Analiza testa porasta tlaka hidraulički frakturirane bušotine primjenom programa Saphir

Valjak, Andrea

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:517093

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-15

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU

RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij naftnog rudarstva

ANALIZA TESTA PORASTA TLAKA HIDRAULIČKI FRAKTURIRANE BUŠOTINE PRIMJENOM PROGRAMA SAPHIR

Diplomski rad

Andrea Valjak

N326

Zagreb, 2021.

ANALIZA TESTA PORASTA TLAKA HIDRAULIČKI FRAKTURIRANE BUŠOTINE PRIMJENOM PROGRAMA SAPHIR

ANDREA VALJAK

Diplomski rad je izrađen:	Sveučilište u Zagrebu
	Rudarsko-geološko-naftni fakultet
	Zavod za naftno-plinsko inženjerstvo i energetiku
	Pierottijeva 6, 10 000 Zagreb

Sažetak

U radu je obrađena analiza testa porasta tlaka hidraulički frakturirane bušotine na odabranom naftnom ležištu. U tu svrhu najprije je teoretski opisana analiza testa porasta vertikalne bušotine iz koje su razvijeni analogni modeli za analizu tlaka frakturiranih bušotina. Glavna svrha ovakvih testova jest određivanje ležišnih svojstava, kao što su propusnost stijene i skin faktor, odnosno poluduljina pukotine i njezina vodljivost. Za analizu se upotrebljavao program Saphir, te se na temelju deset različitih slučajeva istog testa porasta tlaka odabrana analiza u kojoj se model frakturirane bušotine i ležišnog fluida najbolje podudara s krivuljom mjerenog tlaka i s krivuljom njegove derivacije. S obzirom da se radi o bušotini koju se planira refrakturirati, jer je nakon duljeg perioda proizvodnje došlo do smanjenja pukotine, što se očitovalo u opadajućim proizvodnim karakteristikama, glavni cilj mjerenja porasta tlaka jest interpretirati njezinu stvarnu poluduljinu. Ovaj podatak jedan je od ključnih za dizajn postupka novog frakturiranja, kao i za postavljanje novog proizvodnog modela. Na temelju deset provedenih analiza slučajeva, zaključeno je da najtočniji rezultat poluduljine daje model frakturirane bušotine s višefaznim protokom, u iznosu od oko 13 metara.

Ključne riječi: analiza testa porasta tlaka, hidraulički frakturirana bušotina, program Saphir

Diplomski rad sadrži: 67 stranica, 4 tablice, 37 slika, 1 prilog i 35 referenci.

Jezik izvornika: hrvatski

Diplomski rad pohranjen: Knjižnica Rudarsko-geološko-naftnog fakulteta Pierottijeva 6, Zagreb

Mentor: Dr. sc. Sonja Koščak Kolin, docentica RGNf-a

- Ocjenjivači: : 1. Dr. sc. Sonja Koščak Kolin, docentica RGNf-a
 - 2. Dr. sc. Vladislav Brkić, izvanredni profesor RGNf-a
 - 3. Dr. sc. Borivoje Pašić, izvanredni profesor RGNf-a

Datum obrane: 10.9.2021., Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu

PRESSURE BUILD-UP TEST ANALYSIS OF HYDRAULICALLY FRACTURED WELL USING THE SAPHIR SOFTWARE

ANDREA VALJAK

Thesis completed in:University of ZagrebFaculty of Mining, Geology and Petroleum EngineeringDepartment of Oil and Gas Engineering and EnergyPierottijeva 6, 10 000 Zagreb

Abstract

The thesis studies the analysis of a pressure build-up test of the hydraulically fractured well at the selected oil reservoir. For this purpose, the analysis of the build-up test for a vertical well was first theoretically described and then the compliant models for the pressure analysis of fractured wells were developed. The main objective of these tests is to determine the reservoir properties, such as rock permeability and skin factor, but also fracture half-length and conductivity. The Saphir software was used for the analysis. Based on 10 different cases of the same pressure build-up test, the analysis in which the model of a fractured well and reservoir fluid best matches the measured pressure curve and the derivative curve was selected. There is a plan to refracture the well since a reduction in the fracture size was noticed after a long period of production. This reduction was reflected in the declining production characteristics, therefore the main goal of measuring the pressure build-up is to interpret its actual half-length. This is one of the key information necessary for the design of the new fracturing process and for setting up a new production model. Based on 10 conducted case analyses, it was concluded that the most accurate result for fracture halflength is provided by the fractured well model with the multiphase flow, and it is approximately 13 meters.

Keywords: pressure build-up test analysis, hydraulically fractured well, Saphir software

Thesis contains: 67 pages, 4 tables, 37 figures, 1 appendix and 35 references.

Original in: Croatian

Archived at: The Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb

Supervisor: Assistant Professor Sonja Koščak Kolin, PhD

- Reviewers: 1. Assistant Professor Sonja Koščak Kolin, PhD
 - 2. Associate Professor Vladislav Brkić, PhD
 - 3. Associate Professor Borivoje Pašić, PhD

Date of defense: September 10, 2021, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb

SADRŽAJ

POPIS SLIKA	I
POPIS TABLICA	III
POPIS KORIŠTENIH OZNAKA I PRIPADAJUĆIH SI JEDINICA	IV
POPIS KORIŠTENIH KRATICA	VII
1. UVOD	1
2. PROTJECANJE FLUIDA U LEŽIŠTU	2
2.1. Radijalni protok	2
2.1.1. Proizvodni oblici protoka u vertikalnoj bušotini	3
2.1.2. Analiza tlaka u vertikalnoj bušotini	8
2.2. Protjecanje fluida u ležištu s vertikalnom pukotinom	16
2.2.1. Oblici protoka u vertikalnoj pukotini	16
2.2.2. Analiza tlaka u frakturiranoj bušotini	24
2.2.2.1. Analiza tlaka pomoću tipskih krivulja	25
2.2.2.2. Specijalizirane analize	
3. OSNOVNI PODACI O LEŽIŠTU I BUŠOTINI	
3.1. Geološki opis polja i ležišta	
3.2. Geološki opis bušotine i njeno tehničko stanje	
4. ANALIZA TESTA PORASTA TLAKA POMOĆU PROGRAMA SAPHI	R 35
4.1. Ulazni podaci	
4.1.1. Opis početnog modela za analizu testa porasta tlaka	
4.2. Modeliranje mjerenih podataka s tipskim krivuljama	41
4.2.1. Analiza slučajeva	
5. DISKUSIJA REZULTATA	55
6. ZAKLJUČAK	
7. POPIS LITERATURE	60
PRILOG	63

POPIS SLIKA

Slika 2-1. Shematski prikaz geometrije i rubnih uvjeta kod radijalnog protoka za modele s
konstantnim protokom na unutarnjoj granici ležišta3
Slika 2-2. Dijagram protok-vrijeme kod testa porasta tlaka
Slika 2-3. Početni log-log dijagram tipskih krivulja bezdimenzionalnog tlaka u ovisnosti o
bezdimenzionalnom vremenu, za različite bezdimenzionalne konstante skladištenja 12
Slika 2-4. Tipske krivulje u ovisnosti o parametru <i>CDe2s</i> , iznosa od 0,1 do 10 ³⁰ 13
Slika 2-5. Tipske krivulje derivacije tlaka, $p'D(tD/CD)$, u ovisnosti o tD/CD 14
Slika 2-6. Log-log dijagnostički dijagram za analizu tlaka ispitivanih bušotina
Slika 2-7. Idealizirani prikaz frakturirane bušotine
Slika 2-8. Linearni protok u pukotini
Slika 2-9. Bilinearni protok
Slika 2-10. Linearni protok u ležištu
Slika 2-11. Pseudoradijalni protok
Slika 2-12. Polulogaritamski prikaz tipskih krivulja za frakturiranu bušotinu u
neograničenom ležištu
Slika 2-13. Tipska krivulja za vertikalnu frakturiranu bušotinu 25
Slika 2-14. Tipska krivulja za preklapanje podataka tijekom bilinearnog i prijelaznog
protoka27
Slika 2-15. Tipska krivulja za vertikalnu frakturiranu bušotinu 29
Slika 2-16. Graf ovisnosti efektivnog radijusa bušotine o bezdimenzionalnoj vodljivosti
pukotine
Slika 3-1. Shema podzemne opreme bušotine A-1
Slika 4-1. Osnovni podaci o bušotini i ležištu
Slika 4-2. Osnovna PVT svojstva ležišnih fluida i stijene
Slika 4-3. Numerički parametri i početni model za analizu testa porasta
Slika 4-4. Period skladištenja fluida na log-log dijagramu prikazan pravcem nagiba 1 38
Slika 4-5. Nagibi pravaca u log-log dijagramu specijaliziranih analiza frakturirane bušotine

Slika 4-6. 'History plot' – dijagram mjerenih podataka protoka i tlaka u ovisnosti o	
vremenu	40
Slika 4-7. Log-log dijagram mjerenih podataka i derivacije tlaka	41
Slika 4-8. Početno i konačno preklapanje podataka testa porasta tlaka za model vertik	alne
bušotine	42
Slika 4-9. Glavno sučelje programa <i>Saphir</i>	43
Slika 4-10. Log-log dijagram analize testa porasta tlaka – analiza 1	45
Slika 4-11. Log-log dijagram analize testa porasta tlaka – analiza 2	46
Slika 4-12. Log-log dijagram analize testa porasta tlaka – analiza 3	46
Slika 4-13. Log-log dijagram analize testa porasta tlaka – analiza 4	47
Slika 4-14. Log-log dijagram analize testa porasta tlaka – analiza 5	48
Slika 4-15. Log-log dijagram analize testa porasta tlaka – analiza 6	48
Slika 4-16. Log-log dijagram analize testa porasta tlaka – analiza 7	49
Slika 4-17. Ležišna svojstva fluida kod opcije 'Multiphase'	50
Slika 4-18. Log-log dijagram analize testa porasta tlaka – analiza 8	51
Slika 4-19. Log-log dijagram analize testa porasta tlaka – analiza 9	52
Slika 4-20. Log-log dijagram analize testa porasta tlaka – analiza 10	53

POPIS TABLICA

Tablica 3-1. Osnovni geološki podaci ležišta X	32
Tablica 3-2. Raskriveni intervali ležišta X	33
Tablica 4-1. Vrijednosti parametara korištenih u pojedinoj analizi	44
Tablica 5-1. Rezultati analize slučajeva testa porasta tlaka	56

POPIS KORIŠTENIH OZNAKA I PRIPADAJUĆIH SI JEDINICA

<u>Oznaka</u>	Jedinica	<u>Opis</u>
A_{wb}	m^2	površina poprečnog presjeka bušotine
В	m^3/m^3	volumni faktor nafte
С	m ³ /Pa	konstanta skladištenja bušotine
C_D	-	bezdimenzionalna konstanta skladištenja bušotine
C_{fD}	-	bezdimenzionalna vodljivost pukotine
С	Pa ⁻¹	stlačivost
C _{ft}	Pa ⁻¹	ukupna stlačivost pukotine
C _t	Pa ⁻¹	ukupna stlačivost sustava
G_p	m ³	ukupno proizvedena količina plina
g	m/s^2	ubrzanje slobodnog pada
h	m	efektivna debljina ležišta
J_0, J_1	-	Besselove funkcije
k	m^2	propusnost ležišne stijene
k _f	m^2	propusnost hidraulički stvorene pukotine
$k_f w, F_c$	m ² m	vodljivost pukotine
m	Pa	nagib polulogaritamskog pravca
N_p	m ³	ukupno proizvedena količina nafte
p	Pa, bar	tlak
p_D	-	bezdimenzionalni tlak
p'_D	-	derivacija bezdimenzionalnog tlaka
p_f	-	tlak u pukotini
p_{fD}	-	bezdimenzionalni tlak u pukotini
p_{rD}	-	bezdimenzionalni tlak u ležištu

p_i	Pa, bar	početni ležišni tlak
p_{wD}	-	bezdimenzionalni tlak u bušotini na razini ležišta
p_{wf}	Pa, bar	dinamički tlak u bušotini
p _{ws}	Pa, bar	statički tlak u bušotini
q	m ³ /s, m ³ /dan	obujamski protok (trenutačna proizvodnja)
q_o	m ³ /s, m ³ /dan	protok nafte
q_w	m ³ /s, m ³ /dan	protok slojne vode
r	m	radijus
r _D	-	bezdimenzionalni radijus
r _e	m	radijus vanjske granice ležišta
r _{eD}	-	bezdimenzionalni radijus crpljenja
r _w	m	radijus bušotine
r'_w	m	efektivni radijus bušotine
S	-	skin faktor
t	S	vrijeme
t _D	-	bezdimenzionalno vrijeme
t_{Dx_f}	-	bezdimenzionalno vrijeme u funkciji duljine pukotine
t_p	S	proizvodno vrijeme
W_p	m ³	ukupno proizvodena količina slojne vode
W	m	širina pukotine
x	m	udaljenost u smjeru osi x
x_D	-	bezdimenzionalna udaljenost u smjeru osi x
x_f	m	poluduljina pukotine
<i>X</i> ₀ , <i>X</i> ₁	-	Besselove funkcije
у	m	udaljenost u smjeru osi y

y_D	-	bezdimenzionalna udaljenost u smjeru osi y
Δp	Pa, bar	razlika (pad) tlaka
Δt	S	vrijeme testa porasta tlaka
Δt_e	S	Hornerovo vrijeme
η_{fD}	-	bezdimenzionalna hidraulička difuzivnost pukotine
μ	Pa s	viskoznost
ρ	kg/m ³	gustoća kapljevine u bušotini
φ	-	efektivna šupljikavost ležišne stijene
ϕ_f	-	efektivna šupljikavost pukotine

POPIS KORIŠTENIH KRATICA

<u>Oznaka</u>	<u>Opis</u>
DST	ispitivanje bušotine kroz bušaće šipke (engl. Drillstem Test)
GOR	omjer plina i nafte (engl. Gas to Oil Ratio), m ³ /m ³
IARF	neograničeno djelujući radijalni protok (engl. Infinite Acting Radial Flow)
MD	mjerena dubina (engl. Measured Depth), m
PSS	poluustaljeno stanje protoka (engl. Pseudo-steady state)
PTA	aliza prijelaznog perioda (engl. Pressure Transient Analysis)
TVD	prava vertikalna dubina bušotine (engl. True Vertical Depth), m

1. UVOD

Kroz čitav životni vijek bušotine, od faze istraživanja do napuštanja, hidrodinamičkim se mjerenjima prikuplja značajna količina podataka kako bi se opisalo stanje i ponašanje bušotine i ležišta. Hidrodinamička mjerenja (engl. *well testing*) koriste se kako bi se utvrdila sposobnost ležišne stijene da proizvodi ležišne fluide. Pravilno izvedena i analizirana hidrodinamička mjerenja mogu pružiti informacije o propusnosti formacije, odnosno ležišne stijene, veličini i dosegu oštećenja ili stimulacije ležišta, ležišnom tlaku, granicama ležišta i heterogenosti. Tijekom ispitivanja, ležišni se fluidi proizvode različitim protocima prema određenom rasporedu. Ispitivanja mogu trajati kraće od dva dana kod procjene pojedine bušotine, ali i do nekoliko mjeseci kod određivanja veličine ležišta (von Flatern, 2012). Postoje različite vrste ispitivanja, a neke od njih su test porasta tlaka, test pada tlaka ili proizvodni test, izokronalni test, test protok za protokom i ispitivanje bušotine kroz bušaće šipke (engl. *Drillstem Test – DST*).

