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Featured Application: The presented methodology is a relatively fast and low-cost method that
gives solid input into the state of the investigated rock mass, bedding orientation, degree of
jointing, and preliminary block size estimation. All these parameters are very important for
decision-making in the initial phase of quarry investment since these factors control the poten-
tial of the location for dimension stone deposit and type of excavation. The methodology is also
applicable to hydrogeological (fractured aquifers), geotechnical, civil engineering, and engineer-
ing geology research (rockfalls, construction of roads, viaducts, railways, bridges, tunnels, etc.)
where knowledge about fracture systems in the rock mass is crucial for further works.

Abstract: The successful exploration of dimension stone mainly depends on the quality, size, and
shape of extractable blocks of dimension stone. The investigated area is in the Pelješac Peninsula
(Croatia), in the External Dinarides orogeny, built from thick carbonate succession, characterized by
relatively small deposits of high-quality dimension stone. These conditions demand challenging
geological investigations in the “pre-quarry” phase to find optimal quarry location. The size and
shape of dimension stone blocks are mainly controlled by fracture pattern systems. In the rugged,
covered terrains, it is very hard to obtain a satisfactory amount of fracture data from the surface,
so it is necessary to collect them from the underground. Borehole camera technology can visualize
the inner part of the rock mass and measure the fracture characteristics. The main conclusions are
as follows: (1) the digital borehole camera technology provides a quick, effective, and low-cost
geological survey of fractured rock mass; (2) statistical fracture distribution parameters, P10, fracture
spacing, Volumetric Joint Count (Jv) based on borehole wall survey can reflect the integrity of rock
mass, providing a solid decision-making base for further investment plans and dimension stone
excavation method.

Keywords: borehole camera; fracture patterns; overturned anticline; dimension stone; External Dinarides

1. Introduction

Dimension stone and crushed rocks are considered key natural resources that enable
the sustainable functioning of the worldwide economy. Global demand for dimension stone,
due to its aesthetic and petrophysical properties being used in the construction industry,
including indoor and outdoor spaces, is related to the development of the economy [1]. A
global increase in demand for dimension stone increased research activities worldwide,
and thus in the Dinarides in Croatia and Bosnia and Herzegovina. The Dinarides are a
fold-and-thrust orogenic belt that is geotectonically positioned along the NE margin of
the Adriatic Sea. The Dinarides have great potential for dimension stone of sedimentary
origin, but locations and the lateral extent of the potential areas are primarily controlled
by regional tectonic settings. The External Dinarides are represented by a thick succession
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of platform carbonates, which are very potential for dimension stone, proven by a dozen
smaller quarries along the Adriatic coast. Since Dinarides are orogeny created by strong
compressional tectonic forces, the rocks are often very faulted, folded, and fractured.

The result of all these natural factors is that dimension stone deposits are usually of
high quality but relatively small (on a global scale). These conditions put more challenges
on geological research to define the optimal position for quarry opening. The block
size distribution is a crucial parameter for the profitable production of dimension stone
within the deposit. The distribution of blocks and their sizes and shapes are mainly
controlled by three-dimensional discontinuity systems (i.e., bedding planes, faults, fracture
systems) [2]. In the research of dimension stone deposits, the particular emphasis should
be on the distribution of discontinuities and their characteristics because fracture patterns
mainly control block size distribution, type (surface pit or underground exploration), and
exploitation success. In the initial phase of research, for the potential quarry, discontinuities
are rarely available in a satisfactory amount for the spatial distribution analysis and
statistics, due to terrain morphology, vegetation, karst features on the surface, and so forth.
Every serious “pre-quarry” investigation includes several drill holes with cores, but it is
not always possible to obtain discontinuity orientation from drill hole cores. Although all
these factors are unfavorable, it is crucial to define some fracture pattern parameters, for
preliminary Volumetric Joint Count estimation, as a key factor for reserve estimation and
later profitability of the surface or underground exploration investment. Challenged by
this situation, we have developed the method of defining fracture orientation parameters
from the borehole camera video logging technique. Recently, borehole video logging
technology (borehole camera, optical and acoustic televiewer) is widely used in geological
and hydrogeological and nuclear waste research [3–10], civil engineering, and geotechnical
engineering [8,9,11–16]. Geological characteristics of the rock mass such as lithology,
fracture orientation, and morphology, karst phenomena (caves), rock weathering, and so
forth can be detected by acquiring high-quality drill hole wall images [11,13]. In this paper,
statistical analysis of the fracture pattern data obtained by borehole camera technology
was examined to estimate expected block size and fracture set orientations. This is a
relatively low-cost method for obtaining reliable preliminary fracture orientation data.
Data were analyzed, and fracture sets with spatial parameters were defined: fracture
sets, bedding, fracture set orientations, P10 linear fracture intensity, fracture spacing, and
Volumetric Joint Count (Jv). The proposed approach is a relatively low-cost methodology
for fracture pattern data collection and analysis to obtain key parameters in their areas
with a low amount of surface data. This is especially important in the initial phase of
dimension stone quarry research. The presented methodology is not applicable only in the
dimension and crushed rock research but also in the hydrogeological (fractured aquifers),
geotechnical, civil engineering, and engineering geology research (rockfalls, construction
of roads, viaducts, railways, bridges, tunnels, etc.).

