n) (8)

CV(n) =
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

where n is the number of observations, yi is the observed ith value and ŷi is the predicted
value for yi using xi and a statistical method fitted on the remaining n − 1 observations.
The main advantage of this model accuracy measure is its unbiasedness.

After choosing a few representative linear models according to these two measures of
model accuracy, it is good to check to see which one of them is the best. Assume that there
are two models: the one with k predictors complete model (10) and the reduced model (11)
with one predictor less than the complete model.

Y = β0 + β1X1 + . . . + βk−1Xk−1 + βkXk + ε (10)

Y = β0 + β1X1 + . . . + βk−1Xk−1 + ε (11)

Models of that kind are called nested models. It is of interest whether the distinguished
predictor, when it is added to the model, contributes to the quality of the model. Hypotheses
are set as follows (12) and (13):

H0 : βk = 0 (12)

H1 : βk 6= 0 (13)

For this purpose, the F-test for nested models is performed. The test statistic is given
by (14).

F =

RSSR−RSSC
pC−pR
RSSC
n−pC

, (14)

where RSSC and RSSR are the residual sum of squares for the complete and reduced model,
respectively. Further, pC and pR are the numbers of predictors in the complete and reduced
model and n is the length of the dataset. If the null hypothesis is true, the test statistic has
an F distribution with (n− pR) and (n− pC) degrees of freedom.

For performing this statistical test in R the “anova” function is used. The level of
significance is set to 5%. The same F statistic can be used for testing the hypothesis that
more than one coefficient βi equals 0.

The regression tree method divides the data into smaller groups that are more ho-
mogenous with respect to the response variable. The process starts with the whole dataset
and searches every distinct value of every predictor to find the predictor Xk and split value
s that partitions the data into two groups S1 = {X|Xk < s} and S2 = {X|Xk ≥ s} such that the
overall sums of squares are minimised (15)

∑
i ∈ S1

(yi − y1)
2 + ∑

i ∈ S2

(yi − y2)
2 (15)

where y1 and y2 are the averages of the training set outcomes within groups S1 and S2,
respectively [15].

The process continues within each group in the same manner until the number of
observations in the splits falls below some threshold (usually, the threshold is 5). That kind
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of splitting is a type of greedy algorithm known as recursive binary splitting. At the end
of the recursive process, the data are divided into N disjoint subsets S1, S2, . . . , SN called
terminal nodes or leaves. Each of the terminal nodes is presented by the average of the
response variable of observations settled in that node.

After the tree has been grown, it can be very large and complex and is likely to overfit
the training set. The tree is then pruned back to a smaller tree (a subtree of the full tree
constructed by the above procedure).

The structure of the regression tree constructed by the described procedure highly
depends on the training set. Bagging, short for bootstrap aggregation, is a general approach
that uses the combination of bootstrapping and regression trees to produce a suitable
prediction model. First, different training datasets are generated from the original data. On
every bootstrapped training dataset, a regression tree is structured. For the given values of
predictors, M predictions of the response variable (ŷ1, ŷ2, . . . , ŷM) are obtained and then
averaged to give the bagged model’s prediction (16).

ŷbag =
1
M

M

∑
i=1

ŷi (16)

The described approach usually improves predictive performance for unstable models,
like regression tree models. In the case of a large number of bootstrap samples, bagging is
a computationally exhaustive method. Another disadvantage is that trees from different
bootstrap samples may have similar structures to each other (especially at the top of the
trees) due to a relationship between one strong predictor and response. This feature is
known as tree correlation, and it prevents bagging from optimally reducing the variance
of the predicted values (ŷ1, ŷ2, . . . , ŷM) [15]. Adding randomness to the construction
procedure can reduce the correlation among predictors. Random forest is such a method
which at each split randomly selects m predictors from the whole set of p predictors. The
number m is known as the random forests’ tuning parameter, and the recommended choice
is m = p/3 or

√
(p) (in this paper, p = 6, so m = 2).

Since there is a collection of bagged trees, results of the random forest method and
bagging are less interpretable than the results of a single tree model. However, measures of
predictor importance can be constructed by combining measures of importance from the
individual models across the set of M constructed trees. The total amount that the RSS is
decreased due to splits over a given predictor is averaged over all M trees. A large value is
interpreted as an important predictor.