Test porasta tlaka najčešća metoda je ispitivanja bušotina pri neustaljenim (engl. *transient*) uvjetima protoka. Ispitivanje se provodi na način da bušotina proizvodi fluide pri konstantnom protoku tijekom određenog vremena, a nakon toga bušotina se zatvara. Dolazi do porasta tlaka u ležištu, a tlak se, najčešće na dnu bušotine, mjeri u ovisnosti o vremenu.

U diplomskom radu analiziran je test porasta tlaka frakturirane naftne bušotine A-1 pomoću računalnog programa *Saphir*, koji je dio softverskog paketa KAPPA Workstation, za analizu tlaka u ležišnom i proizvodnom inženjerstvu nafte i plina (sveučilišna licenca #9643). Program koristi Bourdetovu derivaciju kao glavni dijagnostički alat te se u analizi nastoji postići preklapanje mjerenih podataka i modela. Nakon što je postignuto zadovoljavajuće preklapanje, pristupa se interpretaciji rezultata čime se dobivaju mnoge korisne informacije o ležištu i bušotini.

S obzirom da se radi o frakturiranoj bušotini, provedeno je nekoliko analiza tlaka, kako za frakturiranu tako i za vertikalnu bušotinu, koje daju različite rezultate o svojstvima ležišta, odnosno bušotine. U usporedbi s laboratorijskim podacima i s pomoću opcije optimalnog usklađivanja mjerenih i modeliranih podataka, diskutiran je postupak određivanja rezultata s najmanjim odstupanjima u odnosu na ležišne uvjete. Također, nastojao se utvrditi mogući utjecaj različitih vrijednosti ulaznih parametara (Zeng i Zhao, 2007), koji bi kao ključni mogli utjecati na odstupanja konačnih rezultata u određivanju svojstava ležišta i frakture.

2. PROTJECANJE FLUIDA U LEŽIŠTU

2.1. Radijalni protok

Jednadžba difuzije je parcijalna diferencijalna jednadžba koja opisuje kako će tlak reagirati u vremenu, ovisno o gradijentu tlaka u okolnim stijenama (Houze et al., 2020).

Matematički opis protjecanja fluida kroz poroznu sredinu, odnosno jednadžba difuzije, može se izraziti kombinacijom sljedećih fizikalnih zakonitosti:

- 1) zakon očuvanja mase,
- 2) Darcyjev zakon,
- 3) jednadžba stanja.

Jednadžba difuzije, izražena u radijalnom koordinatnom sustavu, prikazuje se jednadžbom 2-1:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial p}{\partial t}$$
(2-1)

gdje su:

p−tlak, Pa

r – radijus, m

$$\phi$$
 – poroznost, %

```
\mu – viskoznost, Pa·s
```

 c_t – ukupna stlačivost sustava, Pa⁻¹

k – propusnost ležišne stijene, m²

t – vrijeme, s

Pretpostavke nužne za točnost rješenja jednadžbe difuzije su: homogena i izotropna porozna stijena jednolike debljine, svojstva fluida i stijene su neovisna o tlaku, mali gradijenti tlaka, primjenjivost Darcyjevog zakona i zanemarive gravitacijske sile.

Diferencijalna jednadžba za protok kroz poroznu sredinu predstavlja samo fizikalne zakonitosti koje su primjenjive u situaciji. Međutim, kako bi se dobilo rješenje određenog problema potrebni su rubni i početni uvjeti karakteristični za određene ležišne uvjete (Matthews i Russell, 1967). Kod analize ispitivanja bušotina pri prijelaznom (neustaljenom) režimu protjecanja pretpostavlja se bušotina s konstantnim protokom i neograničeno ležište. Ispunjavanje ovakvih rubnih uvjeta neophodno je u analizi neustaljenog protjecanja. U kasnijoj fazi rada bušotine ili kod duljeg ispitivanja dobro propusnog ležišta, kod analize krivulje tlaka, počinju se osjećati utjecaj susjednih bušotina, a granica ležišta i vodonosnika može promijeniti ponašanje bušotine tj. odziv ležišnog tlaka u njoj i tako uzrokovati odstupanje od modela neograničenog ležišta (Earlougher, 1977).

2.1.1. Proizvodni oblici protoka u vertikalnoj bušotini

Rješenja jednadžbe koja se koriste u metodama analize tlaka pretpostavljaju protok prema centralno smještenoj bušotini pri konstantnoj proizvodnji. Tri su osnovna modela s konstantnim protokom na unutarnjoj granici ležišta. Model neograničenog ležišta pretpostavlja bušotinu koja je smještena u ležištu beskonačnog radijalnog opsega. Kod modela ograničenog ležišta sa zatvorenom vanjskom granicom, bušotina je smještena u središtu cilindričnog ležišta, bez protoka na vanjskoj granici. Treći model je model ograničenog ležišta s konstantnim tlakom na vanjskoj granici. Geometrija i rubni uvjeti za ova tri modela prikazani su na slici 2-1.

Slika 2-1. Shematski prikaz geometrije i rubnih uvjeta kod radijalnog protoka za modele s konstantnim protokom na unutarnjoj granici ležišta (Matthews i Russell, 1967)

a) Model neograničenog ležišta

Jednadžba 2-1 predstavlja parcijalnu diferencijalnu jednadžbu u radijalnom koordinatnom sustavu koju je potrebno riješiti. Pretpostavljeni su sljedeći početni i rubni uvjeti:

1) $p(r,t) = p_i, t = 0$, za svaki $r, r = r_e$

2)
$$\left. \frac{\partial p}{\partial r} \right|_{r_w} = -\frac{q\mu}{2\pi kh}$$
 za $t > 0$,

3) $p \rightarrow p_i, r \rightarrow \infty$, za svaki *t*.

Rješenje jednadžbe difuzije glasi:

$$p_{wf}(t) = p_i - \frac{qB\mu}{2\pi kh} \left[\frac{1}{2} \left(ln \frac{kt}{\phi \mu c r_w^2} + 0,80907 \right) + s \right]$$
(2-2)

gdje su:

- pi početni ležišni tlak, Pa
- re-vanjski radijus ležišta, m
- r_w radijus bušotine, m

q – obujamski protok, m³/s

h – debljina ležišta, m

 p_{wf} – dinamički tlak u bušotini, Pa

B – volumni faktor nafte, m³/m³

s - skin faktor, -

Grafički i tablični prikazi rješenja iz jednadžbe difuzije uobičajeno se izražavaju pomoću bezdimenzionalnih varijabli, bezdimenzionalnog tlaka, p_D , bezdimenzionalnog vremena, t_D , i bezdimenzionalnog radijusa, r_D .

Bezdimenzionalni oblik jednadžbe difuzije za radijalni protok:

$$\frac{\partial^2 p_D}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial p_D}{\partial r_D} = \frac{\partial p_D}{\partial t_D}$$
(2-3)

Početni i rubni uvjeti definirani za bezdimenzionalni oblik jednadžbe difuzije:

1)
$$p_D = 0, t_D = 0, 0 \le r_D \le \infty$$
,

2)
$$\left. \frac{\partial p_D}{\partial r_D} \right|_{r_w = 1} = 0, t_D > 0,$$

3) $p_D \to 0, r_D \to \infty, t_D > 0.$

Rješenje bezdimenzionalne jednadžbe difuzije:

$$p_D(t_D, r_D) = \frac{1}{2} \left(ln \frac{t_D}{r_D^2} + 0,80907 \right)$$
(2-4)

Jednadžba (2-4) se za slučaj $r = r_w, r_D = 1$, reducira na:

$$p_D(t_D) = \frac{1}{2} (\ln t_D + 0.80907)$$
(2-5)

Bezdimenzionalno vrijeme, t_D :

$$t_D = \frac{kt}{\phi\mu c_t r^2} \tag{2-6}$$

Bezdimenzionalni radijus, r_D :

$$r_D = \frac{r}{r_w} \tag{2-7}$$

Rješenje jednadžbe difuzije prikazano jednadžbom (2-5) primjenjuje se u metodama za analizu proizvodnih testova, kao i u analizi testova porasta tlaka vertikalne bušotine. Grafičkim prikazom ove jednadžbe započet je razvoj dijagnostičkog log-log dijagrama, objašnjenog najprije na slici 2-3 (Gringarten, 2008), koji je rezultirao konačnim Bourdetovim dijagramom za analizu tlaka (Gringarten, 2012), a na kojem se temelji i program *Saphir* čija primjena je opisana u poglavlju 4.

b) Model ograničenog ležišta sa zatvorenom vanjskom granicom

Početni i rubni uvjeti glase:

1)
$$p(r,t) = p_i, t = 0$$
, za svaki r ,
2) $\frac{\partial p}{\partial r}\Big|_{r_w} = -\frac{q\mu}{2\pi kh}$ za $t > 0$,
3) $\frac{\partial p}{\partial r}\Big|_{r_e} = 0$, za svaki t .

Kako bi se dobilo rješenje, u jednadžbu difuzije potrebno je uvrstiti bezdimenzionalne varijable:

$$p_D = \frac{p_i - p}{\frac{q\mu}{2\pi kh}} \tag{2-8}$$

$$r_D = \frac{r}{r_w} \tag{2-9}$$

$$t_D = \frac{kt}{\phi\mu cr_w^2} \tag{2-10}$$

Uvjeti tada glase:

1) $p_D = 0, t_D = 0$, za svaki r_D , 2) $\frac{\partial p_D}{\partial r_D}\Big|_{r_D=1} = 1, t_D > 0$, 3) $\frac{\partial p_D}{\partial r_D}\Big|_{r_{eD}} = 0, t_D > 0$.

Rješenje jednadžbe difuzije:

$$p_D(t_D) = \frac{2t_D}{r_{eD}^2} + \ln r_{eD} - \frac{3}{4} + 2\sum_{n=1}^{\infty} \frac{e^{-\alpha_n^2 t_D} J_1^2(\alpha_n r_{eD})}{\alpha_n^2 [J_1^2(\alpha_n r_{eD}) - J_1^2(\alpha_n)]}$$
(2-11)

Gdje je α_n rješenje jednadžbe:

$$J_1(\alpha_n r_{eD}) Y_1(\alpha_n) - J_1(\alpha_n) Y_1(\alpha_n r_{eD}) = 0,$$
(2-12)

J₁ i Y₁ su Besselove funkcije.

Jednadžba 2-11 predstavlja egzaktno rješenje. Za određena vremena i radijus crpljenja također postoje i aproksimativna rješenja. Ako je $t_D \leq 0.25r_{eD}^2$, ležište se ponaša kao neograničeno, pa jednadžba (2-5) može biti primijenjena ako je $25 \leq t_D \leq 0.25r_{eD}^2$. Za $t_D \gg$ beskonačna serija eksponencijala i Besselovih funkcija postaje zanemariva, stoga se jednadžba (2-11) svodi na (Lee, 1982; Čikeš, 2015):

$$p_D(t_D) = \frac{2t_D}{r_{eD}^2} + \ln r_{eD} - \frac{3}{4}$$
(2-13)

c) Model ograničenog ležišta s konstantnim tlakom na vanjskoj granici

Početni i rubni uvjeti:

- 1) p(r,t) = pi, t = 0, za svaki r
- 2) $\left. \frac{\partial p}{\partial r} \right|_{r_w} = -\frac{q\mu}{2\pi kh} \text{ za } t > 0$
- 3) $p|_{r_e} = p_i$, za svaki t.

Početni i rubni uvjeti definirani za bezdimenzionalni oblik jednadžbe:

- 1) $p_D = 0, t_D = 0$, za svaki r_D
- 2) $\frac{\partial p_D}{\partial r_D}\Big|_{r_D=1} = 1, t_D > 0,$ 3) $p_D|_{r_{eD}} = 0, t_D > 0.$

Rješenje jednadžbe difuzije:

$$p_D(t_D) = lnr_{eD} - 2\sum_{n=1}^{\infty} \frac{e^{-\beta_n^2 t_D} J_0^2(\beta_n r_{eD})}{\beta_n^2 [J_1^2(\beta_n r_{eD}) - J_0^2(\beta_n r_{eD})]}$$
(2-14)

Gdje je β_n je rješenje jednadžbe:

$$J_1(\beta_n)Y_0(\beta_n r_{eD}) - Y_1(\beta_n)J_0(\beta_n r_{eD}) = 0,$$
(2-15)

J₀, J₁, Y₀ i Y₁ su Besselove funkcije.

Ako je $t_D \leq 0.25r_{eD}^2$, ležište se ponaša kao neograničeno, stoga se za $25 \leq t_D \leq 0.25r_{eD}^2$ može primijeniti jednadžba (2-5). Za $t_D > r_{eD}^2$, beskonačna serija eksponencijala i Besselovih funkcija postaje zanemariva pa se jednadžba (2-14) svodi na (Lee, 1982; Čikeš, 2015):

$$p_D \cong \ln r_{eD} \tag{2-16}$$

Rješenja jednadžbe difuzije opisana pod b) i c) i prikazana jednadžbama (2-13) i (2-16) primjenjuju se u proizvodnim modelima bušotina, odnosno u određivanju proizvodnih karakteristika za vrijeme polustacionarnog i stacionarnog protoka.

2.1.2. Analiza tlaka u vertikalnoj bušotini

Efekt skladištenja u bušotini (engl. *wellbore storage effect*) ili naknadni dotok fenomen je koji prouzrokuje promjenjivi protok nakon što započne proizvodni test, odnosno omogućuje protok i nakon što se bušotinu zatvori za test porasta tlaka (Čikeš, 2015). Efekt skladištenja uzrokovan je promjenjivom razinom kapljevine u bušotini ili zadržavanjem određenog volumena kompresibilnog fluida u bušotini. Kada se brzine protoka na površini naglo promijene, efekt skladištenja uzrokuje vremenski zaostatak kod protoka kroz formaciju i odgovarajući prigušeni odziv tlaka (Wattenbarger i Ramey, 1970).

Konstanta skladištenja bušotine, *C*, (engl. *wellbore storage constant*) za bušotinu s promjenjivom razinom kapljevine definira se kao:

$$C = \frac{A_{wb}}{\rho g} \tag{2-17}$$

gdje su:

Awb – površina poprečnog presjeka bušotine

- $g-{\rm ubrzanje}$ slobodnog pada m/s²
- ρ gustoća kapljevine u bušotini, kg/m³

Izraz za bezdimenzionalnu konstantu skladištenja, C_D , glasi:

$$C_D = \frac{C}{2\pi h \phi c_t r_w^2} \tag{2-18}$$

a) Metoda polulogaritamskog prikaza tlaka u funkciji vremena

Iz rješenja jednadžbe 2-2 slijedi da će dijagram dinamičkog tlaka, p_{wf} , u polulogaritamskom mjerilu odnosno u funkciji log t, dati pravac čiji je nagib, m, definiran izrazom:

$$m = 1,151 \frac{qB\mu}{2\pi kh} \tag{2-19}$$

Pomoću poznatog nagiba pravca moguće je izračunati propusnost ležišta, k:

$$k = 1,151 \frac{qB\mu}{2\pi hm} \tag{2-20}$$

a skin faktor, s, računa se prema:

$$s = 1,151 \left(\frac{p_i - p_{wf}(t)}{m} - \log t - \log \frac{k}{\phi \mu c_t r_w^2} - 0,351 \right)$$
(2-21)

I kod proizvodnog testa i kod testa porasta tlaka pretpostavlja se konstantan protok. Međutim, za razliku od proizvodnog testa gdje je to teško ostvariti, kod testa porasta tlaka protok je konstantan i jednak nuli (Spivey i Lee, 2013; Gringarten, 2012).

