Strukturno-geološke značajke i kinematska obilježja rasjeda dubrovačkog područja

Maslač, Josipa

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:364987

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-25

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

Sveučilište u Zagrebu

Rudarsko-geološko-naftni fakultet Diplomski studij hidrogeologije i geološkog inženjerstva

STRUKTURNO-GEOLOŠKE ZNAČAJKE I KINEMATSKA OBILJEŽJA RASJEDA DUBROVAČKOG PODRUČJA

Diplomski rad

Josipa Maslač GI427

Zagreb, 2022.

Sveučilište u Zagrebu RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

KLASA: 602-04/21-01/263 URBROJ: 251-70-15-21-2 U Zagrebu, 3. 3. 2022.

Josipa Maslač, studentica

RJEŠENJE O ODOBRENJU TEME

Na temelju vašeg zahtjeva primljenog pod KLASOM 602-04/21-01/263, URBROJ: 251-70-15-21-1 od 4. 11. 2021. priopćujemo vam temu diplomskog rada koja glasi:

STRUKTURNO-GEOLOŠKE ZNAČAJKE I KINEMATSKA OBILJEŽJA RASJEDA DUBROVAČKOG PODRUČJA

Za mentora ovog diplomskog rada imenuje se u smislu Pravilnika o izradi i obrani diplomskog rada Doc. dr. sc. Bojan Matoš nastavnik Rudarsko-geološko-naftnog-fakulteta Sveučilišta u Zagrebu i komentora Dr. sc. Ivica Pavičić.

Mentor:

(potpis)

Doc. dr. sc. Bojan Matoš

(titula, ime i prezime)

Komentor:

Dr. sc. Ivica Pavičić

(titula, ime i prezime)

(potpis)

Prodekan za nastavu i studente: D (potpis)

Izv. prof. dr. sc. Borivoje Pašić (titula, ime i prezime)

Oznaka: OB 8.5.-1 SRF-1-13/0 Stranica: 1/1

Predsjednik povjerenstva za završne i diplomske ispite:

inda

(potpis)

Doc. dr. sc. Zoran Kovač

(titula, ime i prezime)

Čuvanje (godina)

Trajno

Zahvala...

....mentoru, doc. dr. sc. Bojanu Matošu na predloženoj temi, ukazanom povjerenju; uloženom vremenu, trudu i radu za detaljne preglede rada; neizmjernoj pomoći, a najviše od svega hvala na jako, jako puno strpljenja i razumijevanja.

...komentoru, dr. sc. Ivici Pavičiću na stalnoj motivaciji i pomicanju granica u unapređenju modela, pomoći i na zlatnim savjetima u korištenju softverskog paketa Midland Valley Move-a kao i njegovim kreatorima.

....prof. dr. sc. Igoru Vlahoviću na uloženom radu i trudu te spremnosti na pomoć ne samo tijekom izrade diplomskog rada, već cijeloga akademskog obrazovanja i divnom načinu prenošenja svoga znanja.

...prof. dr. sc. Bruni Tomljenoviću koji je također potaknuo moju zainteresiranost za ovo područje geologije svojim zanimljivim predavanjima.

...izv. prof. Urošu Barudžiji na uloženom radu i trudu prilikom brzih pregleda bez komplikacija.

...Darku i Davidu na pomoći i stvaranju produktivne radne atmosfere svakoga dana prilikom izrade modela.

...Davidu na stalnoj borbi s layoutima i vječitoj podršci.

...mojoj Luciji na beskrajnom razumijevanju i savjetima, čitaj i konstruktivnim kritikama.

... svim prijateljima na uljepšavanju studentskih dana.

...mom najvećem osloncu: mojim roditeljima, bratu i cijeloj obitelji, koji me cijeli život bodre da budem svoja najbolja verzija.

STRUKTURNO-GEOLOŠKE ZNAČAJKE I KINEMATSKA OBILJEŽJA RASJEDA DUBROVAČKOG PODRUČJA

JOSIPA MASLAČ

Diplomski rad je izrađen:	Sveučilište u Zagrebu		
	Rudarsko-geološko-naftni fakultet		
	Zavod za geologiju i geološko inženjerstvo		
	Pierottijeva 6, 10 000 Zagreb		

Sažetak: Na temelju OGK listova Dubrovnik, Trebinje, Nevesinje, Kotor i Nikšić te DEMa reljefa područja dubrovačkog primorja i zaleđa izrađeno je pet geoloških profila dužine po 55 km poprečnih na pružanje dinaridskih struktura. Na temelju korelacije prethodno definiranih stratigrafskih jedinica te digitalizacijom geoloških struktura i odnosa izrađen je konceptualni trodimenzionalni model geološke građe istraživanog područja. Svi ulazni podatci prethodno su obrađeni u ArcGIS Pro i ArcGIS 10.1 softverskim paketima te Adobe Illustratoru, dok su naknadno provedene i seizmotektonske analize konstruiranog modela pomoću Petroleum Experts Move softvera. Strukturno modeliranje s pridruženim dubinskim i geometrijskim odnosima te postojećim seizmološkim podacima omogućili su strukturnu analizu relativnih pomaka sustava navlaka te proračun očekivane maksimalne magnitude potresa na izdvojenim seizmogenim rasjedima na području istraživanja.

Ključne riječi: Dinaridi, Dubrovnik, navlačna tektonika, 2D/3D strukturno modeliranje, ArcGIS, Move, seizmogeni potencijal, seizmičnost, magnituda potresa

Diplomski rad sadrži: 70 stranica, 32 slike, 3 tablice, 6 priloga i 59 literaturnih navoda

Jezik izvornik: hrvatski

Diplomski rad pohranjen: Knjižnica Rudarsko-geološko-naftnog fakulteta, Pierottijeva 6, Zagreb

Mentor: doc. dr. sc. Bojan Matoš

Komentor: dr. sc. Ivica Pavičić

Ocjenjivači: doc. dr. sc. Bojan Matoš prof. dr. sc. Igor Vlahović izv. prof. dr. sc. Uroš Barudžija

Datum obrane: 11. ožujka 2022. godine

University of Zagreb Faculty of Mining, Geology and Petroleum Engineering

STRUCTURAL-GEOLOGICAL CHARACTERISTICS AND KINEMATIC PROPERTIES OF FAULTS IN THE DUBROVNIK AREA

JOSIPA MASLAČ

Thesis completed in: University of Zagreb

Faculty of Mining, Geology and Petroleum Engineering Department of Geology and Geological Engineering Pierottijeva 6, 10 000 Zagreb

Abstract: In this study, five geological cross-sections each 55 km long, perpendicular to the Dinaridic structures were constructed based on Basic Geological Map sheets of Dubrovnik, Trebinje, Nevesinje, Kotor and Nikšić, and available DEM raster of Dubrovnik area. Correlation of previously defined stratigraphic units and digitalization of constructed geological structures and relations yielded conceptual geological three-dimensional model of the study area. All input data were pre-processed in ArcGIS Pro, ArcGIS 10.1 and Adobe Illustrator, while the subsequent seismotectonic analyses of constructed geological model were made by Petroleum Expert Move software. Structural modelling with associated depth and geometrical relations as well as seismological data enabled structural analysis of relative displacement of nappe systems in the study area and calculation of expected maximal earthquake magnitudes along the individual seismogenic faults in the study area.

Keywords: Dinarides, Dubrovnik, nappe tectonics, 2D/3D structural modelling, ArcGIS, MOVE, seismogenic potential, seismicity, earthquake magnitude

Thesis contains: 70 pages, 32 figures, 3 tables, 6 attachments and 59 references

Original in: Croatian

Thesis deposited in: Library of the Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb

Supervisor: Assistant Professor Bojan Matoš, PhD

Co-supervisor: Senior Researcher Ivica Pavičić, PhD

Reviewers: Assistant Professor Bojan Matoš, PhD Professor Igor Vlahović, PhD Associate Professor Uroš Barudžija, PhD

Date od defense: March 11, 2022

SADRŽAJ

SADRŽAJ	I
POPIS TABLICA	[V
1. UVOD	. 1
2. GEOGRAFIJA ISTRAŽIVANOG PODRUČJA	. 3
3. SEIZMOTEKTONSKI ODNOSI I RECENTNA GEODINAMIKA	. 5
3.1. Seizmičnost istraživanog područja	. 5
3.2. Tektonika i regionalno polje naprezanja3.3. Tektonske jedinice istraživanog područja	. 8 11
4. GEOLOŠKE ZNAČAJKE ISTRAŽIVANOG PODRUČJA	14
4.1. Kompozitni geološki stup4.2. Litostratigrafske jedinice Vanjskih Dinarida	14 15
4.3. Digitalizacija geološke podloge i prostorna analiza	19
4.4. Geološki profili	20
4.4.1. Geološki profil $6-6$	21 21
4.4.3. Geološki profil 8–8'	21
4.4.4. Geološki profil 9–9'	23
4.4.5. Geološki profil 10–10'	24
5. IZRADA KONCEPTUALNOG 3D MODELA STRUKTURNE GRAĐE	
DUBROVAČKOG PODRUČJA	25
5.1. Postupak modeliranja u <i>Petroleum Expert Move</i> softveru	25
5.2. Rezultat modeliranja	32
5.4. Proračun očekivane maksimalne magnitude potresa na izdvojenim seizmogenim	55
rasjedima	38
6. DISKUSIJA	42
7. ZAKLJUČAK	44
LITERATURA	45
PRILOZI	51

POPIS SLIKA

Slika 1.1	Veduta Dubrovnika rekonstruirana 3D modelom prije razornog potresa 1667. autora
	Stipana Ujdura preuzeta iz videorekonstrukcije potresa 1667. (Ujdur, 2020) 1
Slika 2.1	Karta područja istraživanja s osnovnim geografskim obilježjima, izrađena pomoću
a	programa ArcGIS Pro
Slika 3.1	Karta Europske baze seizmogenih rasjeda SHARE na području jugoistočne Europe te
	manji izrezak dubrovačkog područja i seizmogenih rasjeda izdvojenih na tom području
	s detaljima rasjeda čela Visokog Krša nazvanog Pelješac–Kotor (https://edsf13.ingv.it/)
	s prikazom web portala Seismo-Cro (https://seismo-
	cro.giscloud.com/map/1598326/customize-your-map?view=2b24c2db)5
Slika 3.2	Karta epicentara potresa koji su pogodili Hrvatsku i okolne države u razdoblju od 1993.
$\Omega_{1:1_{2:2}}$ 2.2	00 1990. godine (Herak 1 dr., 1998.)
Siika 5.5	Potresni događaji ML ≥ 2.8 u razdoblju od 2006. do 2015. godine u obalnom dijelu
	Hrvatske s ljestvicastim rasponom magnituda prikazanim na iznad karte (Ivancic i dr.,
C1:1 2 4	2018)
SI1Ka 3.4	Prostorna distribucija epicentara potresa u Republici Hrvatskoj prema EMSC-ovoj bazi
	prikazana na portaru Seismo-Cro (nups.//seismo-
Cl:1.a 2 5	cro.giscioud.com/map/1598526/customize-your-map/view=5ca9a446).
SIIKa 5.5	Prikaz lokacija izvedenog Eulerovog pola lokacije prema weber i dr. (2010),
	usporedenin s preulodno objavljenim rješenjima (zuto). $A \alpha J = Anderson T Jackson (1007), WES Westeway (1002), DAT Word (1004), CAL Coloisi dr (2002), DAT$
	(1967), wES – westaway (1992), KAI – watu (1994), CAL – Catais I ul. (2002), BAI Dettoplici dr. (2004), CDE – Granorezzy i dr. (2005), SED – Somelloni i dr. (2005).
	- Ballaglia I ur. (2004); GRE - Gienerczy I ur. (2005); SER - Serpenoni I ur. (2005); DEV Davati i dr. (2008); AC CDS D' Acastina i dr. (2008). Traislatoria i
	DEV – Devoli 1 dr. (2008); AG-GPS – D Agostino 1 dr. (2008). Trajektorije 1
	transvenencija vektora pomaka prikazani su crvenini i plavim crtama. Vrijednosti
$\Omega_{11} = 2.6$	konvergencije Jadranske mikropioce su u rasponu od 5,5–4,5 mm/god
SIIKa 5.0	Konzijska zona Jauranske inikropioce oznacena je sivim poligonom, dok zarism
	menanizini naprezanja ukazuju na previadavajuće polje naprezanja duž ruba jauranske
	mikropioce. Orijemacija najvećeg norizomamog naprežanja na području istrazivanja je
Slike 2 7	Shamateki prikaz korhonatnih platforma na Jadranskoj mikroplači (A i P). C. Prostorni
SIIKa 5.7	shematski pitkaz karbonatna nlatforma a naznačenom orijentegijom horizontelna osi
	okvii Jauranske karbonaule plationile s naznačenom orijentacijom norizontalne osi neprozonia (Vlahovići dr. 2005)
Slileo 2 9	A Taktonska karta Alaska korratska dinaridskag oroganskag sustava (modificira)
SIIKa J.o	A. Tektonska kalta Alpsko-kalpalsko-ulilaliuskog ologenskog sustava (moulileliao Matoč i dr. 2017. proma Sahmid i dr. 2008) a izdvojanim taktonskim jadinjagma u
	Viatos 1 di., 2017 – pienia Schnid i dr., 2008) S izdvojenini tektoliškim jedinicana u čiram području Diparida (Schmid i dr. 2008) R. 2D prikaz područja istraživanja s
	sitem području Dinanda (Schinid Tur., 2008). B. 5D prikaz područja istrazivanja s
	Forth i NASA in prostornih podeteke u programu Plander)
Slileo 4 4	Izduciona domana značajnih lateralnih razlika u starostima kartiranih jedinica na
SIIKa 4.4	Izuvojene domene značajnih lateralnih razlika u starostima kartiralnih jedinica na Irontalitima OCK listova Dykrovnik (Marković 1066). Katar (Antaniiović dr. 1060).
	Novoginia (Maijázvijá i Laužavijá 1065) Nikčijá (Vyjisijá i dr. 1067) i Trahinia (Natavijá
	i Detrović 1064 1065)
S1:1ro 4 5	Shamataki militaz tinova harania A. Equit hand faild i D. Equit managastion faild (Dutlan
SIIKa 4.3	idr 2020 modificirene prome Jamicon 1087)
Sliles 1 6	1 dr., 2020, modificitatio premia Jamison, 1987
Slike 4.0	Ceološki profil 7.7'
Slika 4.7	Cooločki profil 9 8' 22
Slike 4.0	Cooločki profil 0 0' 24
SIIKa 4.9	Cooločki profil 10, 10' = 24
ыка 4.10	Geoloski profil 10–10