2. Geological Settings

The investigated area is located on the E side of the Pelješac Peninsula, which is
part of the External Dinarides, an approximately 600 km long fold-and-thrust orogenic
belt [17–24]. The External Dinarides are geotectonically positioned along the NE margin of
the Adriatic Sea, which corresponds with the NE part of the Adria Microplate [18,20,23–25].
The Dinarides orogenic belt was uplifted during the Late Eocene to Oligocene, due to the
Adria Microplate–European Plate collision [18,19]. Most of the sediments in the External
Dinarides were deposited during Mesozoic on the Adriatic Carbonate Platform from lower
Jurassic to Upper Cretaceous [21,22]. The total thickness of the sediments is estimated to a
few kilometers (in places up to 8 km) [21]. During their geological evolution, Dinarides
had a polyphase uplift, due to multiple compressional tectonic regimes that formed present
tectonic settings of the area [17,20,21].

The wider research area in the Pelješac Peninsula is composed of three stratigraphical
and depositional units: Cretaceous carbonates, Paleogene carbonate, and clastic sediments
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and quaternary clastic sediments [26–31] (Figure 1). Cretaceous carbonates are the dom-
inant geological unit in the Pelješac Peninsula, and they are represented by limestones
and dolomites subdivided into four chronostratigraphic units from Hauterivian to Maas-
trichtian age (Figure 1). Since the research area is composed of carbonates of Coniacian to
Maastrichtian (K2

3-6), they will be described in more detail. Upper Cretaceous carbonates
are represented by thick-layered fossiliferous limestones and late diagenetic dolomites.
Limestones are very fossiliferous, with remains of rudists and other mollusks, Echinoderms,
Bryozoans, Hydrozoas, and Foraminifera (Figure 2A–C,E). Lithofacies features indicate
the deposition in the forereef environment with a substantial inflow of material from the
nearby reefs [26–32]. On top of this lithofacies, there are thick series of vertical and lateral
interchange of limestones and dolomites. Limestones are described as thick layers of
mudstone and fenestral mudstones. The upper part of the unit is characterized by a higher
dolomitization rate and gray to dark grey dolomites (Figure 2D,E). The interchange of
limestones and late diagenetic dolomites results from irregular dolomitization, so there is a
frequent lateral and vertical change in lithology. The youngest geological units in the area
are foraminiferal limestones of the Eocene age. They are transgressive to the older deposits,
usually Upper Cretaceous limestones [26–32] (Figure 1).
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The Pelješac Peninsula is a relatively complex tectonic unit characterized by trusts,
folds, and faults. Generally, it represents regional asymmetrical overturned anticline strik-
ing NW-SE. The core of the anticline contains the oldest, Lower Cretaceous deposits. The
limbs are then composed of a succession of Lower Cretaceous to Paleogene sediments.
Trusts are usually NW-SE striking with an inclination towards NE. These trusts are inter-
sected by younger diagonal and transverse strike-slip faults. Our research area is placed
in the SE limb of a regional anticline with NW-SE striking perpendicular to the maximal
stress field (Figure 1).