Primjenom načela superpozicije, analizu proizvodnog testa moguće je prilagoditi testu porasta tlaka. Na slici 2-2 prikazan je protok u vremenu. Kod t = 0, bušotina počinje proizvoditi konstantnim protokom, q. Nakon nekog vremena, t_p , bušotina se zatvara. Tada imamo dva konstantna protoka: jedan je protok q, koji počinje kada je t = 0 i traje do t_p , a drugi protok, -q, koji počinje u t_p . Tada se umjesto stvarnog vremena koristi modificirano Hornerovo vrijeme:

$$\Delta t_e = \frac{t_p \Delta t}{t_p + \Delta t} \tag{2-22}$$

gdje je Δt vrijeme trajanja testa porasta.

Slika 2-2. Dijagram protok-vrijeme kod testa porasta tlaka (Lee et al., 2003)

Hornerova jednadžba tada glasi (Horner, 1951):

$$p_{ws} = p_i - \frac{qB\mu}{2\pi kh} \mathbf{1}, 151 \cdot \log \frac{t_p + \Delta t}{\Delta t}$$
(2-23)

gdje je p_{ws} statički tlak u bušotini na razini ležišta.

Iz Hornerove jednadžbe slijedi da će dijagram porasta tlaka u polulogaritamskom mjerilu (p_{wf} u odnosu na $\log[(t_p + \Delta t)/\Delta t]$) dati pravac nagiba $m = 1,151qB\mu/2\pi kh$.

A skin faktor, s, računa se prema:

$$s = 1,151 \left(\frac{p_{ws}(\Delta t) - p_{wf}(\Delta t = 0)}{m} - \log \frac{\Delta tk}{\phi \mu c_t r_w^2} \right)$$
(2-24)

b) Metoda tipskih krivulja

Tipske krivulje predstavljaju grafičko rješenje jednadžbe difuzije. Rješenje se u obliku bezdimenzionalnih varijabli ucrtava na log-log dijagram. Za svaku kombinaciju vrijednosti bezdimenzionalne konstante skladištenja, C_D , i skina, s, dana je krivulja na dijagramu koja predstavlja analitičko rješenje jednadžbe difuzije. Zbog takvog načina prikaza jednostavno je usporediti stvarne podatke preklapanjem krivulja i odrediti kvantitativno i kvalitativno karakteristike ležišta i bušotine.

Bezdimenzionalne varijable tlaka, vremena i radijusa definirane su formulama (2-8), (2-9) i (2-10). Rješenje bezdimenzionalnog oblika jednadžbe difuzije (2-3) za neograničeno ležište s konstantnim protokom na unutarnjoj granici ležišta uz uvjet $t_D/r_D^2 \ge 25$ ima aproksimaciju koja u odnosu na rješenje (2-5) uzima u obzir i skin faktor:

$$p_D(t_D, r_D) = \frac{1}{2} \left(ln \frac{t_D}{r_D^2} + 0,80907 \right) + s$$
(2-25)

Na slici 2-3 prikazan je početni razvoj primjene log-log dijagrama bezdimenzionalnog tlaka, p_D , u ovisnosti o bezdimenzionalnom vremenu, t_D . Krivulja $C_D =$ 0 predstavlja idealan slučaj konstantnog protoka na unutarnjoj granici ležišta bez skladištenja fluida te se po nagibu razlikuje od slučajeva $C_D > 0$ u ranim vremenima. Sve dok traje efekt skladištenja, nagib krivulje tlaka iznosi jedan. Protok iz ležišta je zanemariv i nije moguće odrediti svojstva formacije, međutim može se odrediti konstanta skladištenja, C. Početak perioda za preklapanje krivulja mjerenih podataka s tipskim krivuljama, koji se odnosi na postizanje neustaljenog stanja protjecanja, nastupa u prosjeku jedan i pol logaritamski ciklus nakon nestanka pravca jediničnog nagiba (Stewart, 2011):

$$t_D = C_D(60 + 3.5s) \tag{2-26}$$

Slika 2-3. Početni log-log dijagram tipskih krivulja bezdimenzionalnog tlaka u ovisnosti o bezdimenzionalnom vremenu, za različite bezdimenzionalne konstante skladištenja (Stewart, 2011)

Ovakav način primjene tipskih krivulja nedovoljno je precizan zbog velikog broja nepoznanica. Stoga je razvijen novi oblik, gdje je bezdimenzionalni tlak, p_D , dan u funkciji bezdimenzionalne grupe t_D/C_D , a svaka krivulja je karakterizirana vrijednošću parametra $C_D e^{2s}$ (slika 2-4). Preklapanje se izvodi na isti način kao i kod p_D - t_D krivulja, odabiru se podudarne točke ($(p_D)_M$ i $(\Delta p)_M$) pomoću kojih je moguće izračunati karakteristike ležišta i bušotine prema sljedećim izrazima.

Propusnost stijene:

$$k = \frac{qB\mu(p_D)_M}{2\pi\hbar(\Delta p)_M}$$
(2-27)

Bezdimenzionalna konstanta skladištenja:

$$C_{D} = \frac{k(t)_{M}}{\phi \mu r_{w}^{2}(t_{D}/C_{D})_{M}}$$
(2-28)

Konstanta skladištenja:

Bezdimenzionalna grupa to/Co

Slika 2-4. Tipske krivulje u ovisnosti o parametru $C_D e^{2s}$, iznosa od 0,1 do 10³⁰ (Stewart, 2011)

c) Metoda derivacije tlaka

Derivacija tlaka je log-log prikaz nagiba iz polulogaritamskog prikaza bezdimenzionalnog tlaka u funkciji bezdimenzionalnog vremena, kada je vremenska skala u polulogaritamskom prikazu dana prirodnim logaritmom (Čikeš, 2015).

Na slici 2-5 prikazan je daljnji razvoj tipskih krivulja u dijagnostičkom log-log dijagramu, uvođenjem derivacije tlaka, p'_D , u ovisnosti o t_D/C_D . U ranim vremenima krivulje imaju jedinični nagib, kao i kod bezdimenzionalnog tlaka. Kasnije, kada je dosegnut neograničeno djelujući radijalni protok, krivulje postaju horizontalne pri vrijednosti $p'_D(t_D/C_D) = 0,5$. Ako su prilikom izvođenja testa prisutni efekt skladištenja i neograničeno djelujući radijalni protok, log-log dijagram dobivenih podataka sadržavat će dvije ravne linije. Preklapanjem tih dijelova krivulje s asimptotama tipske krivulje dovoljno je dobiti samo jednu podudarnu točku. Između asimptota, oblik pojedine tipske krivulje se razlikuje po vrijednosti bezdimenzionalne grupe $C_D e^{2s}$, čime se lako određuje točna $C_D e^{2s}$ krivulja (Bourdet, 1989).

Slika 2-5. Tipske krivulje derivacije tlaka, $p'_D(t_D/C_D)$, u ovisnosti o t_D/C_D (Bourdet, 1989)

Čim je ostvaren radijalni protok, krivulje derivacije tlaka postaju jednake i neovisne su o skin faktoru, što znači da se skin efekt očituje samo na dijelu krivulje između pravca koji označava efekt skladištenja bušotine i pravca koji označava neograničeno djelujući radijalni protok. Iskustvo je pokazalo da podaci u ovom dijelu krivulji nisu uvijek dobro definirani, stoga je razvijena kombinacija tipskih krivulja bezdimenzionalnog tlaka i njegove derivacije koja omogućuje istovremeno preklapanje tlaka i vremena (slika 2-6), bez provođenja dodatne analize, a koja ujedno predstavlja i konačni oblik Bourdetovog dijagrama.

Slika 2-6. Log-log dijagnostički dijagram za analizu tlaka ispitivanih bušotina (Bourdarot, 1998)

Ovakav konačni oblik log-log dijagrama, primjenjuje se u programu *Saphir*, što je prikazano u četvrtom poglavlju. Program najprije konvertira opisana bezdimenzionalna rješenja jednadžbe difuzije tj. tipske krivulje u realne varijable, primjenjujući načelo superpozicije. Na temelju toga se u programu *Saphir* generira analitički model, kojeg se uspoređuje s mjerenim podacima i zatim postupkom regresije postavlja stvarni model. U daljnjoj proceduri postavljaju se podudarne točke (engl. *match points*), kao što je primjerice podudarni tlak, s pomoću kojeg se određuje propusnost ležišne stijene, k (Mohaghegh, 2017). Neovisno o tome, radi li se o vertikalnoj ili hidraulički frakturiranoj bušotini, poznavanje ležišnih svojstava neophodno je za kvalitetno određivanje proizvodnih karakteristika bušotine (Koščak Kolin, 2018), kao i za uspješno poslovno upravljanje cjelokupnim ležišnim sustavom (Poston et al., 2019; Jansen, 2017; Soliman et al., 2003).

2.2. Protjecanje fluida u ležištu s vertikalnom pukotinom

2.2.1. Oblici protoka u vertikalnoj pukotini

Ponašanje neustaljenog tlaka kod frakturirane bušotine može se opisati analizom rješenja diferencijalnih jednadžbi, uz određene početne i rubne uvjete. Kako bi se pojednostavila derivacija modela protoka, pretpostavljeno je sljedeće (Spivey i Lee, 2013; Cinco et al., 1978):

- Ležište je izotropno, homogeno, neograničeno, omeđeno s gornje i donje strane nepropusnim slojevima. Uniformne je debljine, h, propusnosti, k, i poroznosti, φ, neovisno o tlaku;
- 2) Ležište sadrži fluid stlačivosti, *c*, i viskoznosti, μ. Obje vrijednosti su konstantne;
- 3) Fluid se proizvodi kroz vertikalnu, frakturiranu bušotinu, presječenu potpuno penetrirajućom pukotinom poluduljine x_f , širine w, propusnosti k_f , poroznosti, ϕ_f i ukupne stlačivosti c_{ft} . Ove vrijednosti su konstantne. Fluid ulazi u bušotinu samo kroz pukotinu.

Također, pretpostavlja se da su gravitacijski efekti zanemarivi i da je protok laminaran. Uz ove pretpostavke, protok može biti opisan jednadžbom difuzije u dvije dimenzije. U obzir su uzeta dva protočna područja – ležište i pukotina. U početku postoji linearni protok u pukotini kojeg karakterizira linija nagiba jedne polovine. Nakon prijelaznog oblika protoka može uslijediti bilinearni protok karakteriziran linijom nagiba jedne četvrtine. Kako se vrijeme povećava, može se razviti linearni protok u ležištu i pseudolinearni protok. Naposljetku, sustav doseže pseudoradijalno razdoblje protjecanja. Na slici 2-7 prikazano je neograničeno ležište, presječeno vertikalnom pukotinom, s bušotinom u središtu.

Slika 2-7. Idealizirani prikaz frakturirane bušotine (Economides i Nolte, 2000; Daneshy, 2010)

Pukotinu je moguće prikazati trodimenzionalnim linearnim modelom. Jednadžba difuzije za protok kroz pukotinu glasi:

$$\frac{\partial^2 p_f}{\partial x^2} + \frac{2k}{wk_f} \frac{\partial p}{\partial y} = \frac{\phi_f \mu c_{ft}}{k_f} \frac{\partial p_f}{\partial t}$$
(2-30)

A bezdimenzionalni oblik jednadžbe difuzije za protok kroz pukotinu:

$$\frac{\partial^2 p_{fD}}{\partial x_D^2} + \frac{2}{C_{fD}} \frac{\partial p_D}{\partial y_D} \bigg|_{y_D = 0} = \frac{1}{\eta_{fD}} \frac{\partial p_{fD}}{\partial t_{Dx_f}}$$
(2-31)

Za sustav frakturirane bušotine koja proizvodi konstantnim protokom, u neograničenom ležištu, početni i rubni uvjeti za jednadžbu difuzije (2-31) u dimenzionalnoj i bezdimenzionalnoj formi glase:

$$1) p_{f}(x,t) = p_{i}, t = 0, 0 \le x \le x_{f};$$

$$1) p_{fD} = 0, t_{Dx_{f}} = 0, 0 \le x_{D} \le 1;$$

$$2) \frac{\partial p_{f}}{\partial x}\Big|_{x=0} = -\frac{qB\mu}{2wk_{f}h}, t > 0;$$

$$2) \frac{\partial p_{fD}}{\partial x_{D}}\Big|_{x_{D}=0} = \frac{\pi}{c_{fD}}, t_{Dx_{f}} > 0;$$

$$3) \frac{\partial p_{f}}{\partial x}\Big|_{x=x_{f}} = 0, t > 0;$$

$$3) \frac{\partial p_{fD}}{\partial x_{D}}\Big|_{x=x_{f}} = 0, t > 0;$$

$$3) \frac{\partial p_{fD}}{\partial x_{D}}\Big|_{x_{D}=1} = 0, t_{Dx_{f}} > 0.$$

Protok fluida u ležištu moguće je predstaviti jednodimenzionalnim linearnim modelom. Stoga, jednadžba difuzije tada glasi:

$$\frac{\partial^2 p}{\partial y^2} = \frac{\phi \mu c_t}{k} \frac{\partial p}{\partial t}$$
(2-32)

A njen bezdimenzionalni oblik:

$$\frac{\partial^2 p_{rD}}{\partial y_D^2} = \frac{\partial p_{rD}}{\partial t_{Dx_f}}$$
(2-33)

Početni i rubni uvjeti u dimenzionalnoj i bezdimenzionalnoj formi za jednadžbu difuzije (2-33):

$$\begin{aligned} 1) \ p(y,t) &= p_{i}, \ t = 0, \ 0 \lhd y \lhd \infty; \\ 2) \ p(y,t) &= p_{f}, \ y = 0, \ t \rhd 0; \\ 3) \ p(y,t) \rightarrow p_{i}, \ y \rightarrow \infty, \ t \rhd 0; \end{aligned} \qquad 1) \ p_{rD} = 0, \ t_{Dx_{f}} = 0, \ 0 \lhd y_{D} \lhd \infty; \\ 2) \ p_{rD}|_{y_{D}=0} &= p_{fD}; \ t_{Dx_{f}} \rhd 0; \\ 1) \ p_{rD} \rightarrow 0, \ y_{D} \rightarrow \infty, \ t_{Dx_{f}} \rhd 0; \end{aligned}$$

Bezdimenzionalni tlak u bušotini definiran je kao:

$$p_{wD} = \frac{2\pi kh(p_i - p_{wf})}{qB\mu}$$
(2-34)

a) Linearni protok u pukotini

Tijekom ovog perioda, glavnina fluida koja utječe u bušotinu posljedica je ekspanzije fluida unutar pukotine, a protok je linearan. Pukotinu se može smatrati beskonačnom jer protok još nije razvijen po čitavoj duljini pukotine. Na slici 2-8 prikazan je linearni protok u pukotini.

