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Abstract: The volume calculation of geological structures
is one of the primary goals of interest when dealing with
exploration or production of oil and gas in general. Most
of those calculations are done using advanced software
packages but still the mathematical workflow (equations)
has to be used and understood for the initial volume cal-
culation process. In this paper a comparison is given be-
tween bulk volume calculations of geological structures
using trapezoidal and Simpson’s rule and the ones ob-
tained from cell-based models. Comparison in calculation
is illustrated with four models; dome – 1/2 of ball/sphere,
elongated anticline, stratigraphic trap due to lateral facies
change and faulted anticline trap. Results show that Simp-
son’s and trapezoidal rules give a very accurate volume
calculation even with a few inputs (isopach areas – ordi-
nates). A test of cell basedmodel volume calculation preci-
sion against grid resolution is presented for various cases.
For high accuracy, less the 1% of an error from coarsening,
a cell area has to be 0.0008% of the reservoir area.

Keywords: cell-based volume; Simpson’s rule; trapezoidal
rule; volume calculation; hydrocarbons

1 Introduction
Estimation of areas and volumes is one of the most ba-
sic engineering tasks in hydrocarbon exploration and pro-
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duction [1]. Today, volume estimation of subsurface struc-
tures, i.e. hydrocarbon reservoir volume calculation, is
usually done using variousmodelling software. For proper
application and result interpretation it is necessary to
understand how the software computes and handles in-
puts. Part of computer algorithm is based onmathematical
equations that approximate volumeandpart ondivision of
volume in extremely large number of cells and their sum-
mation. The exact process behind the computer algorithm
is a part of a trade secret and will not be discussed within
this manuscript.

In this context, the comparison between these two ap-
proaches is very useful for understanding proper choice
and use of any of them. It is why hydrocarbon reservoir
volume calculation with Simpson’s and trapezoidal rules
and the ones obtained from cell basedmodelwith Schlum-
berger Petrel software is given. The differences in the cal-
culated volumes are analyzed between software based ap-
proach and mathematical approximation methods. Level
of the detail needed for an accurate volume calculation
when using software solutions is also addressed here. In
other words, which level of resolution of model grid (cell
size) is good enough for accurate volume calculation but
not too detailed for other modelling processes (porosity
distribution, etc.). Only the horizontal projection dimen-
sions of a cell are regarded in this case. For this purpose
Schlumberger Petrel modeling software will be used for
the cell based volume calculation. It should be noted that
only bulk volume calculation was performed. Cases pre-
sented correspond mainly to conventional hydrocarbon
accumulations – oil or gas in sandstones like the ones de-
scribed in [2–4] but can also be applied when unconven-
tional reservoirs [5, 6] volume is calculated.
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2 Short theoretical review of some
of the volume calculation
methods

A short overview of the theoretical backgrounds of meth-
ods used for volume calculation is presented. These in-
cluded numerical integration processes (Trapezoidal and
Simpson’s rule) and cell based model approach.

The first two approaches are by approximation meth-
ods of definite integrals which may be determined using
numerical integration. Even when dealing with advanced
methods of integration there aremanymathematical func-
tionswhich cannot be integratedanalytically, thus approx-
imation has to be used [7]. More precisely, determining the
value of a definite integral is in fact finding the area be-
tween the horizontal axis and specified ordinates, i.e. be-
tween a curve. These ordinates in hydrocarbon volume cal-
culation refer to the area bound by isopachs contours in a
reservoir thickness maps.

2.1 The trapezoidal rule

Trapezoidal rule is a fairly simple mathematical approach
described in [8, 9]. It relates to a definite integral denoted
by

∫︀ b
a f (x) dx. If f is positive, then the integral represents

the area bounded by the curve y = f (x) and the lines x = a;
x = b and y = 0: (Figure 1).

Figure 1: Example of area bounded by graph y = f (x) and limits
x = a, x = b and y = 0.

If the interval of integration was divided into n equal
intervals each of width d, such that d = b−a

n where a =
x0 < x1 < · · · < xn−1 < xn = b then the trapezoidal approxi-
mation was applied by joining the tops of the ordinates by

straight lines, and the outcome is
b∫︁
a

f (x) dx =
n∑︁
i=1

xi∫︁
xi−1

f (x) dx

≈ 1
2

n∑︁
i=1

(xi − xi−1) (f (xi−1) + f (xi))

i.e.