3. Materials and Methods

The fracture orientation data can be collected in different ways: from the drill hole
cores, the optical and acoustic televiewer survey, drill hole geophysics, and drill hole
camera surveying. The best way to observe and measure fracture system parameters
(orientation, density intensity, cross-cutting relations, etc.) is in the open pits, outcrops,
and road cuts. When it is impossible to obtain the fracture data from the terrain, the only
alternative option is to obtain them from the underground by drilling. Since terrain in
our research area was impassable and had vegetation cover, and other drill hole analyses
(geophysical, optical, and acoustic televiewer logging methods) are relatively expensive in
the initial, “pre-quarry” phase of the research, improvisation was needed to find a relatively
affordable way to measure the discontinuities orientation in the drill holes. In this research,
ten drill holes were drilled, and drill hole cores were geologically logged (Figures 2 and 3).
Drillhole cores were not undisturbed, which means that cores were rotated during drilling,
so their orientation in space was not defined.
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3.1. Drillhole Camera Video Fracture Surveying

On the basis of the drill hole position and the drill hole core logs, six drill holes were
chosen for the drill hole camera survey. We used a drill hole camera system with spatial
orientation of the bottom and side camera (Figures 4 and 5). The borehole camera was
transported by terrain vehicle to the drill hole location. The camera was then centered
above the drill hole by a tripod, and the depth was set to zero m. Camera orientation
was checked (on each drill hole) while the camera was still on the surface. After all initial
checking was set up, the camera was lowered into the drill hole with a winch. Since the
camera has a smaller radius than the drill hole, centering the camera was done with a
tripod placed precisely above the drill hole. Camera stillness was partially established by
the tripod and partially by a slow lowering of the camera to the drill hole. The camera
needs to be still for acquiring precise orientation, so sometimes it was necessary to wait for
the camera to stabilize. Alternatively, it is possible to use stabilizers between the camera
and the drill hole wall. Still, it is dangerous in the open hole, but it can be dangerous due
to the possible collapse of the drill hole wall (in the faulted or karstified intervals).
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orientation determination.

The fracture surface is a three-dimensional plane in space with two main character-
istics: dip direction and dip angle. Each fracture is measured manually in four points
(D–G, in Figure 4A) by down and side cameras (Figure 4B), so fracture can be adequately
defined in space. To define the orientation of the fracture, it would be enough to measure in
three points. Still, because of measurement conditions (camera rotation, the angle between
camera and fracture, subjectivity due to geologist experience), we take measurements
in four points to better define the plane. Each fracture measurement was entered into a
spreadsheet in the notebook. Measured dip angles were also checked on the drill hole



Appl. Sci. 2021, 11, 764 7 of 17

cores for higher precision of the measurement (Figure 3). First, from the bottom camera, we
defined the strike and azimuth of the fracture, which is then checked and improved by the
side camera (Figure 4A,B,D,E–G). The whole surveying was recorded so later interpretation,
reinterpretation, and validation could be made. The whole process is repeated for each
drill hole.
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3.2. Statistical Fracture Distribution Parameters and Relation to the Associated
Geological Structure

The next steps were a stereonet-based structural analysis of the fracture data and
grouping of the fractures into fracture sets. Fracture sets were defined by the orientation
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and the Fisher coefficient of dispersion (k). Input data for calculating k are dip direction
and dip of the discontinuities. Fisher coefficient was calculated by the Equation (1) [33]:

k = (n − 1)/(n − R) (1)

where k is Fisher coefficient of dispersion, and n is the number of measurements, and R is
the mean vector direction.

Fracture orientation, cluster analysis, and Terzaghi bias correction [34] were made with
an academic license of Petroleum Experts Move software. Cluster analysis or clustering is
the classification of objects into subsets (clusters) so that objects in each subset share the
same properties. The used clustering technique is based on the k-means algorithm. The
k-means algorithm is an algorithm to cluster objects-based attributes into k populations.
To subdivide data into clusters, it was necessary to manually estimate the number of
clusters based on stereo net observation. It is important to notice that this part is highly
dependent on the interpreter’s experience. This algorithm is relatively fast, so a common
procedure is to run the algorithm several times and return the best clustering. The algorithm
then separates the data into the number of expected clusters. Since there are not enough
data from the surface to validate fracture sets defined by drill hole camera logging, we
needed to validate our interpretation based on theoretical fracture models expected in
the interpreted geological structure (example in [35,36]). When it is hard or impossible
to have a statistically meaningful amount of the fracture measurements, it is necessary to
obtain as much data about the geological structure since fractures and fracture patterns
result from the geological settings of the area [37]. Systematic fractures usually show close
relationships to faults and folds, which develop during the same tectonic event [35]. On
the basis of the structure interpretation, we can anticipate the fracture patterns related to
the position of our research area in the structure (Figure 6).
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Figure 6. Predicted fracture systems on an anticline. Expected fracture orientations are based on models in [35,36].