3. Results
3.1. Petrographic Characteristics and Physical-Mechanical Properties

To determine their petrographic characteristics and to relate them to physical and
mechanical properties macroscopic observation was done. The textural characteristics were
determined on 33 in situ carbonate samples. Among them on seven dolomites and on
26 limestone samples (Figures 4 and 5). The samples were classified into packstone and
grainstone groups according to the depositional texture.
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Figure 5. Packstone depositional texture in limestones from different locations: (a) Med̄urače; (b)
Debelo brdo; (c) Trget; (d) Kanfanar.

All dolomite samples (four from Brušane—Figure 4a and three from Škrobotnik—
Figure 4b) were determined as dolograinstones with visibly preserved primary depositional
textures and grains with grain-support. Brušane samples were represented by grey to black
laminated dolomites with partially visible fossil grains while Škrobotnik samples are dark
yellowish laminated dolomites.

Unlike dolomites, limestone samples were determined as both grainstones and pack-
stones. Two out of seven grainstone samples are from the Korenići and five are from
Salakovci location. Yellowish to brown homogenous limestones from Salakovci (Figure 4c)
are determined as foraminiferal grainstones with dimensions of grains from 1 to maximum
5 mm. Light yellow limestones with fossil fragments from Korenići (Figure 4d) show visible
anisotropy (lamination) and have high primary porosity with pores up to 3 mm.

There is a total of 19 limestone samples determined as packstones: two of them from
Med̄urače, three from Debelo brdo, and seven from each Trget and Kanfanar location.
Med̄urače limestone (Figure 5a) is of red to brown colour with randomly oriented white
wide fissures subsequently filled with calcite cement. Debelo brdo limestones (Figure 5b)
are dark in colour probably due to organic matter content. In addition, samples show
visible lamination and stylolite type fissures. Yellowish samples from Trget (Figure 5c) have
homogeneously distributed fossil fragments with dimensions from 0,1 to 3 mm. Kanfanar
samples (Figure 5d) are yellowish with clearly visible fossils (oncoids) up to 3 mm in
micritic base. Small fissures represented by stylolitic seams filled with calcite cement are
also visible.

In addition to petrographic analysis, laboratory samples were prepared from 33 field
samples for a total of 231 physical-mechanical properties tests. General descriptive statistics
of all test results are presented in Table 1.

Table 1. General descriptive statistics of grain-supported carb onates test results.

General Statistics ρ n Is(50) SRH vp σc E

min 2376 0.14 0.5 38.2 4944 51.44 38.38
max 2823 11.25 6.8 72.5 6378 181.36 93.26

average 2634.64 3.22 4.30 59.05 5710.12 126.81 57.11
standard deviation 122.10 3.01 1.43 8.98 389.80 32.45 12.99

Coefficient of variation (%) 4.63 93.48 33.26 15.21 6.83 25.59 22.75

ρ—density (kg/m3); n—porosity (%); Is(50)—point load test index (MPa); vp—P wave velocity (m/s);
SRH—Schmidt rebound hardness; σc—uniaxial compressive strength (MPa); E—Young’s modulus of elastic-
ity (GPa).
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The wide range of all studied properties (from minimum to maximum) shows that
the collected rocks with packstone and grainstone texture have quite different physical
and mechanical properties. The minimum value of uniaxial strength is 51.44 MPa and the
maximum value is 181.36 MPa. According to the Marinos and Hoek [53], it means that the
rock material belongs to the category of strong (from 50 to 100 MPa) and very strong rock
(from 100 to 250 MPa). The tests showed that the values of the modulus of elasticity ranged
from 38.38 to 93.26 GPa with a standard deviation of 12.99 GPa. It is worth noting that
according to the coefficient of variation, the largest scatter of data is for porosity with an
average value of 3.22% and the smallest for density (average 2634.64 kg/m3) and P-velocity
(average 5710.12 m/s).

Ideally, rock material density should be related solely based on density of its mineral
composition, but measured density (analysed by saturation technique) also reflects isolated
pore spaces. Consequently, the difference in measured densities is primarily caused by a
slightly higher density of dolomite in comparison to calcite but is also influenced by rock
material porosity (Figure 6).
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Figure 6. Young’s modules in relation to density and by carbonate type.