Slika 2-8. Linearni protok u pukotini (Houze et al., 2020; Economides i Nolte, 2000)

Na log-log dijagramu tlaka u ovisnosti o vremenu, ovaj period karakterizira pravac nagiba jedne polovine, a na dijagramu tlaka u odnosu na drugi korijen vremena pravac čiji nagib ovisi o karakteristikama frakture.

Približno rješenje za tlak u bušotini glasi:

$$p_{wf}\left(t_{Dx_{f}}\right) = \frac{2}{C_{fD}}\sqrt{\pi\eta_{fD}t_{Dx_{f}}}$$
(2-35)

Bezdimenzionalno vrijeme, kada linearno protjecanje završava, dano je izrazom:

$$t_{Dx_f} \le \frac{0.01 C_{fD}^2}{\eta_{fD}^2}$$
(2-36)

Linearni oblik protjecanja kroz pukotinu uglavnom je kratkog trajanja, stoga analiza ovog neustaljenog protjecanja nije moguća. Kod slučajeva gdje postoji efekt skladištenja, isti može iskriviti ili prikriti linearni protok u pukotini na način da će se teže uočiti na izmjerenim podacima (Economides i Nolte, 2000).

b) Bilinearni protok

Kod bilinearnog protoka dva linearna protoka odvijaju se istovremeno, linearni protok kroz pukotinu i u ležištu, a efekt vrha pukotine ne utječe na neustaljeno stanje protjecanja u bušotini. Bilinearni protok je prikazan na slici 2-9.

Slika 2-9. Bilinearni protok (Houze et al., 2020; Economides i Nolte, 2000)

Bezdimenzionalni tlak u bušotini glasi:

$$p_{wf}\left(t_{Dx_{f}}\right) = \frac{2,45083}{\sqrt{2C_{fD}}\Gamma(5/4)} t_{Dx_{f}}^{\frac{1}{4}}$$
(2-37)

Postojanje bilinearnog protoka može se odrediti iz log-log dijagrama tlak-vrijeme, gdje će bilinearni protok karakterizirati pravac nagiba jedne četvrtine. Jednadžba 2-37 pokazuje da će dijagram tlaka u odnosu na četvrti korijen vremena dati pravac nagiba $2.45/C_{fD}$ (Čikeš, 2015).

Bilinearni protok završava kada se u bušotini osjeća efekt vrha pukotine (granice). Bezdimenzionalno vrijeme koje označava kraj protjecanja funkcija je vodljivosti pukotine, a dano je sljedećim izrazima:

1) za
$$C_{fD} \ge 3$$
:
2) za $1,6 \le C_{fD} \le 3$:
3) za $1,6 \le C_{fD}$:
 $t_{Dx_f} \le 0,0205(C_{fD} - 1,5)^{-1,53}$
 $t_{Dx_f} \le (\frac{4,55}{\sqrt{C_{fD}}} - 2,5)^{-4}$

c) Linearni protok u ležištu

Način protjecanja u ležištu s vertikalnom pukotinom kod linearnog protoka prikazan je na slici 2-10.

Slika 2-10. Linearni protok u ležištu (Houze et al., 2020; Economides i Nolte, 2000)

Rješenje jednadžbe difuzije:

$$p_{wf}\left(t_{Dx_f}\right) = \sqrt{\pi t_{Dx_f}} \tag{2-38}$$

Između perioda bilinearnog protoka i linearnog protoka u ležištu postoji prijelazni period (Chaudhry, 2004). Početak linearnog protoka u ležištu dan je sljedećim izrazom:

$$t_{Dx_f} = \frac{100}{C_{fD}^2}$$
(2-39)

A njegov kraj:

$$t_{Dx_f} = 0.016 \tag{2-40}$$

Ovaj izraz vrijedi za vrijednosti $C_{fD} \ge 100$, odnosno pri manjim vrijednostima linearni protok u ležištu ne postoji.

Na log-log dijagramu tlaka i vremena, kao i kod linearnog protoka u pukotini, linearni protok u ležištu karakteriziran je pravcem nagiba jedne polovine, a na dijagramu tlaka u odnosu na drugi korijen vremena, pravcem nagiba $\sqrt{\pi}$.

c) Pseudolinearni protok

Za manje vrijednosti bezdimenzionalne vodljivosti ($C_{fD} > 15$), nakon bilinearnog protoka, slijedi razdoblje linearnog protoka kod kojeg log-log krivulja (za obje vrijednosti – p_D i p'_D) posjeduje nagib jedne polovine, s pomakom od *log* 0.5 (Stewart, 2011). Ovo je opisano kao pseudolinearni protok.

Tada rješenje jednadžbe difuzije glasi:

$$p_{wf}\left(t_{Dx_{f}}\right) = \sqrt{\pi t_{Dx_{f}}} + \frac{\pi}{3C_{fD}}$$
(2-41)

A protjecanje započinje:

$$t_{Dx_f} = \frac{1}{C_{fD}^2}$$
(2-42)

d) Pseudoradijalni protok

Svaka bušotina s vertikalnom pukotinom, bez obzira na vrijednost C_{fD} , može posjedovati pseudoradijalni način protjecanja u kasnim vremenima, prije nego što se uoče efekti granica. Tijekom neograničeno djelujućeg pseudoradijalnog protoka, protok u pukotini se stabilizirao, a neustaljeno stanje protjecanja može se izjednačiti onome u nefrakturiranoj bušotini s većim efektivnim radijusom bušotine, r'_w (Economides i Nolte, 2000). Uspostava pseudoradijalnog protoka označava kraj transformacije iz pravokutnog oblika crpljenja (linearni protok), preko eliptičnog (prijelazni protok), u gotovo radijalni oblik. Površina crpljenja frakturirane bušotine nikada nije potpuno kružna, ali je dovoljno blizu da ju se, u praktične svrhe, takvom može smatrati (slika 2-11) (Čikeš, 2015).

Slika 2-11. Pseudoradijalni protok (Spivey i Lee 2013; Stewart, 2011)

Na slici 2-12 prikazana je ovisnost bezdimenzionalnog tlaka o logaritmu bezdimenzionalnog vremena. Sve krivulje, nakon određenog vremena, prelaze u pravce jednakog nagiba vrijednosti 1,151, karakterističnog za analizu tlaka pomoću polulogaritamskog prikaza. Približna vremena početaka ravnog dijela krivulje su $t_{Dx_f} = 2,5$ za pukotine niskih vodljivosti i $t_{Dx_f} = 5$ za pukotine visokih vodljivosti (Čikeš, 2015; Cinco et al., 1987).

Slika 2-12. Polulogaritamski prikaz tipskih krivulja za frakturiranu bušotinu u neograničenom ležištu (Čikeš, 2015)

Izraz za bezdimenzionalni tlak bušotine tijekom pseudoradijalnog protoka glasi:

$$p_{wD}\left(t_{Dx_{f}}\right) = \frac{1}{2}\ln t_{Dx_{f}} + f(C_{fD})$$
(2-43)

Odgovarajuće bezdimenzionalno vrijeme temeljeno na efektivnom radijusu bušotine:

$$t_{Dr'_{W}} = \frac{kt}{\varphi \mu c_{t} {r'_{W}}^{2}}$$
(2-44)

Efektivni radijus dan je izrazom:

$$r'_{w} = r_{w}e^{-s} (2-45)$$

Analogno opisanim oblicima protjecanja fluida u vertikalnoj bušotini, koji se koriste u svrhu proračunavanja proizvodnih parametara, tj. protoka i dinamičkog tlaka u funkciji vremena, u frakturiranim se bušotinama rješenja jednadžbe difuzije također prilagođavaju analizi tlaka i određivanju svojstava ležišta i bušotine (Koščak Kolin, 2018).

2.2.2. Analiza tlaka u frakturiranoj bušotini

Ciljevi analize prijelaznog perioda porasta tlaka nakon frakturiranja su ocjena uspješnosti frakturiranja i procjena vrijednosti poluduljine pukotine, vodljivosti pukotine i propusnosti formacije (Spivey i Lee 2013; Slimani i Tiab, 2008; Lee et al., 2003). Analiza tlaka za svaki period protjecanja može se provesti pomoću jedne od specijaliziranih metoda interpretacije (p_w u odnosu na $\sqrt[4]{t}$, \sqrt{t} i log t za bilinearni, linearni ili pseudoradijalni protok). Log-log dijagram često se koristi kao dijagnostički alat za otkrivanje različitih režima protjecanja (Kuchuk i Biryukov, 2014; Kuchuk i Biryukov, 2015). Upotreba tipskih krivulja u analizi prijelaznog perioda porasta tlaka frakturiranih bušotina predstavlja veliki iskorak u tom području i prednost nad specijaliziranim metodama jer je moguće istovremeno tumačiti podatke koji odgovaraju različitim periodima protjecanja. U nekim slučajevima, primjena tipskih krivulja dostupnih za pukotine ograničene vodljivosti ne daje jedinstvene rezultate (Sun i Schechter, 2015). Ovo se događa zato što je oblik krivulja tlaka na nekim dijelovima sličan za različite vrijednosti bezdimenzionalne vodljivosti pukotine (Cinco-Lay i Samaniego, 1981).
2.2.2.1. Analiza tlaka pomoću tipskih krivulja

Na slici 2-13 prikazana je tipska krivulja p_{wD} u ovisnosti o t_{Dx_f} , za frakturirane bušotine, koju su predstavili Cinco-Ley i Samaniego (1981.). Glavna karakteristika ove krivulje jest da se za sve vrijednosti hidrauličke vodljivosti pukotine, period bilinearnog protoka (linija nagiba jedne četvrtine) i linearnog protoka u ležištu (linija nagiba jedna polovina) preklapaju. Isprekidana linija na grafu označava približan početak pseudoradijalnog protjecanja. Za vrijednosti bezdimenzionalne hidrauličke vodljivosti, $C_{fD} > 20\pi$, krivulje su, iako prezentirane kao različite, ustvari iste, samo je trajanje linearnog protoka u ležištu različito, odnosno za veće je vrijednosti hidrauličke vodljivosti pukotine dulji period linearnog protjecanja.

Slika 2-13. Tipska krivulja za vertikalnu frakturiranu bušotinu (Cinco-Ley i Samaniego, 1981)

Preklapanjem mjerenih podataka o tlaku s tipskom krivuljom mogu se odrediti podudarne točke pomoću kojih je moguće izračunati stvarne vrijednosti, odnosno neka od ležišnih svojstava bušotine i hidraulički stvorene pukotine.

Korištenje ovih metoda zahtijeva veliku pažljivost, kao i informacije o bušotini i ležištu prije frakturiranja.

a) Analiza bilinearnog protoka

Korištenje konvencionalnih metoda (p u odnosu na \sqrt{t} ili logt) u analizi tlaka tijekom bilinearnog perioda protjecanja dalo bi pogrešne rezultate. Stoga se za ovaj period provodi log-log dijagnostička analiza tlaka i derivacije tlaka. To je ujedno i jedina dostupna metoda za dobivanje informacija o karakteristikama pukotine tijekom ovog oblika protoka.

Uvrštavanjem bezdimenzionalnih varijabli i sređivanjem jednadžbe 2-37, izraz za pad tlaka glasi:

$$\Delta p = \frac{0.3918qB\mu}{h(k_f w)^{\frac{1}{2}}(\phi\mu c_t k)^{\frac{1}{4}}} \sqrt[4]{t}$$
(2-46)

Iz izraza 2-46 vidljivo je kako je promjena tlaka obrnuto proporcionalna drugom korijenu vodljivosti pukotine i proporcionalna četvrtom korijenu vremena, a graf ovisnosti Δp o $\sqrt[4]{t}$ daje pravac koji prolazi kroz ishodište nagiba *m*:

$$m = \frac{0,3918qB\mu}{h(k_f w)^{\frac{1}{2}}(\phi \mu c_t k)^{\frac{1}{4}}}$$
(2-47)

Iz ovoga slijedi izraz za vodljivost pukotine:

$$k_f w = \left(\frac{0,3918qB\mu}{hm}\right)^2 \sqrt{\frac{1}{(\phi\mu c_t k)}}$$
(2-48)

Ako je prisutan efekt skladištenja bušotine, bilinearni protok može biti zamaskiran jer dolazi do odstupanja nagiba jedne četvrtine, čime se otežava analiza pomoću trenutno dostupnih metoda interpretacije. Još jedan nedostatak jest da je potrebna neovisna procjena propusnosti, k, dobivena hidrauličkim mjerenjima prije frakturiranja.

b) Analiza prijelaznog perioda između bilinearnog i linearnog protoka

U ovom slučaju se mjereni podaci parcijalno podudaraju s tipskom krivuljom prijelaznog perioda, između bilinearnog i linearnog perioda protjecanja, koji ima karakterističan oblik (za slučajeve kada je $C_{fD} \ge 5\pi$). Metoda tipskih krivulja je ujedno i jedina moguća analiza prijelaznog perioda, ukoliko se mjereni podaci poklapaju s krivuljom.

Slika 2-14. Tipska krivulja za preklapanje podataka tijekom bilinearnog i prijelaznog protoka (Cinco-Ley i Samaniego, 1981)

Preklapanjem podataka i jedne od krivulja na slici 2-14 dobivene su podudarne točke $((p_{wD})_M, (t_{Dx_f})^2_D, (\Delta t)_M i (\Delta p)_M)$ iz kojih je moguće izračunati:

$$\left(\frac{k_f w}{x_f}\right) = \frac{1,842qB\mu}{h(\Delta p)_M} (p_{wD})_M \tag{2-49}$$

Poluduljina pukotine je tada:

$$x_f = \left(\frac{k_f w}{x_f}\right) \sqrt{\frac{3.6 \cdot 10^{-9} (t)_M}{\phi \mu c_t \left(t_{D x_f}\right)_M}}$$
(2-50)

A vodljivost pukotine:

$$k_f w = \left(x_f\right) \left(\frac{k_f w}{x_f}\right) \tag{2-51}$$

c) Analiza linearnog protoka

Mjereni podaci, ako se prikažu na log-log dijagramu ovisnosti razlike tlaka o vremenu, za vrijeme linearnog protoka daju pravac, m, nagiba jedne polovine:

$$m = \frac{qB}{2x_f h} \sqrt{\frac{\mu}{\pi k \phi c_t}}$$
(2-52)

Iz čega je poluduljina pukotine:

$$x_f = \frac{qB}{2hm} \sqrt{\frac{\mu}{\pi k \phi c_t}}$$
(2-53)

Dijagram Δp u ovisnosti o $\sqrt{\Delta t}$ služi za provjeru pokazuju li odabrani podaci u log-log analizi uistinu linearni protok:

$$\Delta p = \frac{qB}{2hx_f} \sqrt{\frac{\mu\Delta t}{\pi k \phi c_t}}$$
(2-54)

Nedostatak ove metode jest taj da se može primijeniti samo za pukotine visokih vodljivosti $(C_{fD} \ge 100)$. Također, rani podaci mogu biti iskrivljeni zbog efekta skladištenja i, kao kod bilinearnog protoka, potrebna je od ranije poznata vrijednost propusnosti, kako bi se izračunala poluduljina pukotine.

d) Analiza pseudoradijalnog protoka

Analiza prijelaznog perioda porasta tlaka, za frakturu ograničene vodljivosti koju karakterizira pseudoradijalni protok, uključuje log-log prikaz podataka. Ukoliko nije dostupan širok raspon podataka, jedinstveno poklapanje s krivuljom na slici 2-13 nije moguće zato što su linije različitih vodljivosti pukotine sličnog oblika za vrijeme pseudoradijalnog protjecanja. Ako se bezdimenzionalno vrijeme definira pomoću efektivnog radijusa, r'_w , umjesto poluduljine pukotine, x_f , dijagram ovisnosti p_{wD} o $t_{Dr'_w}$ daje jedinstvenu krivulju za pseudoradijalni protok, za sve vrijednosti bezdimenzionalne vodljivosti pukotine (slika 2-15).

