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ABSTRACT

A complete quadrilateral in the Euclidean plane is studied.
The geometry of such quadrilateral is almost as rich as the
geometry of a triangle, so there are lot of associated points,
lines and conics. Hereby, the study was performed in the
rectangular coordinates, symmetrically on all four sides
of the quadrilateral with four parameters a,b,c,d. In this
paper we will study the properties of some points, lines and
circles associated to the quadrilateral. All these properties
are well known, but here they are all proved by the same
method. During this process, still some new results have
appeared.

Key words: Euclidean plane, complete quadrilateral,
parabola

MSC2020: 51N20

Potpuni četverostran u pravokutnim koordi-
natama

SAŽETAK

U radu proučavamo potpuni četverostran u euklidskoj
ravnini. Poput trokuta i potpuni četverostran ima mnogo
zanimljivih svojstava te pridruženih točaka, pravaca i konika.
Ovdje je proučavanje provedeno korǐstenjem pravokutnih
koordinata, simetrično po sve četiri stranice četverostrana
s četiri parametra a,b,c,d. Proučavamo svojstva točaka,
pravaca i kružnica pridruženih četverostranu. Gotovo sve
tvrdnje prikazane u ovom radu su dobro poznate, ali su se
ipak ponegdje usput pojavili i neki novi rezultati.

Ključne riječi: euklidska ravnina, potpuni četverostran,
parabola

1 Motivation

The focus of this paper is the geometry of a complete quadri-
lateral in the Euclidean plane. Such a geometry is almost as
rich as the geometry of a triangle, so there are lot of associ-
ated points, lines and conics. The facts given in the paper
are well known, but the idea of the paper is to prove them
all by the same method. Hence, the study is performed in
the rectangular coordinates, symmetrically on all four sides
of the quadrilateral with four parameters a,b,c,d. During
this process, still some new results have appeared.
We mention only the literature where the facts and the state-
ments are presented for the first time.
Previously known statements are included in the text and
given in italic while the new results are given in the form of
theorem.

2 Introduction

A complete quadrilateral, or just a quadrilateral ABCD
is a set of four lines A , B , C , D in the Euclidean plane,
where none of two lines are parallel and no three of which
are concurrent. Lines A , B , C , D are sides of that quadri-
lateral, and intersections of the pairs of lines are its vertices.
Pairs of vertices TAB = A ∩B , TCD = C ∩D; TAC = A ∩C ,
TBD = B ∩D; TAD = A ∩D, TBC = B ∩C are pairs of op-
posite vertices, and their connecting lines U = TABTCD,
V = TACTBD, W = TADTBC are diagonals of that quadri-
lateral. Intersection points U = V ∩W , V = W ∩U,
W = U ∩V are diagonal points and a triangle formed by
diagonal points and diagonals is a diagonal triangle of a
quadrilateral. Only one parabola P can be inscribed to
the quadrilateral ABCD and let it touches the sides of the
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quadrilateral at the points A, B, C, D. An axis and a ver-
tex tangent of that parabola is taken as x-axis and y-axis
of the coordinate system. Then, taking any metrical unit
for length the equation of that parabola is y2 = 2px. That
parabola has the point (

p
2
,0) as a focus and the line x =− p

2
as the directrix. Without loss of generality, we can take the
metrical unit for length in a way that p = 2 is valid. The
size of some object is not important, but only its shape and
mutually position to the similarity. The diagonal triangle is
autopolar with respect to the parabola P , i.e. lines U,V ,W
are polars of points U,V,W with respect to parabola.
Hence, we can take that inscribed parabola P of the quadri-
lateral ABCD has the equation

P . . .y2 = 4x, (1)

so its focus is point S = (1,0), the directrix H is x = −1.
The polarity with respect to the parabola P maps any point
T0 = (x0,y0) to the line T0 with the equation y0y = 2x+2x0,
the polar line of the point T0. For the contact points of the
parabola P with the sides of the quadrilateral the following
points are taken

A = (a2,2a),B = (b2,2b),C = (c2,2c),D = (d2,2d). (2)

The tangent lines of the parabola at the points A,B,C,D are
lines A , B , C , D with equations

A . . .ay = x+a2, B . . .by = x+b2,

C . . .cy = x+ c2, D . . .dy = x+d2, (3)

because on the example of the polar line for the point A
we get the equation 2ay = 2x+2a2. For the vertices of the
quadrilateral ABCD we get the following forms

TAB = (ab,a+b),TAC = (ac,a+ c),TAD = (ad,a+d),

TCD = (cd,c+d),TBD = (bd,b+d),TBC = (bc,b+ c).
(4)

The diagonals are

U = TABTCD . . .(cd−ab)y

= (c+d−a−b)x+(a+b)cd−ab(c+d),

V = TACTBD . . .(bd−ac)y

= (b+d−a− c)x+(a+ c)bd−ac(b+d),

W = TADTBC . . .(bc−ad)y

= (b+ c−a−d)x+(a+d)bc−ad(b+ c), (5)

and diagonal points

U =

(
(a+b)cd−ab(c+d)

c+d−a−b
,2

cd−ab
c+d−a−b

)
,

V =

(
(a+ c)bd−ac(b+d)

b+d−a− c
,2

bd−ac
b+d−a− c

)
,

W =

(
(a+d)bc−ad(b+ c)

b+ c−a−d
,2

bc−ad
b+ c−a−d

)
.

(6)

U
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Figure 1: A complete quadrilateral ABCD

There is a complete quadrilateral ABCD on Figure 1.
Let denote basic symmetric functions of the parameters
a,b,c,d by s,q,r and p, so that

s = a+b+ c+d, q = ab+ac+ad +bc+bd + cd,

r = abc+abd +acd +bcd, p = abcd

are valid.

We will often use and labels α = a2 + 1, β = b2 + 1,
γ = c2 +1, δ = d2 +1.

3 On a complete quadrilateral

Hereby, we will give many well known results on a com-
plete quadrilateral ABCD, as well as few new results.
Connecting line AB from (2) is the line with the equation
2x− (a+b)y+2ab = 0 that is fullfilled by coordinates of
the point U from (6). Similarly computation is valid for
others connecting lines of the points A, B, C and D. Hence,
a complete quadrangle ABCD has the same diagonal trian-
gle UVW as the quadrilateral ABCD , see [43].
The midpoints of pairs of points TAB,TCD; TAC,TBD;
TAD,TBC from (4) are following points

U0 =
(1

2
(ab+ cd),

1
2

s
)
, V0 =

(1
2
(ac+bd),

1
2

s
)
,

W0 =
(1

2
(ad +bc),

1
2

s
)

(7)
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and obviously they lie on the line N with the equation

N . . .y =
1
2

s. (8)

There are lots of names for this line, here we will call it a
median of the quadrilateral ABCD. It was mentioned for
the first time in [9], an its existence was proved in [16]. Out
of formulas (7) the following formulas for directed lengths
follow

V0W0 =
1
2
(a−b)(d− c), W0U0 =

1
2
(a− c)(b−d),

U0V0 =
1
2
(a−d)(c−b). (9)

The centroid of six points from (4) and the centroid of four
points from (2) are points

T = (
1
6

q,
1
2

s), T ′ = (
1
4
(s2−2q),

1
2

s) (10)

that are incident with N .