Fracture system parameters, like density and intensity, depending on the lithology,
layer thickness, mechanical characteristics of rocks, structural position, fold curvature,
distance from faults, and so forth [38–41]. For the preliminary rock mass evaluation, the
following parameters are calculated:

– P10—number of fractures per unit distance (in our example 1 m drill hole length)
(m−1) (Figure 7)
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– Apparent (Sm) and true fracture spacing (d) in each individual set (m) (Figure 7)—if
fracture orientation parameters and apparent spacing between fracture in the set are
known, we can calculate true spacing by equation:

d = Sm × sinδ (2)

where d is true fracture spacing, Sm is apparent fracture spacing, and δ is an angle
between fracture plane and drill hole axis.

– Volumetric Joint Count (Jv)—number of fractures in the unit volume of the rock mass
(m−3) [29–34]. This parameter can be calculated from the true fracture spacing [42].
Volumetric Joint Count represents a measure of fracture density in the rock volume
(in the literature, it can also be marked as P30):

Jv = 1/d1 + 1/d2 + . . . + 1/dn (3)

where Jv is Volumetric Joint Count (m−3), and d is the average spacing between
fractures in the set (m).
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4. Results
4.1. The Analysis of Fracture Orientation

For this research, six drill holes were surveyed by a video camera with a cumulative
depth of 378 m. By this method, 246 discontinuities were measured in the drill holes. Even
though the terrain was almost inaccessible, we have done discontinuity mapping, and
48 discontinuities on the surface were measured. It is important to note that most of the
surface data are bedding measurements and very few fracture measurements on the surface
(only nine measurements of S1 fractures, four measurements of S2 fractures, and one of
the S3 fractures) due to vegetation coverage karstification and inaccessibility of the surface.
Both surface and subsurface surveys resulted in a total of 294 discontinuity measurements.

On the basis of the cluster analysis of fracture orientation data, we classified them
into four sets (Table 1, Figure 8), from which S0 is the bedding and S1, S2, and S3 are
fractures systems.
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Table 1. Fracture orientation data and fracture set interpretation.

Set
Drillhole Data

Dip Direction Dip Angle No. of Measurements Standard Deviation (◦) Fisher

Bedding S0 15 46 16 55.99 41.18

Fractures

S1 228 73 58 53.89 16.89

S2 86 72 104 53.95 18.08

S3 319 76 35 53.61 15.60

Set
Terrain Data

Dip Direction Dip Angle No. of Measurements Fisher

Bedding S0 29 36 33 55.47 30.41

Fractures

S1 227 61 9 54.52 12.82

S2 114 72 4 52.25 8.52

S3 0 60 1 - -

Set
All Measurements

Dip Direction Dip Angle No. of Measurements Fisher

Bedding S0 20 39 49 55.40 29.65

Fractures

S1 226 71 67 53.84 16.34

S2 93 70 108 53.77 16.09

S3 319 76 36 53.61 15.05

Fracture system orientations and their other spatial distribution parameters are strongly
dependent on the position in the geological structure (regional and local) [35,36,43,44].
Expected fracture orientations in different parts of the folds are well defined in the scientific
literature [35]. Nonetheless, it is important to note that every research area was subdued
to different geological processes with various intensities during its evolution, so not all
theoretical fracture systems are necessarily formed. Fracture system orientation in the fold
structures is controlled by many factors: scale, fold type, layer thickness, mechanical prop-
erties of rocks, lithology, stress orientation, and so forth [35,44]. Theoretically, in the gentle
anticline limb, we can expect two tension fracture sets and two shear fracture sets [35].
It is important to note that orientation and relationship between fracture sets, as well as
a number of developed sets, are controlled by position in the anticline structure (gentle
limb, hinge, or steeper limb) [7,35]. Our research area is in the gentle limb of an overturned
anticline where bedding is generally inclined towards NE by 40◦ (Figures 1, 2, 6 and 7;
Table 1). Maximal compressional stress orientation is generally NE-SW (Figure 1) [20,27,45].
In this structure, the S1 fracture set corresponds to the tension fracture set with the same
strike as the axial plane and bedding (Figures 6 and 8). Fracture sets S2 and S3 correspond
to the shear fracture conjugate sets with an angle between them 65◦, and they are diagonal
to the σ1. The angle between S2 and σ1 is 32◦ and between S3 and σ1 is 33.2◦. Our drill
hole video survey discovered that all fracture sets have a visible fracture aperture with
occasional clay infill, which indicates that these fractures originate from tension stress. We
interpreted this phenomenon as tension developed during the exhumation of these rocks
to the surface during formation of the Dinarides. On the basis of these results, there is a
minimum of three fracture sets and bedding in our research area that can be correlated to
the position in the gentle limb of an anticline. Fracture set S4 in the Price, 1966 theoretical
model (Figure 7) perpendicular to the axial plane is not developed in our case.
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4.2. Statistical Analysis of Spatial Distribution Parameters of Fractures
4.2.1. Linear Density/Intensity of Fractures—P10

