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Abstract 

Purpose. This paper focuses on the comparison of Ni and Pb concentrations in air and soil pollution in the Zagreb area. 

Due to the very limited amount of publicly available data from soil analysis samples, 2016 and 2019 were chosen as the best 

possible indicators of related changes in metal concentrations in soil and air. 

Methods. Testing the normality of Ni and Pb concentrations in the total deposited matter (TDM) confirmed the feasibility 

of using two parametric statistical tools – the Pearson correlation coefficient and the t-test. The Inverse Distance Weighting 

(IDW) interpolation method was selected as the best approach for a small number of measurements. 

Findings. The insufficient amount of data is the main shortcoming for urban health policy in a large area like Zagreb. The 

small number of air measurement stations and especially soil sampling sites cannot lead to any reliable conclusions about ur-

ban pollutants, their activity over time and direct links to soil toxic degradation based on statistical or geological methods and 

analyses. However, there is no doubt that urban pollution sources fill the soil with accumulated toxic elements such as Ni and 

Pb, especially in suburban areas located along the paths of the dominant wind directions. 

Originality. This is an original research that for the first time statistically analyzes and maps publicly available air and soil 

pollution data for the period 2016-2019. 

Practical implications. This research is a necessary step in determining the future planning of air and soil measurement 

stations in the Zagreb urban area. 

Keywords: pollution, Ni, Pb, statistical testing, geostatistical mapping, Zagreb, Croatia 

 
1. Introduction 

Soil and air pollution continues to be a major problem in 
urban areas such as Zagreb. As the largest city in Croatia, it 
faces high population density and heavy traffic, which has a 
significant impact on air and soil quality. The total mass of 
pollutants transferred from the air to surfaces is called the 
total deposited matter (TDM). The TDM is one of the pa-
rameters for assessing environmental air quality. As part of 
TDM determination, TDM metal concentrations are also 
determined (Pb, Cd, As, Ni, Tl, etc.). Considering that air 
particles settle to the ground as a result of deposition in the 
air, it can be concluded that there is a correlation between the 
concentrations of metals in air and soil. 

Air quality is an important environmental variable that 
determines the spatial accumulation of heavy metals in the 
soil. Some results have shown that there is a sources-receptor 
relationship mechanism between air quality and heavy metals 
in soil. Industry releases heavy metal particles into the at-
mosphere, which then enter the soil through atmospheric 
deposition and precipitation [1]. 

However, soil pollution in urban or rural areas can be af-
fected by both air and water streams. Even more, both me-

chanisms are generally the most active in mining areas, in-
creasing the concentrations of heavy metals, for example, in 
industrial discharged water or gases. So Kadriu et al. in [2] 
proved for several sampling sites that the industrial activity 
(mine and flotation) of the Trepça Mine is the main cause of 
environmental pollution. Their analysis of discharged water 
from the mine and the flotation showed concentrations of 
heavy metals in the surrounding environment. 

Moreover, Polishchuk et al. in [3] defined the problem of 

assessing the guaranteed atmospheric air quality for a point 

source. Such point(s) can be defined in various fields such as 

mining, metallurgy, chemistry etc., but are always described 

as a vector random field and a variable with multidimension-

al distribution density. Consequently, there is a clear link 

between air quality and industrial sources. 

Skrobala et al. in [4] presented mining as one of the most 

dangerous sources of environmental pollution using the case 

study of the Nadiya mine rock dumps in Ukraine. Pollution 

depends on the relief and slope exposure, which affect the 

distribution of chemical elements and their increase com-

pared to the background values. Dispersion (according to the 

Principal Component Analysis) influenced by anthropogenic 
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activity is the most intense for Mg, Pb, Sn, Fe, Al, Cu, P, Ni, 

Zn, affecting vegetation near dumps. 

However, in Croatia, mining activities do not have a di-

rect influence on the environment due to the closure of all 

active coal mines several decades ago (last in 1999). Only a 

few relatively small quarries are still active, but their influ-

ence is not chemical, like the accumulation of heavy metals, 

dissolved ions etc., but in air quality due to the large quanti-

ties and volumes of mining dust. Gravel and clay pits do not 

have any influence on local inhabited areas, except for aqui-

fers (unless they are properly planned). 