In [33] the following statement is proved:
Areas of two triangles whose bases are two diagonals of the
quadrilateral, and common vertex is any of two additional
vertices of that quadrilateral, are related as segments on
the median of the quadrilateral from the midpoints of these
two vertices to the midpoints of two diagonals mentioned
before.
That means that areas of triangles TABTACTBD and
TABTADTBC, as well as areas of triangles TCDTACTBD and
TCDTADTBC are related as directed lengths U0V0 and U0W0,
and there are two more such examples. Areas of trian-
gles TABTACTBD and TABTADTBC are 1

2 (a−b)(a−d)(b− c)
and 1

2 (a− b)(a− c)(b− d), and areas of TCDTACTBD and
TCDTADTBC are 1

2 (c− d)(a− d)(b− c) and 1
2 (c− d)(a−

c)(b−d) while directed lengths U0V0 and U0W0 according

to (9) are equal
1
2
(a−d)(c−b) and

1
2
(a− c)(d−b). So,

all three mentioned ratios are equal to
(a−d)(b− c)
(a− c)(b−d)

, that

is actually the cross ratio (abdc). In another two examples
two cross ratios are (acbd) and (adcb).
In the quadrilateral ABCD we can observe three quadran-
gles TACTADTBDTBC, TABTADTCDTBC, and TABTACTCDTBD,
one of them is convex, one concave, and one crossed. Cen-
troids of these quadrangles are points

Tu =
(1

4
(ac+ad +bc+bd),

1
2

s
)
,

Tv =
(1

4
(ab+ad +bc+ cd),

1
2

s
)
,

Tw =
(1

4
(ab+ac+bd + cd),

1
2

s
)

incident with the median N . For the directed lengths on
that line we have the equalities

TvTw =
1
4
(a−b)(c−d),

TwTu =
1
4
(a− c)(d−b),

TuTv =
1
4
(a−d)(b− c),

so because of the equality (9) we get V0W0 = −2TvTw,
W0U0 = −2TwTu, U0V0 = −2TuTv that is a result given in
[32].
If for oriented lengths equalities TABTAD = uTABTAC,
TABTBC = vTABTBD are valid, then easily we get equali-

ties
b−d
b− c

= u,
a− c
a−d

= v. If the number w is such that

U0W0 = wU0V0 is fulfilled, then because of (9)

w =
(a− c)(d−b)
(a−d)(c−b)

= uv

follows. This is result from [38].
Let the points B1 and C1 be points on lines B and C so
that for the directed lengths the equalities TABB1 = TBCTBD,
TACC1 = TBCTCD are valid. Then out of (4) we get points
B1 and C1 of the form

B1 = (ab+bd−bc,a+b− c+d),

C1 = (ac+ cd−bc,a−b+ c+d).

The line B1C1 has the equation 2x− (a+d)y+(a+d)2−
(a+ d)(b+ c)+ 2bc = 0, and its intersections A1 and D1
with lines A and D with equations (3) are points having
ordinates

1
d−a

[d2 +2ad−a2− (a+d)(b+ c)+2bc],

1
a−d

[a2 +2ad−d2− (a+d)(b+ c)+2bc],

so the midpoint of these points A1 and D1 has an ordinate
a+d, the midpoint of B1 and C1 has the same ordinate as
well. Because of that directed lengths A1B1 and C1D1 are
equal. This statement we find in [35]. We see that: the
common midpoint of the line segments A1D1 and B1C1 is
incident with the diameter of the parabola P through the
point TAD. There are five more analogous statements where
we find common midpoints of the pairs of line segments on
diameters of parabola P through other five vertices of the
quadrilateral ABCD .
The median N with the equation y = 1

2 (a+b+c+d) inter-
sects the line A with the equation ay = x+a2 in the point
A ∩N = ( 1

2 (ab+ ac+ ad− a2), 1
2 (a+ b+ c+ d)), and a

midpoint of that point and point TBC = (bc,b+ c) is the
point(

1
4
(ab+ac+ad−a2 +2bc),

1
4
(a+3b+3c+d)

)
.
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This midpoint is incident with the line

2x− (a+b+ c−d)y+
1
4
(3a2 +3b2 +3c2−d2 +2ab+

+2ac+2bc−2ad−2bd−2cd) = 0.

Midpoints of the pairs B ∩N ,TAC and C ∩N ,TAB are in-
cident with it as well. Hence, that line is a median of
the quadrilateral ABCN . Its intersection with the line N
is the point ( 1

2 (4q− s2), 1
2 s) that is incident with medians

of quadrilaterals ABDN , ACDN , BCDN . It is point
QL−P23 in [43].
Points symmetric to intersections of the given line with
sides of given triangle with respect to the midpoints of
these lines are incident with one line that are said to be
reciprocal to given line with respect to given triangle.
Let us determine the line D ′ reciprocal to the line D with
respect to trilateral ABC . A point on the line A sym-
metric to the point TAD with respect to the midpoints TAB
and TAC is of the form (ab+ ac− ad,a+ b+ c− d). Out
of symmetry on a,b,c of the ordinate of that point we
conclude that the same ordinate is achieved in a similar
procedure with lines B and C . So, the equation of D ′ is
y = a+ b+ c− d and it is parallel to the median N of
the quadrilateral ABCD. This statement is coming from
both [17] and [31]. Analogously, lines A ′,B ′,C ′ reciprocal
to lines A , B , C with respect to trilaterals BCD, ACD,
ABD have equations y =−a+b+c+d, y = a−b+c+d,
y = a+ b− c+ d. Adding up these four equations, we
find 4y = 2(a+b+ c+d), i.e. the equation y = 1

2 s of the
median N . Hence, the median of the quadrilateral ABCD
is so-called centroid line of the lines A ′,B ′,C ′,D ′.

TAB

TAC

TAD

TBC

TBD

TCD

P 

P 

aP 

P 

P 

d

c

b

A B
C 

D

x

y

Figure 2: Parabolas circumscribed to trilaterals

Lines D and D ′ are reciprocal with respect to trilateral
ABC and that relationship is symmetric on that two lines,
so as the line D ′ is parallel to the median of the quadrilat-
eral ABCD , then and the line D is parallel to the median
of the quadrilateral ABCD ′. Similar is valid for the other
sides of the quadrilateral ABCD and their reciprocal lines
A ′, B ′, C ′. This statement is found in [39].
In [12] it is stated:
Parabolas inscribed to trilaterals formed by three sides of
the quadrilateral with axes parallel to the axis of parabola
inscribed to that quadrilateral arises from this inscribed
parabola by using translations.
The statement is not quite correct.
Namely, parabola Pd with equation

y2− (a+b+ c)y = x−ab−ac−bc

is incident with points TAB,TAC,TBC, i. e. it is circumscribed
to the trilateral ABC , and it has an axis parallel to the axis
of P , but its parameter is equal to the quarter of the param-
eter of P . See Figure 2. Hence the following theorem is
valid:

Theorem 1 The parabolas Pa, Pb, Pc, Pd inscribed to tri-
laterals BCD, ACD, ABD, ABC arise from each other
by translations. The parameter of these parabolas is equal
to the quarter of the parameter of P .

For example, substituting

x→ x+
1
4
(c−d)(2a+2b− c−d),

y→ y+
1
2
(c−d)

the equation of Pd turns into y2− (a+b+d)y = x−ab−
ad−bd that is the equation of Pc.
A parabola with an equation 12x = 9y2−6sy+4q passes
through the centroid Gd = ( 1

3 (ab+ac+bc), 2
3 (a+b+ c))

of the trilateral ABC , and then through centroids of other
three trilaterals of the quadrilateral ABCD. A vertex of
this parabola is the point ( 1

12 (4q− s2), 1
3 s), and its axis has

the equation y = 1
3 s, so the distance from the focus S of

the quadrilateral ABCD to its median is equal to three
halves of the distance from this focus to this parabola. This
statement is from [5] and [6].

The parabola P inscribed to the quadrilateral ABCD is
circumscribed to the quadrangle ABCD. However, there is
one more parabola circumscribed to that quadrangle. It is
parabola with the equation

x2− 1
2

sxy+
1

16
s2y2 +(q− 1

4
s2)x− 1

2
ry+ p = 0,

because for example for the point A = (a2,2a) we get equal-
ity a4−a3s+a2q−ar+ p = 0. The square part of previous
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equation is 1
16 (4x− sy)2, so it follows that the axis of this

parabola has the slope 4
s . The slope of connecting line of

the focus S = (1,0) and the intersection point Q = (−1, 1
2 s)

of the median and the directrix is equal to −s
4 . It proves

that the axis of studied parabola is perpendicular to the
connecting line SQ, see [43].

U
V

W

UbVc
Wd

Ua

Vd

Wc

Ud

Va

Wb

UcVb

P  

A B C 

D

A 

B

C 

N   

D

1

1

1

1

x

y

Figure 3: Lines A1, B1, C1, D1 are parallel to the median
N

A line through the point U from (6), parallel to the line B
has the equation

(c+d−a−b)(x−by) = 2ab2 +acd−abc−abd−bcd

and intersects the line U from (5) in the point Ub with
coordinates

x =
1

c+d−a−b
(abc+abd +acd−bcd−2a2b),

y = 2a.

Analogously, a line parallel to the line C and incident with
V intersects a line V in the point Vc with coordinates

x =
1

b+d−a− c
(abc+abd +acd−bcd−2a2c),

y = 2a,

and the line parallel to the line D and incident with W
intersects a line W in the point Wd with coordinates

x =
1

b+ c−a−d
(abc+abd +acd−bcd−2a2d),

y = 2a.