These are the main reasons for obvious clustering of density data according to recog-
nised texture types. Despite of some differences in physical properties of various types of
grain-supported carbonate rocks, the same diagram does not indicate significant difference
in elastic modulus for particular texture types. For that reason, the elastic modulus is
studied for the whole group of grain-supported carbonate rock materials.

The relationships between the predictors via the correlation coefficient were also
studied, and the result is shown graphically in Figure 7.
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Logically, the relationship between porosity and density is a negative strong relation-
ship. That is the reason why those two independent variables do not appear both in the
same models that are proposed later. The values of the correlation coefficient between
other predictors are small so, evidently, there is no significant relationship.

3.2. Models for Estimating Modulus of Elasticity

In this paper, multiple linear regression models for all subsets of six predictors are
built (p = 6). There are 63 subsets in total and the best three models according to RMSECV
are given by:

E = −112.194 + 0.026ρ− 2.000IS(50) + 0.017vp + 0.123σc (17)

E = −135.388 + 0.035ρ + 0.016vp + 0.093σc (18)

E = −61.014− 2.806IS(50) + 0.02vp + 0.137σc (19)

where E is the modulus of elasticity (GPa), ρ is density (kg/m3), IS(50) is the point load
strength index (MPa), vp is the P-wave velocity (m/s), σc uniaxial compressive strength
(MPa). The constructed regression tree is shown in Figure 8.
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Figure 8. Regression tree model (five leaves).

Variables used in the tree construction (Figure 8) are: the P-wave velocity (vp), the point
load strength index (Is(50)), Schmidt rebound hardness (SRH), and uniaxial compressive
strength (σc). They stand as the most important predictors for the prediction of modulus
of elasticity. In function “prune.tree” the parameter “best” equals the number of terminal
nodes. If there is no tree of a certain size, the next largest is constructed. Since the tree in
Figure 8 has five leaves, the pruned tree could have three or four leaves. Of specific interest
may be the one with four leaves (and three most important predictors) shown in Figure 9.
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As previously mentioned, the analysis with random forest is obtained by setting
parameter m to 2, while in bagging, that parameter is set to 6 (parameter “mtry” in function
“randomForest”). Figure 10 displays the importance of predictors in the random forest
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model. In the sense of the amount of reduced RSS, the most important predictor is the
P-wave velocity (vp) and the least important is uniaxial compressive strength (σc).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 18 
 

As previously mentioned, the analysis with random forest is obtained by setting pa-
rameter m to 2, while in bagging, that parameter is set to 6 (parameter “mtry” in function 
“randomForest”). Figure 10 displays the importance of predictors in the random forest 
model. In the sense of the amount of reduced RSS, the most important predictor is the P-
wave velocity (vp) and the least important is uniaxial compressive strength (σc). 

 
Figure 10. Importance of variables in the random forest model due to the amount of reduced RSS. 

4. Discussion 
The identification and differentiation of carbonate rock material texture is very im-

portant because it indicates many factors which have great impact on its physical and 
mechanical properties as: grain content and sizes, matrix composition and quality, and 
porosity [34,39]. Therefore, it is necessary to focus research on individual categories. 
Given that the most engineering work (mining, quarrying, tunnelling) is performed in 
different varieties of carbonate rocks this research was based on grain-supported lime-
stones and dolomites. According to the macroscopic petrographic characteristics, it is ev-
ident that the packstone samples slightly differ from the grainstone ones. Grainstone sam-
ples (Table 2) generally have visible anisotropy in the shape of lamination. Only Salakovci 
samples are homogenous. Fossil fragments are bound together with cement while fossil 
fragment in packstones are bound together with micrite. Packstone samples (Table 2) are 
mostly homogenous (only Debelo brdo has visible lamination). Regardless of the slightly 
visible petrographic differences according to the gained data of physical and mechanical 
properties, packstones behave similarly to grainstones and are therefore taken together 
for modelling. Generally, determined grain-supported carbonates are considered to be 
compact and to have good properties with low porosity. Most of the samples are without 
secondary defects while only few samples show visible minor defects (subsequently filled 
fissures with calcite cement as Međurače). 