The linear density/intensity of fractures (P10) represents a number of fractures per
unit of length (in our case, drill hole axis). After we defined preliminary fracture sets, it
was possible to calculate P10 for each set in the drill hole and each set overall (Table 2). The
highest average P10 was calculated for the S2 fracture set with value 0.39 m−1 and lowest
for S3 with value 0.11 m−1.

Table 2. Linear density/intensity of fractures—P10.

Drillhole Fracture Set
Length of the Interval

Number of Fractures Per Interval
P10

(m) m−1

B-1 S1 33 5 0.15
B-3 S1 79.4 6 0.08
B-5 S1 44.5 11 0.25
B-6 S1 24.5 18 0.73
B-7 S1 67 16 0.24
B-9 S1 67 13 0.19
B-1 S2 33 13 0.39
B-3 S2 65.3 15 0.23
B-5 S2 25 7 0.28
B-6 S2 27.5 12 0.44
B-7 S2 44.7 22 0.49
B-9 S2 73.8 38 0.51
B-1 S3 28.1 0 0
B-3 S3 56 9 0.16
B-5 S3 44.5 0 0
B-6 S3 20 4 0.20
B-7 S3 56 17 0.30
B-9 S3 73.8 0 0

Average P10 per set
Set P10
S1 0.27
S2 0.39
S3 0.11

However, it is important to note that this parameter quantifies the only apparent
number of fractures per unit of length since the distance between two fractures can be
apparent if the drill hole channel is not perpendicular to the fracture orientation (Figure 7).
By this parameter, it is not possible to calculate real spacing between fractures.

4.2.2. Apparent and True Fracture Spacing

Apparent fracture spacing (Sm) for all sets is in the interval between 0.5 and 4.39
(Table 3). Thus, fracture spacing is not regular in space, visible in the Sm calculated for
each set in each drill hole (Table 3). Average values of Sm for S1 set is 5.67 m, for S2 from
3.24 m, and for S3 5.14 m. The average value of Sm for bedding (S0) is 5.54. Average true
fracture spacing (d) for S1 is 2.06 m; for S2, parameter d is 1.24 m, and for S3 from 1.32 m.
The bedding have the highest values of true spacing, 3.74 m, which is consistent with our
fieldwork data and literature descriptions of these rocks in other localities, where these
carbonates are described as thick layered [26,28–32].
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Table 3. Spatial distribution properties: apparent fracture spacing (Sm), average angle between fracture and drill hole axis
and true fracture spacing (d) for each interpreted discontinuity set, and Volumetric Joint Count (Jv) for the discontinuity
pattern system.