The points Ub,Vc,Wd are incident with one line A1 with the
equation y = 2a. Analogously, sets of three similar points
Ua,Vd ,Wc; Ud ,Va,Wb; Uc,Vb,Wa are incident with lines B1,
C1, D1, respectively, and lines A1, B1, C1, D1 are parallel
(see Figure 3). This is statement from [26]. During this
process, the new result has appeared:

Theorem 2 All four lines A1, B1, C1, D1 are parallel to
the median N of the quadrilateral ABCD , and the median
is their centroid line.

Altitudes from the vertices TBC,TAC,TAB in the triangle
TBCTACTAB have equations y = −ax + b + c + abc, y =
−bx + a + c + abc, y = −cx + a + b + abc and they are
intersected in the point Hd = (−1,a+b+ c+abc) that is
orthocenter of that triangle, i. e. of the trilateral ABC .
Similarly, orthocenters of trilaterals ABD, ACD, BCD
are points

Hc = (−1,a+b+d +abd),

Hb = (−1,a+ c+d +acd),

Ha = (−1,b+ c+d +bcd).

All four orthocenters lie on the line H with the equation

H . . .x =−1, (11)

which is the directrix of the inscribed parabola P of the
quadrilateral ABCD and they have the centroid Gh =
(−1, 1

4 (3s+ r)). The statement that these four orthocen-
ters are incident with one line is given in [37] without proof.
The proof is given in [23]. In the literature, the line H
has many names, herein we will call it a directrix of the
quadrilateral ABCD . The intersection point of the median
and the directrix of the quadrilateral ABCD is the point

Q = (−1,
1
2

s) (12)

which is called QL−P7 Newton-Steiner point in [43]. The
midpoint of this point and the focus S = (1,0) is the point
(0, 1

4 s) that is in [43] denoted by QL−P19.
The line through Ha = (−1,b+c+d+bcd), parallel to the
line A has the equation x−ay+1+ab+ac+ad+abcd =
0 and goes through the point (−1− ab− abcd,c + d)
where the line Hb, parallel to B passes as well. The
line through Ha, perpendicular to A has the equation
ax+ y =−a+b+ c+d +bcd and goes through the point
(−2− cd,a+ b+ c+ d + acd + bcd), through which the
line perpendicular to B through the point Hb passes as well.
The connecting line of two obtained points has the equation

(a+b)x+(1−ab)y+a+b− c−d +a2b+ab2+

+abc+abd +a2bcd +ab2cd = 0

and passes through the point (−2− abcd,a+ b+ c+ d).
Five analogous lines are incident with that point as well.
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Hence, quadrilaterals, that are formed by the lines that
passes through points Ha, Hb, Hc, Hd , parallel to lines
A ,B,C ,D, and perpendicular to these lines, are perspec-
tive. A centre of the perspectivity is the point (−p−2,s),
which in [43] is called QL−P21 adjunct orthocenter ho-
mothetic center, although this is not homothecy. The point
(−1−ab−abcd,c+d) and the point TAB =(ab,a+b) have
for the midpoint the point ( 1

2 (1+abcd), 1
2 (a+b+ c+d)),

and similar is valid for five more pairs of corresponding
points. It means that the quadrilateral, formed by parallels
to A ,B,C ,D through the points Ha, Hb, Hc, Hd is symmet-
ric to the quadrilateral ABCD with respect to the point
(− 1

2 (1+ p), 1
2 s) that is in [43] called QL−P20 orthocenter

homothetic center. It is obviously incident with the median
N .

In the quadrilateral TABTBCTBDTAD perpendiculars from
points TAC and TBC to the line D pass through orthocen-
ters Ha and Hb of trilaterals BCD and ACD, hence the
perpendicular from the midpoint of the side TACTBC to the
opposite side TBDTAD passes through the midpoint of Ha
and Hb. In the same way, the perpendiculars from TBD and
TAD to the line D pass through the orthocenters Ha and Hb
and because of that the perpendicular from the midpoint
of TBDTAD to the opposite side TACTBC passes through the
midpoint of Ha and Hb. So, for the pair of opposite sides
TACTBC, TBDTAD perpendiculars from the midpoint of the
each of them to the opposite side are intersected in one
point on the directrix, which is the midpoint of Ha and Hb.
In the same way it is shown that for the pair of opposite
sides TACTAD, TBDTBC perpendiculars from the midpoint of
the each of them to the opposite side are intersected in one
point on the directrix, which is the midpoint of Hc and Hd .
Analogously it is valid for the quadrangles TABTADTCDTBC
and TABTACTCDTBD, so we get four more times per two lines,
that are intersected in midpoints of pairs of orthocenters
Ha,Hc and Hb,Hd , and Ha,Hd and Hb,Hc.
The distance of the focus S of the quadrilateral ABCD to
its median N and to its directrix H are equal to 1

2 s and
1, so their ratio is 1

2 s = 1
2 (a+b+ c+d). However, for ex-

ample the line A has an equality cot∠(N ,A) = a, so that
the ratio we have mentioned is equal to 1

2 [cot∠(N ,A)+
cot∠(N ,B) + cot∠(N ,C ) + cot∠(N ,D)] that is state-
ment found in [27].

If L is line having equation y = mx+n, then the perpendic-
ular from TAB to that line has the equation x+my = ab+
am+bm, and the intersection point of that two lines has the
coordinates x= 1

η
(am+bm−mn+ab),y= 1

η
(am2+bm2+

abm+n), where η = m2 +1. The perpendicular from that
intersection point to line C has the equation η(cx+ y) =
acm+bcm− cmn+abc+am2 +bm2 +abm+n. It can be
checked that this line passes through the point with coordi-

nates

x =− 1
η
(m2 +mn), (13)

y =
1
η
[(a+b+ c)m2 +(ab+ac+bc)m+abc+n].

The perpendiculars to lines A and B from pedals of perpen-
diculars from points TBC and TAC to the line L are incident
with the point (13).
Because of that this point is an orthopole of the line L
with respect to the trilateral ABC . Similarly, the same is
valid for the trilaterals BCD, ACD, ABD. Hence, all
four orthopoles are incident with the line having equation
x=− 1

η
(m2+mn) that is perpendicular to the median of the

quadrilateral ABCD. This statement is from [21]. If for
the line L the line D is taken, then m = 1

d ,n = d,η = 1
δ
·d2

are valid, so for the orthopole of the line D with respect to
the trilateral ABC we get the point

Od =
(
−1,

1
δ
[a+b+c+(ab+ac+bc)d+abcd2 +d3]

)
,

(14)

that is incident with the directrix of the quadrilateral
ABCD as well as the analogous orthopoles of lines A ,B,C
with respect to the trilaterals BCD, ACD, ABD. This
statement is coming from [18]. The same statement can
be found in [28], but herein the author observes on these
orthopoles as radical centers of pedal circles on the lines
A ,B,C ,D with respect to trilaterals BCD, ACD, ABD,
ABC , what is in accordance with so-called Lemoyne’s the-
orem (see [18]).
In the previous proof it was assumed that m 6= 0. Let the
line L be parallel with the median and with the equation
y = n. The pedal point of the perpendicular from the point
TAB to that line is the point (ab,n), and perpendicular from
that point to the line C has the equation cx+ y = abc+n.
This perpendicular, and two more analogous perpendiculars,
are incident with the point (0,abc+n) that is an orthopole
of L with respect to the trilateral ABC . This orthopole and
orthoploes of the line L with respect to trilaterals BCD,
ACD , ABD are incident with the y-axis, the vertex tangent
of the parabola P .
Let us study any line L parallel to the directrix with the
equation x = l. The pedal point of the perpendicular
from TAB to that line is the point (l,a+ b), and the per-
pendicular from that point to the line C has the equation
cx+y = cl+a+b and obviously it passes through the point
(l−1,a+b+c), that is orthopole of the line L with respect
to the trilateral ABC . As well as other three orthopoles
of L with respect to the trilateral ABD , ACD , BCD , it is
incident to the line with the equation x = l−1, parallel to
the median of ABCD and the line L . Particularly, there
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are orthopoles of the vertex tangent of the parabola P with
respect to trilateras ABC , ABD, ACD, BCD on the di-
rectrix. These statements are in [43] but they are atributed
to S. Kirikami.
The line L ′, where orthopoles of the given line L with re-
spect to the trilaterals BCD , ACD , ABD , ABC are lying,
is called an orthopolar line of the line L with respect to the
quadrilateral ABCD .