Consequently, the biggest air pollutant in the city of Za-

greb is traffic [5], in addition to several industrial plants in 

the eastern part of the city, a heating plants, a waste disposal 

site and an airport near the city. Of course, pollution can also 

occur when a pollutant enters the soil directly. However, this 

data is not considered in this work, since the main goal is to 

monitor where most wind-blown pollutants (mostly caused 

by traffic) settle, so that we can better adapt the measurement 

stations in further research. Polluting substances are carried 

by the wind and, depending on the particle size, direction and 

speed of the wind, settle on the soil surface near the source of 

pollution or are carried to more distant areas (primarily if 

they are small particles PM2.5 and smaller, ultrafine parti-

cles). Many papers study the relationship between pollutants 

and the influence of meteorology on the behaviour of pollu-

tants, the direction of their trajectories and, ultimately, depo-

sition [6]-[8]. The general conclusion of all the papers is that 

wind direction plays a key role in pollutant migration from 

its source to deposition. The mechanisms that explain this 

relationship are complex, since many other phenomena influ-

ence the path of particles from the source to the soil surface, 

such as the size of the particles themselves, wind direction 

and speed, rainfall, vegetation, tall buildings, etc. [9]. 

Heavy metals are very dangerous for the environment and 

organisms. Through the food chain, humans suffer the con-

sequences of soil pollution. If soil is contaminated with 

heavy metals, it is difficult to rehabilitate it [10]. These 

heavy metals are persistent and bioaccumulative, do not 

biodegrade or metabolize in the environment [11]. 

Within the framework of this paper, Ni and Pb were se-

lected as potentially toxic elements in high concentrations. 

These elements were chosen because of the same elements 

measured in soil near air measurement stations during two 

years of observations. 

Nickel (Ni) is a toxic and carcinogenic heavy metal. It 

enters the soil with diesel fuel, smelters, city effluent and 

mining [12]. The average concentration of Ni in soils is  

20-30 mg/kg [13]. Spatial distribution of Ni in central Croa-

tia area ranges within 12 and 427 mg/kg with an average 

value of 33 mg/kg, which is lower than the average value for 

the entire Croatia (48 mg/kg) (Fig. 1) [14]. 

Lead (Pb) is a heavy metal mostly presented in the top layer 

of soil due to the deposition from air containing smoke from 

vehicles. In uncontaminated soils, Pb concentrations are gene-

rally below 50 mg/kg [15]. Also, industrial activities have a 

large impact on heavy metal pollution, ecological and health 

risks. When the trace element concentration exceeds the critical 

threshold, it may have a potentially toxic effect on human health 

and the ecosystem [16]. According to the International Agency 

for Research on Cancer (IARC), high concentrations or ex-

treme exposure to Pb can cause severe neurological and hema-

tological disorders in the exposed population, mainly children. 

 

Figure 1. Regional spatial distribution of Ni [10] 

On the other hand, short-term exposure to a high Ni con-

centration via inhalation can cause kidney and lung disor-

ders. Exposure to high levels via ingestion can lead to neuro-

logical disorders and gastrointestinal discomfort. Moreover, 

long-term exposure through dermal contact may result in 

dermatitis, while inhalation can cause many respiratory dis-

eases, such as nasal and lung cancer [17]. Lead content in 

this region varies between 14 and 217 mg/kg, with an aver-

age value of 27 mg/kg, which signi-ficantly exceeds the state 

average content of this element in soils (Fig. 2) [14]. 

 

 

Figure 2. Regional spatial distribution of Pb [14] 

Soil enrichment with Cd, Zn, As, and Pb is attributed to 

high-temperature coal combustion [18]. In the areas of 

large cities, there are mixed sources of pollution from in-

dustrial emissions, the burning of fossil fuels, emissions 

from vehicles, irrigation with wastewater, as well as the 

disposal of solid waste and natural sources of parent soil 

materials in urban soils [19]. 

The major methods for the prevention and control of 

heavy metals in soils are focused on the identification of 

heavy metals in the soil from different pollution sources. The 

average contribution rates of the soil-forming process in Cd, 

Hg, As, and Pb are around 80-90%, and those of anthropo-

genic activities are 10-20% [20]. Certain papers come to the 

conclusion that the source material plays a very important 

role in the distribution and quantity of metals in soil hori-

zons. Based on the example of Cd, it was concluded that the 

parent material is the decisive factor determining the magni-

tude and depth of exogenous Cd accumulation in the soil 

profile. These findings suggest that the parent material-

induced Cd fraction distribution and accumulation should be 
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considered in order to effectively explore remediation strate-

gies for Cd pollution [21]. 

However, how pollutants behave in an unsaturated zone is 

a very complex question. Their carrier is affected by many 

physical, chemical and microbiological processes, such as 

advection, dispersion, diffusion, sorption, cation exchange, 

etc. [22]. Sorption processes of potentially toxic metals in soils 

differ at different soil pH values, and the soil ability to retain 

them depends on its resistance to any soil pH changes [23]. 