Drillhole Fracture Set
Drillhole

Depth/Interval
Length

Apparent Fracture
Spacing

The Average Angle
between Fracture and

Drill Hole Axis
Sinδ True Fracture

Spacing 1/d

(m) Sm (m) ◦ d (m) m−1

B-3 S0 79.40 4.20 45.00 0.71 2.97 0.34

B-6 S0 53.50 2.90 40.00 0.64 1.86 0.54

B-7 S0 83.00 7.70 40.00 0.64 4.95 0.20

B-9 S0 73.80 7.37 45.00 0.64 5.21 0.45

B-1 S1 44.00 8.42 31.41 0.52 4.39 0.23

B-3 S1 79.40 11.92 17.70 0.30 3.63 0.28

B-5 S1 44.50 2.93 12.80 0.22 0.65 1.54

B-6 S1 53.50 1.73 16.61 0.29 0.50 2.02

B-7 S1 83.00 3.93 17.67 0.30 1.19 0.84

B-9 S1 73.80 5.08 23.63 0.40 2.04 0.49

B-1 S2 44.00 3.15 29.88 0.50 1.57 0.64

B-3 S2 79.40 4.82 11.81 0.20 0.99 1.01

B-5 S2 44.50 2.76 25.83 0.64 1.77 0.56

B-6 S2 53.50 3.89 26.91 0.45 1.76 0.57

B-7 S2 83.00 2.72 10.40 0.18 0.49 2.03

B-9 S2 73.80 2.13 23.71 0.40 0.86 1.17

B-3 S3 44.00 6.70 10.25 0.18 1.19 0.84

B-6 S3 53.50 5.01 21.67 0.37 1.85 0.54

B-7 S3 83.00 3.72 14.47 0.25 0.93 1.08
Bedding S0 5.54 42.50 0.68 3.74 0.26

Fracture set S1 5.67 19.97 0.34 2.06 0.90
Fracture set S2 3.24 21.42 0.40 1.24 1.00
Fracture set S3 5.14 15.46 0.27 1.32 0.82

Volumetric Joint Count (m−3) 2.97

4.2.3. Volumetric Joint Count (Jv)

After average values for true fracture spacing were defined, Jv was easy to calculate by
Equation (3). Ultimately, the Volumetric Joint Count for our example of four discontinuity
sets (bedding and three fracture sets) is 2.97 fractures per m3 (Table 3).

The rock mass can be classified based on Jv, from a very low degree of jointing to
crushed rock mass (Table 4) [47]. Our example belongs to a small degree of jointing, which
means that the area is definitely potential for dimension stone deposit.

Table 4. Classification of degree of joint of rock mass according to the Volumetric Joint Count (Jv) [47].

Class Very small Small Moderate Large Very Large Crushed

Jv (m−3) <1 1–3 3–10 10–30 30–60 >60

5. Discussion

The productivity of dimension stone quarry mainly depends on the extractable block
size and shape [2]. The shape and volume of the blocks are crucial factors and are controlled
by the discontinuity pattern [2]. The External Dinarides orogeny is mostly built from a
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thick succession of often tectonically disturbed carbonates, which resulted in relatively
small deposits (on the global scale) of high-quality dimension stone. These conditions
demand challenging geological investigations in the “pre-quarry” phase to find the optimal
quarry location. All necessary surface geological investigations were made (geological
mapping, stratigraphy, structural research, petrography, mechanical properties), but since
the terrain is rocky, impassable, and covered by vegetation, a small number of fractures
was measured. Drillhole geophysics and the Optical and Acoustic Televiewer surveys were
too expensive, so we were challenged to find a new method to measure fractures in the drill
holes. A borehole camera with the bottom and side camera’s spatial orientation was used to
measure fracture orientation parameters (Figures 4 and 5). Fractures were measured, then
analyzed in stereonets by cluster analysis to define fracture sets. Four preliminary sets were
defined, of which one is bedding (S0), one is tensional fracture set (S1) perpendicular to the
stress orientation and subparallel to the fold axis, and two sets were defined as conjugated
shear fracture sets (S2 and S3). It is important to notice that all sets have visible apertures
at all depths, sometimes larger than eight cm and with red clay infill. We interpreted
this as a result of the tension created by rock exhumation during the formation of the
Dinarides. This can also be a reason for small offsets in parallelism between bedding, fold
axis, and S2 tension fractures. Thus, this error could result from the measurement error,
which could not be confirmed. Fisher coefficients of dispersion are highest for the bedding,
around 30, which indicates that bedding has the smallest dispersion of data around the
mean value. This was expected, since most bedding measurements were taken from the
surface (Table 1). Relatively low values of the Fisher coefficient, in the range between
15 and 20, for other fracture sets indicate relatively high dispersion around mean value.
Since we had no way to validate the measurements, we tried to tie our fracture sets to the
position in the geological structure [35–37]. Our research area is part of the gentle limb
of a regional overturned asymmetric anticline, so we correlated the theoretical fracture
model [35] for the asymmetric anticline to our results (Figure 8), and it generally fits the
model. Low values of the Fisher coefficient of dispersion can result from multiple factors:
local undulation of fractures, measuring error, the existence of more fracture sets than we
interpreted, and so forth. This can be further investigated by the analysis of the fracture
system on each drill hole in each lithofacies.