Slika 5.1	Definiranje stratigrafskih jedinica, njihove starosti i debljina neophodno za automatizaciju cijelog postupka. Starost donje granice izdvojenih jedinica je prikazana na temelju Svjetske kronostratigrafske ljestvice preuzete s https://stratigraphy.org/ICSchart/ChronostratChart2022-02 ing 26
Slika 5.2	Primjer digitalizacije interpetiranih horizonata stratigrafskih jedinica te rasjednih linija za profil 7–7'
Slika 5.3	Površinska distribucija navlačnih ploha rasjeda u ArcGis Pro softveru. Na slici su vidljivi rasjedni poligoni s označenim presječnicama vršnih i baznih dijelova svake rasjedne plohe zasebno (a–e)
Slika 5.4	Prostorni raspored modeliranih rasjednih ploha (a–d) prema konstruiranim geološkim profilima 6–10 na kojima su prikazane rasjedne strukture navlačne geometrije
Slika 5.5	Postupna vizualizacija horizonata stratigrafskih jedinica naslaga: a– perma, trijasa; b – donje i srednje jure; c – gornje jure; d – donje jure, dijelova donje i gornje krede te eocena
Slika 5.6	Prostorna distribucija epicentara potresa iz kataloga potresa Geološke službe SAD-a (https://earthquake.usgs.gov/earthquakes/search/) za razdoblje od 1901. do 2021. godine. Na karti istraživanog područja prikazane su granice izrađenog modela te tragovi konstruiranih profila
Slika 5.7	Finalna verzija konstruiranog 3D strukturno-geološkog modela područja. Modeli prikazuju sustave navlačnih rasjeda s interpretiranim stratigrafskim jedinicama, površinske geološke odnose te prostorni odnos hipocentara potresa u odnosu na konstruirani strukturni model
Slika 5.8	Distribucija hipocentara potresa u jugozapadnom dijelu modeliranog područja 34
Slika 5.9	Dijagram odnosa horizontalnih i vertikalnih vrijednosti pomaka duž konstruiranih rasjednih ploha po izdvojenim stratigrafskim horizontima
Slika 5.10	Prikaz vrijednosti vertikalnog pomaka na rasjednoj plohi čela Navlake Visokog krša tj. DU-1 s rozeta dijagramom orijentacije tektonskog transporta
Slika 5.11	A. Recesijska krivulja maksimalnog pomaka i duljine rasjeda (prema metodi Wellsa i Coopersmitha, 1994), B. Dijagram skaliranja rasjeda i odredbe tipa rasjeda s obzirom na veličinu maksimalnog pomaka te geometrije rasjedne plohe
Slika 5.12	Rezultat proračuna nagiba (B) i azimuta (A) svakog segmenta generiranih rasjednih ploha statistički prikazan rozetnim dijagramom i na stereografskoj mreži (C)
Slika 5.13	Linearna regresija magnitude i seizmički aktivne površine (Wells i Coopersmith, 1994). 40

POPIS TABLICA

Tablica 4.1	Površine i udjeli površina litostratigrafskih jedinica istraživanog područja 19
Tablica 5.1	Vrijednosti koeficijenata a i b korištenih za proračun maksimalnih očekivanih
	magnituda potresa za potencijalno aktivne seizmogene rasjede (prema Wells i
	Coopersmith, 1994)
Tablica 5.2	Odabrani generirani seizmogeni izvor (rasjed) okarakteriziran geometrijskim
	značajkama, karakterom pomaka te procjena maksimalne očekivane maksimalne
	magnitude potresa

1. UVOD

Kroz povijest grada Dubrovnika (Slika 1.1) i njegove okolice, najveća zabilježena katastrofa jest bila ona prirodna – Veliki dubrovački potres koji se dogodio oko 8:45 h na Veliku srijedu, 6. travnja 1667. godine. Niti jedno ratno razaranje ne može se usporediti sa štetom potresa koji je uništio većinu infrastrukture i arhitekture, tada jedne od najmoćnijih republika na obalama Jadrana (Novak, 1970). Potres je donio stagnaciju i propadanje bogate kulturne baštine te socijalnog života, a povrh svega velike ljudske žrtve jer je život izgubilo između 3000 i 5000 stanovnika šireg područja, što je činilo tada četvrtinu populacije Dubrovačke Republike prema popisima stanovništva iz 1642. i 1673. godine (Vekarić, 1991).

Slika 1.1 Veduta Dubrovnika rekonstruirana 3D modelom prije razornog potresa 1667. autora Stipana Ujdura preuzeta iz videorekonstrukcije potresa 1667. (Ujdur, 2020).

Od tada pa i kroz današnje vrijeme, područje južne Dalmacije smatra se jednim od tri najvažnija epicentralna područja u Republici Hrvatskoj, umjerene do snažne seizmičnosti, karakterizirano brojnim instrumentalno zabilježenim potresima, nerijetko magnituda većih od 6 po Richteru. Najrecentniji je primjer potres magnitude 6,0 koji se dogodio 1996. godine na području Stona i Slanog, gdje je zabilježeno najveće vršno horizontalno ubrzanje tla u vrijednosti od 0,64 g (Govorčin i dr., 2020). Prepoznavanje epicentralnih i seizmogenih izvora u podzemlju, odnosno geološke građe od velikog je značaja za određivanje

seizmogenog potencijala rasjednih zona. U tu svrhu osnovu čine geološki profili koji predstavljaju interpretaciju stratigrafskih jedinica i njihovih nagiba u odnosu na rasjede koji su prikazani na geološkim kartama. Dvodimenzionalni prikaz tektonskih i stratigrafskih odnosa geološkog profila uveliko ovise o odabiru trasa profila i kompleksnosti struktura u podzemlju, stoga se lako može dobiti iskrivljeni koncept s pogrešno interpretiranim ključnim elementima strukturne građe. Kako bi se dobio što vjerniji prikaz poželjno je imati što veći broj profila postavljenih poprečno na strukture, tvoreći mrežu čijom prostornom korelacijom nastaju trodimenzionalni modeli.

Razvojem tehnologije, u današnjici je omogućeno kvalitetnije i preciznije modeliranje strukturnih odnosa u podzemlju korištenjem suvremenih softverskih rješenja. Stoga je u ovom diplomskom radu na dubrovačkom području konstruirano pet međusobno paralelnih profila (svaki dužine od 55 km), međusobno udaljenih 9 km, izrađenih poprečno na dinaridske strukture od Zatona do Molunata. Geološki profili su konstruirani u Adobe Illustratoru, a zatim su 2D i 3D modelirani u programu Petroleum Experts Move, jednom od računalnih programa za 2D/3D i 4D modeliranje. Osim spomenutih profila, kao ulazni podatci za izradu konceptualnog 3D modela podzemlja dubrovačkog područja, korišteni su digitalni elevacijski model (DEM) dubrovačkog primorja i zaleđa, te listovi Osnovne geološke karte SFRJ 1:100 000 Dubrovnik (Marković, 1966), Kotor (Antonijević i dr., 1969), Nevesinje (Mojićević i Laušević, 1965), Nikšić (Vujisić i dr., 1967) i Trebinje (Natević i Petrović, 1964), koji su prethodno obrađeni i digitalizirani u ArcGIS paketima verzija 10.1 i Pro. Na temelju modeliranja i analize seizmičkih podataka u ovom diplomskom radu opisana je tektonika područja Navlake Visokog krša kroz analizu aktivnosti sustava navlaka, provedena je analiza relativnih pomaka po interpretiranim rasjednim plohama te su empirijski izračunate vrijednosti očekivanih maksimalnih magnituda potresa na izdvojenim seizmogenim rasjedima na području istraživanja.

2. GEOGRAFIJA ISTRAŽIVANOG PODRUČJA

Reljef južne Dalmacije s otočnim arhipelagom oblikovan je aktivnom tektonikom kolizijske zone Jadranske mikroploče i Euroazijske ploče, koja rezultira izdizanjem Dinarida. Posljedično, ističu se temeljne morfostrukture gorskog reljefa krškog karaktera (Bognar, 1999), a koje nalazimo uz Dalmatinsku obalu, otocima te zaleđu, na granici Hrvatske s Bosnom i Hercegovinom (primjerice Osojnik, Vlaštica, Malaštica, Sniježnica – Slika 2.1). Područje istraživanja dio je Dalmatinske zone koja je izdužena duž istočnu obalu Jadrana, čine priobalni segmenti duljine od 20–30 km, širine 4–5 km na sjeverozapadnom dijelu, 6–12 km u središnjem dijelu te 1–3 km u jugoistočnom dijelu. Orogenetski razvoj Dinarida rezultirao je procesima peneplanizacije krškog terena, naročito u sjeveroistočnom dijelu područja istraživanja, na teritoriju Bosne i Hercegovine te Crne Gore gdje postoje značajne razlike između reljefnih formi i struktura (Šundov, 2010).

Slika 2.1 Karta područja istraživanja s osnovnim geografskim obilježjima, izrađena pomoću programa ArcGIS Pro.

Posljedice tektonike u razvoju reljefa izražene su relativno velikim visinskim razlikama i izrazitom vertikalnom raščlanjenosti u područjima navlačnih kontakata. Najniže su nadmorske visine priobalnog dubrovačkog područja od 0 do 400 m, gdje se visinski jedino ističu mezo-morfostrukture poput Srđa, neposredno u domeni čela Navlake Visokog krša. Nadmorske visine pojedinačnih navlaka (čelo Navlake Visokog krša, planinski lanac Bjelasnice itd.) su uglavnom između 600 i 1200 m, osim planine Orjen (Crna Gora) s najvišim vrhom Zubački kabao 1894 m, koja se ističe i različitom strukturnom građom (Slika 2.1; Antonijević i dr., 1973). U geomorfološkom smislu se na području istraživanja razlikuju dvije domene uvjetovane različitim litološkim sastavom, odnosno fizičko-mehaničkim značajkama naslaga: i) karbonatne naslage – obilježene razvojem krškog i fluviokrškog reljefa te ii) flišne i kvartarne naslage obilježene fluvioakumulacijskim i padinskim egzoprocesima čiji intenzitet i usmjerenost ovise o tektonskim pokretima (Šundov, 2010). Prema Bognaru (1994) za evoluciju gorskog reljefa, osim znakovitih izdizanja, tipične su pojave zona peneplanizacije – u ovom slučaju krških polja Popovo polje, Markovo polje i Konavle (Roglić, 1957). Najveće, Popovo polje, depresija je duga 45 km na nadmorskoj visini od 250 m, nastala erozijskim djelovanjem Trebišnjice (Natević, 1964), dok je postanak Konavala uzrokovan ingresijom mora u postpleistocenu (Prelogović i dr., 1994). Na područjima zaravni nagib terena gotovo je horizontalan, dok su nagibi uz same navlake između 32° i 55° te pripadaju vrlo strmim padinama čiji strmci su najizraženiji uz samo čelo navlake Visokog krša, s mjestimičnim nagibima i većim od 55°.

Unatoč prosječno obilnim godišnjim padalinama u istraživanom području stalni površinski riječni tokovi su jedino Dubrovačka rijeka (Ombla) vrlo kratkog površinskog toka i Trebišnjica razvijena u zoni fliša (Marković, 1975). Razvedenost obale na ovom dijelu je niska s koeficijentom od 2,49 (Šundov, 2010). Najveće slatkovodno vodeno tijelo je Bilećko jezero, akumulacijsko umjetno jezero hidroelektrane na rijeci Trebišnjici dubine oko 100 m, čija je površina na nadmorskoj visini od približno 400 m.

3. SEIZMOTEKTONSKI ODNOSI I RECENTNA GEODINAMIKA

Dubrovački rasjedni sustav jedno je od seizmički najaktivnijih područja u Republici Hrvatskoj, a pripada cirkum-mediteranskom seizmogenom pojasu koji je posljedica kolizije Jadranske mikroploče s Europskom pločom. Taj rasjedni sustav nalazi se na sjeveroistočnom dijelu Jadranske mikroploče, a opisan je Europskom bazom seizmogenih rasjeda SHARE, u kojoj su prikazani seizmogeni izvori M>5,5 sa strukturno-geološkim i seizmogenim obilježjima (Slika 3.1; Basili i dr., 2013). Seizmička aktivnost kako danas, tako i u geološkoj prošlosti posljedica je kontinuirane konvergencije Jadranske mikroploče u iznosima od 3.5–4.5 mm/god (Weber i dr., 2010), što je rezultiralo izdizanjem borano-navlačnog kompleksa Dinarida tijekom paleogena (Vlahović i dr., 2005; Schmid i dr., 2008).

Slika 3.1 Karta Europske baze seizmogenih rasjeda SHARE na području jugoistočne Europe te manji izrezak dubrovačkog područja i seizmogenih rasjeda izdvojenih na tom području s detaljima rasjeda čela Visokog Krša nazvanog Pelješac–Kotor (https://edsf13.ingv.it/) s prikazom web portala Seismo-Cro (https://seismo-cro.giscloud.com/map/1598326/customize-yourmap?view=2b24c2db).

3.1. Seizmičnost istraživanog područja

Tektonska aktivnost na istraživanom području povijesno je zabilježena kroz nekoliko većih razornih potresa. Najvažniji potresi u području južne Dalmacije, dogodili su se 6. travnja 1667. s epicentrom u Dubrovniku, intenziteta IX–X° po MSC ljestvici (Herak i dr., 1996.), te 5. rujna 1996. s epicentrom Ston–Slano, magnitude 6,0 po Richteru i intenziteta VIII po

MSC (Markušić i dr., 1998; Ivančić i dr., 2002). Pregledom povijesnih kataloga seizmičnosti (Markušić i dr., 1998, 2002, 2006) najveća instrumentalno zabilježena potresna sekvenca, prikazana na Slici 3.2, bila je u razdoblju od 1993. do 1996. godine, tijekom koje je 28. rujna 1995. godine grad Dubrovnik pogodio potres M 5,0. Analizom žarišnog mehanizma potvrđeno je širenje energije generirane duž reverzne rasjedne zone dubrovačkog područja na rasjedu Mosor–Biokovo i/ili Dubrovačkom rasjedu, za koje se smatra da su aktivni i danas te su predmet istraživanja HRZZ znanstveno-istraživačkog projekta DuFAULT (<u>https://projectdufault.geof.pmf.unizg.hr/</u>).

Osim navedenih potresa s epicentrima u Hrvatskoj, Dubrovnik s okolicom nekoliko je puta bio oštećen i potresima čiji su se epicentri nalazili u priobalnom pojasu Crne Gore i Albanije. Od značajnijih potresa koji su uzrokovali štetu na dubrovačkom području svakako treba spomenuti potres iz 1979. godine (M 7,0) na području Herceg Novog, koji je bio najrazorniji potres koji je pogodio Crnu Goru. Posljedično, jačina intenziteta na području cijele južne Dalmacije iznosila je VI–VII° po MSC, što je drugi najsnažniji potres koji je pogodio grad Dubrovnik u njegovoj povijesti (prema Elaboratu o procjeni štete iz arhive Zavoda za obnovu Dubrovnika, 2013).

Slika 3.2 Karta epicentara potresa koji su pogodili Hrvatsku i okolne države u razdoblju od 1993. do 1996. godine (Herak i dr., 1998.).