I =
b∫︁
a

f (x) dx ≈ Itrap. =
d
2

[︃
f (a) + f (b) + 2

n−1∑︁
i=1

f (xi)

]︃
(1)

2.2 The Simpson’s rule

The core of the delineation in trapezoidal approximation
is founded in joining the top of two successive ordinates
by a straight line, i.e. by usage of a polynomial of degree
1 (y = a + bx) [8, 9]. With Simpson’s rule the approxi-
mation is done by joining the tops of three successive or-
dinates by a parabola, i.e. by a polynomial of degree 2
(y = a + bx + cx2) [8, 9]. Therefore, a more precise ap-
proximation was obtained with Simpson’s rule than with
the trapezoidal rule. If parabola passes through the points
(a, f (a)) , (b, f (b)) , (c, f (c)), where c = 1

2 (a + b) then
b∫︁
a

f (x) dx ≈ 1
6 (b − a)

[︂
f (a) + 4f

(︂
a + b
2

)︂
+ f (b)

]︂
. (2)

In practice, interval [a, b] is divided into 2n subinter-
vals a = x0 < x1 < · · · < x2n−1 < x2n = b of the same length
h = b−a

2n . If Simpson’s rule is applied on the successive pair
of interval [x2i−2, x2i] where i = 1, . . . , n then
x2i∫︁

x2i−2

f (x) dx ≈ 1
6 (x2i − x2i−2) [f (x2i−2) + 4f (x2i−1) + f (x2i)] ,

whereas
b∫︁
a

f (x) dx =
n∑︁
i=1

x2i∫︁
x2i−2

f (x) dx ≈ 1
6

n∑︁
i=1

(x2i − x2i−2) [f (x2i−2)

+4f (x2i−1) + f (x2i)]

and finally,

I =
b∫︁
a

f (x) dx ≈ ISimps. (3)

= h3

[︃
f (a) + f (b) + 2

n−1∑︁
i=1

f (x2i) + 4
n∑︁
i=1

f (x2i−1)

]︃
.

It is important to emphasize that Simpson’s rule can
only be applied when an even number of intervals is cho-
sen, namely, an odd number of ordinates [8–10].
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2.3 Cell based volume calculation

Cell basedmodels are parts of the subsurfacemadeof large
number of cells (pillars). A cell size is defined by the grid
resolution of the model which is user defined. These grids
can be structured or unstructured [11]. Structured grids are
commonly used in petroleum geological purposes. When
regarding vertical resolution of a model, in a simple case
these are restructured top andbottom surfaces. Grid geom-
etry in a non-faulted model is simple but errors on struc-
turemargins could be compensated by amodel resolution,
or in other words, the number of cells in themodel. In hor-
izontal projection a cell is a square or a rectangle in a sim-
ple model or irregular in a faulted model, especially in a
near-fault area (Figure 2). Cell boundaries when dealing
with faulted models conform to fault planes. In a vertical
projection cell is a rectangle prism if the bounding is hor-
izontal or irregular prism if they are inclined at different
angles.

Figure 2: Horizontal cell projection in a simple (a) and faulted (b)
model; color table on (a) shows cell height and the green line repre-
sents the model boundary. Cell grid is 50 × 50 m.

3 Comparison between numerical
integration and cell-based
models

At first glance many structures encountered in geology
appear to be rather complex in shape. However, mostly
regular geological structures can be approximated with
some regular solid such as prismoid inwhich group accrue
prism,wedge or pyramid. Volume approximatedwith pris-
moid is based on prismoidal equation

V = h6 (A1 + 4Am + A2) , (4)

where h is height, A1 and A2 are the top and bottom areas
andAm is the area of the section situatedmid-way between
the end areas. The equation is correct when the figure is a

true prismoid but in practice it is applied by taking three
successive cross-sections of a structure. If the mid-section
is different from that of a true prismoid [10], then errors
can arise. This formula is easily deduced by simply substi-
tuting areas for ordinates in Simpson’s rule.

When dealing with hydrocarbon reservoir volume cal-
culation and the structure is close to a regular anticline
or syncline if stratigraphic trapping is involved, Simpson’s
rule is regularly applied if a number of intervals is ade-
quate for its applicability [1]. Nevertheless, most of geo-
logical structures are irregular or faulted making a reason
to simultaneously calculate volumes with Simpson’s and
trapezoidal rule. In this case, it is important to have in
mind that calculated difference between those two meth-
ods (Eq. 5) is a criterion of method’s applicability [12].⃒⃒

Itrap. − ISimps.
⃒⃒
≤ 0.2ISimps. . (5)

If the criterion is fulfilled then the volume calculated
with Simpson’s rule can be accepted as in theory, Simp-
son’s rule is superior in defining irregular structures in the
subsurface [8–10, 12].