By calculating spatial distribution parameters, P10, apparent spacing, true spacing,
and Jv, we wanted to make a bold prediction of fracture spacing and block size in the
potential deposit. These results are directly dependent on the measures and fracture set
interpretation. Volumetric Joint Count for this case study is 2.97 fractures per m3. By
importing this value to the Palmstrom Jv-Block size correlation diagram [47], the estimated
average block size in the deposit is about 1.5 m3, which we characterize as potential in
given geological conditions (bedding inclination of 40◦, position in the orogeny).

The presented methodology is a relatively fast and low-cost method that gives solid
input into the state of the investigated rock mass, bedding orientation, degree of jointing,
fracture infill, Volumetric Joint Count, and preliminary block size estimation. All these pa-
rameters are very important for decision-making in the initial phase of quarry investment,
since these factors control the potential of the location for dimension stone deposit and type
of excavation. The methodology is applicable in the areas where deposits are relatively
small, so large initial investments are not expected. The advantages of the method, com-
pared to similar techniques, are price, speed, and no need for heavy machinery. The main
disadvantages are precision (compared to the Optical or Acoustic Televiewer), and the
results strongly depend on the interpreter’s experience. The methodology is also applicable
to hydrogeological (fractured aquifers), geotechnical, civil engineering, and engineering
geology research (rockfalls, construction of roads, viaducts, railways, bridges, tunnels, etc.)
where knowledge about fracture systems in the rock mass is crucial for further works.

We aimed to define the preliminary fracture pattern system and give a bold estimation
of average block size, on the basis of which potential investor can decide to continue
or abort the further research and decide which kind of exploitation technique can be
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expected (open pit or underground excavation). It is important to note that these results
can be characterized as preliminary and need to be updated with all new data in future
research (open pits, galleries, cuts, etc.) to make a better fracture interpretation that will
minimize financial losses during exploration. The results of this research have confirmed
the justification of the previous research and supports further investments.

6. Conclusions

In the research area in Pelješac Peninsula (Croatia), intensive geological research was
conducted to define the potential of the location for dimension stone quarry. Special
emphasis was put on defining fracture pattern parameters, since fractures are crucial
factors that control block size and shape. The terrain was very karstified and covered by
vegetation, so it was impossible to obtain a meaningful amount of fracture analysis data.
Challenged by the given task, a new methodology was proposed to survey fractures on
drill hole walls by the borehole video camera and structural analysis of fracture sets that
result in Volumetric Joint Count (Jv) estimation. General conclusions are:

(1) Borehole camera technology is a relatively low-cost method compared with other
drill hole surveying techniques for acquiring fracture orientation data. Although
the measured data quality is lower than the Optical or Acoustic Televiewer, with
drill hole core data, fracture measurements on the terrain, and precise interpretation
of geological structure, these methods give a satisfactory basement for preliminary
fracture pattern interpretation.

(2) Besides fracture orientation, by borehole camera, it is possible to extract the rock mass
condition, fracture aperture, fracture infill, cross-cut relations between fractures, and
karst forms (i.e., caves and caverns), fracture surface roughness estimation, lithological
features of rocks, and so forth.

(3) We preliminary define four discontinuity sets (bedding and three fracture sets) that
correspond with the position in the gentle limb of an overturned anticline, which
partially confirms that the survey was successful. After fracture orientation mea-
surements, the following parameters of spatial distribution were calculated: Linear
fracture intensity (P10), Apparent Fracture Spacing (Sm), True Fracture Spacing (d),
and Volumetric Joint Count (Jv), which indicate a small degree of jointing that is
convenient for dimension stone deposit.

A fracture pattern system’s complexity can generate various problems concerning
opening a quarry, type of excavation method, and defining the ongoing mining [2,47].
Dinarides are usually characterized by small deposits of high-quality dimension stone. With
that in mind, large investments in the extensive geological research in the underground
research (optical and acoustic televiewer survey, drill hole geophysics) prior to the quarry’s
opening are not to be expected. The described method is a relatively fast and low-cost
method that gives solid input into the state of the rock mass, bedding orientation, degree
of jointing, and block size, which is very important for decision making, since it controls
the locality’s potential for dimension stone deposit and type of excavation.
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