Slika 2-15. Tipska krivulja za vertikalnu frakturiranu bušotinu (Cinco-Ley i Samaniego, 1981)

Preklapanjem podataka i krivulja na slici 2-15 dobivene su podudarne točke $((p_{wD})_M, (t_{Dr_{w'}})_M, (\Delta p)_M, (t)_M i [(k_f w)_D]_M)$ iz kojih je moguće izračunati:

Propusnost:

$$k = \frac{1,842qB\mu}{h(\Delta p)_M} (p_{wD})_M \tag{2-55}$$

Efektivni radijus bušotine:

$$r'_{w} = \sqrt{\frac{3.6 \cdot 10^{-9} k(t)_{M}}{\phi \mu c_{t} (t_{Dr_{w'}})_{M}}}$$
(2-56)

Pomoću dijagrama na slici 2-16, preko $\left[\left(k_f w\right)_D\right]_M$ dobiva se (r'_w/x_f) , te je poluduljina pukotine tada:

$$x_f = \frac{r'_w}{[r'_w/x_f]}$$
(2-57)

Slika 2-16. Graf ovisnosti efektivnog radijusa bušotine o bezdimenzionalnoj vodljivosti pukotine (Cinco-Ley i Samaniego, 1981)

Podatke o tlaku dobivene tijekom pseudoradijalnog protoka također je potrebno analizirati pomoću polulogaritamske metode, kako bi se dobila tražena svojstva ležišta i bušotine, $k i r'_w$.

Analogno rješenjima za oblike protoka kod vertikalne bušotine, i u frakturiranim se bušotinama primjenjuju slične procedure u programu *Saphir*, što je također prikazano u četvrtom poglavlju. I ovdje program najprije konvertira opisana bezdimenzionalna rješenja jednadžbe difuzije frakturiranog sustava bušotine, primjenjujući načelo superpozicije. Zatim se u programu *Saphir* generira analitički model, kojeg se uspoređuje s mjerenim podacima, te se regresijski postavlja stvarni model (Koščak Kolin, 2018). U daljnjoj proceduri postavljaju se podudarne točke kao što je primjerice podudarni tlak, s pomoću kojih se određuju svojstva ležišta i frakture (Mohaghegh, 2017).

-

3. OSNOVNI PODACI O LEŽIŠTU I BUŠOTINI

U ovom radu je analiziran test porasta tlaka hipotetske hidraulički frakturirane bušotine A-1. Podaci testa porasta digitalno su preuzeti iz Šeb (2017), a ostali parametri ležišta i bušotine iz INA Tehničke dokumentacije (2014). Cjelokupno digitalizirano mjerenje porasta tlaka generirano je u tabelarni prikaz podataka (Yasin, 2012) i nalazi se u prilogu rada.

3.1. Geološki opis polja i ležišta

Naftno-plinsko polje A nalazi se u sjeverozapadnoj Hrvatskoj. To je područje brdovitog terena, ispresijecano jarcima i vododerima, a nadmorska visina kreće se od 170 do 280 m. Ležišta polja A pripadaju tipu slojnih ležišta u kombinaciji s litološkim i tektonskim ekranom. Glavni nosioci ugljikovodika na polju A su pješčenjaci te krupno klastične neuslojene stijene (konglomerat, breče i pješčenjaci). Bušotina A smještena je u zapadnom dijelu polja A te je jedina bušotina kojom se pridobivaju ugljikovodici iz ležišta X. Ležište X u potpunosti je zasićeno naftom, a granulometrijski sastav stijene čine pješčenjak (oko 70%) i grubi silt (oko 30%). U tablici 3-1 prikazani su geološki podaci za ležište X.

Ležište	Х
Fluidi ležišta	nafta
Kolektor	pješčenjak
Pokrovne stijene	lapor
Interval ležišta	1571,0 -1602,3 m MD (1336-1366,5 m TVD)
Kontakt (početni) nafta/voda	1365 m TVD
Propusnost u ležištu (iz jezgre)	$2,28 \cdot 10^{-3} \mu m^2$
Utvrđene rezerve nafte	171 408 m ³
Utvrđene rezerve plina otopljenog u nafti	120 649 910 m ³
Prosječni salinitet slojne vode	3,31 g NaCl/l

Tablica 3-1. Osnovni geološki podaci ležišta X

3.2. Geološki opis bušotine i njeno tehničko stanje

Bušotina A-1 nalazi se na 235,35 m nadmorske visine, a dno bušotine je na 1804 m. U tablici 3-2 prikazani su raskriveni intervali ležišta X. Poroznost u ležištu iznosi 19%, a zasićenje vodom 45%.

Ležište X	1590,0 – 1584,0 m (6,0 m)
	1583,0 – 1581,0 m (2,0 m)
	1580,5 – 1578,5 m (2,0 m)
	1577,0 – 1575,0 m (2,0 m)

Tablica 3-2. Raskriveni intervali ležišta X po mjerenoj dubini

Konstrukcija i ugrađena podzemna oprema proizvodne bušotine A-1 prikazani su na slici 3-1. Radovi na osvajanju i ispitivanju bušotine započeli su 1969. godine, a pridobivanje fluida iz bušotine 1974. godine. Nakon prve faze crpljenja, 1993. godine izvedena je operacija hidrauličkog frakturiranje otvorenih intervala ležišta X. Hidrodinamička mjerenja izvedena su 2014. godine, pri tome su se dva dana mjerili proizvodni parametri, a šest dana je mjeren porast tlaka u statičkim uvjetima.

Prema proizvodnim podacima, do svibnja 2014. bušotina A-1 ukupno je proizvela:

- N_p (proizvedena nafta) = 57 786 m³;
- W_p (proizvedena voda) = 6 461 m³;
- G_p (proizvedeni plin) = 11 267 462 m³.

Posljednji podaci o radu bušotine:

- q_o (protok nafte) = 5,1 m³/dan;
- q_w (protok vode)= 0,73 m³/dan;
- GOR = $183 \text{ m}^3/\text{m}^3$;
- udio vode (engl. water cut) = 12,57 %.

Tijekom zadnjih 20 godina pridobivanja ugljikovodika, u ležištu nije došlo do značajnog pada tlaka što je potvrđeno testom porasta tlaka u ožujku 2014. godine. Planira se ponovno izvođenje hidrauličkog frakturiranja u svrhu intenziviranja pridobivanja ugljikovodika.

Slika 3-1. Shema podzemne opreme bušotine A-1 (INA, 2014)

4. ANALIZA TESTA PORASTA TLAKA POMOĆU PROGRAMA SAPHIR

Analiza prijelaznog perioda (engl. *Pressure Transient Analysis - PTA*) označava analizu podataka dobivenih hidrodinamičkim mjerenjima kao što su DST, proizvodni test ili test porasta tlaka. Odziv tlaka tijekom perioda zatvaranja bušotine daje podatke o ležištu unutar radijusa ispitivanja kod radijalnog protoka ili za područje ispitivanja kod složenije geometrije ležišta. Glavni dijagnostički alat je log-log dijagram gdje tlak i Bourdetova derivacija (slika 2-6) omogućuju određivanje ležišnih svojstava. *Saphir* je standardni PTA program koji koriste mnoge svjetske tvrtke. Jednostavno sučelje i tijek rada omogućuju povremenim korisnicima relativno brzo osposobljavanje, dok za napredne korisnike nudi kombinaciju alata za analizu te analitičke i numeričke modele koji se mogu povezati s drugim programima povezanim u zajedničku platformu Kappa Workstation (www.kappaeng.com).

Za analize testa porasta tlaka korištena je verzija 5.30.01 programa *Saphir*, KAPPA Workstation (Sveučilišna licenca #9643).

4.1. Ulazni podaci

Na početku analize je za bušotinu u kojoj je obavljeno mjerenje porasta tlaka potrebno unijeti lokaciju i vrijeme. U sljedećem koraku odabire se vrsta testa, koji je u ovom slučaju standardni. Također, unose se podaci za koje se pretpostavlja da su poznati, a potrebni su za interpretaciju i izračun rezultata (slika 4-1). Debljina proizvodnog sloja iznosi 12 m, stlačivost stijene 5,34×10⁻¹⁰ Pa⁻¹, poroznost 19% i dubina krovine proizvodnog sloja 1575 m. Ovi podaci su u svakoj analizi jednaki, dok se radijus bušotine razlikovao u pojedinoj analizi. Korištene su tri vrijednosti radijusa:

- radijus tubinga 0,03016 m,
- radijus proizvodne kolone 0,06985 m,
- radijus otvorenog kanala bušotine 0,12225 m.

Creation of a new Saphir NL document		Creation of a new S	aphir NL documer	t			?
Step 1	- Main document options	Step 2 - First	analysis: ma	in options an	d parameters		
Refere	ences Information Units Comments						
Time r	eference		Name:	Analysis 1			
Refer	ence time (t=0) 17.12.2020.0:00:00 -		Type:	(a) Standard	Interference	O Minifrac	
	Time zone (UTC+01:00) Sarajevo, Skopje, Warsaw, Zagreb	<u> </u>	Reference well:	Tested Well			
Spatia	I reference						
	Longitude N/A			Multi-layer	\$		
	Latitude N/A Pick on Google map	Test parameters					
			Well radius:	0.03016	m		
			Pay zone:	12.0000	m		
		R	ock compressibility:	5.34000E-10	Pa-1		
			Porosity:	0.19			
		т	op reservoir depth:	1575	m		
					(Grand
	< Bao: Next >	Cancel			L	< back Next >	Cancel

Slika 4-1. Osnovni podaci o bušotini i ležištu

U trećem i četvrtom koraku unose se svojstva fluida (slika 4-2). Kod slabo kompresibilnih fluida potrebno je unijeti nekoliko PVT svojstava, uz pretpostavku da su konstantni: volumni faktor nafte, viskoznost i ukupna stlačivost. U slučajevima kada je odabran jednofazni fluid (nafta), volumni faktor iznosi 1,2 m³/m³, viskoznost 0,005 Pa×s (0,5 cp) i zasićenje vodom 45%, dok je ukupna stlačivost sustava izračunata unutar programa nakon unošenja zasićenja vodom.

Creation of a new Saphir NI	L document		? X	Creation of a new Saphir NL document		? 3
Step 3 - First anal	ysis: PVT and diffusion	process		Step 4 - First analysis: analytical	parameters	
PVT				Linearized PVT properties		
 Single phase Multiphase 	Reference fluid: Oil	•		Use pseudos	or B: 1.23000	m3/stm3
	Define advanced PVT:			Viscosi	ty μ: 0.5	φ
	Relative permeability:	X				
	Unconsolidation:	Ŵ				
	Desorption:	<u>ن</u>		Total compressibility		
				Total compressibilit	y ct: 9.69113E-10 Sw: 45.0000	Pa-1 X=
				Multiphase flow		
				Use Perrine	X	
		< Back	Next > Cancel			< Back Next > Cancel

Slika 4-2. Osnovna PVT svojstva ležišnih fluida i stijene

Kod postavljanja parametara za numerički model u petom koraku, pretpostavlja se da je ležište izotropno, te se isključuje mogućnost nelinearnosti kod navedenih parametara. U posljednjem koraku odabiru se četiri ključna alata za određivanje početnog modela u tzv. 'log-log' analizi testa porasta tlaka (slika 4-3). To su: skladištenje fluida u bušotini (*Wellbore storage*), model bušotine (*Well model*), ležišni model (*Reservoir model*), model granica ležišta (*Boundary model*).

lem definition		Wellbore storage	Well model
Common functionalities	V Rubis license required	None	Finite radius
Non uniform parameters	Load horizons	Constant Changing	Finite conductivity fracture
			Limited entry
verucai anisotropy	coad from geomodeler		Fractured horizontal
Horizontal anisotropy	Property sets		Fractured horizontal + SRVB Fractured horizontal + Trilinear
	Improve on multiple wells		
	Eaults with throws		
		Reservoir model	Boundary model
inear diffusion		Homogeneous	Infinite
		Double-porosity PSS	Single fault
Common functionalities	Second Se	Double permeability	Intersecting faults
Use real PVT	Temperature modeling	Radial composite	Channel Closed (circle)
Non Darcy flow	Gravity		Rectangle (centered)
			Weak constant pressure
	Confined PV1		Strong constant pressure
Allow aquifers			
Desorption			
Immobile water			

Slika 4-3. Numerički parametri i početni model za analizu testa porasta

4.1.1. Opis početnog modela za analizu testa porasta tlaka

Skladištenje fluida u bušotini (engl. *Wellbore storage*)

Odabrana je opcija konstantne vrijednosti bušotinskog skladištenja (*Constant*), koja se prikazuje pravcem jediničnog nagiba. Njegov položaj na dijagnostičkom log-log dijagramu za analizu testa porasta tlaka može biti pomaknut vertikalno i horizontalno, ovisno o različitim modelima bušotine (slika 4-4). Od ostalih mogućnosti, ovdje je moguće odabrati opciju da skladištenja nema (*None*) ili da se radi o promjenjivom iznosu efekta skladištenja bušotine, *C*. Jedinični nagib prikazan crtkanim pravcem na log-log dijagramu znači da tijekom poklapanja početnih podataka testa porasta u bušotini traje efekt skladištenja fluida.

Slika 4-4. Period skladištenja fluida na log-log dijagramu prikazan pravcem nagiba 1 (Saphir, 2016)

Kod analize tlaka u vertikalnoj bušotini nagib crtkanog pravca paralelnog s osi x u dijagnostičkom modelu omogućuje određivanje početka stabilizacije tlaka u ležištu, odnosno postizanja neograničeno djelujućeg radijusa, kao što je opisano u teoretskom dijelu rada uz sliku 2-6. Pri interpretaciji testa je potrebno ispuniti uvjet da se posljednje točke mjerenja tlaka, odnosno njegove derivacije poklapaju s ovim pravcem. Ukoliko mjerenje nije trajalo dovoljno dugo tj. ako nije postignuta ova stabilizacija, ili ako se modeliranjem ne može postići preklapanje derivacije s crtkanim pravcem nagiba nula, tada rezultate interpretacije treba uzeti uz veći faktor odstupanja.

Model bušotine (Well model)

Kada se u analizi pretpostavlja vertikalna nefrakturirana bušotina, odabire se opcija ograničenog radijusa (engl. *Finite radius*), dok se sve ostale mogućnosti odnose na frakturirane ili horizontalne bušotine.

U slučaju specijaliziranih analiza bušotine s frakturom ograničene vodljivosti (engl. *Finite conductivity fracture*), na log-log dijagramu prikazuju se dva dodatna nagiba pravca s pomoću kojih se može odrediti vodljivost pukotine, F_c , (engl. *Fracture conductivity*) i poluduljina pukotine, x_f (engl. *Fracture half length*) (slika 4-5). Ukoliko je u bušotini identificiran bilinearni protok, tada se dio podataka testa porasta tlaka i njegove derivacije poklapa s pravcima nagiba jedne četvrtine, a u slučaju linearnog oblika protoka nagib pravaca je jedna polovina.