Posljednjim izdanim izvješćem seizmološke službe o seizmičnosti RH u razdoblju od 2006. godine do 2015. godine (Ivančić i dr., 2018), utvrđeno je da je u tom razdoblju na području istraživanja zabilježeno nekoliko potresa magnituda 2,8—3,2 te jedan jači potres umjerene magnitude 4,0 (vidi Sliku 3.3.)

Slika 3.3 Potresni događaji ML \geq 2,8 u razdoblju od 2006. do 2015. godine u obalnom dijelu Hrvatske s ljestvičastim rasponom magnituda prikazanim na iznad karte (Ivančić i dr., 2018).

U posljednjih nekoliko godina u razdoblju od 2015. do 2021, prema podatcima Europskomediteranskog seizmološkog centra (ESMC) na Seismo-Cro web portalu prikazanim na Slici 3.4, na istraživanom području dva najjača zabilježena potresa dogodila su se 2019. i 2021. godine magnituda M 4,3 i 4,4.

Slika 3.4 Prostorna distribucija epicentara potresa u Republici Hrvatskoj prema EMSC-ovoj bazi prikazana na portalu Seismo-Cro (<u>https://seismo-cro.giscloud.com/map/1598326/customize-your-map?view=3ca9a446</u>).

U najrecentnijem razdoblju najizraženija seizmička aktivnost zabilježena je u sjevernom dijelu Albanije, gdje se 26. studenoga 2019. godine u blizini grada Drača dogodio potres magnitude M 6,4 prema Richteru, što je bio najsmrtonosniji potres u širem području u posljednjih 100 godina

(https://earthquake.usgs.gov/earthquakes/eventpage/us70006d0m/executive).

3.2. Tektonika i regionalno polje naprezanja

Sva povijesno i instrumentalno zabilježena seizmičnost u Dinaridima ukazuje na umjerenu (lokalno i snažnu) recentnu tektonsku aktivnost rasjeda na cijelom području Dalmacije, koja je prema Ustaszewskom i dr. (2008) te Weberu i dr. (2010) direktna posljedica recentne konvergencije Jadranske mikroploče i Europske ploče i rotacije u smjeru obrnutom od kazaljke na satu kako pokazuju GPS mjerenja (Slika 3.5).

Slika 3.5 Prikaz lokacija izvedenog Eulerovog pola rotacije prema Weber i dr. (2010), uspoređenih s prethodno objavljenim rješenjima (žuto): A&J – Anderson i Jackson (1987); WES – Westaway (1992); RAT – Ward (1994); CAL – Calais i dr. (2002); BAT – Battaglia i dr. (2004);
GRE – Grenerczy i dr. (2005); SER – Serpelloni i dr. (2005); DEV – Devoti i dr. (2008); AG-GPS – D'Agostino i dr. (2008). Trajektorije i orijentacija vektora pomaka prikazani su crvenim i plavim crtama. Vrijednosti konvergencije Jadranske mikroploče su u rasponu od 3,5–4,5 mm/god.

Prema DeMets i dr. (1990) čitavo Sredozemlje izuzetno je tektonski kompleksna cjelina izgrađena od kolizijske orogene zone (Alpe, Dinaridi), starijeg nesubduciranog dijela oceanske litosfere Tethysa (Jonsko more), mlađe oceanske kore nastale otvaranjem zalučnog bazena (Tirensko more), aktivne (Kalabrijski luk) i prekinute subdukcijske zone (Apenini) te Jadranske mikroploče kao zasebne cjeline (McKenzie, 1972), odijeljene od Afričke ploče – Nubije Gargano–Dubrovnik zonom (Slika 3.6; Anderson i Jackson, 1987; Battaglia i dr., 2004; D'Agostino, 2008).

Slika 3.6 Kolizijska zona Jadranske mikroploče označena je sivim poligonom, dok žarišni mehanizmi naprezanja ukazuju na prevladavajuće polje naprezanja duž ruba Jadranske mikroploče. Orijentacija najvećeg horizontalnog naprezanja na području istraživanja je generalno SI–JZ (Pondrelli i dr., 2006; Weber i dr., 2010).

Tektonski razvoj istraživanog područja započeo je taloženjem tijekom karbona na karbonatnoj platformi uz istočni rub superkontinenta Pangee, koja je ekstenzijskom tektonikom tijekom perma i trijasa dezintegrirana u novonastale kontinente Gondwanu i Lauraziju razdvojene oceanom Neotethys tijekom mezozoika (Channel i dr., 1979; Schmid i dr., 2004,, 2008). Formiranje izoliranih platformi na Jadranskoj mikroploči započelo je srednjotrijaskim vulkanizmom i otvaranjem oceanskog prostora Neotethysa uz sjeverni rub Gondwane (Vlahović i dr., 2005). Tijekom mlađeg dijela starije jure (toarcija) Jadranska mikroploča je značajnije tektonski diferencirana, što je rezultiralo formiranjem triju

karbonatnih platformi; AdCP – Jadranske karbonatne platforme (Adriatic Carbonate Platform), ACP (Apeninske karbonatne platforme) i ApCP – Apulijske karbonatne platforme (Apulian Carbonate Platform) te dubokomorskih korita tijekom starije jure, koja su se nalazila između karbonatnih platformi (Slika 3.7;Vlahović i dr., 2005).

Slika 3.7 Shematski prikaz karbonatnih platforma na Jadranskoj mikroploči (A i B). C. Prostorni okvir Jadranske karbonatne platforme s naznačenom orijentacijom horizontalne osi naprezanja (Vlahović i dr., 2005).

Promjene u regionalnom polju naprezanja iz ekstenzijskog naprezanja u kompresijsko dogodile su se kao posljedica otvaranja središnjeg Atlantika tijekom mlađe jure, prije približno 150 milijuna godina, uzrokujući djelomično zatvaranje Neotethysa intraoceanskom subdukcijom i obdukcijom ofiolita na istočni pasivni rub Jadranske mikroploče što danas predstavlja područje Unutarnjih Dinarida (Pamić i dr., 1998; Schmid i dr., 2008). Nakon inicijalne intraoceanske subdukcije tijekom mlađe jure, tijekom krede je prevladavala blaga sinsedimentacijska tektonika sa stabilnom subsidencijom čime je nastao debeo slijed jurskih i krednih naslaga, a koja je prekinuta tijekom mlađe krede uslijed zatvaranja Neotethysa i intenzivnog boranja naslaga kao posljedice kolizije. Taloženje na Jadranskoj karbonatnoj platformi je većim dijelom bilo kontinuirano, ali su kolizija i izdizanje Dinarida krajem krede bili popraćeni povremenim dugotrajnim emerzijama (Vlahović i dr., 2005). Vrhunac kolizije u eocenu i oligocenu rezultirao je završnim

izdizanjem Dinarida kao borano-navlačnog orogenog sustava na površini najvećim dijelom izgrađenog od mezozojskih i paleogenskih karbonata i paleogenskog fliša, reverzno izdignutih i ugrađenih u niz navlaka pružanja sjeverozapad–jugoistok (Slika 3.6). Tijekom neogena i kvartara kompresijsko, ali i transpresijsko naprezanje nastavljeno je smanjenim intenzitetom na području Jadranske mikroploče, što je rezultiralo umjerenom seizmičnošću te prevladavanjem erozijskih procesa u odnosu na konstruktivne tektonske procese.

Recentno polje naprezanja cirkum-mediteranskog pojasa, od Alpa preko Dinarida sve do Helenida kompresijskog je tipa, s dominantnom orijentacijom najveće osi naprezanja sjeveroistok-jugozapad na području jadranskog primorja, dok se u južnom dijelu Panonskog bazena orijentacija postupno mijenja prema južnim Alpama gdje je orijentacija glavnih osi naprezanja sjever-jug. Navedeno je potvrđeno GPS mjerenjima vektora (Slika 3.5; Weber i dr., 2010) čije su vrijednosti i distribucija prostorno heterogene kao rezultat rotacije suprotno od kazaljke na satu, ali i izmještene lokacije Eulerovog pola rotacije koji se nalazi na području zapadnih Alpa. Shodno tome, konvergencija svake godine napreduje između 1 i 1,5 mm u priobalnom području Dinarida te između 1 i 2 mm prema Unutarnjim Dinaridima i Panonskom bazenu (Bada i dr., 2007).

3.3. Tektonske jedinice istraživanog područja

Evolucija glavnih tektonostratigrafskih jedinica omeđenih regionalnim reverznim i navlačnim rasjedima na području istraživanja vezana je uz kompresijsko naprezanje i kogenetsko reverzno rasjedanje i boranje u neposrednoj krovini klastičnih i/ili evaporitnih naslaga (Schmid i dr., 2008). Geotektonski, područje istraživanja prema Schmid i dr. (2008) pripada Dalmatinskoj zoni koja je prema sjeveroistoku ograničena Navlakom Visokog krša i nizom navlaka koje čine prijelaz prema Unutarnjim Dinaridima, dok prema jugozapadnom dijelu područje istraživanja prelazi u Jadranski bazen koji danas zapravo predstavlja aktivnu deformacijsku zonu Jadranske mikroploče (Slika 3.8). Spomenute geotektonske jedinice su u nastavku detaljnije opisane.

Slika 3.8 A. Tektonska karta Alpsko–karpatsko–dinaridskog orogenskog sustava
 (modificirao Matoš i dr., 2017 – prema Schmid i dr., 2008) s izdvojenim tektonskim jedinicama u širem području Dinarida (Schmid i dr., 2008). B. 3D prikaz područja istraživanja s naznačenim geotektonskim jedinicama (modelirani teren dobiven je na temelju *Google Earth* i NASA-ih prostornih podataka u programu *Blender*).

Dalmatinska zona ili Jadranski pojas

Od nedeformiranog dijela Jadranske mikroploče Dalmatinska je zona odvojena reverznim rasjednom dinaridskog pružanja u podmorju Jadrana. Jedinica je na površini obilježena debelim slijedom karbonata od jurske do kredne i paleogenske starosti, prosječne debljine oko 4 km. Dalmatinska zona proteže se od Cresa, zahvaćajući zaleđe Splita i otoke Brač, Hvar te se sužava prema Pelješcu i Mljetu u usku zonu paralelnu priobalnoj liniji Dubrovačkog primorja (Schmid i dr., 2008) gdje obuhvaća dio Malostonskog kanala, područje grada Dubrovnika i Srđ (Slika 3.8 B) te Konavle. Područje Srđa i Gradca smatra se ukliještenom zonom fliša popraćenom deformacijom i izoklinalnim boranim sustavima na sjeveroistočnoj strani, dok je središnji dio ove zone na području Konavala tektonski mirniji (Marković, 1966). Drugi termini koji se koriste za tu zonu su Para-autohton i strukturna jedinica Ston (Marković, 1966; Raić i Papeš, 1980) jer predstavlja podinu **Navlake Visokog krša** koja je na području Crne Gore odvojena **Budva–Cukali** ili **Budvansko–barskom zonom** (Antonijević i dr., 1969).

Navlaka Visokog krša

Strukturnu krovinu Dalmatinske zone predstavlja Navlaka Visokog krša, koja se nalazi duž čitave istočne jadranske obale u strukturnom sklopu Vanjskih Dinarida (Schmid i dr. 2008), koja prema karti svojim istočnim rubom zahvaća od područja južnih Alpa, preko Ćićarije, kvarnerskih otoka i otoka srednje Dalmacije do okolice Splita gdje vidljivo dolazi u kontakt s regionalnim strike-slip rasjedom Split–Karlovac i nastavlja pružanje paralelno jedinici Dalmatinske zone prema jugoistoku, planinskom sustavu Orjen u Crnoj Gori. Čini je navlačni kompleks stijena dominantno mezozojsko–paleogenske starosti, odnosno srednjotrijaske do paleogenske starosti. Nagib navlake je prosječno oko 30°, dok je veličina navlačenja preko 10 km (Marković, 1966). Navlaka Visokog Krša najbolje je vidljiva na listu OGK *Trebinje* (Natević i Petrović, 1964) gdje je podijeljena u nekoliko manjih tektonskih struktura: antiklinalu Gromače, Ljubova i Lastve te sinklinalu Pustipuhe–Ljubinje (Natević, 1965) koje se spajaju s jedinicama prikazanim na listu *Ston* (Raić i dr., 1980): Biokovo–Smokovljani, Hutovo i Hrasno. Na istraživanom području reljefno je najistaknutija uz samo čelo navlake na granici Hrvatske s Bosnom i Hercegovinom planinama od Osojnika do Sniježnice.

4. GEOLOŠKE ZNAČAJKE ISTRAŽIVANOG PODRUČJA

Kao geološka podloga istraživanog područja korištena je Osnovna geološka karta SFRJ mjerila 1:100.000 listova *Dubrovnik* (Marković, 1966), *Kotor* (Antonijević i dr., 1969), *Nevesinje* (Mojićević i Laušević, 1965), *Nikšić* (Vujisić i dr., 1967) i *Trebinje* (Natević i Petrović, 1964–1965) prikazanim na Slici 4.1. Prema podatcima s tih karata su definirane i stratigrafske jedinice i osnovna strukturno-geološka obilježja korištena za daljnju konstrukciju geoloških profila prikazanih u poglavlju 4.3.

4.1. Kompozitni geološki stup

Na temelju prethodno spomenutih listova OGK SFRJ te lista *Konavle* Osnovne geološke karte Republike Hrvatske (Prtoljan i dr., 2015) izrađen je kompozitni geološki stup s pripadajućim litološkim jedinicama (Slika 4.1)

Slika 4.1 Kompozitni geološki stup s pripadajućim litološkim jedinicama izrađen na temelju OGK listova *Dubrovnik* (Marković, 1966), *Konavle* (Prtoljan i dr., 2015), *Kotor* (Antonijević i dr., 1969), *Nevesinje* (Mojićević i Laušević, 1965), *Nikšić* (Vujisić i dr., 1967) i *Trebinje* (Natević i Petrović, 1964–1965)

4.2. Litostratigrafske jedinice Vanjskih Dinarida

S obzirom na opisanu tektoniku i dugotrajne faze taloženja na istraživanom području, geološku građu čini vrlo širok stratigrafski raspon stijena. Najstarije stijene na površini istraživanog područja su gornjotrijaske starosti, ali gledajući prostor cijele Dalmacije to su stijene permske starosti na listu OGK SFRJ *Drniš* (Ivanović i dr., 1972), *Knin* (Grimani i dr., 1972) i *Sinj* (Papeš i dr., 1984). Najmlađe naslage kvartarne starosti su debljina obično znatno manjih od 100 m, tako da su u konstrukciji ovog regionalno modela zanemarene. Ostatak istraživanog terena izgrađen je pretežito od mezozojskih vapnenaca i dolomita, dok su tijekom paleogena i neogena taložene karbonatne i klastične naslage. U narednim potpoglavljima opisan je slijed litostratigrafskih jedinica na području istraživanja idući od stratigrafski najstarijih prema mlađim naslagama.