Table 2. Number of samples according to lithology and depositional texture. 

Location Lithology 
Depositional  

Texture 
Number  

of In Situ Samples 
Škrobotnik, Brušane dolomite dolograinstone 7 
Korenići, Salakovci limestone grainstone 7 

Međurače, Debelo brdo, 
Trget, Kanfanar 

limestone packstone 19 

Figure 10. Importance of variables in the random forest model due to the amount of reduced RSS.

4. Discussion

The identification and differentiation of carbonate rock material texture is very im-
portant because it indicates many factors which have great impact on its physical and
mechanical properties as: grain content and sizes, matrix composition and quality, and
porosity [34,39]. Therefore, it is necessary to focus research on individual categories. Given
that the most engineering work (mining, quarrying, tunnelling) is performed in differ-
ent varieties of carbonate rocks this research was based on grain-supported limestones
and dolomites. According to the macroscopic petrographic characteristics, it is evident
that the packstone samples slightly differ from the grainstone ones. Grainstone samples
(Table 2) generally have visible anisotropy in the shape of lamination. Only Salakovci
samples are homogenous. Fossil fragments are bound together with cement while fossil
fragment in packstones are bound together with micrite. Packstone samples (Table 2) are
mostly homogenous (only Debelo brdo has visible lamination). Regardless of the slightly
visible petrographic differences according to the gained data of physical and mechanical
properties, packstones behave similarly to grainstones and are therefore taken together
for modelling. Generally, determined grain-supported carbonates are considered to be
compact and to have good properties with low porosity. Most of the samples are without
secondary defects while only few samples show visible minor defects (subsequently filled
fissures with calcite cement as Med̄urače).

Table 2. Number of samples according to lithology and depositional texture.

Location Lithology Depositional
Texture

Number
of In Situ Samples

Škrobotnik, Brušane dolomite dolograinstone 7

Korenići, Salakovci limestone grainstone 7

Med̄urače, Debelo brdo,
Trget, Kanfanar limestone packstone 19

Average Young’s modulus of elasticity for the grain-supported textures of packstone
and grainstone was studied. It should be noted that in previous papers [8,9] a more
appropriate tangent modulus was evaluated for modelling the estimate. However, in the
same papers, a very high similarity between the average and tangent modulus is also noted.
The similarity is the reason why the authors in this paper nevertheless opt for a more
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determined average modulus. Of course, one should always pay attention and emphasise
how the Young’s modulus is determined, since, for example, the values of the secant type
of modulus can be very different.

Data analysis and estimation modelling were performed in the R statistical envi-
ronment. The advantage of the R statistical environment is that it is free and available.
Nevertheless, great strides have been made in the R-studio variant, which is more accept-
able for use in mining, construction, and related professions.

Multiple linear regression, regression tree, and its generalisations are considered. In
the case of multiple linear regression, 63 models were constructed as all possible combina-
tions of six predictors. They are compared using two measures of accuracy of the model:
adjusted R2 and RMSECV (Table 3). It is obtained using a leave-one-out cross-validation.
The best result according to RMSECV is achieved by the models (17) and (18).

Table 3. RMSECV, adjusted R2 values and their ranking numbers for multiple linear regression
models.

Linear Model RMSECV Rank (Value) Adjusted R2 Rank (Value)

(17) 1. (10.0025) 4. (0.5129)
(18) 2. (10.0313) 7. (0.4890)
(19) 3. (10.0798) 8. (0.4837)

The model with all predictors included takes the 24th place according to the RMSECV
and the 2nd place according to the adjusted R2.

Model (17) and (18) are compared using F-test. Model (17) is considered as the
complete and model (18) as the reduced model. The p-value is 0.1309 which is greater than
0.05 so the null hypothesis is rejected. The point load strength index as a predictor variable
significantly contributes to the quality of prediction of the modulus of elasticity.

If models (17) and (19) are compared in the same manner, the p-value equals 0.1091
which leads us to the same conclusion for the density as a predictor variable.