Earlier, we found out that the line L with the equation
y = mx+ n has the orthopolar L ′ with the equation x =
− 1

η
(m2 + mn), that line L with the equation y = n has

the orthopolar L ′ with the equation x = 0, and the line
L with the equation x = l has the orthopolar L ′ with the
equation x = l − 1. The tangent at the point (m2,−2m)
at parabola P has the equation x + my + m2 = 0 and it
is perpendicular to the given line L with the equation
y = mx+n. These two lines has the intersection with the
abscissa x = − 1

η
(m2 +mn), that lies on the line L ′. The

tangent line of the parabola P at the point (t2,2t) has the
equation ty = x+ t2, i.e. m = 1

t , n = t. Because of that
the orthopolar of that tangent has the equation x =−1, and
that is directrix H . So, the orthopolar of any tangent of the
parabola P is the directrix H . If the line L passes through
the focus S, then it has the equation y = m(x−1), and for it
n =−m is valid and orthopolar L ′ has the equation x = 0
and that is vertex tangent Y of the parabola P .
Let P ′′ be parabola, with the same focus S = (1,0) and
the same axis as parabola P . If its directrix has the
equation x = t, then that parabola P ′′ has the equation
(x− 1)2 + y2 = (x− t)2, that after simplifying, reaches
the form y2 = 2(1− t)x+ t2−1. The intersections of this
parabola and parabola P with equation y2 = 4x are the
points (x′,y′) = ( 1

2 (t−1),±
√

2(t−1)), where t > 1. Tan-
gents at these points to both parabolas have the slopes 2

y′ and
1−t
y′ , whose product is equal to −1, because y′2 = 2(t−1).

That is the reason why those two parabolas are orthogonal
which is special case of very well known fact that con-
focal conics are orthogonal. Let (x′′,y′′) be any point of
parabola P ′′. Tangent at this point to this parabola has
the equation yy′ = (1− t)(x+ x′′)+ t2−1, so because of it
m = 1−t

y′′ ,n = 1− ty′′(x′′− t−1) are valid and we get

y′′2(m2 +mn) = (1− t)2(x′′− t),

y′′2(m2 +1) = (1− t)2 + y′′2

= (1− t)2 +2(1− t)x′′+ t2−1
= 2(1− t)(x′′− t),

where we use the equality y′′2 = 2(1− t)x′′+ t2− 1, be-
cause the point (x′′,y′′) is incident with parabola P ′′. Be-
cause of this − 1

η
(m2 +mn) = 1

2 (t − 1) is valid, so each
tangent line of parabola P has the same orthopolar with the

equation x = 1
2 (t−1) that passes through the intersections

( 1
2 (t−1),±

√
2(t−1)) of parabolas P and P ′′. Hence, all

lines with the same orthopolar L perpendicular to median
N are tangents to parabola P ′′ which has the same focus
and the same axis as parabola P and it is orthogonal to it
at the intersection points with the line L ′. These statements
found in [43] are attributed to T. Q. Hung. The line L ′ with
the equation x = 1

2 (t−1) is the bisector of directrices of P
and P ′ that have equations x =−1 and x = t.
The circle Sd through the points TBC,TAC,TAB from (4), i.e.
the circumscribed circle to the trilateral ABC , has the equa-
tion

x2 + y2− (ab+ac+bc+1)x− (a+b+ c−abc)y+
+ab+ac+bc = 0, (15)

the center

Sd =
(1

2
(ab+ac+bc+1),

1
2
(a+b+ c−abc)

)
, (16)

and the radius ρd given by 4ρd
2 = (ab+ ac+ bc− 1)2 +

(a+b+ c−abc)2, that is actually the formula

4ρd
2 = (a2 +1)(b2 +1)(c2 +1). (17)

The circles Sa,Sb,Sc circumscribed to trilaterals BCD,
ACD , ABD , respectively, have the similar equations. The
circle (15) passes through the point

S = (1,0), (18)

that is focus of inscribed parabola P of the quadrilateral
ABCD, here we will call it a focus of this quadrilateral,
although there are different names in the literature. W. Wal-
lace has the fact that four mentioned circles are incident
with one point in [34].
The point P20 = (− 1

2 (p+ 1), 1
2 s) is the midpoint of the

focus S = (1,0) and the point P21 = (−p− 2,s), and the
point P19 = (0, 1

4 s) is the midpoint of the point S and the
point Q from (12), because of that lines P20P19 and P21Q
are parallel (see [43]).
The line through the point TBC parallel to A has the equa-
tion x− ay = bc− ab− ac, and a connecting line AS of
the points A = (a2,2a) and S = (1,0) has the equation
2ax+(1−a2)y = 2a. Those lines are intersected in( 1

α
(a3b+a3c−a2bc+2a2−ab−ac+bc),

1
α
(2a−2abc+2a2b+2a2c)

)
that lies on the circle Sd with the equation (15). Hence, the
parallel line to the line A through the point TBC intersects
the circle Sd residually (except at the point TBC) at the point
on the line AS, and then by analogy, the other two intersec-
tion points of the circles Sb and Sc with lines through the
points TCD and TBD parallel to the line A are incident with

68
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that line too. Similarly, we have three points each on lines
BS, CS and DS. This is statement from [7] and [8].

The line A with the equation x−ay+a2 = 0 intersects the
y-axis with the equation x = 0 at the point (0,a), and line
through this point has generally the equation mx−y+a = 0.
The bisector of this line and the axis y-axis has the equa-
tion 1√

η
(mx− y+ a)± x = 0, where η = m2 + 1, i.e. the

equation (m±√η)x− y+a = 0 holds. This bisector is the
same as the line A under the condition a(m±

√
m2 +1) = 1,

out of which m = 1
2a (1− a2). That’s the reason why the

line symmetric to the y-axis with respect to the line A has
the equation (a2− 1)x+ 2ay = 2a2. The line symmetric
to the y-axis with respect to the line B has the equation
(b2− 1)x+ 2by = 2b2, and these two lines have the inter-
section ( 2ab

ab+1 ,
a+b
ab+1 ). This intersection point lies on the line

with the equation (a+b)x+(1−ab)y = a+b, where the
points S = (1,0) and TAB = (ab,a+b) lie as well. Hence,
the line STAB passes through the intersection of lines, that
are symmetrical to the lines A and B with respect to the
y-axis, a vertex tangent of parabola P . Similar statement
is valid for the lines STAC,STAD,STBC,STBD,STCD. These
statements are in [43] attributed to S. Kirikami.
The perpendicular from the point S=(0,1) to the line A has
the equation ax+ y = a, the parallel line Hab with directrix
H through the point TCD has the equation x = cd, and the
intersection point of these lines is the point (cd,a− acd),
that lies on the circle Sb with the equation x2 + y2− (ac+
ad+cd+1)x−(a+c+d−acd)y+ac+ad+cd = 0, anal-
ogous to the one in (15). Similar to this, the perpendicular
from the point S to the line B intersects the line Hab in the
point (cd,b−bcd) that lies on the circle Sb. There are five
more analogous lines Hac,Had ,Hbc,Hbd ,Hcd with similar
properties. This is the statement in [31].
The circle Ed with the equation

2x2 +2y2− (ab+ac+bc−1)x− (3a+3b+3c+abc)y+

+(a+b+ c)(a+b+ c+abc) = 0

passes through the midpoint ( 1
2 a(b+ c), 1

2 (2a+b+ c)) of
the points TAB and TAC. Because of symmetry on a,b,c
it is Euler’s circle of the triangle TABTACTBC, i. e. the
trilateral ABC . It intersects the y-axis i.e. the vertex tan-
gent of parabola P , in the points Yd = (0,a+ b+ c) and
Y ′d = (0, 1

2 (a+b+ c+abc)). The circle with the equation

2x2 +2y2− (ab+ac−bc+1)x− (3a+b+ c+abc)y+

+a(a+b+ c+abc) = 0

passes through the midpoint of TAB and TAC, but it is in-
cident with the midpoint ( 1

2 (ab+ 1), 1
2 (a+ b)) of points

S and TAB as well, so because of symmetry on b and c it
is Euler’s circle of the triangle STABTAC. It intersects the
y-axis in the points (0,a) and Y ′d = (0, 1

2 (a+b+ c+abc)).