Perm (P)

Permske naslage ne izlaze na površinu istraživanog terena, a prema Ivanović i dr (1972), i Vlahović i dr. (2005) čine ih naslage *cehštajnskih* evaporita i crvenih klastita čiji točan stratigrafski položaj nije utvrđen. Pored njih nalaze se i pojave spilitiziranih dijabaza kao posljedica permskog vulkanizma spomenutog u poglavlju 3.2. S obzirom da ne postoji kontinuirani slijed naslaga permske starosti, za modeliranje je korištena debljina od 800 m koja je preuzeta iz literature (Balling i dr., 2021).

Trijas (T)

Naslage donjeg (T₁) i srednjeg (T₂) trijasa također ne izlaze na površinu i njihove debljine su kao i za permske naslage preuzete iz literature (prema Balling i dr., 2021). Za donjotrijaske (T₁) naslage zastupljene klastitima i karbonatima tzv. *sajskih* naslaga te vapnencima i laporima *kampilskih* naslaga procijenjena je debljina od 550 m (Ivanović i dr., 1972). Debljina naslaga srednjeg trijasa (T₂) procijenjena je na 1300 m, a pored prevladavajućih diplopornih vapnenaca tu se nalaze i tufitični klastiti i zona silificiranih vapnenaca (Ivanović i dr., 1972). Naslage gornjeg trijasa (T₃) površinski su vidljive uz čelo Navlake Visokog krša (slika 3.3.1 i slika 4.2.1) na državnoj granici Hrvatske s Bosnom i Hercegovinom, te u unutrašnjosti kao dio erozijskog ostatka na granici Bosne i Hercegovine s Crnom Gorom (Vujisić, 1967). Zastupljene su naslagama glavnog dolomita (*hauptdolomit*) kao izmjenom ranodijagenetskih i kasnodijagenetskih dolomita (Velić i Vlahović, 2009) te *dahštajnskim vapnencima* s prepoznatljivim fosilima megalodona taloženim u grebenskom okolišu koji su utvrđeni na području Konavala (Prtoljan i dr., 2015), čija prosječna debljina iznosi 550 m.

Jura (J)

Jurske naslage slijede konkordantno na trijaskim naslagama, a obilježene su mirnom sedimentacijom koja je omogućila taloženje ukupno 1500 m debelog slijeda. Paralelne su s čelom Navlake Visokog krša od područja Osojnika do Sniježnice (Marković, 1966), te u središnjem dijelu Vanjskih Dinarida gdje ih na površinu dovodi navlaka nižeg stupnja (Natević i Petrović, 1964–1965). Najstarija donja jura (J_1) zastupljena je izmjenom vapnenaca i dolomita na kojoj slijede litiotidn vapnenci koji su naziv dobili prema čestim makrofosilnim ostatcima litiotidnih školjkaša (Marković, 1966) te mrljasti vapnenci (Velić i Vlahović, 2009), a ukupna je prosječna debljina veća od 300 m. Srednju juru (J₂) pretežito čine kalcitni i mrljasti vapnenci sive i smeđe boje (Marković, 1966) čija prosječna debljina iznosi 400 m. Gornjojurske naslage (J₃) na nekim listovima nisu klasificirane kao takve, nego kao prijelazna zona jursko-krednih dolomita navlake Visokog krša, a radi pojednostavljenja izrade modela, debljina ovih naslaga je procijenjena na 800 m. Pretežito ih čine pločasti vapnenci i dolomiti, ali na pojedinim lokalitetima u Lici nalaze se i *lemeške* naslage – vapnenci s rožnjacima nastali taloženjem u dubokovodnom okolišu kao rezultat produbljivanja uzrokovanog tektonskim pokretima i početku kompresije na Jadranskoj karbonatnoj platformi (Vlahović i dr., 2005; Velić i Vlahović, 2009).

Kreda (K)

Zbog početka kolizije tijekom krede je sve češće dolazilo do emerzijskih faza na pojedinim dijelovima platforme zbog čega taložene naslage krede imaju varijabilne debljine, a to su i površinski najrasprostranjenije naslage u istraživanom području (Slika 4.2). Naslage starije krede (K₁) taložene su u plitkomorskim uvjetima i sadrže brojne ostatke makroorganizama poput koralja, puževa, školjki i vrlo brojnih mikroorganizama (Natević, 1964–1965); prosječna debljina donjokrednih naslaga je oko 800 m. Debljina naslaga mlađe krede (K₂) je obično veća, ali je izrazito varijabilna, u rasponu od 600 do 1400 m. Gornjokredne naslage izgrađuju šire područje listova *Dubrovnik, Trebinje* i *Nikšić* (Slika 4.2, Marković, 1966, Natević i Petrović, 1964–1965, Vujisić i dr., 1967), uključujući većinu zaravni i polja, kao i

veći dio planinskih lanaca i vijenaca. Zbog široke prostorne rasprostranjenosti naslage su detaljnije raščlanjene prema fosilnom sadržaju (Marković, 1966), a najčešće se radi o pločastim vapnencima s proslojcima dolomita te vapnencima s bogatom faunom rudista, hondrodonta te nerineida turonske starosti.

Paleogen (Pg)

Paleogenske naslage mogu se podijeliti na paleocenske, eocenske i oligocenske, a na površini se nalaze uz navlačna čela (Slika 4.2). Na samom prijelazu iz krede u paleogen taložene su *kozinske* naslage glinovitih vapnenaca (Marković, 1966) zastupljenih uz priobalno područje Dubrovnika, Župe dubrovačke i Konavala, s ukupnim debljinama između 100 i 600 m. Preko *kozinskih* naslaga taloženi su foraminiferski vapnenci (numulitni, alveolinski i miliolidni) koji postupno preko pjeskovitih vapnenaca prelaze u eocenski i oligocenski fliš izgrađen od pješčenjaka, konglomerata, lapora i glina, često diskordantno istaloženih na foraminiferske i gornjokredne vapnence (Raić i Papeš, 1971).

Slika 4.2 Ilustracija digitalizacije geološke podloge listova OGK SFRJ Dubrovnik (Marković, 1966), Kotor (Antonijević i dr., 1969), Nevesinje (Mojićević i Laušević, 1965), Nikšić (Vujisić i dr., 1967) i Trebinje (Natević i Petrović, 1964–1965) u ArcGIS Pro programu.

4.3. Digitalizacija geološke podloge i prostorna analiza

Uzimajući u obzir da se područje istraživanja rasprostire na 2500 km², korišteni listovi Osnovne geološke karte SFRJ u mjerilu 1:100.000 (Marković, 1966; Antonijević i dr., 1969; Mojićević i Laušević, 1965; Vujisić i dr., 1967; Natević i Petrović, 1964–1965) su u daljnjem koraku digitalizirani i međusobno povezani kako bi se mogli koristiti kao bazni površinski raster za konstrukciju geoloških profila i generiranje trodimenzionalnog modela. Zbog nekompatibilnosti pojedinih listova, odnosno različite starosti naslaga na susjednim listovima, napravljene su manje modifikacije tijekom spajanja pojedinih jedinica (Slika 4.3).

Slika 4.1 Izdvojene domene značajnih lateralnih razlika u starostima kartiranih jedinica na kontaktima OGK listova Dubrovnik (Marković, 1966), Kotor (Antonijević i dr., 1969), Nevesinje (Mojićević i Laušević, 1965), Nikšić (Vujisić i dr., 1967) i Trebinje (Natević i Petrović, 1964– 1965).

Digitalizacija geološke podloge napravljena je u ArcGIS softverskom paketu, kao vektorizirani poligon s **osam litostratigrafskih jedinica**, prema čijoj rasterizaciji je napravljena i prostorna analiza distribucije pojedinih litostratigrafskih jedinica. Površine i udjeli pojedinih litostratigrafskih jedinica na istraživanom području prikazane su u Tablici 4.1 iz koje je vidljivo da gornjokredni vapnenci dominiraju s 55% udjela u površinskoj građi, a zajedno s donjom kredom (16%), kreda pokriva oko 71% ukupne površine istraživanja, dok ostale jedinice pojedinačno zauzimaju oko 5% površine terena.

Stratigrafska jedinica Oznaka		Površina (km ²)	Udio (%)	
kvartar Q		104,12	4,16	
paleogen	Pg	106,05	4,23	
gornja kreda K ₂		1372,60	54,81	
donja kreda	K_1	405,45	16,19	
gornja jura	J_3	136,49	5,45	
srednja jura	J_2	130,94	5,23	
donja jura	J_1	137,34	5,48	
gornji trijas	T_3	111,43	4,45	
	ukupna površina:	2504,41		

Tablica 4.1 Površine i udjeli površina litostratigrafskih jedinica istraživanog područja.

4.4. Geološki profili

Konstrukcija geoloških profila započela je pripremom ulaznih podataka u *ArcGIS-u 10.1.* U inicijalnoj fazi pripremljena je podloga digitalnog elevacijskog modela reljefnog rastera južne Dalmacije te su konstruirane trase pet paralelnih profila (oznake od 6–6' do 10–10'; vidi Sliku 4.2) duljine po 55 km, međusobnog razmaka od 9 km. Nakon postavljanja trasa profila ekstrapolirani su 2D profili s izvučenom topografijom, te određenim geološkim granicama i tektonskim kontaktima na temelju kojeg su dalje konstruirani geološki profili u programu *Adobe Illustrator*. U konstrukciji geoloških profila korištene su geometrijske zakonitosti koje se odnose na korelaciju geometrije rasjednih ploha te kogenetskih boranih struktura, a koje su prikazane u postojećim strukturnim modelima u znanstvenoj i stručnoj literaturi koji opisuju mehanizme nastanka tzv. *fault-bend-fold* te tzv. *fault propagation fold* borano-navlačnih struktura (Butler i dr., 2020) u domenama kolizija odnosno orogenim sustavima kao što su Alpe, Dinaridi, Albanidi i sl. (Slika 4.4).

Slika 4.2 Shematski prikaz tipova boranja A. *Fault-bend fold* i B. *Fault-propagation fold* (Butler i dr., 2020, modificirano prema Jamison, 1987).

4.4.1. Geološki profil 6–6'

Profil 6-6' (Slika 4.5, I. Prilog), najzapadniji je profil istraživanog područja poprečan na dinaridsko pružanje struktura s azimutom od 22°. Pruža se od kanala Daksa preko Osojnika, Popovog polja te planskih lanaca Bjelasnice, Sitnice i Viduša. Obuhvaća dvije tektonske jedinice, Dalmatinsku zonu i Navlaku Visokog krša, čije čelo se ističe s oznakom navlake A s izraženim površinskim slijedom naslaga od srednjeg trijasa do gornje krede. Na području Popova polja značajno je boranje *fault-propagation* tipa, ali bez rasjednih kontakata na površini (engl. blind faults), a najznačajniji rasjed je reversni pod oznakom DU-B koji se nalazi u neposrednoj podini navlake C, koja je ograničena deformiranom antiklinalom u čelu navlake. Konstrukcija sustava navlaka stilski odgovara modelu boranja po principu tzv. fault propagation fold tipa, a koje je dominantno i u krovini reversnih rasjeda iz seizmičkih refleksijskih profila. Prema Pensi i dr. (1984) te Pichi (2002), "blind fault" strukture vidljive su duž navlačnog fronta Dinaridskog sustava u južnom Jadranu. U odnosu na neposredno podmorje, navlake geotektonske Navlake Visokog krša i one u krovini orijentacije su sjeveroistok-jugozapad s nagibom prema sjeveroistoku te ih čine borani sustavi nastali faultbend-fold tipom boranja (Fossen, 2010) s glavnim dekolmanskim horizontom trijaske starosti. Ukupna vrijednost izdizanja je oko 6 km.

Slika 4.3 Geološki profi 6–6'.

4.4.2. Geološki profil 7–7'

Profil 7–7' (Slika 4.6, II Prilog), udaljen je 9 km IJI od paralelnog profila 6–6' s istim geometrijskim karakteristikama. Pruža se od Kupara prema Popovom polju i planinskim lancima kao i profil 6–6', a slična je i topografija. Na tom je profilu vidljiva promjena nagiba

ustrmljenog čela Navlake Visokog krša te zadebljanje naslaga paleogena i smanjenje deformacije karbonatnog dijela platforme u Dalmatinskoj zoni. U jedinici Visokog krša rasjedne plohe su jednako orijentirane kao i na profilu 6–6' (vergencija struktura je prema JZ), ali je vidljivo značajnije izdizanje naslaga i boranje usmjereno prema sjeverozapadnom dijelu navlake. Antiklinala u vrhu navlake s oznakom C nije značajno rasjednuta kao što je to slučaj na profilu 6–6' s istim tipom rasjedanja. Zbog većeg intenziteta kompresije na sjeveroistočnom dijelu profila je došlo do izdizanja jurskih naslaga na dekolmanskom horizontu navlake D. Ukupna vrijednost izdizanja je oko 6,1 km.

Slika 4.4 Geološki profil 7–7'.

4.4.3. Geološki profil 8–8'

Profil 8–8' (Slika 4.7, III. Prilog), udaljen je 9 km IJI od paralelnog profila 7–7' s istim geometrijskim karakteristikama. Pruža se od Cavtata prema Mokrom polju u zaleđu Trebinja i Bilećkom jezeru. Čelo Navlake Visokog krša ukazuje na tektonski transport prema JZ, s vrijednostima pomaka od 3 km u smjeru jugozapada u odnosu na profil 7–7', između kojih se nalazi rasjed s horizontalnim pomakom zanemaren u daljnjem modeliranju. Duž izdvojenog profila došlo je do značajnije kompresije u središnjem dijelu profila i izlaska navlake označene kao B na površinu, pri čemu je antiklinala u njezinom čelu erodirana. Na profilu je zabilježena značajnija akumulacija naslaga riječnog toka Trebišnjice i njezinih pritoka te zapunjavanje Popovog i Mokrog polja. Naslage Jadranske karbonatne platforme u podmorju slabije su deformirane na početnom jugozapadnom dijelu u odnosu na odgovarajući dio profila 6 i 7, dok je uz sam rub navlačne zone došlo do podvlačenja naslaga

DU-1 B DU-2 DU-2 DU-2 DU-4 DU-4 DU-5 B DU-4 DU-5 B DU-4 DU-5 B DU-5 B DU-0 DU-4 DU-5 B DU-0

u obliku sinklinale. Boranje *fault-propagation* tipa u središnjem dijelu profila slabije je izraženo nego na prethodnim profilima, a maksimalna vrijednost izdizanja je oko 5,2 km.

Slika 4.5 Geološki profil 8–8'.