As mentioned previously, comparison in volume cal-
culation using trapezoidal and Simpson’s rule and the
ones obtained from Petrel software will be shown on
four structural models; dome, elongated anticline, strati-
graphic trap and faulted anticline.All ordinates for volume
calculation bynumerical integration (a0−an) were derived
from Petrel model with cell size of 1 × 1 m ensuring that all
three approaches have the same input data.

3.1 Volume calculation of a dome

Dome is a geological structure in which planes dip uni-
formly in all directions away from the center of the struc-
ture. In an ideal case, which is constructed here, a dome
can be described as a half of a ball or a sphere. Although
such a regular dome (Fig. 3) is not a realistic geological
structure, it is taken into consideration as a calibration
shape for selected volume calculation methods. There are
ten contour lines that bound the area and which were
taken in calculation and their areas are derived from Pe-
trel software. The contour interval is 100 m. In this case
Simpson’s second rule or 3/8 rule is used [8, 9]. The rule
is commonly used when the number of intervals is such
that can be divided by three. The application of Simpson’s
second rule gave the volume

VSimps. =
3h
8 · (a0 + 3a1 + 3a2 + 2a3 + 3a4 + 3a5 + 2a6

+3a7 + 3a8 + a9) = 2, 066, 776, 489.86 m3.
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Simpson’s rule doesn’t take the top of structure under
calculation. Boundary of the calculation is end ordinate
(an), thus the volume of the top above the end member is
omitted from the Simpson’s rule. The top of the structure
can be calculated as average of two formulas [12]

Vtop1 =
hnan
3 , Vtop2 =

h3nπ
6 + anhn2 (6)

where hn was the height that has to be smaller than
equidistance. Here it is h9 = 99.99 m, as near perfect
geometry is regarded. Calculated volume of the structure
top is 25,208,067.68 m3. Consequently, the total volume
of 1/2 ball calculated with Simpson’s second rule was
2,091,984,557.54 m3.

Volume calculated with trapezoidal was

Vtrap. =
h
2 · (a0 + 2a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6

+2a7 + 2a8 + a9) = 2, 062, 069, 103.5 m3.

The volume derived from Petrel cell based model was
2,098,158,787 m3. In the end, if volume of the dome – half
of ball/sphere was calculated according to its usual for-
mula

V = 4
3πr

3 (7)

and divided the value with 2 (hence we have the half
of ball representing a dome), the yield of volume is
2,094,395,102m3. The value of error volume calculation by
Simpson’s rule is 2,410,544.460 or 0.12% of VSimps., which
is negligible. Given the dome is a regular structure; it is not
surprising that the volume calculated by Simpson’s rule
gives better approximation than the trapezoidal rule. Any
deviation of the Simpson’s rule volume from the ideal 1/2
ball can be regarded to the possible error in the calculation
of the structure top or extraction of ordinates from mod-
elling software.

Figure 3: 3D model of dome – half of a ball/sphere derived from
Petrel software.

3.2 Elongated anticline volume calculation

Elongated anticline is a fairly common structure in the
subsurface, e.g. structure of the Ivanić Oil Field is a
one [13]. In this case, reservoir is delimited by a struc-
tural top and oil-water contact, which is in this case at
−1040m (Figure 4). There are 7 isostrates so the Simpson’s
rule is applicable. Resulting volumes are fairly similar. Vol-
ume with Simpson’s formula is 12,760,752 m3, by trape-
zoidal rule 12,863,453 m3 while the Petrel derived volume
is 12,824,470 m3. On this structure it is evident that trape-
zoidal rule gives very good volume approximation.

Figure 4: Structure top map (line spacing is 10 m).