Because of symmetry on a,b,c it follows that the point
Y ′d lies on Euler’s circles of the triangle STABTBC and the
triangle STACTBC, that intersects the y-axis residually at
the point (0,b) and (0,c), respectively. The point S′d =

(ab+ ac+ bc,a+ b+ c− abc) is symmetric to the point
S=(1,0) with respect to the point Sd from (16). The normal
from that point to the line A with the equation x−ay =−a2

has the equation ax+ y = a2b+ a2c+ a+ b+ c and inter-
sects the line A at the point (ab+ac,a+b+ c). The sym-
metry of the ordinate of this point on a,b,c means that the
line with the equation y = a+b+ c is Wallace’s line of the
point S′d diametrically opposite to the focus S on the circle
Sd , with respect to the triangle TABTACTBC, i. e. the trilateral
ABC . That line passes through the point Yd = (0,a+b+c)
and parallel to the median of the quadrilateral ABCD. To
summarize: The Wallace’s line of the point S′d diametrically
opposite to the focus S on the circle Sd , passes through
an intersection point of the Euler’s circle Ed of trilateral
ABC and the vertex tangent of parabola P . It is parallel
to the median N of the quadrilateral ABCD. Analogous
statements are valid for Euler’s circles of trilaterals ABD,
ACD, BCD. Here we proved the statements taken from
[?].
Let us the equations of Sd and Sc add after multiplying them
by parameters u and v where u+v = 1. We get the equation
of the circle

x2 + y2− [ab+(a+b)t +1]x− [a+b+(1−ab)t]y+

+ab+(a+b)t = 0,

where t = uc+ vd. It is easy to see that this circle passes
through the points (at,a+ t) and (bt,b+ t) that are reached
as the linear combinations uTAC + vTAD and uTBC + vTBD.
Hence, the statement from [20] is valid: every circle through
the focus S and the vertex TAB intersects lines A and B at
the points that divide the segments TACTAD, TBCTBD in the
same ratios.
The line connecting Sd from (16) with the point TAB from
(4) has a slope c−a−b−abc

ac+bc−ab+1 and it is parallel to the line D that
has slope 1

d under the condition ab+cd− (a+b)(c+d) =
1+abcd, then because of symmetry on pairs of parameters
a,b and c,d the following statements follow: if SdTAB is
parallel to D then ScTAB is parallel to C , SaTCD is parallel
to A , and SbTCD is parallel to B . This statement is in [22].
Analogously, the following statement is valid:

Theorem 3 If SdTAB is perpendicular to D , the statements
that ScTAB is perpendicular to C , SaTCD is perpendicular to
A , and SbTCD is perpendicular to B follow. The statement
is valid for the other two possibilities of pairs on a,b,c,d.
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The circle with the equation

x2 + y2− 1
2
(3+ab+ac+ad +bc+bd + cd−abcd)x−

− 1
2
(a+b+ c+d−abc−abd−acd−bcd)y+

+
1
2
(1+ab+ac+ad +bc+bd + cd−abcd) = 0

passes through the point Sd from (16), and because of sym-
metry on a,b,c,d it passes through Sb,Sc,Sd . For the first
time, this statement is found in [29]. That circle is usually
called Miquel’s circle, but here we will call it the central cir-
cle of the quadrilateral ABCD . Its equation can be written
as

M . . .x2+y2− 1
2
(3+q− p)x+

1
2
(r−s)y− 1

2
(1+q− p)= 0.

(19)

Obviously, it follows that it is incident with the focus S
from (18). Its center is the point

M = (
1
4
(3+q− p),

1
4
(s− r)) (20)

that we will call a central point of the ABCD, and its ra-
dius ρ is given by formula 16ρ2 = (1−q+ p)2 +(s− r)2.
However, because (a2 +1)(b2 +1)(c2 +1)(d2 +1) = (1−
q+ p)2 +(s− r)2 is valid, there is following formula

16ρ
2 = (a2 +1)(b2 +1)(c2 +1)(d2 +1). (21)

The line x+dx = d2 is symmetric line to the line D with
respect to the axis X of parabola P . The line parallel to
this line and passing through Sd from (16) has the equation
x+dy = 1

2 (1+q− p) and intersects the axis X in the point
( 1

2 (1+q− p),0) which is because of symmetry on a,b,c,d
incident with the lines that pass through Sa,Sb,Sc and that
are parallel to the lines symmetric to A ,B,C with respect to
the axis X . This point is incident with the central circle M
from (19). This result is attributed to R. Bouvaist in [40].
Bisectors of the segments TACTBC and TADTBD have the
equations

cx+ y =
1
2
(ac+bc)c+

1
2
(a+b+2c),

dx+ y =
1
2
(ad +bd)d +

1
2
(a+b+2d)

and the intersection point

T ′AB =
(1

2
(a+b)(c+d)+1,

1
2
(a+b)(1− cd)

)
,

that is incident with the circle (19). The bisectors of the
segments T ′ACT ′AD and T ′BCT ′BD are intersected in the point

T ′CD =
(1

2
(a+b)(c+d)+1,

1
2
(c+d)(1−ab)

)
,

on the same circle. The line T ′ABT ′CD with the equation
x = 1

2 (a+b)(c+d)+1 is parallel to the directrix H . Sim-
ilarly, we get two more lines T ′ACT ′BD and T ′ADT ′BC parallel
to H . A line parallel to the median through the point T ′AB
has the equation y = 1

2 (a+ b)(1− cd), and a connecting
line of the point TAB with the focus S has the equation
(a+b)x+(1−ab)y = a+b, and the intersection point of
these lines is the point

T ′′AB =
(1

2
(1+ab+ cd−abcd),

1
2
(a+b)(1− cd)

)
.

The midpoint of the points T ′′AB and T ′CD is the central
point M of the quadrilateral, so the point T ′′AB is diamet-
rically opposite to the point T ′CD on the central circle M .
Similarly, there are five more diameters T ′′ACT ′BD,T

′′
ADT ′BC,

T ′′BCT ′AD,T
′′

BDT ′AC,T
′′

CDT ′AB of the circle M . These results are
found in [31].
The line parallel to the line D through the point TAB =
(ab,a+b) has the equation x−dy = ab−ad−bd, a con-
necting line of the points S = (1,0) and TCD = (cd,c+d)
has the equation (c+d)x+(1− cd)y = c+d, and an inter-
section point of these two lines is the point with coordinates

x =
1
δ
(cd−1)(ad +bd−ab)+ cd +d2,

y =
1
δ
(c+d)(1−ab+ad +bd).

It is easy to check that this point is incident to the circle
Sd with equation (15). Similarly, it is valid for two more
points on the circle Sd so the statement, [13], that parallels
to D through the vertices of the trilateral ABC intersect a
circumscribed circle of the trilateral at the points, whose
connecting lines to opposite vertices of the quadrilateral
ABCD are incident with the focus of this quadrilateral
holds. Similarly, it is valid for all other trilaterals of the
quadrilateral.
If two lines L and L ′ have slopes m

n and m′
n′ , then for the

oriented angle ∠(L ,L ′) the following formula is valid

tan∠(L ,L ′) =
m′n−mn′

mm′+nn′
. (22)

Lines STAB and STAC have slopes a+b
ab−1 and c+d

cd−1 . If k = k
1

is the slope of the line T , then according to (22) we get

tan∠(STAB,T ) =
k(ab−1)−a−b
ab−1+ k(a+b)

,

tan∠(T ,STCD) =
k(cd−1)− c−d
cd−1+ k(c+d)

.

The line T is the bisector of the lines STAB and STCD under
the condition

k(ab−1)−a−b
ab−1+ k(a+b)

+
k(cd−1)− c−d
cd−1+ k(c+d)

= 0,
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that by simplifying is of the form

(r− s)k2 +2(p−q+1)k+ s− r = 0. (23)

Symmetry on a,b,c,d means that the line T is then the
bisector of lines STAC,STBD and STAD,STBC as well. If k1
and k2 are slopes of the bisectors T1 and T2 of mentioned
three pairs of lines, we have equalities

k1 + k2 = 2
p−q+1

s− r
, k1k2 =−1.