4.4.4. Geološki profil 9–9'

Profil 9–9' (Slika 4.8, IV. Prilog), udaljen je 9 km IJI od paralelnog profila 8–8' a obilježen je istim geometrijskim značajkama. Pruža se od Konavala preko Sniježnice prema Vrbanjskom polju i predgorskom dijelu Orjena (Slika 2.1). Zbog intenzivnije kompresije na tom je profilu došlo do napredovanja navlačnog sustava prema Dalmatinskoj zoni te većih deformacija u središnjem dijelu uzrokovanih izdizanjem donjotrijaskih naslaga. Naslage u navlaci označenoj kao C izdignute su do površine gdje su erodirane još uvijek prisutnom drenažnom mrežom, koja ujedno taloži aluvijalne naslage na središnjem dijelu profila. Duž konstruiranog profila naslage Jadranske karbonatne platforme su slabije deformirane u jugozapadnom dijelu, ali je na kontaktu s Navlakom Visokog krša, došlo do izraženog boranja i formiranja asimetričnih sinklinalnih i antiklinalnih struktura u neposrednoj podini i krovini rasjeda, a naslage su u nekim dijelovima i prebačene. Boranje *fault-propagation* tipa izraženo je na jugozapadnom dijelu profila prema čelu Navlake Visokog krša, a maksimalna vrijednost izdizanja je oko 4,3 km.

Slika 4.6 Geološki profil 9–9'.

4.4.5. Geološki profil 10–10'

Profil 10–10' (Slika 4.9, V. Prilog), najistočniji je profil udaljen 9 km IJI od paralelnog profila 9–9', a istih je geometrijskih karakteristika kao i drugi opisani profili. Topografski je sličan profilu 9–9' jer se proteže od Konavala preko Sniježnice i Orjena, ali je navlaka C izraženije erodirana. Kompresija je duž konstruiranog profila izraženija nego na drugim profilima, a čelo Navlake Visokog krša deformirano je dvostrukim povećanjem nagiba. Navlake s oznakama B i C su napredovale za nekoliko kilometara prema Jadranskoj zoni, dok je navlaka D potpuno deformirana bez moguće korelacije s prethodnim profilom. Karbonatne i flišne naslage Jadranske karbonatne platforme potpuno su prebačene u sinklinalu uz rub čela Navlake Visokog krša te su tako i kartirane na površini. Boranje *fault-propagation* tipa izraženo je u cijeloj Navlaci Visokog krša s maksimalnom vrijednosti izdizanja od približno 3,5 km.

Slika 4.7 Geološki profil 10–10'.

5. IZRADA KONCEPTUALNOG 3D MODELA STRUKTURNE GRAĐE DUBROVAČKOG PODRUČJA

Trodimenzionalnom vizualizacijom strukturne građe podzemlja jasnije se utvrđuju odnosi te evolucija kompleksnih geoloških struktura čija se arhitektura teško može opisati samo na temelju profila. Od ranih 2000-ih došlo je do značajnog razvoja softverskih paketa za 3D i 4D vizualizaciju: od *Schlumberger Petrel*-a, *GeoScene3D*-a,*Blender*-a, *Golden Surfer*-a do *Petroleum Expert Move* paketa i drugih softvera. Kako se u ovom diplomskom radu željelo izgraditi regionalni strukturni model šireg dubrovačkog područja u tu svrhu je korišten *Petroleum Expert Move* softver. Programski paket sadrži module kinematskog modeliranja, geomehaničkog modeliranja, sedimentološkog modeliranja, strukturnih modeliranja građe i izrade profila te 4D modeliranja. Kako su u razvoju navedenog softvera aktivno sudjelovali geoznanstvenici iz domena znanosti i gospodarstva, *Move* softver je danas jedan od najkorištenijih programa za strukturno modeliranje i analizu u područjima geološkog kartiranja, geotehnike, strukturne geologije, petrografije, naftne industrije, seizmotektonike i drugih disciplina.

U izradi ovog diplomskog rada korišteni su alati za prostornu digitalizaciju geoloških profila, izradu 3D modela korelacijom podataka s konstruiranih geoloških profila poprečnih na geološke strukture, odnosno poprečnih na pružanje Dinarida. U strukturnom modeliranju korišteni su i alati za izračun pomaka po rasjedu, geometrijskih parametara rasjednih ploha te vizualizaciju i analizu seizmičkih podataka (na temelju 400 epicentara potresa) preuzetih stranica Geološke službe Sjedinjenih Američkih Država sa (https://earthquake.usgs.gov/earthquakes/search/). Ulazni podaci korišteni za izradu strukturnog modela pripremani su u programima ArcGIS 10.1, ArcGIS Pro te Adobe Illustrator. U GIS-u su pripremljeni digitalni elevacijski model (DEM), tragovi geoloških profila te je digitalizirana geološka podloga dubrovačkog područja temeljem OGK listova Dubrovnik, Kotor, Nevesinje, Nikšić i Trebinje. Na temelju navedenih geoloških karata konstruirani su geološki profili koristeći Adobe programski paket, što je detaljnije opisano u poglavlju 4.3.

5.1. Postupak modeliranja u *Petroleum Expert Move* softveru

Nakon unosa DEM-a reljefnog rastera istraživanog područja te trasa konstruiranih geoloških profila 6–10 (Slika 4.1), u prvom je koraku bilo nužno digitalizirati geološke granice te

rasjede koji su interpretirani na konstruiranim geološkim profilima. To je podrazumijevalo ručnu digitalizaciju rasjednih linija i horizonata svake litostratigrafske jedinice i u krovini i u podini rasjeda. Također je za potrebe izrade modela bilo potrebno definirati stup geološkog slijeda naslaga s pripadajućim strukturnim odnosima, debljinama te starostima tablično, kako je prikazano na Slici 5.1. Nakon izrade strukturnog 3D modela provedeni su postupci izračuna pomaka po rasjedima te je određen seizmogeni potencijal interpretiranih rasjednih ploha u obliku empirijskog proračuna maksimalnih magnituda potresa koji se mogu dogoditi na pojedinim rasjednim plohama.

□ Stratigraphy & Rock Properties [MODEL_15_2_2022JM] -						_	×	
File Edit Table								
🖌 🐚 🐘 🛅 🎆 🖉 - 💁 🖺 🍈 📸 🔺 🕨 🕸 🖏 💆 🔳 🗐 🥹								
Stratigraphy	Rock Properties	Strat. Column	Compaction	Curves				
	Horizon	Colour	Rock Type	Age	Thickness	Active		^
1	eocen		Default	66.0 Ma	400.0 m	\checkmark		
2	kreda gornja		Default	100.5 Ma	1400.0 m	\checkmark		
3	kreda donja		Default	145.0 Ma	700.0 m	\checkmark		
4	jura gornja		Default	163.5 Ma	800.0 m	\checkmark		
5	jura srednja		Default	174.1 Ma	400.0 m	\checkmark		
6	jura donja		Default	201.3 Ma	300.0 m	\checkmark		
7	trijas gornji		Default	237.0 Ma	500.0 m	\checkmark		
8	trijas srednji		Default	247.2 Ma	1300.0 m	\checkmark		
9	trijas donji		Default	251.9 Ma	500.0 m	\checkmark		
10	perm		Default	298.9 Ma	800.0 m	\checkmark		
								 ~

Slika 5.1 Definiranje stratigrafskih jedinica, njihove starosti i debljina neophodno za automatizaciju cijelog postupka. Starost donje granice izdvojenih jedinica je prikazana na temelju Svjetske kronostratigrafske ljestvice preuzete s https://stratigraphy.org/ICSchart/ChronostratChart2022-02.jpg.

Modeliranje rasjednih ploha u obliku povezivanja rasjednih linija između svih profila u jedinstvene plohe kao i modeliranje horizonata stratigrafskih jedinica interpretiranih na geološkim profilima prikazano je na primjeru profila 7–7' na Slici 5.2. U provedenim koracima, tijekom digitalizacije konstruiranih geoloških profila, uslijed iscrtavanja horizonata rasjeda i stratigrafskih jedinica u nekim slučajevima bilo je nužno prilagoditi nagibe zbog nemogućnosti projekcija ploha radi prevelikih odstupanja između profila, ali i zbog pojednostavljivanja strukturnih odnosa regionalnog modela.

Slika 5.2 Primjer digitalizacije interpetiranih horizonata stratigrafskih jedinica te rasjednih linija za profil 7–7'.

U digitalizaciji rasjednih ploha navlačne geometrije uočenih na profilima (Slika 5.3), korištena je metoda definirana prema Wattersonu i Walshu (1988) koja podrazumijeva karakterizaciju rasjeda kao polifaznih struktura s promjenjivim vrijednostima pomaka po plohi i pružanju. U novije doba iste metode primjenjuju se na geološke modele generirane na temelju podataka 3D seizmičke refleksije visoke razlučivosti.

Slika 5.3 Površinska distribucija navlačnih ploha rasjeda u ArcGis Pro softveru. Na slici su vidljivi rasjedni poligoni s označenim presječnicama vršnih i baznih dijelova svake rasjedne plohe zasebno (a–e).

Slika 5.4 Prostorni raspored modeliranih rasjednih ploha (a–d) prema konstruiranim geološkim profilima 6–10 na kojima su prikazane rasjedne strukture navlačne geometrije.

Prostorno modeliranje interpretiranih stratigrafskih jedinica u *Move* softveru grafički je prikazano nizom ilustracija a–d na Slici 5.4. Modeliranje stratigrafskih jedinica provedeno je koristeći linearni i zakrivljeni algoritam, pri čemu su debljine i starosti jedinica odabrane prema prethodno definiranim debljinama jedinica u geološkom stupu (Slika 5.1), što je značajno pojednostavilo generiranje 3D struktura u podzemlju odnosno identifikaciju horizontalnih i vertikalnih pomaka u zoni Navlake Visokog krša te pratećih struktura. Modeliranje struktrura je podrazumijevalo i zaglađivanje ploha, što je provedeno kroz dva do tri iterativna koraka, kao i proračun volumnih odnosa te vizualizaciju geoloških i topografskih odnosa temeljem DEM-a (Slika 5.6).

U završnim koracima izrade strukturnog modela podzemlja rekonstruirana je vremenska aktivnost rasjeda. Model je dodatno nadopunjen seizmološkim podacima, odnosno katalogom instrumentalno zabilježenih potresa. Analiza prostorne distribucije potresa (Slika 5.5, Prilog VI) pokazuje da su najplići potresi (do 5 km dubine) zastupljeni većim dijelom u jugoistočnom dijelu istraživanog područja, s najvećom magnitudom vrijednosti M 5,2 koncentriranjem potresa u plićim dijelovima između profila 6–6' i 8–8'. Većina potresa iz kataloga potresa ima hipocentre na dubinama većim od 10 km, tj. ispod dubina prikazanih na modelu.

Od ukupno 400 potresa iz navedenog kataloga 35% ih ima magnitudu M < 2, 51% ima M 2—3, 9% M 3—4, a samo 5% prikazanih potresa ima magnitudu veću od 4. U katalogu potresa je uočeno da su 274 hipocentra potresa fiksirani na dubinu od 10 km. To je vjerojatno posljedica nepotpunosti informacija o značajkama potresa što je potencijalno uvjetovano nedostatnom mrežom seizmoloških postaja, zbog čega je bilo nemoguće precizno odrediti dubine potresa.

Iako softver *Move* podržavaja različite vrsta datoteka, ulazni tablični podatci kataloga potresa su prethodno prostorno prilagođeni u GIS-u radi smanjenja količine preuzetih podataka i uređenja koordinatnog sustava.

Slika 5.5 Postupna vizualizacija horizonata stratigrafskih jedinica naslaga: a- perma, trijasa; b - donje i srednje jure; c - gornje jure; d - donje jure, dijelova donje i gornje krede te eocena.

Slika 5.6 Prostorna distribucija epicentara potresa iz kataloga potresa Geološke službe SAD-a (<u>https://earthquake.usgs.gov/earthquakes/search/</u>) za razdoblje od 1901. do 2021. godine. Na karti istraživanog područja prikazane su granice izrađenog modela te tragovi konstruiranih profila.

5.2. Rezultat modeliranja

Konstruirani strukturno-geološki model dubrovačkog područja prikazan na Slici 5.6 ukazuje na prisutnost niza navlačnih struktura na području dubrovačkog priobalja te neposrednog zaleđa. Navlačne strukture su nastale u neposrednoj krovini i podini tektonske jedinice Navlake Visokog krša (Vlahović i dr., 2005; Schmid i dr., 2008 i dr.), blage su geometrije te ukazuju na nastanak niza asimetričnih kogenetskih boranih struktura koje su kao posljedica nastale u krovinskim dijelovima navlačnih rasjeda tektonski aktivnih tijekom mlađe krede te eocena i oligocena (Vlahović i dr., 2005, Schmid i dr., 2008 i dr.).

Slika 5.7 Finalna verzija konstruiranog 3D strukturno-geološkog modela područja. Modeli prikazuju sustave navlačnih rasjeda s interpretiranim stratigrafskim jedinicama, površinske geološke odnose te prostorni odnos hipocentara potresa u odnosu na konstruirani strukturni model.

Posljedica kontinuirane kompresije na području Dinarida, koja je prisutna i danas kao posljedica kolizije i rotacije Jadranske mikroploče (Schmid i dr., 2008), umjerena je do snažna seizmičnost na području istraživanja, te akomodacija deformacijskih procesa duž reversnih rasjeda, tj. navlačnih rasjeda listričke geometrije (kuta nagiba uglavnom < 20°) koji se povezuju duž dekolmanskog horizonta na granici gornjeg i srednjeg trijasa. Važnost dekolmanskog horizonta kao seizmički i strukturno aktivnog "sloja" može se uočiti na Slici 5.7 gdje je vidljivo grupiranje hipocentara potresa.

Potresi magnituda M 1,5–3 koncentrirani su na dubinama između 4 i 5 km na području 2 km sjeveroistočno od grada Dubrovnika, gdje se prema OGK nalazi rasjed na čijem je sjevernom dijelu pretpostavljen horizontalni pomak veći od 6 km na području između profila 7 i 8 gdje čelo Navlake Visokog krša ima konveksan oblik. Isti pomak uočen je analizom aktivnosti segmenta čela Navlake Visokog krša opisanom u poglavlju 5.3.

Na sjeveroistočnoj strani konstruiranog modela prikazanog na Slici 5.6 nalazi se nekoliko manjih hipocentara potresa koji se podudaraju s navlakama B i C, također magnituda $M \le 2.0$, dok su jači potresi zabilježeni na dubini oko 10 km, ispod razine prikazane modelom. Razlika u distribuciji hipocentara potresa u odnosu na modelom dobivene strukture može ukazivati na: i) krivu procjenu debljine naslaga srednjeg trijasa, donjeg trijasa i perma

preuzetih iz Balling i dr. (2021), ii) prisutnost drugih dekolmanskih horizonata, ili iii) nepotpunost kataloga potresa i pogrešne proračune dubina hipocentara potresa uslijed nepovoljne prostorne distribucije seizmoloških postaja.