Slika 4-5. Nagibi pravaca u log-log dijagramu specijaliziranih analiza frakturirane bušotine (Saphir, 2016)

Vrijednost produkta $F_c\sqrt{k}$ određuje položaj ovih pravaca. Nakon pravaca nagiba jedne četvrtine slijedi par pravaca nagiba jedne polovine, koji predstavljaju linearni protok, a oni ovise o produktu kx_f^2 (Saphir, 2016). Pomoću ovog alata dobivaju se vrijednosti poluduljine pukotine, x_f , vodljivosti pukotine, F_c , i bezdimenzionalne vodljivosti pukotine, F_{cD} . Pomicanjem linije koja predstavlja neograničeno djelujući radijalni protok (engl. *infinite acting radial flow – IARF*) mijenjaju se vrijednosti x_f i F_c na način da odnosi kx_f^2 i $F_c\sqrt{k}$ ostaju očuvani.

Ležišni model (Reservoir model)

Za ležišni model je odabrana opcija dvostruke poroznosti PSS (engl. *Double-porosity PSS*), gdje je PSS kratica za poluustaljeno stanje protoka (engl. *pseudo-steady state*), jer je

u ovom slučaju PSS protok karakteriziran padom na liniji homogenog radijalnog protjecanja koja ukazuje na prijelaz iz protoka kroz pukotinu u protok u ležištu.

Model granica ležišta (Boundary model)

Ležište je u ovom slučaju neograničeno (engl. *Infinite*), a program nudi još nekoliko opcija, kao što su ležišta ograničena rasjedima, ležišta s konstantnim tlakom na vanjskoj granici itd.

Nakon što su definirani ulazni parametri, u program se unose podaci o protoku i tlaku. Test porasta tlaka trajao je 144 sata. Prije zatvaranja bušotine, ona je proizvodila 39 sati konstantnim protokom od 6,12 m³/dan. U analizi se ispitivao i utjecaj dubine manometra na rezultate, čija se dubina određuje prilikom unošenja podataka o tlaku.

Na slici 4-6 prikazan je tzv. '*History plot*', odnosno dijagram na kojem se bilježi vrijeme konstantne proizvodnje prije zatvaranja bušotine i vrijeme trajanja testa porasta uz izmjereni porast tlaka u bušotini.

Slika 4-6. 'History plot' – dijagram mjerenih podataka protoka i tlaka u ovisnosti o vremenu

Nakon što su uneseni podaci o tlaku i proizvodnji, moguće je započeti analizu testa porasta. Pomoću funkcije '*Extract*' program generira log-log dijagram na kojem su prikazani mjereni podaci, označeni zelenom bojom, te derivacija tlaka, označena crvenom bojom

(slika 4-7). Program također na grafu automatski pozicionira liniju neograničeno djelujućeg radijalnog protoka i liniju jediničnog nagiba koja označava skladištenje fluida u bušotini, kao što je opisano u poglavlju 4.1.1.

Slika 4-7. Log-log dijagram mjerenih podataka i derivacije tlaka

4.2. Modeliranje mjerenih podataka s tipskim krivuljama

U ovom se koraku mjereni podaci modeliraju s tipskim krivuljama za analizu testa porasta, ugrađenim u programu *Saphir*, pri čemu se maksimalna točnost preklapanja postiže metodom nelinearne regresije, pomoću naredbi '*Generate*' i '*Improve*', a koje se vide na upravljačkoj traci glavnog sučelja programa s lijeve strane (slika 4-9). Program nastoji djelomično ili u cijelosti dati preklapanje tipske tj. modelirane krivulje s krivuljom odziva tlaka. Postupak se sastoji od odabira jednog ili više modela, koji mogu biti analitički ili numerički, zatim unošenja procijenjenih vrijednosti parametara modela, pokretanja modela i na posljetku usporedbe simuliranih rezultata sa stvarnim podacima pomoću različitih dijagrama.

Generirani model uspoređuje se s krivuljom tlaka na '*History plotu*', te krivuljama tlaka i derivacije tlaka u log-log dijagramu i na polulogaritamskom dijagramu. S obzirom na točnost preklapanja, moguće je ponuđeni model odbaciti ili ga zadržati i dalje poboljšavati njegovo modeliranje. Slika 4-8 prikazuje preklapanje početnog i konačnog modela, u kojem se postigla gotovo idealna točnost, odakle proizlazi da će i rezultati analize ovakvog testa porasta tlaka, kao što je primjerice propusnost ležišne stijene, biti vrlo pouzdano određeni, za razliku od mjerenja u kojima se zbog različitih bušotinskih efekata ne može ostvariti idealno preklapanje, a što za posljedicu ima i manju točnost rezultata.

Slika 4-8. Početno i konačno preklapanje podataka testa porasta tlaka za model vertikalne bušotine (Houze et al., 2020)

Sučelje programa *Saphir* prikazano je na slici 4-9, na primjeru jedne od analiza testa porasta. Na radnoj površini nalaze se tri prozora u kojima su prikazani: log-log dijagram, polulogaritamski prikaz i *'History plot'*. Također, može se uočiti kako je na svakom dijagramu ostvareno preklapanje modela s podacima. S desne strane nalaze se rezultati analize. Upravljačka traka vidljiva je s lijeve strane. Opcije koje su prikazane unutar trake prate osnovni tijek rada programa. Nakon opcije *'Extract'*, sljedeći korak jest odabir opcije *'Analytical'*, pomoću koje se generira model koji je nadalje potrebno 'poboljšati' uz opciju *'Improve'*, kako bi se dobilo najbolje preklapanje krivulja.

Slika 4-9. Glavno sučelje programa Saphir

4.2.1. Analiza slučajeva

Ukupno je provedeno 10 analiza istog testa porasta tlaka u kojima su se mijenjale vrijednosti različitih parametara te opcije unutar programa kako bi se utvrdio njihov utjecaj na rezultate. U tablici 4-1 dan je sažeti prikaz odabranih parametara u pojedinoj analizi. Osim standardnih analiza vertikalne i frakturirane bušotine, provedena je i specijalizirana analiza bilinearnog i linearnog protoka u frakturiranoj bušotini. U svim analizama korišteni su analitički modeli, dok je za numerički model nužno unaprijed poznavati veći broj parametara te se geometrija izrađuje na temelju opširnijeg poznavanja podataka o ležištu.

Analiza	PVT	Model bušotine	Radijus	Dubina manometra
1			0,03016 m	-
2		vertikalna	0,06985 m	-
3			0,12225 m	-
4	jednofazni fluid	frakturirana	0,03016 m	-
5	-		0,06985 m	-
6			0,12225 m	-
7		vertikalna	0,06985 m	1138 m
8	wižeforni fluid	vertikalna	0,06985 m	-
9		frakturirana	0,06985 m	-
10	jednofazni fluid	frakturirana	0,06985 m	-

Tablica 4-1. Vrijednosti parametara korištenih u pojedinoj analizi

Analize 1, 2 i 3

U prve tri analize provjeravan je utjecaj radijusa kod modela vertikalne bušotine. Radijus je definiran prilikom unošenja ulaznih podataka za svaku analizu zasebno (slika 4-1). U analizi 1 iznosi 0,03016 m (tubing), u analizi 2 0,06985 m (proizvodna kolona), a u analizi 3 0,12225 m (kanal bušotine). Iako se referentnom vrijednošću kod mjerenja tlaka uzima promjer proizvodne kolone, rezultati u tablici 5-1 ukazuju da promjena ovih triju vrijednosti radijusa nema utjecaja na rezultate. Pri određivanju PVT svojstava fluida, u ova tri slučaja, odabran je jednofazni fluid. Svi ostali parametri su jednaki u sve tri analize (definirani u poglavlju 4.1. i tablici 4-1). Na slikama 4-10, 4-11 i 4-12 dani su log-log dijagrami na kojima je prikazano preklapanje modela s krivuljama mjerenog tlaka, prikazanog zelenim križićima, i njegove derivacije, prikazane crvenim kružićima. Analizom testa porasta tlaka vertikalne bušotine određuje se propusnost ležišta, k, i skin, s. Iako se radi o frakturiranoj bušotini, uobičajen je postupak da se najprije postavlja model kao da je bušotina vertikalna, pri čemu rezultirajući skin efekt treba biti negativan, što u ovom slučaju i jest, te iznosi oko -3 (slika 4-10). Time se također potvrđuje točnost i povezanost svih ulaznih parametara programa, jer bi u slučaju pozitivnog skina, analizu trebalo odbaciti, radi vrlo male pouzdanosti u daljnjem određivanju rezultata. Osim toga, za razliku od modela preklapanja za idealnu vertikalnu bušotinu, prikazanog na slici 4-8, podaci derivacije tlaka prikazani crvenom krivuljom, točno i pokazuju da njen trend ne odgovara ponašanju derivacije tlaka vertikalne bušotine, odnosno da ih je crnom linijom postavljenog modela moguće aproksimirati samo djelomično.

Slika 4-10. Log-log dijagram analize testa porasta tlaka – analiza 1

Slika 4-11. Log-log dijagram analize testa porasta tlaka – analiza 2

Slika 4-12. Log-log dijagram analize testa porasta tlaka – analiza 3

Analize 4, 5 i 6

Analogno prvim trima analizama, i u slučajevima 4, 5 i 6 provjeravao se utjecaj radijusa, ali kod rezultata frakturirane bušotine, odnosno za model bušotine odabrana je bušotina s frakturom ograničene vodljivosti. S obzirom na to da se i ovdje pokazalo da su rezultati neovisni o radijusu, u svim sljedećim analizama uzet je drugi tj. referentni, softverski radijus proizvodne kolone od 0,06985 m. Također je pretpostavljen jednofazni fluid te su sve ostale ulazne vrijednosti jednake kao i u prethodnim analizama. Na slikama 3-13, 3-14 i 3-15 prikazani su log-log dijagrami i rezultati. Analizom frakturirane bušotine dobivaju se vrijednosti poluduljine pukotine, x_f , i vodljivost pukotine, F_c .

Slika 4-13. Log-log dijagram analize testa porasta tlaka – analiza 4

Slika 4-14. Log-log dijagram analize testa porasta tlaka – analiza 5

Slika 4-15. Log-log dijagram analize testa porasta tlaka – analiza 6

Analiza 7

Ulazni podaci kod analize 7 jednaki su onima u analizi 2, dakle radi se o vertikalnoj bušotini, radijusa 0,06985 m, a fluid je jednofazan. No, razlika u odnosu na analizu 2 je ta da je prilikom unošenja podataka o mjerenom tlaku u vremenu unesena dubina manometra koja iznosi 1138 m, dok kod drugih analiza softver podrazumijeva da je manometar smješten na unesenoj dubini ležišta od 1575 m. Na slici 3-16 prikazan je log-log dijagram i rezultati analize. Cilj ove analize je utvrditi utječe li promjena unosa dubine manometra na rezultate, a iz rezultata prikazanih u tablici 5-1 slijedi da nema. Naime, softver ne preračunava samostalno vrijednosti ležišnog tlaka ukoliko se dubina ležišta i dubina manometra razlikuju, jer ne postoji opcija za unos statičkog nivoa kapljevine u bušotini, koju bi općenito prije testova porasta trebalo izmjeriti.

Slika 4-16. Log-log dijagram analize testa porasta tlaka – analiza 7

Analize 8 i 9

U analizama 8 i 9, u trećem koraku, prilikom unošenja ulaznih podataka (slika 3-2) odabrana je opcija '*Multiphase*' ili višefazni fluid, od kojih se prva odnosi na pretpostavljenu vertikalnu, a druga na frakturiranu bušotinu. Slijedom zaključaka iz prethodnih analiza u ova dva slučaja ostavljen je radijus proizvodne kolone (0,06985 m) uz nepromijenjenu dubinu manometra u odnosu na dubinu ležišta, ali je u modeliranju jednofazni fluid zamijenjen višefaznim, jer fluid sadrži relativno visok GOR. Pomoću ove opcije program računa volumni faktor nafte i viskoznost temeljem poznatih korelacija, a koji su u prethodnim analizama, gdje je odabran jednofazni fluid, uneseni 'ručno'. Odabirom ove opcije otvara se novi prozor (slika 3-17), gdje je potrebno unijeti podatke o ležišnom tlaku (93,7 bar), ležišnoj temperaturi (95,7 °C) i proizvodni plinski faktor, GOR (183 m³/m³). Osim toga kod svojstava nafte unosi se relativna gustoća nafte (0,821), također i kod svojstava plina, njegova relativna gustoća (0,6691).

Slika 4-17. Ležišna svojstva fluida kod opcije 'Multiphase'

U analizi 8 analizirana je vertikalna bušotina, a u analizi 9 bušotina s frakturom ograničene vodljivosti. Na slikama 3-18 i 3-19 prikazani su log-log dijagrami i rezultati. Cilj je utvrditi ima li odabir opcije '*Multiphase*' utjecaj na rezultate, odnosno razlikuju li se od jednofaznih modela u analizi 2 za vertikalnu i u analizi 5 za frakturiranu bušotinu. Modeliranjem je ustanovljeno da analiza 9 daje najtočnije rezultate, koji se neznatno razlikuju od ostalih, ali ovdje je presudno da se radi o modelu frakturirane bušotine i višefaznog fluida, koji je za razliku od svih ostalih slučajeva najpribližniji stvarnim uvjetima u ležištu.

Slika 4-18. Log-log dijagram analize testa porasta tlaka – analiza 8

Slika 4-19. Log-log dijagram analize testa porasta tlaka – analiza 9

Kod modeliranja podataka mjerenja na slici 4-19 najprije treba uočiti crtkani plavi pravac i njegovo preklapanje s podacima prvog dijela mjerenja krivulje tlaka i njegove derivacije tijekom skladištenja fluida, kao što je opisano uz sliku 4-4. Zatim su bitna dva crna crtkana pravca iz kojih se prema slici 4-5 određuju poluduljina frakture i njena vodljivost. Oni se u krajnjem dijelu mjerenih podataka adekvatno spajaju s crtkanim pravcem, paralelnim s osi x, što znači da je postignut neograničeno djelujući radijus, odnosno da je ispunjen uvjet za interpretaciju točnih rezultata analize. Iz navedenih razloga, ova analiza i njeni rezultati odabrani su kao relevantni u odnosu na ostale.

Odstupanja crne linije modela od krivulje derivacije gotovo u svim slučajevima su za očekivati, jer se radi o frakturiranoj bušotini u kojoj je nakon dugogodišnje proizvodnje došlo do zatvaranje prvotne poluduljine pukotine, te se modeliranjem u ovakvim slučajevima općenito ne mogu postići bolji rezultati tj. krivulje se ne mogu preklopiti kao u slučaju da je mjerenje izvršeno tek na početku proizvodnje frakturirane bušotine.

Analiza 10

Za razliku od prethodnih, standardnih analiza, u ovom se slučaju radi o specijaliziranoj analizi bilinearnog i linearnog protoka.