The line with the equation y = k(x−1) is incident with the
point S and its another intersection Td with the circle Sd
from (15) has coordinates

x =
1
κ
[k2 +(a+b+ c−abc)k+ab+ac+bc],

y =
1
κ
[(a+b+ c−abc)k2 +(ab+ac+bc−1)k],

where κ = k2 + 1. If that line is one bisector of T1 and
T2, then in previous mentioned formulas it should be taken
k = k1, k = k2, respectively. For other intersections Td,1 and
Td,2 of lines T1 and T2 with the circle Sd we get

κ1κ2(x2− x1) = (k1
2 +1)[k2

2 +(a+b+ c−abc)k2+

+ab+ac+bc]− (k2
2 +1)[k1

2 +(a+b+ c−abc)k1+

+ab+ac+bc] = (k1− k2)[(a+b+ c−abc)k1k2+

+(ab+ac+bc−1)(k1 + k2)− (a+b+ c−abc)] =

= (k1− k2)[2
p−q+1

s− r
(ab+ac+bc−1)−

−2(a+b+ c−abc)],

κ1κ2(y2− y1) = (k1
2 +1)[(a+b+ c−abc)k2

2+

+(ab+ac+bc−1)k2]− (k2
2 +1)[(a+b+ c−

−abc)k1
2 +(ab+ac+bc−1)k1] = (k1− k2)[ab+

+ac+bc−1)k1k2− (a+b+ c−abc)(k1 + k2)−
− (ab+ac+bc−1)] = (k1− k2)[−2(ab+ac+bc−

−1)−2
p−q+1

s− r
(a+b+ c−abc).

so the line Td,1Td,2 has the slope

−(ab+ac+bc−1)(s− r)− (a+b+ c−abc)(p−q+1)
(ab+ac+bc−1)(p−q+1)− (a+b+ c−abc)(s− r)

,

that is equal to −d, because of

− (ab+ac+bc−1)(s− r)− (a+b+ c−abc)(p−q+1)+
+d(ab+ac+bc−1)(p−q+1)−
−d(a+b+ c−abc)(s− r) = 0.

That means that this line is perpendicular to the line D,
and because of lines T1 and T2, it is diameter of the circle
Sd . Similarly, it is valid for the intersections of T1 and T2
with circles Sa, Sb, Sc. We proved the statement from [40]
saying:
Diameters of the circles Sa,Sb,Sc,Sd perpendicular to the
lines A ,B,C ,D , respectively, intersects these circles in two
points each, one of points lies on one bisector, and the
other one on the other bisector of pairs of lines STAB,STCD;
STAC,STBD and STAD,STBC.
Lines T1 and T2 are so- called Steiner’s axes of the quadri-
lateral ABCD . Because of (23) they have equation

y =
1

r− s
[−(p−q+1)±

√
(p−q+1)2 +(r− s)2](x−1).

The line SM has the slope r−s
p−q+1 , and bisectors of pairs of

lines STAB,STCD; STAC,STBD and STAD,STBC have the slope
k under the condition (23). For the tangent of an angle of
that bisector to the line SM, and according to (22), we get
r−s−k(p−q+1)
k(r−s)+p−q+1 , that is equal to k because of (23). That is the
tangent of an angle of the axis X to this bisector. It means
that the line SM and the axis of parabola P are symmetric
with respect to the mentioned bisector, and that is statement
from [13].
Bisectors of the sides A and B have the equations

1√
α
(x−ay+a2)± 1√

β
(x−by+b2) = 0,

and pairs of these two lines has the equation β(x− ay+
a2)2−α(x− by+ b2)2 = 0. We find the abscissae of in-
tersections of this degenerated conics with the median
y = 1

2 s. If we put y = 1
2 s in the previous equation then

coefficients next to x2 and x are β−α = −(a2− b2) and
β(2a2−as)−α(2b2−bs) = 2(a2−b2)+(ab−1)s(a−b),
respectively, so for solutions of this equation we have equal-
ity (x1 + x2) =

1
a+b (2a+ 2b− s− abs). Because of that

the midpoint PAB of these two intersections has the form
( 1

2(a+b) (a+b−c−d+abs), 1
2 s) and it is easy to check that

is collinear to the points S = (1,0) and TAB = (ab,a+b).
Similarly, it is valid for five more lines analogous to the
line TABPAB through the focus S. This statement can be
found in [25]. That pair of bisectors of A and B inter-
sects the axis of inscribed parabola with equation y = 0 in
the points whose abscissae are solutions of the equation
β(x+a2)2−α(x+b2)2 = 0, for them we get x1 + x2 = 2,
so these points are symmetric with respect to the focus
S = (1,0). That is result of [25] as well. In that paper
it is proved that the focus and point at infinity of the me-
dian are isogonal with respect to each of four trilaterals of
the quadrilateral ABCD. For proof of this statement it is
enough to prove that for example the line STAB and parallel
to the median N through the point TAB are lines isogonal
with respect to A and B , i. e. the angle of lines N and A
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is equal to the angle of lines B and STAB. It easily follows
from the fact that these lines have slopes equal to 0 = 0

1 and
1
a , and 1

b and a+b
ab−1 , so both of these angles have the tangent

angle equal to 1
a due to (22). However, [7] has already had

this statement.
The point Md = ( 1

2 (ab+ac+bc+1), 1
2 d(1−ab−ac−bc))

is incident with the central circle (19) and with the line hav-
ing equation dx+ y−d = 0, that passes through the focus
S = (1,0) and it is perpendicular to the line D. Because
points Md and Sd from (15) have the same abscissa, then the
line MdSd is parallel to the directrix H of the quadrilateral
ABCD , the same is valid for analogous lines MaSa, MbSb,
McSc. This is result in [1].
The perpendiculars from the points TAB and TAC to the
lines B and C has equations bx+ y = ab2 + a+ b, cx+
y = ac2 + a + c, and the intersection point is the point
(ab+ac+1,a−abc). That point is incident with the circle
S ′a with equation

x2 + y2− (ab+ac+ad−abcd +2)x−
− (a−abc−abd−acd)y+ab+ac+ad−abcd +1 = 0.

The intersection points of perpendiculars from points TAB
and TAD to the lines B and D as well as from points TAC
and TAD to lines C and D are incident with S ′a. The circle
S′a obviously is incident to the focus S = (1,0). The center
of that circle is the point

S′a =
(1

2
(ab+ac+ad−abcd+2),

1
2
(a−abc−abd−acd)

)
.
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Figure 4: Points S′a,S
′
b,S
′
c,S
′
d are incident to the central cir-

cle M

The midpoint of S′a and Sa from formula analogous to the
formula (15) is the point M from (20), the center of the
central circle, so the point S′a together with the point Sa
is incident with that circle. Analogously, there are three
more points on the central circle. The statement that there
are circles S ′a,S ′b,S ′c,S ′d incident to the central circle can be
found in [43] and it is attributed to A. Hatzipolakis. Hereby,
we have found out (see Figure 4) :

Theorem 4 The line segments SaS′a,SbS′b,ScS′c,SdS′d are di-
ameters of the central circle M .

Let us study now the quadrilateral ABCD ′ where D ′ is the
reciprocal line to the line D with respect to the trilateral
ABC . The intersection point of the line D ′ and the line A
is the point (ab+ac−ad,a+b+ c−d), and for the lines
D ′ and B is the point (ab+bc−bd,a+b+ c−d). Two of
these points and the point TAB = (ab,a+b) are incident to
the circle

x2 + y2− (2ab+ac+bc−ad−bd)x− (2a+2b+ c−d−
−abc+abd)y+a2b2 +(a+b)(a+b+ c−d) = 0

with the center ( 1
2 (2ab+ ac+ bc− ad− bd), 1

2 (2a+ 2b+
c− d− abc+ abd)). This center is incident to the circle
with equation

2x2 +2y2− (3ab+3ac+3bc−ad−bd− cd +1+
+abcd)x− (3a+3b+3c−d−3abdc+abd +acd+

+bcd)y+a2b2c2 +a2b2 +a2c2 +b2c2 +abcd)+

+a2 +b2 + c2 +3ad +3bd +3cd−ad−bd− cd = 0,

and a center

S′′d =
(1

4
(3ab+3ac+3bc−ad−bd− cd +1+abcd),

1
4
(3a+3b+3c−d−3abc+abd +acd +bcd)

)
.

Out of symmetry on a,b,c,d it follows that this circle is
the central circle of the quadrilateral ABCD ′, so it passes
through the point Sd . However, the midpoint of S′′d and
the point M from (20) is the point Sd from (16). Because
of that the central circles of quadrilaterals ABCD and
ABCD ′ tangent each other in the point Sd and they are
congruent. Similarly, it is valid for the following pairs of
quadrilaterals ABCD and ABC ′D; ABCD and AB ′CD;
and ABCD and A ′BCD. Hence, all five quadrilater-
als ABCD, A ′BCD, AB ′CD, ABC ′D, ABCD ′ have
the congruent central circles and the central circle of the
quadrilateral ABCD tangents other four circles in circum-
centers of trilaterals BCD, ACD, ABD, ABC . These
statements come from [2]. If this circles have the radius ρ,
then there is the circle of the radius 3ρ that is concentric
to the central circle of the quadrilateral ABCD , that other
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four circles touch inside. The statement is found in [41].
The line A with the equation (3) intersects the directrix H
with the equation x =−1 at the point A′ = (−1, 1

a (a
2−1)).