5.3. Analiza tektonske aktivnosti Navlake Visokog krša

U ovom je radu kvantitativna analiza pomaka duž modeliranih rasjednih ploha (Slike 5.8 i 5.9) izvršena mjerenjem triju komponenata pomaka kao rezultata razlike sjecišta horizonata u podini i krovini pojedinih stratigrafskih jedinica na rasjednoj plohi. Pojedinačne komponente pomaka po rasjednoj plohi čine skok (engl. *throw*), hod (engl. *heave*) i relativni pomak (engl. *slip*). Teoretski gledano, pomak na rasjedu maksimalan je u njegovom središnjem dijelu, dok se veličina pomaka smanjuje prema krajevima rasjeda, odnosno na krajevima rasjeda bi pomak trebao imati nultu vrijednost.

Analiza tektonske aktivnosti Navlake Visokog krša na rasjedu oznake DU-1 provedena je stvaranjem *cut-off* linija horizontalnog stratigrafskog skupa starosti od gornje krede do srednjeg trijasa, a rezultati proračuna prikazani su dijagramom na slici 5.8.

Slika 5.9 Dijagram odnosa horizontalnih i vertikalnih vrijednosti pomaka duž konstruiranih rasjednih ploha po izdvojenim stratigrafskim horizontima.

Strukturno-stratigrafski promatrano, najveći skokovi su zabilježeni kod jurskih naslaga (6 km), a najmanje naslage srednjeg trijasa (1 km), dok je prostorno gledano najveći pomak zabilježen na jugozapadnom dijelu istraćivanog područja (Slika 5.6), uz sam rub navlačnog segmenta na dubinama između 3 i 4 km (Slika 5.9). Prosječni vertikalni pomak slijeda naslaga po rasjednoj plohi Navlake Visokog Kkrša je oko 3 km (Slika 5.8).

Slika 5.10 Prikaz vrijednosti vertikalnog pomaka na rasjednoj plohi čela Navlake Visokog krša tj. DU-1 s rozeta dijagramom orijentacije tektonskog transporta.

Prema proračunu relativnog pomaka po rasjednoj plohi te duljini rasjedne plohe u narednom je koraku provedena regresijska korelacija veličine maksimalnog pomaka po rasjedu i duljine rasjedne plohe u logaritamskom mjerilu prema metodi Wellsa i Coopersmitha (1994).

S obzirom da je u programu *Move* pohranjena literaturna baza obrađenih regresijskih analiza empirijskih odnosa (Slika 5.11) u ovom radu provedena je analiza karaktera maksimalnog pomaka rasjeda s obzirom na geometrijske karakteristike rasjeda. Rezultati ukazuju da je prema vrijednostima maksimalnog pomaka te s obzirom na geometriju rasjeda Navlaka Visokog krša ulazi u kategoriju *dip-slip* reversnih rasjeda koji moguće imaju i značajnu komponentu *strike-slip* pomaka.

Slika 5.11 A. Recesijska krivulja maksimalnog pomaka i duljine rasjeda (prema metodi Wellsa i Coopersmitha, 1994), B. Dijagram skaliranja rasjeda i odredbe tipa rasjeda s obzirom na veličinu maksimalnog pomaka te geometrije rasjedne plohe.

5.4. Proračun očekivane maksimalne magnitude potresa na izdvojenim seizmogenim rasjedima

U ovom radu se procjena seizmogenog potencijala modeliranih rasjednih ploha u konstruiranom strukturnom modelu temelji na parametrima rasjeda opisanih u radu Wellsa i Coppersmitha (1994).

U tu svrhu korišteni su geometrijski parametri aktivnih dionica rasjeda koji su podrazumijevali duljinu rasjeda po pružanju te širinu rasjedne plohe, iz čega proizlazi ukupna površina rasjeda ili aktivna površina rasjeda. Osim geometrijskih parametara aktivnih rasjeda u proračunu empirijskih vrijednosti magnituda potresa korišteni su i podaci o tipu i karakteru pomaka te nagibu rasjeda.

Aktivna površina (RA) kao i ostali geometrijski parametri svake modelirane rasjedne plohe preuzeti su iz *Move* softvera (Tablica 5.2). Uz vrijednosti površina rasjednih ploha određeni su i geometrijski parametri širine, odnosno duljine rasjednog segmenta zahvaćenog na površini. Nagib i azimut su dobiveni dodatnom analizom rasjednih ploha naredbom *Surface Geometry* s proračunom nagiba i azimuta svakog segmenta generiranih ploha, te njihove aritmetičke sredine s prikazom na rozeta dijagramu i stereografskoj mreži (Slika 5.12).

Slika 5.12 Rezultat proračuna nagiba (B) i azimuta (A) svakog segmenta generiranih rasjednih ploha statistički prikazan rozetnim dijagramom i na stereografskoj mreži (C).

Temeljem navedenih geometrijskih i kinematskih karakteristika modeliranih rasjednih ploha, koje su obilježene kompresijskim režimom naprezanja (Sh_{max} – pružanje SI–JZ – prikaz na Slici 3.6) za proračun seizmogenog potencijala modeliranih rasjednih ploha korištena je relacija Wellsa i Coopersmitha (1994):

$\mathbf{M} = \mathbf{a} + \mathbf{b}^* \mathbf{log}(\mathbf{R}\mathbf{A})$

gdje M predstavlja izračun maksimalne magnitude potresa za modelirane rasjedne plohe, a i b predstavljaju regresijski određene koeficijente s obzirom na kinematiku rasjeda (Slika 5.12, Tablica 5.1), dok je RA seizmički aktivna površina rasjeda u km².

Tablica 5.1Vrijednosti koeficijenata a i b korištenih za proračun maksimalnih očekivanihmagnituda potresa za potencijalno aktivne seizmogene rasjede (prema Wells i Coopersmith, 1994).

Tip pomaka po rasjedu	Koeficijenti		Standardna	Koeficijent korelacije,	
(engl. "slip type")	а	Ь	σ	r ²	
Normalni rasjedi	3,93	1,02	0,25	0,92	
Reverzni rasjedi	4,33	0,90	0,25	0,94	
Rasjedi s horizontalnim kretanjem	3,98	1,02	0,23	0,96	

Slika 5.13 Linearna regresija magnitude i seizmički aktivne površine (Wells i Coopersmith, 1994).

Procijenjene maksimalne magnitude mogućih potresa koji se mogu dogoditi na modeliranim rasjednim plohama su M 6,29 i M 7,53.

Naziv rasjeda	Duljina po pružanju (km)	Kut nagiba rasjeda	Karakter pomaka	Aktivna površina rasjeda (km ²)	Procijenjena maksimalna magnituda
DU-1	38,59	11°	REV	1690,702998	7,53
DU-2	38,53	14°	REV	956,796867	7,28
DU-3	39,36	10°	REV	966,455935	7,29
DU-4	38,37	13°	REV	486,937593	6,99
DU-5	36,90	16°	REV	96,289668	6,29
DU-6	38,49	4 °	REV	515,599679	7,02?

Tablica 5.2Odabrani generirani seizmogeni izvor (rasjed) okarakteriziran geometrijskimznačajkama, karakterom pomaka te procjenjenom maksimalnom očekivanom magnitudom potresa.

6. DISKUSIJA

Okolica Dubrovnika povijesno bilježi značajnu seizmičku aktivnost, od Velikog Dubrovačkog potresa 1667. godine, potresa u Herceg-Novog 1979. godine, Slanom 1996. godine do recentnijih potresa poput onog 2018. godine u Draču, s $M \ge 6$ po Richteru. Da se tu radi o još uvijek aktivnom deformacijskom frontu potvrđuju instrumentalna praćenja koja svake godine registriraju nekoliko stotina potresa na području južne Dalmacije, čiji su epicentri pretežito locirani u podmorju Jadrana, gdje se nalazi glavnina seizmogenih izvora koji se strukturno nalaze ispod strukturnog modela konstruiranog u ovom radu. Aktivnost rasjednih ploha koje su genetski vezane uz Navlaku Visokog krša procijenjena je empirijskim proračunom maksimalne magnitude svake od generiranih ploha smatrajući ih seizmogenima. Najveću vrijednost empirijski procijenjene magnitude potresa u području istraživanja ima najveća rasjedna ploha koja predstavlja Navlaku Visokog krša (M 7,53), dok je proračun za plohu rasjeda u Dalmatinskoj zoni označenu kao **DU-6** (M=7,02), vrlo moguće upitan jer rasjedna ploha ne izlazi na površinu modela, a prostorno je ograničena. Veličine proračunatih magnituda potresa za modelirane rasjedne plohe su raspona od 6,29 do 7,53. Kako bi se dobila jasnija slika o strukturnoj građi podmorja i podzemlju, bilo bi korisno konstruirane geološke profile dopuniti s profilima refleksijske seizmike koji se pružaju sve do obalnog područja ispod kojeg se nalazi kontaktna zona uzrokovana kompresijom. Rezultati ukazuju da su procijenjene magnitude velike te da modelirane rasjedne plohe mogu generirati snažne potrese. Ovdje valja naglasiti da u praksi rasjedne plohe kao seizmogeni izvori gotovo nikada ne oslobode ukupnu nakupljenu seizmičku energiju, pa time i procijenjene magnitude mogu biti podložne korekcijama. U geološkom modelu su vidljivi horizontalni pomaci naslaga u domeni čela navlake, koji se poklapaju i s pomacima dobivenim prilikom analize. Pored toga rasjedne plohe su vjerojatno segmentirane, što nije uzeto u obzir prilikom proračuna u ovom diplomskom radu. Iako segmentiranost rasjednih ploha može smanjiti vrijednosti očekivanih maksimalnih magnituda potresa, to vjerojatno ne utječe značajno na promjenu proračunatih maksimalnih magnituda zbog velikih površina rasjeda, odnosno primjene logaritamske linearne regresije. Manji rasjedni segmenti nastaju zbog lokaliziranih geometrijskih nepravilnosti glavnih rasjednih ploha, odnosno mikro-rasjednih zona u kojima dolazi do drobljenja stijene, čiji se ulomci vežu u breču geokemijskim procesima (Billi i dr., 2003). Takvim drobljenjem stijene povećava se i njezina propusnost što omogućava vertikalni transport fluida čija prisutnost umanjuje koeficijent trenja, poboljšava gibanje i fragmentaciju materijala (Hausegger i dr., 2010) u dubinama do 5 km, dok na većim dubinama fluidi mogu smanjivati trenje i efektivni tlak potreban za razvoj pukotina te imati bitnu funkciju u dinamici žarišnih mehanizama potresa. Jedina razlika kretanja u rasjednoj zoni aseizmičkim pomakom i koseizmičkim gibanjem je brzina mehaničkog sloma stijenske mase. U praksi to bi se moglo razlučiti preciznim GPS mjerenjima kroz dugi niz godina uz preklapanje hipocentara trodimenzionalnih modela strukturne građe što predstavlja jedini mogući način praćenja pomaka duž izdvojenih rasjednih zona. Kod korištenih podataka o seizmičnosti koji su Geološke službe SAD-a preuzeti sa stranica (https://earthquake.usgs.gov/earthquakes/search/) uočen je značajan broj hipocentara na 10 km dubine. Razlog tome vjerojatno leži u instrumentalnoj nepreciznosti bilježenja potresa na istraživanom području i malom broju seizmoloških postaja, a time i postojanju značajne vertikalne nepreciznosti u odredbi dubina hipocentara potresa. Hipocentri na području jugozapadnog dijela modela zabilježeni u razdoblju od 1901. do 2021. godine odgovaraju pretpostavljenom položaju granice između srednjeg i gornjeg trijasa što ukazuje na postojanje dekolmanskog horizonta u toj razini ili na aktivnost duž strike-slip rasjeda koji su brojni u vršnoj zoni čela Navlake Visokog krša, a nalaze se između profila koje ne presijecaju (strike-slip rasjedi su u ovom radu zanemareni prilikom izrade modela radi komplesnosti struktura samog navlačnog sustava).

7. ZAKLJUČAK

Konstrukcijom i interpretacijom profila 6-10 poprečnih na dinaridsko pružanje stvoren je trodimenzionalni model strukturne građe istraživanog dubrovačkog područja kojim se dobiva potpunija slika o cijelom sklopu navlačnog kompleksa Vanjskih Dinarida preko neporemećenog dijela Jadranske mikroploče. Navlačni sklop obilježen je fault-bend i faultpropagation tipom boranja, s maksimalnim vertikalnim pomakom u čelu od 3,5 do 6,1 km pretpostavljenim na temelju izrađenih geoloških profila. Dok je analizom generirane plohe dobiven najveći vertikalni pomak za naslage jure, krede i gornjeg trijasa od 6,1 km, najmanji vertikalni skok od 1 km pokazuju srednjotrijaske naslage, što potvrđuje promjenu intenziteta kompresije kroz geološka razdoblja i dekolmansko rasjedanje u zoni trijaskih naslaga, obilježenih vulkanizmom te taloženjem klastičnih naslaga i vapnenaca na karbonatnoj platformi. Kompresijska tektonika, osim rotacijsko-translacijskog kretanja Jadranske mikroploče kojim dolazi do kolizije s Euroazijskom pločom, uzrokuje reverzne rasjede tvoreći navlačni kompleks Dinarida popraćen umjerenom, a ponegdje lokalno i snažnom seizmičkom aktivnošću. Prepoznavanje epicentralnih, seizmogenih zona u podzemlju, odnosno dubinske geološke građe od velikog je značaja za određivanje seizmogenog potencijala rasjednih zona, a preklapanjem seizmotektonskih podataka, poput hipocentara potresa moguće je potvrditi recentnu tektonsku aktivnost na temelju seizmičke aktivnosti ako su korišteni podatci korektni i precizni. Proračunate empirijske vrijednosti proračunatih maksimalnih magnituda potresa na rasjedima u istraživanom dijelu dubrovačkog primorja su u rasponu od 6,29 do 7,53. S obzirom na različite pomake može se zaključiti da se intenzitet izdizanja unutar Navlake Visokog krša i kogenetskih navlaka u zaleđu kroz vrijeme mijenjao, a da su glavni dekolmanski horizonti bile klastične naslage slabijih fizičko-mehaničkih svojstava, pretežito trijaske i/ili permske starosti, izdignute na površinu uz rubove navlaka različitih kategorija od kojih su neke erodirane tijekom dugotrajne izloženosti površinskim uvjetima. Razmatrajući vrijednosti proračunatih magnituda za modelirane rasjede valja naglasiti da su vrijednosti izuzetno velike zbog čega bi trebalo napraviti detaljniju raščlambu koristeći seizmičke profile te uzimajući u obzir kompleksnost geometrije rasjednih ploha.

LITERATURA

Anderson, H. i Jackson, J. (1987): Active tectonics of the Adriatic region.– Geophys. J. R. Astron. Soc., 91, 937–983.

Antonijević, R., Pavić, A. i Karović, J. (1969): Osnovna geološka karta SFRJ 1:100.000, List Kotor K34-50.– Savezni geološki zavod, Beograd.

Antonijević, R., Pavić, A., Karović, J., Dimitrijević, M., Radoičić, R., Pejović, D., Pantić, S. i Roksandić, M. (1973): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Kotor K34-50 i Budva K34-62.– Savezni geološki zavod, Beograd.