3.3 Stratigraphic trap due to lateral facies
change volume calculation

This kind of stratigraphic trap results when there are some
variations in lithology within strata, i.e. reservoir proper-
ties are reduced in the direction of up dip and can be ex-
pected in the area without the evident structural traps but
with high lateral facies change. Majority of these reser-
voirs are relatively thin and have an edge water contact or
drive [1], thus, in practical terms, volume is calculated sep-
arately for top and bottom of the structure when using nu-
merical integration. There are five contourswhich result in
five ordinates or four intervals for numerical integration,
thus the Simpson’s rule is applicable. Structural map is
shown in Figure 4 while 3D structure of trap is shown in
Figure 5. Volume approximation with Simpson’s rule gives
value of 1,872,043 m3, trapezoidal rule gives the volume of
1,965,020m3 and finally Petrel derived volume approxima-
tion is 1,917,598 m3. The difference Vtrap. − VSimps. is 5% of
VSimps. what is acceptable by (Eq. 5).
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Figure 5: Top surface structure map of the stratigraphic trapping
case (line spacing is 10 m).

Figure 6: 3D model of stratigraphic trap derived from Petrel soft-
ware.

3.4 Faulted Anticline volume calculation

The last example of reservoir volume calculation was
the faulted anticline shown at Figure 6 & 7. The reser-
voir was delimited by structural top, two normal faults
and fluid’s contact. There are five contour lines that de-
scribe the reservoir. Application of Simpson’s rule gave
the value of 4,276,883 m3 and by trapezoidal rule a vol-
ume of 4,409,083 m3. Petrel derived volume gives was
4,372,932m3. Simpson’s rule volume gives underestimated
value and trapezoidal rule overestimated in comparison to
model derived one.

Figure 7: Reservoir top structural map (line spacing is 10 m).

Figure 8: 3D model of faulted anticline trap derived from Petrel
software; volume calculation refers only to the green colored part of
the model.

4 Cell based volume calculation
and grid resolution

In theory, cell based model calculation can be made with
very high resolutions but in practical terms, an optimal
grid size has to be taken. Bulk volumeby itself is a no prob-
lem for today’s computers, but later procedures (e.g. petro-
physical modelling) which take into the account the reso-
lution of the initial model will be too detailed for calcula-
tion.
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Table 1: Presentation of calculated bulk volumes for each cell size with the relation of cell area to the calculated volume area and the differ-
ence in calculated volumes to the maximum resolution case.

Grid cell size (m) bulk volume (m3) cell surface to structure surface
ratio (%)

calculated volume to
1 × 1 grid volume ratio (%)

1 × 1 1,917,598 0.0003 0
2 × 2 1,917,419 0.001 0.0093
5 × 5 1,916,164 0.008 0.0748

10 × 10 1,905,282 0.032 0.6423
20 × 20 1,885,545 0.129 1.6715
50 × 50 1,759,308 0.812 8.2546

100 × 100 1,403,102 3.249 26.8303
200 × 200 777,488 12.997 59.4551

Figure 9: Representation of the impact of cell grid size on the model
detail and smoothness for 1 × 1 (a), 2 × 2 (b), 5 × 5 (c), 10 × 10 (d),
20 × 20 (e), 50 × 50 (f), 100 × 100 (g) and 200 × 200 (h); color legend
represents cell volume in m3.

For this purpose, eightmodels of previously described
stratigraphic trapping case (Figure 4 & 5) were taken into
the account of lateral grid resolution (cell size) 1, 2, 5, 10,

20, 50, 100 and 200m for structure area of 307,749 m2. The
difference in cell size and grid smoothness can be clearly
observed in Figure 9. Detail coverage of the reservoir area
was obtained with highest resolution (1 × 1 m cell) in Fig-
ure 9a while very rough cell coverage can be observed
when grid size exceeds 50 m (Figure 9g & 9h). The calcu-
lated model volume for each cell size is presented in Ta-
ble 1.

5 Discussion
Volumes calculated by all three approaches differ slightly
(Table 2). These differences are of about 0,2% for dome –
1/2 ball/sphere, 0.4–0.8% for anticline and around 2–5%
for stratigraphic trap and faulted anticline cases. It can be
observed that these values are not even near the 20% dif-
ference for confirming the validity of volume calculation
between the Simpson’s and Trapezoidal approach stated
in (Eq. 5) stated in [12].

Grid resolution is a key factor when cell based models
are observed, Volumes differ very little in high resolution
cases – only up to 1.6% for cells smaller than 20 × 20m, i.e.
when single cell area is not larger than 1.7% of the whole
structure area. Large differences (> 5%) occur for 20 × 20 or
larger cells, when single cell covered 1.7–8.3% of the struc-
ture area. These differences can also be called errors de-
rived from low resolution. There is no rule of thumb in how
much of a volume difference or error is acceptable but it
would be advisable to keep it below 1% for high resolution
models or 5% when a high resolution is not needed (usu-
ally used in early stage of the modelling). The 1% margin
would correspond to the grid size of 0.0008% of the struc-
ture area or approximately 15 × 15 m cell grid and 5% to
0.0035%or a 30 × 30m cell grid for the described case (Fig-
ure 10).
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Table 2: Bulk volume calculation results for all cases.