The connecting line of this point to the focus S = (1,0)
has the equation (a2− 1)x+ 2ay = a2− 1. The altitude
from the vertex TBC in the trilateral ABC has the equation
ax+ y = b+ c+ abc, the intersection point of these two
lines is the point

ND,A =
( 1

α
(1−a2 +2ab+2ac+2a2bc),

1
α
(b−a+a3 +abc−a2b−a2c−a3bc)

)
for which we can check that it is incident to circumscribed
circle Sd of this trilateral with equation (15). Analogously,
the line SA′ intersects the altitudes to the side A in trilater-
als ABD and ACD in the points NC,A and NB,A, that are
incident with the circumscribed circle of these trilaterals,
respectively. Analogously, it is valid and for the lines SB′,
SC′, SD′, where B′, C′, D′ are intersection points of the
directrix H with the sides B,C ,D. These statements are
from [10].
The pedal F of the normal from the focus S to the directrix
of the quadrilateral ABCD has coordinates (−1,0), and
point S′ that is diametrically opposite to the focus S = (1,0)
with respect to the central circle M has coordinates

S′ =
(

1+q− p
2

,
s− r

2

)
.

Lines FTAB and S′TCD have equations

(a+b)x− (ab+1)y+a+b = 0,
(c+d−a−b+ r)x+(1+q− p−2cd)y =

= cd(c+d−a−b+ r)+(c+d)(1+q− p−2cd),

respectively, and they are intersected in the point with coor-
dinates

x =

(a+b)
[
c2 +d2 + c2d2 +2cd +2p+ cd p−1+ab(c2 +d2−1)

]
(c+d)(a2b2 +a2 +b2 +4ab+1)

−

− (c+d)(a2 +b2−a2b2−1)
(c+d)(a2b2 +a2 +b2 +4ab+1),

y =

(a+b)
[
(a+b)(c2d2 + c2 +d2 +2cd−1)+2(c+d)(ab+1)

]
(c+d)(a2b2 +a2 +b2 +4ab+1)

.

It can be checked that these coordinates fullfil the equation

(c+d)(x2 + y2−1)− (c2d2 + c2 +d2 +2cd−1)y = 0

of the circle SFTCD. Analogously, we can prove the rest of
five statements.

Hence, the statement given in [19] is proved: Let F be
the pedal of the normal from the focus S to directrix of
the quadrilateral ABCD . Lines FTAB, FTAC, FTAD, FTBC,
FTBD and FTCD intersect the circles SFTCD, SFTBD, SFTBC,
SFTAD, SFTAC and SFTAB (except in F) in the points whose
connecting lines with the points TCD, TBD, TBC, TAD, TAC
and TAB, respectively, pass through one point S′. This point
S′ is diametrically opposite to the focus S on the central
circle.
The line through points TBC from (4) and Sd from (16) has
the equation

(abc−a+b+ c)x+(ab+ac−bc+1)y =

= ab2c2 +ab2 +ac2 +abc+b+ c.

Similarly, the line TBDSc has the equation

(abd−a+b+ c)x+(ab+ad−bd +1)y =

= ab2d2 +ab2 +ad2 +abd +b+d (24)

and for the intersection of these two lines we get the point
with coordinates

SA =(
1
α
[a(abc+abd +acd−bcd +b+ c+d)+1],

a
α
(−abcd +ab+ac+ad−bc−bd− cd +1)). (25)

Because of symmetry of these coordinates on b,c,d it fol-
lows that the line TCDSb is incident to this point.
The central circle M with the equation (19) and circum-
scribed circle Sa of the trilateral BCD with equation
x2 + y2− (bc+ bd + cd + 1)x− (b+ c+ d− bcd)y+ bc+
bd + cd = 0, analogous to the (15), have radical axis with
the equation

(1+ab+ac+ad−bc−bd− cd−abcd)x+

+(a−b− c−d−abc−abd−acd +bcd)y+

+bc+bd + cd−ab−ac−ad−1+abcd = 0.

The point SA from (25) is incident to this line, and as this
point is incident to the circle M , it is incident to the cir-
cle Sa as well. Similarly, it is valid for points SB,SC,SD.
Hence, points SA,SB,SC,SD are actually another intersec-
tion points of the circle M with circumscribed circle of
trilaterals BCD, ACD, ABD, ABC . A statement found
in [24]: lines TBCSd ,TBDSc,TCDSb are intersected in one
point SA and there are three analogous points SB,SC,SD,
and these four points are incident with central circle. On
the other hand, in [30] it is proved that these points are
incident to corresponding circles Sa,Sb,Sc,Sd . However,
all these statements are found in [11] even earlier.
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The line SSA has a slope

−ap+a(ab+ac+ad−bc−bd− cd)+a
a(abc+abd +acd−bcd)+a(b+ c+d−a)

=

− p−ab−ac−ad +bc+bd + cd−1
abc+abd +acd−bcd +b+ c+d−a

.

On the other hand, the connecting line of the point M from
(20) and Sa from the formula analogous to the formula (15)
has a slope

2(b+ c+d−bcd)− (s− r)
2(bc+bd + cd +1)− (3+q+ p)

=

b+ c+d−a+abc+abd +acd−bcd
bc+bd + cd−ab−ac−ad + p−1

,

so these two lines are perpendicular. The line MSa has the
equation

2(b+ c+d−a+abc+abd +acd−bcd)x+

+2(1−abcd +ab+ac+ad−bc−bd− cd)y =

= bcd p+a(b2c2 +b2d2 + c2d2)+

+a(b+ c+d)2−2bcd−a+2(b+ c+d).

The midpoint of the point S = (1,0) and the point SA from
(25) has coordinates

x =
1

2α
[a(abc+abd +acd−bcd)+a(a+b+ c+d)+2],

y =
1

2α
[−a2bcd +a(ab+ac+ad−bc−bd− cd)+a].

It is easy to check that this point is incident with the line
MSa. Hence, points S and SA are symmetric with respect
to the diameter MSa of the central circle, and the point S is
incident with that circle, so because of that the point SA is
incident to that circle as we have already proved it. In the
same way, pairs of points S,SB; S,SC; S,SD are symmetric
with respect to lines MSb,MSc,MSd , respectively.
The perpendicular line from the point

SD =
(1

δ
[d(abd +acd +bcd−abc+a+b+ c)+1],

d
δ
(−abcd +ad +bd + cd−ab−ac−bc+1)

)
analogous to the point SA from (25) to the line A has the
equation

δ(ax+ y) = ad(abd +acd +bcd−abc+a+b+ c)+a+

+d(−abcd +ad +bd + cd−ab−ac−bc+1)

and it intersects the line A with the equation δ(x− ay) =
−a2d2−a2 in the point with the coordinates

x =
1

αδ
(a3bd2 +a3cd2−a3bcd +a3d +abd2)+

+
1

αδ
(acd2−abcd +ad)

y =
1

αδ
(a2bd2 +a2cd2−a2bcd +a3d2 +a2d +ad2)+

+
1

αδ
(bd2 + cd2 +a3−bcd +a+d).

This point is incident to the line PD with the equation

δ(x−dy) = (ab+ac+bc−ad−bd− cd)d2−abcd−d2.

The symmetry of this equation on a,b,c means that on this
line there are pedals of the perpendicular lines from the
point SD to the lines B and C , so PD is Wallace’s line of SD

with respect to the trilateral ABC . We see that this line is
parallel to the line D , as well as Wallace’s lines PA,PB,PC

of the points SA,SB,SC with respect to trilaterals BCD,
ACD, ABD parallel to the lines A , B , C , respectively.
This result is found in [15] and [14].
The line STCD has the equation (c+d)x+(1−cd)y = c+d.
It is incident with the point

SCD =
(1

2
(1+ab+ cd−abcd),

1
2
(c+d)(1−ab)

)
(26)

that is incident with the circle M from (19). Because of
that SCD is another intersection (one is S) of this circle with
the line STCD. The circle SCD with the equation

x2 + y2− (1+ab+ cd−abcd)x− (c+d)(1−ab)y+

+ cd(1+ab−abcd)−ab(c+d)2 = 0 (27)

has the center SCD and the radius ρCD given by ρCD
2 =

(ab+1)2(c2 +1)(d2 +1). It can be checked that this circle
passes through TCD = (cd,c+d) and through the point SA

from (25), and because of symmetry on a and b it is incident
with SB. Hence, the circle SCD with the center SCD passes
through the points TCD,SA,SB.
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Figure 5: An illustration of Theorem 5 on the example of
the line SADSBC

Therefore, if SAB,SAC,SAD,SBC,SBD,SCD are another
intersections of the circle M (one is S) with lines
STAB,STAC,STAD,STBC,STBD,STCD, then there are
circles SAB,SAC,SAD,SBC,SBD,SCD with the centers
SAB,SAC,SAD,SBC,SBD,SCD, that passes through the triples
of points TAB,SC,SD; TAC,SB,SD; TAD,SB,SC; TBC,SA,SD;
TBD,SA,SC; TCD,SA,SB, respectively. The point SAB has
the same abscissa as the point SCD in (26), so the line
SABSCD has the equation x = 1

2 (1+ab+ cd−abcd) and it
is perpendicular to the median of the quadrilateral ABCD .
Hence, our new result is:

Theorem 5 If SAB,SAC,SAD,SBC,SBD,SCD are another in-
tersections of the circle M (one is S) with lines
STAB,STAC,STAD,STBC,STBD,STCD then lines SABSCD,
SACSBD and SADSBC are perpendicular to the median of
the quadrilateral ABCD .