Kreiran je novi log-log dijagram na koji je moguće postaviti različite specijalizirane pravce (slika 3-20). Na novi dijagram automatski je postavljen horizontalni crtkani pravac koji se podudara s pravcem koji predstavlja liniju radijalnog protoka na normalnom log-log dijagramu. Pritiskom desnog klika miša pojavljuje se izbornik s pomoću kojeg je moguće kreirati linije različitog nagiba. Odabrana je linija nagiba 1/2 za linearni protok (par plavih pravaca) s pomoću kojeg se određuje vrijednost poluduljine pukotine, x_f , te linija nagiba 1/4 za bilinearni protok (par zelenih pravaca) koji daje vrijednost vodljivosti pukotine, F_c . Ove parove pravaca moguće je slobodno pomicati po dijagramu i povećavati im ili smanjivati duljinu, a nastoji se pronaći najbolje preklapanje i s krivuljom tlaka i s krivuljom derivacije. S obzirom na to da niti jedno od ovih dvaju preklapanja ne može biti prihvaćeno, jer se premali dio podataka može obuhvatiti i kod linearnog i kod bilinearnog oblika protoka, niti rezultati ne predstavljaju točna rješenja. Analiza 10 ipak je prikazana u radu, kao mogućnost softverskog pristupa u bušotinama gdje bi se interpretacija ova dva oblika protoka mogla realizirati.

Slika 4-20. Log-log dijagram analize testa porasta tlaka – analiza 10

Glavni rezultati svih odabranih slučajeva izdvojeni su u tablici 5-1 i diskutirani u skladu s pripadajućim dijagnostičkim log-log dijagramima.

5. DISKUSIJA REZULTATA

U diplomskom radu analiziran je test porasta tlaka frakturirane naftne bušotine, za koji je napravljeno 10 mogućih slučajeva interpretacije s ciljem odabira analize koja daje najtočnije rezultate. Kao što je navedeno u trećem poglavlju, radi se o u bušotini koju je nakon višegodišnje proizvodnje potrebno refrakturirati, stoga je glavna svrha, osim određivanja približne propusnosti okolnih stijena, ustanoviti na koji se iznos smanjila postojeća poluduljina fraktura, a na što su ukazivale smanjene proizvodne mogućnosti bušotine. Pomoću programa Saphir provedeno je ukupno deset analiza, pet za pretpostavku vertikalne bušotine, četiri za frakturiranu i jedna specijalizirana analiza frakturirane bušotine. Cilj je odrediti karakteristike ležišta i bušotine te utvrditi kako promjena pojedinih ulaznih podataka utječe na rezultate analiza. Šeb (2017) u radu navodi kako je prema dokumentaciji iz INA-e (2014) analizom hidrodinamičkih mjerenja dobivena vrijednost propusnosti stijene od 0,0007 µm² (0,7 mD) i poluduljine pukotine od oko 10 m, ali svi detalji analize testa porasta tlaka na temelju kojih su ove softverske vrijednosti određene nisu objavljeni. Stoga su navedene procijenjene vrijednosti ovih rezultata uzete kao okvirne i svojevrsna nit vodilja u detaljnoj analizi slučajeva sa svrhom potvrde točnosti ovih vrijednosti. Osim toga, također je važna činjenica da je u dosjeu bušotine postojao podatak jednog laboratorijskog mjerenja propusnosti jezgre, u periodu nakon izrade bušotine, kada je njena vrijednost iznosila oko $0,002 \ \mu m^2$ (2 mD). Kao što se vidi u tablici 5-1, u svakoj se analizi u nekoliko koraka modeliranja uspjela dobiti propusnost od 0,0005 μ m² (0,5 mD), što je vrlo dobar rezultat, jer se radi o frakturiranoj bušotini sa značajnim promjenama u pribušotinskoj zoni. Otežavajuća činjenica u cijelom postupku bila je nepoznavanje statičkog nivoa kapljevine u bušotini, kojeg je kod svakog mjerenja testa porasta tlaka preporučljivo napraviti i prije i nakon mjerenja, jer iznos tlaka stupca kapljevine u odnosu na dubinu manometra utječe na određivanje ležišnog tlaka. U dokumentaciji stoji da su mjerenja izvršena na 1138,0 m, te da je izmjereni ležišni tlak preračunat na dubinu krovine otvorenih intervala (1575 m) i da iznosi 93,7 bar, što se ovim modeliranjem nije moglo sasvim potvrditi, ali je u konačnici temeljem diskusije odabrana analiza 9, čiji rezultati se mogu smatrati najbliže stvarnima.

Na svim analiziranim log-log dijagramima tlaka i pripadajuće derivacije u funkciji vremena prikazano je nekoliko rezultata, a u tablici 5-1 su izdvojeni najvažniji za diskusiju, kako slijedi:

- početni ležišni tlak, p_i;
- propusnost stijene, k;
- skin faktor, *s*;
- poluduljina pukotine, x_f ;
- vodljivost pukotine, F_c .

Kod analize u kojoj se pretpostavlja model vertikalne bušotine primarni cilj bio je dobiti negativan skin, jer se radi o testu frakturirane bušotine, ali iz ovog modela moguće je odrediti propusnost ležišta. Vrijednost propusnosti kod analize bušotine s modelom vertikalne pukotine, nije ni navedena u tablici, već je primarni cilj ovih analiza utvrditi poluduljinu pukotine te njenu vodljivost.

Analiza	p _i , bar	k, mD	s, —	x_f, m	$F_c, m^2 m$
1	80,2221	0,563564	-3,78741	-	-
2	80,122	0,569538	-2,92899	-	-
3	80,1562	0,564552	-2,3914	-	-
4	84,1532	-	0,13975	12,9443	1,1184·10 ⁻⁷
5	84,2264	-	0,164543	13,1694	1,1481E·10 ⁻⁷
6	84,0397	-	0,171733	13,0918	1,1184·10 ⁻⁷
7	80,1695	0,56574	-2,94259	-	-
8	80,2255	0,566543	-1,53566	-	-
9	82,9026	-	0,624469	12,9082	2,0162.10-8
10	-	-	-	33,8767	1,2927.10-14

Tablica 5-1. Rezultati analize slučajeva testa porasta tlaka

Početni ležišni tlak u analizama vertikalne bušotine 1, 2, 3, 7 i 8 iznosi približno 80,2 bar, dok kod bušotina s pukotinom ograničene vodljivosti iznosi oko 84,1 bar. Jedino je u analizi 9 nešto manji (82,9 bar), jer je taj model dao najpribližnije vrijednosti ostalih parametara, kao i najpribližnija preklapanja krivulja te je stoga odabran kao najprikladniji. U svim analizama vertikalne bušotine ustanovljeno je da propusnost iznosi otprilike 0,00056 μ m² (0,56 mD). Iako je program prilikom kreiranja modela izbacivao i manje vrijednosti propusnosti (do 0,2 mD), u tim se slučajevima preklapanja krivulja nisu mogla uzeti kao dovoljno zadovoljavajuća. Negativan skin faktor u ovim analizama ukazuje na to da se radi o stimuliranoj bušotini, što može odgovarati ili frakturiranoj vertikalnoj bušotini ili horizontalnoj bušotini. Obzirom da se u ovom slučaju radi se o hidraulički frakturiranoj bušotini, ostale analize provedene su za model frakturirane bušotine.

Prilikom analiza bušotina s vertikalnom pukotinom, kod prve tri takve analize, odnosno 4, 5 i 6, utvrđena je otprilike jednaka vrijednost poluduljine pukotine od 13 m, kao i njena vodljivost od oko $1,1\cdot10^{-7}$ m²m. U analizi 9 poluduljina pukotine također iznosi gotovo 13 m, međutim, vodljivost pukotine nešto je manja i iznosi 2,0·10⁻⁸ m²m.

Kod analize 7, gdje se provjeravao utjecaj dubine manometra na rezultate, dobivene vrijednosti su gotovo jednake onima u analizi 2. Može se zaključiti kako dubina manometra nema nikakav utjecaj na rezultate.

U analizama 8 i 9 korištena je opcija '*Multiphase*'. U odnosu na analize 2 i 6, u kojima su odabrani jednaki ulazni podaci, osim što je fluid jednofazan, može se uočiti da je vrijednost skin faktora (-1,5 u analizi 8 i 0,6 u analizi 9) veća.

U posljednjoj, 10. analizi, nastojalo se pomoću specijaliziranih analiza, pronalaskom bilinearnog i linearnog režima protjecanja, odrediti vrijednost poluduljine pukotine i vodljivosti pukotine. Međutim, na log-log dijagramu nije moguće pronaći odgovarajuće preklapanje pravaca s tlakom i derivacijom pa se stoga vrijednosti $x_f = 33,9$ m i $C_f = 1, 3 \cdot 10^{-14}$ m²m ne mogu prihvatiti kao točne.

6. ZAKLJUČAK

Pomoću programa Saphir analiziran je test porasta tlaka frakturirane naftne bušotine A-1. Kao glavni dijagnostički alat program koristi log-log dijagram tlaka i derivacije tlaka, čiji je razvoj opisan u 2. poglavlju, te se u analizi nastoji postići preklapanje mjerenih podataka i modela. Provedene su analize za pretpostavljenu vertikalnu bušotinu, u kojima se nastojala odrediti vrijednost propusnosti i skin faktora, a zatim i za frakturiranu u kojima je bio cilj odrediti poluduljinu pukotine i njenu vodljivost. U svim analizama vertikalne bušotine dobiven je negativan skin faktor, čime je dokazano da se radi o stimuliranoj, odnosno frakturiranoj bušotini. Nakon toga moguće je pristupiti analizi bušotine s vertikalnom pukotinom i određivanju njenih parametara. Osim utvrđivanja navedenih vrijednosti, u radu se provjeravao utjecaj određenih ulaznih parametara na konačne rezultate te se može zaključiti kako promjena radijusa, kao i dubina manometra nemaju značajan utjecaj. Međutim, odabir opcije 'Multiphase' u dvjema analizama dao je drugačije rezultate u odnosu na one u kojima je odabran jednofazan fluid, s obzirom da se radi o fluidu s relativno visokim GOR-om, a upravo je jedna od ovih analiza uzeta kao najtočnija. Uz prethodno navedene, provedena je i specijalizirana analiza bilinearnog i linearnog protoka, međutim rezultati analize u ovom slučaju nisu uzeti u obzir jer nije moguće obuhvatiti dovoljno podataka, stoga ni dobiveni rezultati nisu vjerodostojni.

Najtočnije rezultate dala je analiza 9, u kojoj je dobivena poluduljina pukotine od 12,9 m i vodljivost pukotine od 2,0162 \cdot 10⁻⁸ m²m, a početni ležišni tlak iznosi 82,7 bar. Iako se rezultati ne razlikuju značajno u usporedbi s drugim analizama, ovdje je pretpostavljen model bušotine s vertikalnom pukotinom i višefaznim fluidom što predstavlja najpribližnije uvjete onima stvarnima u ležištu. Kod svih analiza vertikalne bušotine propusnost u ležištu iznosi 0,00056 µm² (0,56 mD) te je ta modelirana vrijednost uzeta kao najpribližnija točnoj.

Program *Saphir* omogućava relativno jednostavnu analizu testa porasta tlaka pomoću ugrađenih funkcija. Međutim, na primjeru propusnosti i poluduljine pukotine može se primijetiti kako puko slijeđenje naredbi na upravljačkoj traci može dovesti do krivih rezultata. Naime, bez ručnog prilagođavanja vrijednosti prilikom kreiranja analitičkog modela, dobivena je znatno manja propusnost, također i dvostruko veća poluduljina pukotine, što ukazuje na kompleksnost ovog slučaja. Stoga je nužno temeljito pristupiti analizi testa porasta tlaka, uzimajući u obzir prethodna mjerenja i poznate podatke o bušotini i ležištu. Shodno tome, može se zaključiti kako je u analizama prikazanim u ovome radu

postignuto dobro preklapanje modela i krivulja tlaka i derivacije, za odabrane ulazne parametre, te da su rezultati analiza testa porasta tlaka pouzdano određeni.

7. POPIS LITERATURE

- 1. BOURDAROT, G., 1998. *Well Testing: Interpretation Methods*. Center for Petroleum Engineering and Project Development, 333 str, Pariz.
- BOURDET, D., AYOUB, J. A., PIRARD, Y. M., 1989. Use of Pressure Derivative in Well-Test Interpretation. SPE Journal of Formation Evaluation, 4, 2, 293-302, Richardson.
- 3. CHAUDHRY, A., 2004. Oil well testing handbook. Elsevier.
- CINCO-LEY, H., SAMANIEGO V, F., DOMINGUEZ A, N., 1978. Transient pressure behavior for a well with a finite-conductivity vertical fracture. *Society of Petroleum Engineers Journal*, 18(04), 253-264.
- CINCO-LEY, H., SAMANIEGO V., F., 1981. Transient Pressure Analysis for Fractured Wells. Jurnal of petroleum technology, 33(09), 1749–1766
- 6. ČIKEŠ, M., 2015. Proizvodno inženjerstvo nafte i plina. RGN fakultet, 524 str., Zagreb.
- DANESHY, A., 2010. Hydraulic Fracturing to Improve Production. *The Way Ahead*, SPE, 6, 3, 14-17.
- EARLOUGHER, R.C., 1977. Advances in well test analysis (Vol. 5). New York: Henry L. Doherty Memorial Fund of AIME.
- ECONOMIDES, M. J., NOLTE, G. N., 2000. *Reservoir Stimulation*. John Wiley & Sons, 3rd edition, 20 Chapters.
- GRINGARTEN, A. C., 2008. From Sraight Lines to Deconvolution: The Evolution of the State of the Art in Well Test Analysis. *SPE Reservoir Evaluation & Engineering*, 11, 1, 41-62, Richardson.
- GRINGARTEN, A. C., 2012. Well Test Analysis in Practice. *The Way Ahead*, SPE, 8, 2, 10-15.
- HORNER, D. R., 1951. Pressure Build-Up in Wells. *Third World Petroleum Congress, Sec. II*. 503-523., Hag.
- 13. HOUZE, O., VITURAT, D., FJAERE, O. S., 2020. Dynamic Data Analysis v5.30, KAPPA, 852 str.
- 14. INA INDUSTRIJA NAFTE, d. d., 2014. Tehnička dokumentacija.
- 15. JANSEN, J. D., 2017. *Nodal Analysis of Oil and Gas Production Systems*. Society of Petroleum Engineers, 368 str.
- 16. KOŠČAK KOLIN, S., 2018. Pouzdanost određivanja propusnosti slabo propusnih plinskih ležišta optimiranjem trajanja testa porasta tlaka, Doktorska disertacija, RGN fakultet, 12.11.2018., 244 str., Zagreb.
- KUCHUK, F., BIRYUKOV, D., 2014. Pressure-Transient Behaviour of Continuously and Discretely Fractured Reservoirs, *SPE Reservoir Evaluation & Engineering*, 17, 1, 82-97, Richardson.
- KUCHUK, F., BIRYUKOV, D., 2015. Pressure-Transient Tests and Flow Regimes in Fractured Reservoirs. SPE Reservoirs Evaluation and Engineering, 18, 2, 187-204, Richardson.
- 19. LEE, J., 1982. Well testing. Society of petroleum engineers.
- 20. LEE J., ROLLINS J.B., SPIVEY J.P., 2003. *Pressure Transient Testing*. Society of Petroleum Engineers, 376 str, Austin, Texas.
- MATTHEWS, C. S., RUSSEL, D. G., 1967. Pressure Buildup and Flow Tests in Wells. Monograph Volume 1, Henry L. Doherty Series, Society of Petroleum Engineers of AIME, 167 str, New York.
- 22. MOHAGHEGH, S. D., 2017. Data-Driven Reservoir Modeling. SPE, 166 str.
- 23. POSTON, S. W., LAPREA-BIGOTT, M., POE JR., B. D. 2019. Analysis of Oil and Gas Production Performance. SPE, 175 str.
- 24. SAPHIR, 2016. Ecrin Reference Manual (modules: Diamant, Saphir, Topaze, Rubis, Amethyste). KAPPA Engineering.
- SLIMANI, K., TIAB, D., 2008. Pressure Transient Analysis of Partially Penetrating Wells in a Naturally Fractured Reservoir. *Journal of Canadian Petroleum Technology*, 47, 5, 63-69, Calgary.
- 26. SOLIMAN, M. Y., ANSAH, J., BURRIS, J., STEPHENSON, S., PROETT, M. (2003): Well Test Analysis in the New Economy. *Journal of Canadian Petroleum Technology*, 42, 7, 35-43, Calgary.