On the other hand, the regression tree model (Table 4) has a larger adjusted R2 than
every linear model. The models based on regression trees give significantly better results
according to R2 and adjusted R2. Except for bagging, they give slightly worse results due
to the value of RMSECV.

Table 4. Measures of accuracy of the three models.

Models RMSECV R2 Adjusted R2

Regression tree (Figure 8) 10.2387 0.7624 0.7285
Pruned tree (Figure 9) 10.0712 0.7424 0.7157

Bagging (m = 6) 9.8033 0.8934 0.8687
Random Forest (m = 2) 10.1133 0.8736 0.8652

RMSECV—root mean square error of cross-validation; R2—coefficient of determination.

The size of the R2 models in this paper was compared with those in other pa-
pers [30,31,43]. One obstacle to the comparison is that the same success coefficients were
not used, so the comparison can only be made using the size R2 that all models had. This
is most evident when comparing the R2 model which was created using artificial neural
networks which have a black box in their structure and therefore cannot explain their
outputs, and it has undesirable negative properties such as complexity in its multilayer
structure, possibility of overlearning [31]. Taking this into consideration, it can only be
argued that the models developed in this paper have lower R2 than the neural network
models [43].

It is noticeable that the most successful model Bagging in this paper has a very
similar value R2 (0.8934) to the model created earlier, whose coefficient of determination
is 0.908 [31], and it was created using the Least Square Support Vector Machine method
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(LS-SVM). This is an advanced version that is superior to the artificial neural networks
method in terms of predictive performance, generality, and robustness. This is consistent
with the research of [29] who investigated the advantages and disadvantages of fuzzy
inference systems, artificial neural networks and LS -SVM methods and found that the
performance of the LS -SVM model was the best among the other methods. However,
the small difference in R2 between the models in this paper and [31] shows the similarity
of the success of both models and does not imply that the Bagging model is less useful
or less accurate. More so, if the emphasis is on simplicity and great attention is paid to
avoiding overfitting, then it is quite justified to use the models of the authors of this paper,
as they have used other very rigorous measures (RMSECV and adjusted R2) to evaluate
model performance.

Of course, it is important to point out that the results of this study do not replace
laboratory tests on the elastic properties of rocks, which still need to be carried out. The
analysis in this paper shows that for a simpler prediction of elastic rock properties using
pruned tree, it is sufficient to know the data of three parameters (P-wave velocity, uniaxial
compressive strength and the point load strength index). To reliably predict the elastic
rock properties, the remaining four parameters are also used for modelling. Therefore, the
application of this method in engineering practice depends on the amount of available data.
Actual application of this method in engineering practice is possible in the preliminary
stages of work to improve property estimation when direct determination of elastic modu-
lus would be uneconomical. For example, when it is desired to preliminarily investigate
the possibility of exploitation of natural stone for a material that has been tested in some
construction project. This is only an example, and it depends on the engineering profes-
sionals to what extent they will use the estimates and to what extent they will perform the
determination of the modulus of elasticity.

5. Conclusions

Based on the study of the grain-supported carbonates from Croatia with depositional
textures of packstone and grainstone, as well as on the models created for estimation, it
can be concluded:

• Petrographic characteristics of rocks have proven to be extremely important since
they directly affect the physical and mechanical properties and modulus of elasticity.
According to the obtained results, the packstone and grainstone carbonates from
Croatia show similar properties and can be mutually combined when estimating the
modulus of elasticity of carbonates. Still, it is important to point out that presented
results consider low porosity carbonates without or with minor secondary defects.
Other types of carbonate rock materials may have considerably different properties,
therefore better results, it is suggested that each group of carbonates is considered and
estimated separately.

• It is useful in engineering terms to create simple estimation models based on multiple
regression and regression trees, and in this sense, the R statistical environment has
proven to be a viable and accessible platform.

• Regression tree models can be used to easily estimate the modulus of elasticity for
carbonates with packstone and grainstone textures with input parameters of P-velocity,
uniaxial compressive strength, and point load test index.

• The bagging tree model showed the best evaluation results. Its performance parame-
ters are 0.8934 for R2 and 0.8687 for adjusted R2. This model can be used with input
parameters listed in the previous point, as well as density, porosity and Schmidt
rebound hardness.
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