Bada, G., Horváth, F., Dövényi, P., Szafián, P., Windhoffer, G. i Cloetingh, S. (2007): Present-day stress field and tectonic inversion in the Pannonian basin.– Global and Planetary Change, 58, 165–180.

Balling, P., Tomljenović, B., Schmid, S.M. i Ustaszewski, K. (2021): Constrasting alongstrike deformation styles in the central External Dinarides assessed by balanced crosssections: Implications for the tectonic evolution of its Paleogene flexural foreland basin system. – Global and Planetary Change, 205.

Basili, R., Kastelic, V., Demircioglu, M.B., Garcia Moreno, D., Nemser, E.S., Petricca, P., Sboras, S.P., Besana-Ostman, G.M., Cabral, J., Camelbeeck, T., Caputo, R., Danciu, L., Domac, H., Fonseca, J., García-Mayordomo, J., Giardini, D., Glavatovic, B., Gulen, L., Ince, Y., Pavlides, S., Sesetyan, K., Tarabusi, G., Tiberti, M.M., Utkucu, M., Valensise, G., Vanneste, K., Vilanova, S. i Wössner., J. (2013): The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE.http://diss.rm.ingv.it/share-edsf/, doi:10.6092/INGV.IT-SHARE-EDSF.

Battaglia, M., Murray, M., Serpelloni, E. i Burgmann, R. (2004): The Adriatic region: an independent microplate within the Africa–Eurasia collision zone.– Geophys. Res. Lett. 31, L09605. doi:10.1029/2004GL019723

Billi, A., Salvini, F. i Storti, F. (2003): The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability.– Journal of Structural Geology, 25, 1779–1794.

Bognar, A., 1994: Neke od temeljnih značajki razvoja pedimenata u gornjoj zoni vanjskih Dinarida. – Hrvatski geografski glasnik 56, 21–31.

Bognar, A., 1999: Geomorfološka regionalizacija Hrvatske. – Acta Geographica Croatica 34, 7–29.

D' Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S. i Selvaggi, G. (2008): Active tectonics of the Adriatic region from GPS and earthquake slip vectors.– Journal of Geophysical Research – Solid Earth, 113, B12413, doi:10.1029/2008JB005860.

DeMets, C., Gordon, R., Argus, D., Strein, S. (1990): Current plate motions. – Geophysical Journal Internacional 101, 425–478.

Govorčin, M., Herak, M., Matoš, B., Pribičević, B., Vlahović, I. (2020): Constraints on Complex Faulting during the 1996 Ston–Slano (Croatia) Earthquake Inferred from the DInSAR, Seismological, and Geological Observations. – Remote Sensing 12 (7), 1157.

Grimani, I., Šikić, K. & Šimunić, A. (1972): Osnovna geološka karta SFRJ 1:100.000, List Knin L33–141. – Institut za geološka istraživanja, Zagreb, (1962–1966); Savezni geološki institut, Beograd.

Hausegger, S., W. Kurz, R. Rabitsch, E. Kiechl, F-J. Brosch (2010). Analysis of the internal structure of a carbonate damage zone: Implications for the mechanisms of fault breccia formation and fluid flow. – Journal of Structural Geology, 32, 1349–1362.

Herak, M., Herak, D., Markušić, S. (1996.), Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. – Terra Nova, 8 (1): 86–94.

Herak, M., Herak, D., Markušić, S. (1996.), Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992- – Terra Nova, 8 (1): 86–94.

Ivančić, I., Herak, D., Herak, M., Allegretti, I., Fiket, T., Kuk, K., Markušić, S., Prevolnik, S., Sović, I., Dasović, I., Stipčević, J. (2018): Seismicity of Croatia in the period 2006–2015. – Geofizika, 35 (2018), 1; 69–98 doi:10.15233/gfz.2018.35.2.

Ivančić, I., Herak, D., Herak, M., Allegretti, I., Fiket, T., Kuk, K., Markušić, S., Prevolnik, S., Sović, I., Dasović, I., Stipčević, J. (2018): Seismicity of Croatia in the period 2006–2015. – Geofizika, 35 (2018), 1; 69–98 doi:10.15233/gfz.2018.35.2.

Ivančić, I., Herak, D., Markušić, S., Sović, I. and Herak, M. (2002): Seismicity of Croatia in the period 1997–2001. – Geofizika, 18–19, 17–29.

Ivančić, I., Herak, D., Markušić, S., Sović, I. and Herak, M. (2002): Seismicity of Croatia in the period 1997–2001. – Geofizika, 18–19, 17–29.

Ivančić, I., Herak, D., Markušić, S., Sović, I., Herak, M. (2006): Seismicity of Croatia in the period 2002 – 2005. – Geofizika, 23 (2), 87 – 103.

Ivančić, I., Herak, D., Markušić, S., Sović, I., Herak, M. (2006): Seismicity of Croatia in the period 2002 – 2005. – Geofizika, 23 (2), 87 – 103.

Ivanović, A., Sikirica, V., Marković, S. i Sakač, K. (1977): Osnovna geološka karta SFRJ 1:100.000, List Drniš L33–9. – Institut za geološka istraživanja, Zagreb (1967–1972); Savezni geološki institut, Beograd.

Ivanović, A., Sikirica, V. i Sakač, K. (1978): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Drniš L33–9. – Institut za geološka istraživanja, Zagreb (1972); Savezni geološki institut, Beograd, 59 str.

Jamison, W.R. (1987) Geometric Analysis of Fold Development in Overthrust Terrains. – Journal of Structural Geology, 9, 207–219.

Geološki zavod Sarajevo (1967): Osnovna geološka karta SFRJ 1:100.000, List Trebinje L34-37. – Geološki zavod Sarajevo (1963); Savezni geološki zavod Beograd (1967).

Marković, B. (1971): Osnovna geološka karta SFRJ 1:100.000, List Dubrovnik K34–49. – Zavod za geološka i geofizička istraživanja, Beograd (1963–1965); Savezni geološki institut, Beograd.

Marković, B., 1975: Osnovna geološka karta 1:100 000, Tumač za list Dubrovnik K 34-49. – Zavod za geološka i geofizička istraživanja, Beograd.

Markušić, S., Herak, D., Ivančić, I., Sovi, I., Herak, M., Prelogović, E.,(1998.), Seismicity of Croatia in the period 1993–1996 and the Ston–Slano earthquake of 1996. – Geofizika. 15 (1998); 83–101.

Matoš, B., Vlahović, I., Rukavina, D. (2017): Seizmotektonska istraživanja lokacije Ponikve (Otok Krk). – Rudarsko-geološko-naftni fakultet, Zavod za hidrogeologiju i inženjersku geologiju, Zagreb.

McKenzie, D.P., (1972): Active tectonics of the Mediterranean region. – Geophys. J. R. Astron. Soc. 30, 109–185.

Natević, Lj. (1970): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Trebinje K34-37. – Savezni geološki zavod, Beograd

Novak, G. (1970): Dubrovački potres 1667. i Mletci. – Anali Zavoda za povijesne znanosti Hrvatske akademije znanosti i umjetnosti u Dubrovniku, (12), str. 9–25.

Pamić, J., Gušić, I. i Jelaska, V. (1998): Geodynamic evolution of the Central Dinarides.– Tectonophysics, 297, 251–268.

Papeš, J., Magaš, N., Marinković, S., Sikirica, V. & Raić, V. (1984): Osnovna geološka karta SFRJ 1:100.000, List Sinj L33–10. – Geoinjženjering – Institut za geologiju, Sarajevo; Geološki zavod, Zagreb, (1971–1976); Savezni geološki institut, Beograd (1982).

Prelogović, E., Buljan, R., Fritz, F., (1994): HE Ombla strukturna istraživanja. – Institut za geološka istraživanja, Zavod za hidrogeologiju i inženjersku geologiju, Zagreb.

Prtoljan, B., Vlahović, I. i Velić, I. (2015): Osnovna geološka karta Republike Hrvatske M 1:50 000 – list Konavle. – Hrvatski geološki institut (Zavod za geologiju), Zagreb, ISBN: 978-953-6907-33-5.

Raić, V., Papeš, J., Ahac, A., Korolija, B., Borović, I., Grimani, I. i Marinčić, S. (1982): Osnovna geološka karta SFRJ 1:100.000, List Ston K33–48. – Geoinženjering – OOUR Institut za geologiju, Sarajevo, (1972–1980); Institut za geološka istraživanja, Zagreb, (1967–1968); Savezni geološki institut, Beograd (1980).

Raić, V. i Papeš, J. (1982): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Ston K33–48. – Geoinženjering – OOUR Institut za geologiju, Sarajevo; Geološki zavod, Zagreb (1980); Savezni geološki institut, Beograd, 39 str.

Roglić, J. (1957): Zaravni u vapnencima. – Geografski glasnik 19, 103–134.

Schmid, S.M, Bernoulli, S., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. i Ustaszewski, K. (2008): The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183.

Schmid, S.M., Fugenschuh, B., Kissling, E. i Schuster, R. (2004): Tectonic map and overall architecture of the Alpine orogen.– Eclogae Geologicae Helvetiae, 97/1, 93–117.

Šundov, M. (2010): Strukturnogeomorfološke značajke reljefa Dubrovačkog primorja. – Acta Geographica Croatica 37, 41–61.

Ustaszewski, K., Schmid, S.M., Fügenschuh, B., Tischler, M., Kissling, E. i Spakman, W. (2008): A map-view restoration of the Alpine–Carpathian–Dinaridic system for Early Miocene.– Swiss Journal of Geosciences, 101, Supplement 1, 273–294.

Velić, I. i Vlahović, I. (ur.) (2009): Tumač geološke karte Republike Hrvatske 1:300.000. – Zagreb, Hrvatski geološki institut.

Vekarić, N. (1991): Broj stanovnika Dubrovačke Republike u 15, 16. i 17. stoljeću. – Anali Zavoda za povijesne znanosti Hrvatske akademije znanosti i umjetnosti u Dubrovniku, (29), str. 7–22.

Vlahović, I., Tišljar, J., Velić, I. i Matičec, D. (2005): Evolution of the Adriatic Carbonate Platform: Paleogeography, main events and depositional dynamics.– Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333–360.

Vujisić, T. (1967): Osnovna geološka karta SFRJ 1:100.000, List Nikšić K34–49. – Zavod za geološka i geofizička istraživanja, Beograd (1967); Savezni geološki institut, Beograd.

Vujisić, T. (1967): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Nikšić K34-38. – Savezni geološki zavod, Beograd

Weber, J., Vrabec, M., Pavlovčič-Prešeren, P., Dixon, T., Jiang, Y. i Stopar, B. (2010): GPSderived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geodynamic implications.– Tectonophysics, 483, 214–222.

Wells, D.L. i Coppersmith, K.J. (1994): New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement.– Bulletin of the Seismological Soc. America, 84/4, 974–1002.

Ujgur, S. (2020): Dubrovnik prije 1667. URL:

https://www.youtube.com/watch?v=Ec6pN_gLQtc (24.10.2021.)

https://web.archive.org/web/20131207132947/http://zod.hr/novost.php?id=14 (3.11.2021.)

https://seismo-cro.giscloud.com/ (20.2.2022.)

https://projectdufault.geof.pmf.unizg.hr/ (10.11.2021.)

https://web.archive.org/web/20131207132947/http://zod.hr/novost.php?id=14 (10.11.2021)

https://earthquake.usgs.gov/earthquakes/eventpage/us70006d0m/executive (12.2.2021.)

https://stratigraphy.org/ICSchart/ChronostratChart2022-02.jpg (15.2.2021.)

PRILOZI

- I. Geološki profil 6–6' s pripadajućom legendom.
- II. Geološki profil 7–7' s pripadajućom legendom.
- III. Geološki profil 8-8' s pripadajućom legendom.
- IV. Geološki profil 9–9' s pripadajućom legendom.
- V. Geološki profil 10–10' s pripadajućom legendom.
- VI. Tablica epicentara potresa dubrovačkog područja iz kataloga potresa Geološke službe SAD-a za razdoblje od 1901. do 2021. godine (<u>https://earthquake.usgs.gov/earthquakes/search/</u>). Koordinate su definirane prema MGI Balkan 6 koordinatnom sustavu.

I. Prilog Geološki profil 6–6' s pripadajućom legendom.

II. Prilog Geološki profil 7–7' s pripadajućom legendom.

III.Prilog Geološki profil 8-8' s pripadajućom legendom-

IV. Prilog Geološki profil 9–9' s pripadajućom legendom.

V. Prilog Geološki profil 10–10' s pripadajućom legendom.

VI. Prilog Tablica epicentara potresa dubrovačkog područja iz kataloga potresa Geološke službe SAD-a za razdoblje od 1901. do 2021. godine (<u>https://earthquake.usgs.gov/earthquakes/search/</u>). Koordinate su definirane prema MGI Balkan 6 kordinatnom sustavu.

oznaka	X koordinata	Y koordinata	dubina (m)	magnituda
0	6542962	4705497	10000	4,4
1	6505823	4730334	10500	4,3
2	6550342	4709012	7340	4,2
3	6518929	4726459	10000	2,9
4	6510159	4722409	3380	2,9
5	6542034	4708035	13940	4,3
6	6538760	4743824	19930	4,4
7	6540243	4710790	10000	3,5
8	6542068	4752240	26730	4,6
9	6555815	4748462	10000	4
10	6547098	4705168	9000	2,9
11	6549686	4711073	10000	4,6
12	6545716	4715377	11000	4,2
13	6535276	4702322	8300	2,5
14	6541126	4755556	19500	2,8
15	6554356	4743874	16800	2,9
16	6509089	4731337	0	2,6
17	6538772	4709449	12300	2,5
18	6539059	4702342	5900	2,4
19	6559837	4734034	19900	2,7
20	6511897	4764884	11000	2,5
21	6524986	4750924	11000	2,8
22	6520457	4736137	11000	2,9
23	6541689	4743341	12600	1,7
24	6555946	4708899	15300	2,8
25	6512220	4766661	11000	2,6
26	6539528	4735442	11000	1,7
27	6536999	4764196	15500	1,8
28	6517782	4726356	10000	2,5
29	6536298	4711434	7700	1,7
30	6528391	4717062	3600	1,6
31	6510428	4766325	4600	2
32	6548086	4728610	12000	2,2
33	6525139	4708720	6500	2,7
34	6505952	4761655	10000	2,9
35	6517595	4767339	10100	2,7
36	6537575	4748316	9000	2,2