Case VSimpson′s rule (m3) Vtrapezoidal
rule (m3)

Vstructure top

(m3)
VSimpson′s rule

with added

structure top

(m3)

Vtrapezidal rule
with added

structure top

(m3)

Vcellmodel
(m3)

Dome - 1/2
Ball/sphere

2,066,776,489 2,062,069,103 25,208,067 2,091,984,557 2,087,277,171 2,098,158,787

Elongated
anticline

12,648,184 12,750,885 112,568 12,760,752 12,863,453 12,824,470

Stratigraphic
trap

Reservoir
base

1,972,293 2,051,065 8,347 1,872,043 1,965,020 1,917,598

Reservoir
top

3,829,008 4,000,757 23,675

Faulted
Anticline

4,250,501 4,382,702 26,381 4,276,883 4,409,083 4,372,932

Figure 10: Graphs showing the relation of the grid cell size and
calculated volume (a), cell area to structure volume area relation
against calculated volume (b) and cell area to structure volume
area relation against volume difference between volumes of the
calculated case to the maximum resolution one (c).

As an example, for modeling petrophysical parame-
ters for the assessment of reservoir performance a cell grid
area of 0.0011% (50 × 50 m over an area of 1500 × 1000 m)
can be used but this is not thoroughly enough for the later
representation of the detailed sedimentary structures [14].

For instance, for development of old, nearly depleted oil
fields a high resolution model is often used. As an exam-
ple, for sequence stratigraphic analysis and integrated 3D
modelling of such, a very dense grid of 20 x 20 m cover-
ing the area of 6.84 km2 is used [15]. These values corre-
spond to a cell to model area size relation of 0.0058% or
the possible volume difference of only 0.05%. These are
very detail explorationswhen high resolution facies distri-
bution is needed when searching for compartmented and
bypassed oil. As another example, calculation of volumes
when regarding cell size is not restricted to hydrocarbons,
but is also to be regardedwhendealingwithCO2, aswell as
for storage purposes and possibility of seepages through
detail modelling [16].

Volume calculation of prospects in a regional study is
highly susceptible to large difference in the actual volume
in place. For instance, due to the large area of modelling,
cell size is relatively large (e.g. 100 × 100 m for an area of
340 km2 as in [17]). For small size prospects (e.g.horizontal
projection area of 0.5 km2) cell to model area size relation
is large (2%)whichas a result canhave anunderestimation
of the initial bulk volume by almost 20%.

6 Conclusions
In all presented examples of reservoir volume calculation
(Table 2) it was obvious that Simpson’s rule shows bet-
ter results when structure is close to a regular anticline
(dome) but in all other structures it gives the underesti-
mated value compared to the cell based model volume.
The trapezoidal rule gives good results when structurewas
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irregular and shows the values which are close to high res-
olute cell based model, although they were in all cases
overestimated with exemption when dome was regarded.
It is also important to emphasize that Simpson’s rule can’t
be taken under consideration when the number of ordi-
nates or isopach contours is even (apart from the Simp-
son’s second rule) thusmaking the Trapezoidal most prac-
tical for use. Approximations of Simpson’s rule which al-
low the use of even number of ordinates however do ex-
ist [18] but were not taken into the consideration in this in-
vestigation. Evenwith relatively small number of ordinates
or isopach contours, both numerical integration methods
gave very good results when compared to the detailed cell
based model, thus once again confirming their applicabil-
ity in the volume calculation process.

When using modeling software for volume calcula-
tion, model resolution plays the key part. As the grid reso-
lution decreases the volume calculation suffers from a de-
cline in calculated volumes (Table 1). The largest errors oc-
cur after crossing the threshold when the area of the cell
surpasses the 0.0035% of the reservoir area or a 5% differ-
ence in volume. For later purposes it is advisable that the
cell area of the model is not larger than 0.0008% of the
reservoir area. Cell to model area size relation is very im-
portant in regional studies (e.g. basinmodelling) when the
cell size is adjusted for the entiremodel area. In these cases
underestimation of possible hydrocarbon volumes can oc-
cur in the scale of 20% or more depending on the prospect
and cell size.
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