Let us find another intersection (except TCD) of the line C
and the circle SCD. Putting x = cy− c2 in the equation (27),
simplifying and dropping off the factor c2 +1, we get ordi-
nate from the equation y2− (2c+d−abc)y+(c+d)(c−
abd) = 0. The solution y = c+d corresponds to the point
TCD, and another solution y = c−abd gives x =−abcd, i.e.
another intersection is the point TCE = (−p,c−abd). The
circle SCD is incident with it as well as circles SAC and SBC
because of symmetry on a,b,d. This point is incident with
the line E with the equation x = −p which is perpendic-
ular to the median N of the quadrilateral ABCD. This

line intersects A , B , D in the points TAE = (−p,a−bcd),
TBE = (−p,b−acd), TDE = (−p,d−abc), which triplets
of circles SAB, SAC, SAD; SAB, SBC, SBD; SAD, SBD, SCD,
respectively, are incident with. Let us study a quadrilateral
ABCE . The circle SAB is incident with TAB,TAE ,TBE , so
it is circumscribed circle to the trilateral ABE . Similarly,
the circles SAC and SBC are circumscribed circles to the
trilaterals ACE and BCE . We know from earlier that Sd is
the circumscribed circle to ABC . All of these four circles
are incident to the point SD so it is the focus of the quadri-
lateral ABCE . The centers of these circles are incident
with the central circle M , then this circle is the central
circle of this quadrilateral as well. Similarly, quadrilaterals
ABDE , ACDE , BCDE have focuses SC,SB,SA, and the
central circle is the circle M as well. These statements are
found in [36].
Hereby, we give the new result. Points TAB = (ab,a +
b) and TCE = (−p,c− abd) have the midpoint ( 1

2 (ab−
abcd), 1

2 (a+b+ c−abd) that is incident with the line Nd

with the equation y+dx = 1
2 (a+b+ c−abcd2). Because

of symmetry on a,b,c this line is incident with midpoints of
pairs of points TAC,TBE and TBC,TAE , so Nd is the median
of the quadrilateral ABCE . It is perpendicular to the line
D . Similarly, it is valid for medians Na, Nb, Nc. So:

Theorem 6 Medians Na, Nb, Nc,Nd of the quadrilater-
als BCDE , ACDE , ABDE ,ABCE are perpendicular
to A ,B,C ,D and intersect median N in one point

N =
(
− 1

2
(p+1),

1
2

s
)
. (28)

For Theorem 6 see Figure 6.
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Figure 6: Medians Na, Nb, Nc, Nd , and N are intersected
in the point N
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KoG•26–2022 V. Volenec, E. Jurkin, M. Šimić Horvath: A Complete Quadrilateral in Rectangular Coordinates

The line TBDSc has the equation (24) and it is easy to
check that is incident to SA from (25), and similarly, lines
TBCSd and TCDSb pass through the point SA. The point
TCE = (−abcd,c−abd) and the point

SAC =
(1

2
(1+ac+bd−abcd),

1
2
(a+ c)(1−bd)

)
(29)

that we achieve out of the formula (26) by a substitu-
tion a↔ d, are incident with the line with the equation
(c− a)x+ (1+ ac)y = c− abd + ac2− abc2d, that is in-
cident with the point SA. The lines TBESAB and TDESAD
are incident with SA as well. Hence, the points Sd , Sc, Sb,
SAB, SAC, SAD are another intersections of the central cir-
cle M and connecting lines of the focus SA and vertices
TBC,TBD,TCD,TBE ,TCE ,TDE of the quadrilateral BCDE .
The point Sd from (16) is analogous to the point

Sc =
(1

2
(ab+ad +bd +1),

1
2
(a+b+d−abd)

)
. (30)

It is easy to see that the connecting line ScSAC have a
slope equal to 1

a , so that line is parallel to the line A ,
i.e. it is perpendicular to the median Na of the quadri-
lateral BCDE . The same is valid for the lines SbSAB and
SdSAD. Analogous properties are valid for the quadrilater-
als ACDE , ABDE and ABCE . The perpendicular line
from the point TAE = (−p,a− bcd) to the line B has the
equation bx+ y−a+bcd +ab2cd = 0, and a perpendicu-
lar line from the point TBE to the line A has the equation
ax+ y− b+ acd + a2bcd = 0. These two lines are inter-
sected in the point Hab = (−abcd− cd−1,a+b) which is
the orthocenter of the trilateral ABE . Hence, it is incident
with directricies Hc and Hd of ABDE and ABCE that are
perpendicular to the medians of these quadrilaterals and
parallel to the lines C and D, respectively. However, the
midpoint of the point TCD = (cd,c+d) and the point Hab is
the point N from (28). Because of that lines Hc and Hd are
symmetric to the lines C and D with respect to the point N.
Analogously, lines Ha and Hb are symmetric to the lines A
and B with respect to the point N. The directrix H of the
quadrilateral ABCD with the equation x =−1 and the line
E with the equation x =−p are symmetric with respect to
the point N. It means that the pentagonals ABCDE and
HaHbHcHdH are symmetric with respect to the point N.
The orthocenter Ha = (−1,b+c+d+bcd) of the trilateral
BCD and the intersection point TAE = (−p,a− bcd) of
lines A and E have the midpoint N from (28). Similarly,
it is valid for the pairs of points Hb,TBE ; Hc,TCE ; Hd ,TDE .
We have already proved that the orthocenter Hab of the tri-
lateral ABE and the point TCD have the same midpoint N.
There is a statement from [3] and [4]:
To every quadrilateral the fifth line can be joined so that
there is a point, which is common midpoint of ten segments
with one endpoint in an intersection point of any two lines

of these five and the another endpoint in the orthocenter of
the triangle formed by the rest three lines.
The line A intersects the directrix H in the point A′ =
(−1, 1

a (a
2 − 1)), and the midpoint of this point and the

point TBC = (bc,b+c) is the point ( 1
2 (bc−1), 1

2a (a
2+ab+

ac−1). This midpoint is incident with the line N ′
d with

the equation

x+abcy =
1
2
[abc(a+b+ c)−1]. (31)

Symmetry of this equation on a,b,c means that two more
analogous midpoint are incident with the line N ′

d , so that
line is the median of the quadrilateral ABCH . It is inci-
dent with the point N from (28), and because of symmetry
on a,b,c,d, medians of quadrilaterals ABDH , ACDH ,
BCDH are incident with that point N as well. This point
is incident to the median N of the quadrilateral ABCD.
The fact that these five medians are intersected in one point
can be found in [42]. However, we see that this point is the
same point as the point N from (28), so we give the new
result:

Theorem 7 All medians of even nine quadrilaterals
ABCD, ABCE , ABDE , ACDE , BCDE , ABCH ,
ABDH , ACDH , BCDH are intersected in the point N.

See Figure 7.
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Figure 7: Medians of quadrilaterals ABCD, ABCE ,
ABDE , ACDE , BCDE , ABCH , ABDH ,
ACDH , BCDH are intersected in the point N

There are many more claims that are not presented in this
paper and we plan to deal with them in the next paper.
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[37] STEINER, J., Théorème sur le quadrilatère complet,
Ann. de Math. 18 (1827-28), 302–304., Ges. Werke, I,
223–224.

[38] YAMOUT, J., Problem E 3299, Amer. Math. Monthly
95 (1988), 954., solution by H. Kappus, 98 (1991),
60.
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