37	6519273	4750017	500	27
38	6551742	4699648	12000	2,7
39	6521240	4747690	10100	2.6
40	6543197	4737575	400	2.1
41	6555871	4748551	12300	2,1
42	6555771	4750883	23200	2,5
42	6519307	4766900	16900	2,5
ч <u>э</u> ЛЛ	65/103/	4700000	10000	1 /
45	6551900	4702020	10000	1, 1 25
46	6520537	4764127	16900	2,5
40 47	6523708	4766247	10000	2,2 2 Q
-, 18	6526969	4724053	10000	2,5
40 //Q	6524103	4724055	10000	3.4
50	6531184	4752615	23100	2, 4 2 7
51	6554190	4744206	17300	2,7
52	6544041	4707703	10200	25
52	6520248	4723586	5500	2,5
54	6557511	4723388	12600	2,5
55	6536369	4760083	12000	2, 4 1 9
56	6538216	4706003	10000	1.0
57	6536731	4700005	11800	1,5 2 3
58	6528355	4767105	21300	2,5
50	6527210	4765358	17000	2, 4 2 7
60	6506458	4700482	2600	2,7
61	6539728	4742774	2000	3,1 1 Q
62	653/37/	4700230	24300	1,0
63	6535739	4701873	2000	25
64	651/011	4753833	8300	2,5
65	6503099	4760209	17600	2,5 1 Q
66	6547775	4700203	11500	1,5
67	6550/8/	4714332	2400	1,5 2
68	6548033	4712616	13300	15
69	6545208	4755248	19100	1,5
70	6509411	4736002	16800	1.9
70	6505483	4735220	9700	3.6
72	6503683	4735664	8000	2 A
72	6508004	4733004	11700	2, 4 1 0
77	6536639	4745100	9000	1,5
75	6535415	4708555	12700	1.9
76	6510646	4730784	3000	2.2
77	6534096	4708314	10000	2,2 1 Q
78	6532848	4711578	10600	1 Q
79	6534990	4710206	10000	1,5 2 /
, <u>,</u> 80	6548244	4705842	10000	3,4 1 0
50	0340244	4703043	10000	1,9

81	6557409	4750230	22300	2,3
82	6549108	4711513	15300	2,6
83	6554517	4744208	20300	2,4
84	6528516	4746384	10500	2,6
85	6518857	4722805	12000	2
86	6542642	4747901	4800	2,2
87	6545783	4754697	21500	2,2
88	6535899	4756415	10000	3,6
89	6546028	4754698	22800	2,9
90	6537569	4704111	12000	1,9
91	6518550	4714919	15600	1,9
92	6519452	4715365	14900	1,7
93	6536200	4730093	26900	1,8
94	6558730	4739022	10000	1,7
95	6518200	4723358	6500	2,2
96	6543323	4704255	10000	2,7
97	6533711	4702870	9600	2,4
98	6556393	4724675	10000	2,4
99	6530645	4726956	10000	3,7
100	6541095	4733341	13600	3
101	6555152	4746546	16800	2,4
102	6507189	4747995	10000	3,9
103	6511299	4732118	5000	2,2
104	6549267	4735394	10000	2,2
105	6516715	4726909	10000	2,1
106	6516799	4726354	5000	2,1
107	6527460	4724166	5000	3,2
108	6546278	4704941	10000	2
109	6535457	4747083	10000	2,5
110	6517946	4726245	10000	2,1
111	6523529	4723152	10000	2,2
112	6516235	4722021	10000	1,7
113	6522712	4722150	10000	2,1
114	6522139	4722037	10000	1,8
115	6507050	4723560	5000	2,1
116	6520484	4727141	10000	1,6
117	6511234	4721900	10000	2,1
118	6521650	4721147	10000	2
119	6520418	4721588	10000	2,3
120	6515743	4721909	10000	2,2
121	6516644	4722466	10000	2,6
122	6521484	4721813	10000	2,2
123	6517378	4723912	5000	2,2
124	6513941	4721016	5000	2

125	6518291	4719694	10000	2,6
126	6522141	4721371	10000	1,8
127	6519266	4723139	10000	2,7
128	6522300	4723037	10000	2,3
129	6535389	4744528	10000	2,9
130	6518441	4724914	10000	3,6
131	6519433	4722140	10000	2,1
132	6516972	4722689	10000	1,7
133	6504826	4739107	10000	2,4
134	6510171	4719455	10000	1,7
135	6516070	4722354	10000	2,1
136	6510906	4722010	10000	1,8
137	6521968	4724258	10000	1,6
138	6522548	4722261	5000	2,1
139	6505657	4723226	5000	2,7
140	6506150	4722227	5000	3,6
141	6556931	4738896	10000	1,3
142	6514265	4723016	10000	1,6
143	6515327	4724906	10000	1,8
144	6515658	4723352	5000	2,1
145	6516152	4722354	5000	2
146	6524191	4721489	10000	2,3
147	6512949	4725679	5000	1,7
148	6558377	4722692	10000	1,6
149	6520087	4722586	5000	2
150	6517951	4724246	10000	1,9
151	6519511	4723584	5000	2,2
152	6529688	4720844	10000	3,3
153	6525249	4723603	10000	1,9
154	6522180	4760244	10000	1,8
155	6515493	4723907	10000	1,9
156	6508526	4723118	10000	1,9
157	6522458	4724815	10000	2,6
158	6524927	4722047	10000	2,7
159	6522788	4724038	10000	2
160	6515822	4723464	10000	1,6
161	6521239	4721368	12200	2,7
162	6521154	4722367	10000	2
163	6512137	4721124	10000	1,7
164	6529360	4720842	10000	2,1
165	6525251	4723047	10000	1,8
166	6512461	4723235	10000	1,8
167	6507707	4722450	10000	2
168	6522632	4721705	10000	2

169	6511070	4721899	10000	2,4
170	6513855	4723237	10000	2,1
171	6521889	4723258	10000	1,6
172	6518858	4722472	10000	2,2
173	6520909	4722144	10000	1,8
174	6521557	4724701	10000	1,6
175	6519597	4722029	10000	2,6
176	6520505	4719811	10000	2,9
177	6516479	4722799	10000	1,9
178	6520088	4722253	10000	2,6
179	6513287	4720126	10000	5,2
180	6511855	4742003	10000	2,2
181	6551594	4708532	22800	2,3
182	6560406	4715601	10000	1,3
183	6552197	4715867	10000	1,5
184	6546149	4699609	5000	1,9
185	6523785	4720265	5000	2,2
186	6549933	4699635	10000	2,6
187	6531712	4708413	10000	1,5
188	6538998	4713226	10000	1,5
189	6555497	4724001	10000	2
190	6557550	4723573	10000	1,6
191	6555899	4724893	10000	1,4
192	6517710	4722580	5000	1,9
193	6529030	4721174	10000	3
194	6515086	4760003	10000	1,4
195	6560930	4740041	10000	1,8
196	6545324	4750028	24400	1,8
197	6518773	4753681	11400	1,8
198	6556256	4751442	17000	1,4
199	6556211	4746999	18900	1,9
200	6513848	4767331	10000	2,6
201	6524164	4729152	10000	2,9
202	6543592	4700703	10000	1,7
203	6506848	4761989	10000	2,3
204	6511486	4766882	10000	1,9
205	6559376	4711260	10000	1,5
206	6560767	4721268	10000	2
207	6560606	4720934	10000	1,4
208	6555435	4721446	10000	1,7
209	6555811	4735777	10000	1,6
210	6504250	4744438	10000	3
211	6511338	4758218	10000	1,8
212	6547971	4745270	10000	1,5

213	6503269	4744771	10000	1,8
214	6531881	4760727	10000	2,1
215	6533377	4754847	10000	2,3
216	6559458	4739917	10000	1,4
217	6538289	4707669	10000	1,7
218	6507116	4738887	10000	2,1
219	6507494	4767321	10000	2,3
220	6503017	4760431	5000	2,8
221	6560498	4723932	10000	2,5
222	6558529	4724137	10000	1,8
223	6537477	4736320	10000	1,4
224	6509215	4759548	5000	1,8
225	6553145	4741976	10000	4,5
226	6546838	4755481	10000	1,9
227	6507014	4759434	10000	2,2
228	6541510	4732455	10000	1,5
229	6539730	4714341	10000	2,2
230	6554200	4742984	10000	2,4
231	6546150	4736483	10000	1,3
232	6502610	4758765	10000	2,3
233	6531930	4750064	10000	2,4
234	6524803	4756366	10000	1,9
235	6505135	4763542	10000	1,9
236	6506933	4758879	10000	2,1
237	6508572	4752328	10000	2,6
238	6558250	4708474	10000	1,8
239	6536993	4734984	10000	1,4
240	6527613	4747380	10000	3,4
241	6540423	4763993	10000	1,8
242	6556818	4742783	10000	3,6
243	6540307	4699795	10000	1,7
244	6528610	4743385	10000	1,8
245	6521392	4751134	10000	2,3
246	6525408	4747260	10000	2,4
247	6554223	4708552	10000	1,7
248	6531699	4747064	10000	2,1
249	6520053	4734359	5000	3,2
250	6548111	4713283	10000	1,3
251	6510819	4725231	10000	1,9
252	6551916	4742300	10000	1,9
253	6540446	4718343	10000	1,8
254	6556848	4709129	10000	2,1
255	6524670	4747924	10000	2,3
256	6519006	4757902	10000	1,9
257	6523746	4755251	10000	12
-----	----------	--------------------	-------	------------
258	6507515	4748661	10000	2 1
259	6547062	4746708	10000	17
260	6547503	4730050	10000	1.2
260	6504410	4750658	10000	2 5
262	6542213	4750050	5000	13
202	650/825	4711024	5000	1.2
205	655/871	4740004 A700770	10000	1.8
204	6556/25	4703773	10000	25
205	655/272	4709347	10000	2,5
200	6557007	4710442	10000	1,7 1 Q
207	65557007	4709790	10000	1,0 2 1
200	655500	4700231	10000	2,1 1 G
209	65353005	4710075	10000	1,0
270	6536345	4755961	10000	1,5
271	0522082	4700308	10000	1,7
272	6511217	4/32118	10000	2,1 1 4
273	6547854	4/14/25	10000	1,4
274	6544006	4700261	10000	1,8
275	6520772	4740136	10000	1,6
276	6536469	4709992	10000	1,6
2//	6549353	4/23288	10000	1,/
278	6549516	4723400	10000	1,7
279	6511877	4729342	5000	1,6
280	6534861	4703208	33000	1,5
281	6554881	4729216	10000	1,2
282	6509240	4741000	10000	1,7
283	6542720	4761563	10000	1,7
284	6540349	4762771	10000	2,1
285	6552455	4746636	10000	1,7
286	6547223	4747042	10000	1,5
287	6540774	4759774	10000	1,5
288	6537148	4766751	10000	1,9
289	6534907	4742859	10000	1,3
290	6507850	4741109	10000	2,1
291	6523820	4757584	10000	1,7
292	6539225	4745437	10000	1,8
293	6532571	4752844	10000	2,2
294	6544828	4763465	10000	1,5
295	6540425	4763660	10000	1,8
296	6545935	4756364	10000	1,3
297	6543509	4765789	10000	1,9
298	6545666	4759916	10000	1,7
299	6548002	4728943	10000	1,6
300	6538878	4734439	10000	1,8

Rudarsko-geološko-naftni fakultet

301	6546607	4753591	15500	4,3
302	6536880	4756087	13400	2
303	6522439	4730479	10000	2,5
304	6544078	4701817	10000	1,1
305	6551653	4744630	10000	1,7
306	6557689	4746122	10000	1,5
307	6554630	4729881	10000	2,9
308	6553819	4749868	10000	1,6
309	6558737	4747797	10000	2,5
310	6523155	4736923	10000	2,2
311	6543929	4751019	10000	2,1
312	6558800	4750019	10000	2,6
313	6555573	4744994	10000	2,5
314	6557675	4728239	10000	2,3
315	6533679	4759847	10000	2,4
316	6524487	4753366	10000	2,5
317	6506764	4764543	10000	3,1
318	6520493	4751687	10000	2,6
319	6528894	4753494	10000	3
320	6512768	4734897	5000	2,6
321	6519607	4718475	10000	2,1
322	6552332	4741303	10000	2,5
323	6519309	4737133	10000	2,2
324	6538213	4765758	10000	2,5
325	6540755	4707572	10000	2,5
326	6553220	4710877	10000	2,3
327	6543354	4738575	10000	2
328	6559921	4743142	39900	3,7
329	6532885	4755289	10000	4
330	6547868	4736495	5000	3,5
331	6557735	4711135	10000	2
332	6530609	4753501	10000	2,2
333	6551067	4735407	10000	2,7
334	6505733	4730556	10000	2,3
335	6555898	4725004	10000	2,3
336	6538464	4749987	10000	2,5
337	6547458	4712612	10000	2
338	6526800	4746377	10000	2,9
339	6556149	4744555	10000	2,1
340	6543878	4733469	13300	2,7
341	6541374	4700134	10000	2,6
342	6540450	4703461	10000	3,4
343	6552139	4712535	10000	2,7
344	6537988	4732546	10000	2,3

Rudarsko-geološko-naftni fakultet

345	6549421	4713737	10000	2,3
346	6552481	4732530	13200	2,7
347	6525760	4762145	10000	2,6
348	6558377	4722692	10000	2,4
349	6507941	4733335	5000	2,5
350	6534768	4721756	10000	2,4
351	6515102	4752894	10000	2,5
352	6522107	4757356	10000	2,2
353	6530748	4722070	10000	2,6
354	6551067	4713193	10000	3,1
355	6556698	4747336	33000	2,2
356	6530306	4766606	10000	2,5
357	6554156	4706664	10000	2,5
358	6537146	4752090	10000	2,5
359	6538674	4741769	10000	2,2
360	6511575	4762773	10000	2,8
361	6515108	4749785	10000	2,4
362	6514697	4751228	10000	3
363	6520737	4724587	13400	2,8
364	6550825	4746068	10000	2,5
365	6512567	4755222	10000	2,5
366	6521905	4744027	5000	2,6
367	6542968	4708474	10000	2,2
368	6503096	4766207	10000	2,4
369	6548675	4702958	10000	2.2
370	6528118	4743717	10000	2
371	6538643	4732661	10000	2.4
372	6539308	4701899	10000	, 2.5
373	6543012	4701255	10000	4.4
374	6536990	4704774	10000	, 2.8
375	6557675	4708469	10000	1.8
376	6556857	4747893	10000	2.3
377	6534292	4751520	10000	3.1
378	6538466	4705449	10000	2.4
379	6512598	4737895	5000	2.5
380	6514339	4766443	10000	2.7
381	6542346	4702584	10000	2.5
382	6511532	4739448	10000	2.8
383	6556595	4699797	10000	2.7
384	6539280	4706897	10000	2.6
385	6509874	4754884	10000	2,0
386	6547243	4732159	10000	2,, 2 R
387	6516334	4749676	10000	2,0 2 1
388	6542907	4745227	10000	э,± Л
200	0342304	4/4323/	10000	4

Rudarsko-geološko-naftni fakultet

389	6552583	4751302	17200	3,6
390	6510636	4737448	10000	4,1
391	6510437	4760438	10000	2,7
392	6524255	4726487	8900	3,3
393	6550359	4742733	10000	4,2
394	6547792	4735717	10000	4,2
395	6556216	4736336	10000	4,1
396	6541582	4747672	10000	3,6
397	6547897	4708617	10000	4,9
398	6543287	4710031	10000	3,8
399	6548915	4715732	10000	3,6