- 27. SPIVEY, J. P., LEE, J. W., 2013. *Applied Well Test Interpretation*. Society of Petroleum Engineers, 386 str.
- 28. STEWART, G., 2011. Well test design and analysis. Penwell corporation.
- 29. SUN, J., SCHECHTER, D., 2015. Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically Fractured Wells: Field-Case Studies and Numerical Simulations. *Journal of Petroleum Technology*, 54, 6, 442-449, Calgary.
- 30. ŠEB, F., 2017. Proračun pridobivanja ugljikovodika iz bušotine Bilogora-3 nakon hidrauličkog frakturiranja ležišta. Diplomski rad, Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu, 45 str., Zagreb.
- 31. VON FLATERN, R., 2012. Well testing fundamentals. Oilfield Review, 24, 54-55.
- WATTENBARGER, R.A., RAMEY JR, H.J., 1970. An investigation of wellbore storage and skin effect in unsteady liquid flow: II. Finite difference treatment. *Society of Petroleum Engineers Journal*, 10(03), 291-297.
- 33. YASIN, I. B. E., 2012. Pressure Transient Analysis Using Generated Well Test Data from Simulation of Selected Wells in Norne Field. Master Thesis. Norwegian University of Science and Technology, 94 str, Trondheim.
- 34. ZENG, F., ZHAO, G., 2007. Well Testing Analysis for Variable Permeability Reservoirs, 46, 2, *Journal of Canadian Petroleum Technology*, 46, 2, 15-21, Calgary.

Web izvori:

35. KAPPA Engineering overview., URL: https://www.kappaeng.com/software/saphir/overview (1.3.2021.)

PRILOG

Δt	$\Delta oldsymbol{p}$		1,027523	53,40909	2,348624	61,86364
0	44,81818		1,027523	53,68182	2,495413	62,13636
0	45,22727		1,027523	53,95455	2,495413	62,40909
0	45,5		1,027523	54,22727	2,642202	62,68182
0,146789	45,77273		1,027523	54,5	2,642202	62,95455
0,146789	46,04545		1,174312	54,77273	2,788991	63,22727
0,146789	46,31818		1,174312	55,04545	2,93578	63,5
0,146789	46,59091		1,174312	55,31818	3,082569	63,77273
0,146789	46,86364		1,321101	55,59091	3,229358	64,04545
0,146789	47,13636		1,321101	55,86364	3,376147	64,31818
0,293578	47,40909		1,321101	56,13636	3,522936	64,59091
0,293578	47,68182		1,321101	56,40909	3,816514	64,72727
0,293578	47,95455		1,46789	56,68182	4,110092	64,86364
0,293578	48,36364		1,46789	56,95455	4,40367	65
0,293578	48,77273		1,46789	57,22727	4,550459	65,13636
0,440367	49,04545		1,614679	57,5	4,697248	65,27273
0,440367	49,31818		1,614679	57,77273	4,844037	65,40909
0,440367	49,59091		1,614679	58,04545	5,137615	65,54545
0,587156	49,86364		1,614679	58,31818	5,284404	65,68182
0,587156	50,13636		1,761468	58,59091	5,431193	65,81818
0,587156	50,40909		1,761468	58,86364	5,577982	65,95455
0,587156	50,68182		1,761468	59,13636	5,87156	66,09091
0,587156	50,95455		1,761468	59,40909	6,165138	66,22727
0,733945	51,22727		1,908257	59,68182	6,311927	66,36364
0,733945	51,5		1,908257	59,95455	6,458716	66,5
0,733945	51,77273		2,055046	60,09091	6,605505	66,63636
0,733945	52,04545		2,055046	60,36364	6,752294	66,77273
0,880734	52,31818		2,055046	60,63636	6,899083	66,90909
0,880734	52,59091		2,201835	60,90909	7,192661	67,04545
0,880734	52,86364	1	2,201835	61,31818	7,486239	67,18182
0,880734	53,13636	1	2,348624	61,59091	7,779817	67,31818

Test porasta tlaka frakturirane bušotine

7,926606	67,45455	17,46789	71,40909	27,59633	73,86364
8,073394	67,59091	17,76147	71,40909	27,88991	74
8,220183	67,72727	18,05505	71,54545	28,18349	74
8,513761	67,86364	18,34862	71,68182	28,47706	74
8,807339	68	18,6422	71,68182	28,77064	74,13636
9,100917	68,13636	18,93578	71,81818	29,06422	74,13636
9,394495	68,27273	19,22936	71,95455	29,3578	74,27273
9,688073	68,40909	19,52294	71,95455	29,79817	74,27273
9,834862	68,54545	19,81651	72,09091	30,09174	74,40909
10,12844	68,68182	20,11009	72,09091	30,38532	74,40909
10,42202	68,81818	20,40367	72,22727	30,82569	74,40909
10,7156	68,95455	20,69725	72,36364	31,11927	74,54545
11,00917	69,09091	20,99083	72,36364	31,41284	74,54545
11,30275	69,22727	21,2844	72,5	31,70642	74,68182
11,59633	69,36364	21,57798	72,5	32,14679	74,68182
11,88991	69,5	21,87156	72,63636	32,44037	74,81818
12,18349	69,63636	22,31193	72,77273	32,88073	74,81818
12,47706	69,77273	22,6055	72,77273	33,17431	74,95455
12,77064	69,90909	22,89908	72,90909	33,61468	74,95455
13,06422	69,90909	23,19266	72,90909	34,05505	74,95455
13,3578	70,04545	23,48624	72,90909	34,34862	75,09091
13,65138	70,18182	23,77982	73,04545	34,6422	75,22727
13,94495	70,31818	24,07339	73,18182	35,08257	75,22727
14,23853	70,45455	24,36697	73,18182	35,52294	75,22727
14,53211	70,45455	24,66055	73,18182	35,81651	75,36364
14,82569	70,59091	24,95413	73,31818	36,25688	75,36364
15,11927	70,72727	25,24771	73,31818	36,69725	75,36364
15,41284	70,86364	25,54128	73,45455	37,13761	75,5
15,70642	70,86364	25,83486	73,45455	37,57798	75,5
16	71	26,12844	73,59091	37,87156	75,63636
16,29358	71	26,42202	73,59091	38,31193	75,63636
16,58716	71,13636	26,7156	73,59091	38,75229	75,63636
16,88073	71,27273	27,00917	73,72727	39,04587	75,77273
17,17431	71,27273	27,30275	73,72727	39,48624	75,77273

39,77982	75,90909	52,84404	77,40909	65,61468	78,63636
40,22018	75,90909	53,2844	77,40909	66,20183	78,63636
40,51376	76,04545	53,57798	77,54545	66,6422	78,63636
40,95413	76,04545	54,01835	77,54545	67,08257	78,63636
41,3945	76,04545	54,31193	77,54545	67,22936	78,5
41,83486	76,18182	54,6055	77,68182	67,52294	78,36364
42,12844	76,18182	54,89908	77,68182	67,66972	78,22727
42,42202	76,18182	55,33945	77,68182	67,9633	78,09091
42,7156	76,31818	55,63303	77,68182	68,25688	77,95455
43,15596	76,31818	56,07339	77,68182	68,55046	77,95455
43,44954	76,31818	56,36697	77,81818	68,84404	77,95455
43,74312	76,45455	56,66055	77,81818	69,13761	77,95455
44,0367	76,45455	57,10092	77,81818	69,2844	78,09091
44,47706	76,45455	57,3945	77,95455	69,43119	78,22727
44,91743	76,59091	57,83486	77,95455	69,57798	78,36364
45,3578	76,59091	58,27523	77,95455	69,87156	78,5
45,79817	76,59091	58,7156	77,95455	70,16514	78,63636
46,23853	76,72727	59,15596	78,09091	70,45872	78,77273
46,6789	76,72727	59,44954	78,09091	70,75229	78,90909
47,11927	76,72727	59,88991	78,09091	71,04587	79,04545
47,55963	76,86364	60,18349	78,22727	71,33945	79,04545
48	76,86364	60,47706	78,22727	71,77982	79,04545
48,44037	76,86364	60,77064	78,22727	72,22018	79,04545
48,73394	77	61,21101	78,22727	72,66055	79,18182
49,17431	77	61,65138	78,22727	73,10092	79,18182
49,61468	77	61,94495	78,36364	73,54128	79,31818
49,90826	77,13636	62,38532	78,36364	73,98165	79,31818
50,49541	77,13636	62,82569	78,36364	74,42202	79,45455
50,78899	77,13636	63,26606	78,36364	74,86239	79,45455
51,08257	77,27273	63,70642	78,5	75,30275	79,45455
51,52294	77,27273	64	78,5	75,74312	79,59091
51,9633	77,27273	64,44037	78,5	76,18349	79,59091
52,25688	77,40909	64,88073	78,5	76,62385	79,59091
52,55046	77,40909	65,17431	78,63636	77,06422	79,59091

77,65138	79,59091	91,88991	80,54545	105,3945	81,36364
78,09174	79,72727	92,33028	80,68182	105,9817	81,36364
78,53211	79,72727	92,62385	80,68182	106,5688	81,36364
79,11927	79,72727	92,91743	80,68182	107,0092	81,5
79,55963	79,72727	93,3578	80,68182	107,4495	81,5
80	79,86364	93,65138	80,68182	107,8899	81,5
80,44037	79,86364	94,09174	80,68182	108,3303	81,5
80,88073	79,86364	94,53211	80,68182	108,7706	81,5
81,3211	79,86364	94,82569	80,81818	109,211	81,5
81,76147	80	95,11927	80,81818	109,6514	81,63636
82,20183	80	95,41284	80,81818	110,0917	81,63636
82,6422	80	95,85321	80,81818	110,5321	81,63636
83,08257	80	96,14679	80,81818	110,9725	81,63636
83,37615	80,13636	96,58716	80,81818	111,4128	81,63636
83,81651	80,13636	96,88073	80,81818	111,8532	81,63636
84,11009	80,13636	97,17431	80,95455	112,2936	81,63636
84,55046	80,13636	97,61468	80,95455	112,7339	81,77273
84,84404	80,13636	98,05505	80,95455	113,1743	81,77273
85,2844	80,13636	98,49541	80,95455	113,6147	81,77273
85,57798	80,13636	98,93578	80,95455	114,055	81,77273
86,01835	80,27273	99,37615	81,09091	114,4954	81,77273
86,45872	80,27273	99,66972	81,09091	114,9358	81,77273
86,89908	80,27273	100,1101	81,09091	115,3761	81,90909
87,19266	80,27273	100,5505	81,09091	115,8165	81,90909
87,63303	80,27273	100,9908	81,09091	116,2569	81,90909
88,07339	80,40909	101,4312	81,09091	116,6972	81,90909
88,51376	80,40909	101,7248	81,22727	117,1376	81,90909
88,95413	80,40909	102,1651	81,22727	117,578	81,90909
89,3945	80,40909	102,6055	81,22727	117,8716	82,04545
89,98165	80,40909	103,0459	81,22727	118,3119	82,04545
90,42202	80,54545	103,633	81,22727	118,7523	82,04545
90,86239	80,54545	104,2202	81,22727	119,1927	82,04545
91,15596	80,54545	104,6606	81,22727	119,4862	82,04545
91,59633	80,54545	104,9541	81,36364	119,9266	82,04545

120,2202	82,04545	128,4404	82,45455	136,8073	82,86364
120,8073	82,04545	128,8807	82,45455	137,2477	82,86364
121,3945	82,04545	129,3211	82,45455	137,6881	82,86364
121,6881	82,18182	129,7615	82,45455	138,1284	82,86364
122,1284	82,18182	130,055	82,59091	138,5688	82,86364
122,5688	82,18182	130,4954	82,59091	139,0092	82,86364
122,8624	82,18182	130,789	82,59091	139,4495	82,86364
123,3028	82,18182	131,2294	82,59091	139,8899	82,86364
123,7431	82,18182	131,6697	82,59091	140,3303	83
124,0367	82,31818	131,9633	82,59091	140,7706	83
124,4771	82,31818	132,4037	82,59091	141,211	83
124,9174	82,31818	132,6972	82,59091	141,6514	83
125,3578	82,31818	133,1376	82,59091	142,0917	83
125,6514	82,31818	133,578	82,72727	142,5321	83
126,0917	82,31818	134,1651	82,72727	142,9725	83
126,5321	82,31818	134,6055	82,72727	143,2661	83
126,9725	82,31818	135,0459	82,72727	143,5596	83
127,2661	82,45455	135,4862	82,72727	143,8532	83
127,7064	82,45455	135,9266	82,72727	144	83
128,1468	82,45455	136,367	82,72727		

IZJAVA

Izjavljujem da sam ovaj rad izradila samostalno na temelju znanja stečenih na Rudarskogeološko-naftnom fakultetu služeći se navedenom literaturom i uz stručno vodstvo mentorice doc. dr. sc. Sonje Koščak Kolin.

Andrea Valjek

Andrea Valjak

Sveučilište u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET HR-10002 Zagreb, Pierottijeva 6, p.p. 390

KLASA:602-04/21-01/55URBROJ:251-70-12-21-2U Zagrebu,6.9.2021.

Andrea Valjak, studentica

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-04/21-01/55, URBROJ: 251-70-12-21-1 od 13.4.2021. priopćujemo vam temu diplomskog rada koja glasi:

ANALIZA TESTA PORASTA TLAKA HIDRAULIČKI FRAKTURIRANE BUŠOTINE PRIMJENOM PROGRAMA SAPHIR

Za voditeljicu ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada Doc.dr.sc. Sonja Koščak Kolin nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu

Voditeljica:

(potpis)

Doc.dr.sc. Sonja Koščak Kolin

(titula, ime i prezime)

Predsjednik povjerenstva za završne i diplomske ispjte:

(potpis)

Izv.prof.dr.sc. Vladislav Brkić

(titula, ime i prezime)

Prodekan za nastavu i studente: botp

Izv.prof.dr.sc. Dalibor Kuhinek (titula, ime i prezime)

Oznaka: OB 8.5.-1 SRF-1-13/0 Stranica: 1/1 Čuv

Čuvanje (godina)

Trajno