A total of 420 surface soil layer samples (0-15 cm) were 

sampled in Zagreb and surrounding areas using systematic 

sampling on a 2 km grid [24]. The conclusion of this work is 

that the influence of the anthropogenic urban environment on 

the distribution of heavy metals in the soils of Zagreb is 

noticeable only for Hg, Pb and Zn, while pollution caused by 

Cr, Ni and Mn has not revealed. When investigating the 

movement of pollutants in the unsaturated zone of the Zagreb 

aquifer [25], the highest concentrations of potentially toxic 

elements (Pb, Cd, Zn) were determined in the shallowest part 

of the soil profile. Considering the obtained results of the 

predicted transport model, in this case, the initial concentra-

tion of potentially toxic elements on the soil profile surface is 

about 10% of the elements carried into the aquifer. There-

fore, the soil surface layer can be considered the most signi-

ficantly polluted with potentially toxic metals from the air. 

An interesting research was published by Saeiti et 

al. [26], where the authors pointed out mixed models as a 

useful way of longitudinal discriminant data analyses. Alt-

hough the model was applied to specific patient deviations 

from the general trend over time (i.e., in biostatistics), they 

introduced a so called “joint distribution” to include all mod-

el random effects and assumed as multivariate normal distri-

bution. Two sample sets are tested (n = 250 and 2500), where 

misspecification of the random effect distributions is found. 

Authors [26] stated that “when there is severe departure from 

normality, more flexible mixture distributions can give better 

classification accuracy. However, in many cases, the incorrect 

assumption of a single multivariate normal distribution has 

little impact on the classification accuracy”. Although analysis 

considered time-shifted medical data, an important general 

conclusion can be drawn. If there is a slight deviation (for 

random effects) from a normal distribution, then assuming a 

single Gaussian distribution will not lead to significantly less 

accuracy. However, if the deviation is larger, more accurate 

classifications will be reached with “a more flexible random 

effects distributions”, but it is only possible for larger datasets. 

In a similar study, also in the field of medicine, presented 

by Sheng et al. [27], a correlation is analysed in clustered 

data (formed by two ears of the same individual). They also 

propose a linear mixed-effects model for analysing the multi-

level data structures. Generally, they concluded that more 

efficient models are mixed, multivariate, with a larger num-

ber of inputs (in this case, method for both ears, including 

participants, audiologists and confounder). 

Also often in geology there is an approach to increase ar-

tificially the data using bootstrap as a nonparametric statisti-

cal method. Ivšinović and Litvić [28] show that resampling 

an input dataset can provide a chance to reach a new set 

which is characterised by normal distribution. However, this 

method is based on a large number of resampling. The  

authors show that at least 1000 (new) subsurface porosity 

artificial data were necessary to obtain a normal distribution. 

All these approaches deal with distribution of data and 

can be tested for both small and large datasets in different 

fields of science and engineering. They all have their limita-

tions, especially bootstrap when resampled datasets may not 

be statistical representative, but they all can help to make 

decision how to spatially represent variability. 

2. Methods 

2.1. Study area description 

The study area includes six measurement stations in Za-

greb for observing air quality (A1-A6). The behaviour of air 

pollutants in the environment, as well as human exposure to 

air pollutants in Croatia, are investigated and monitored by 

the Institute for Medical Research and Occupational Health 

(IMI). During the two-year period, 2016 and 2019, daily 

samples of Ni and Pb concentrations in the total deposited 

matter were taken, and monthly and annual averages are 

considered for mapping and statistical analyses. Additional-

ly, soil samples were taken from two locations (S1 and S2), 

and values in 2016 and 2019 were compared with air pollu-

tants. These 2 years are the only ones when mutual air and 

soil measurements exist. Moreover, locations S1 and S2 were 

chosen due to their proximity to possible pollution sources. 

S1 is the location of the Zagreb wastewater facility and S2 is 

close to the city landfill. The entire observed area (air meas-

urement and soil sampling stations) covers approximately 

300 km2. The sampled locations are shown in Figure 3. 

 

 

Figure 3. Study areas with measurement stations (A – air meas-

urement stations, S – soil sampling stations) 

Soil samples were taken at a depth of 20 cm and subse-

quently subjected to drying, sieving and preparation for se-

quential extraction analysis (BCR) [29]. The BCR method 

was used to determine the overall distribution of heavy met-

als in sediments. 

2.2. Geological settings 

The study area consists primarily of Quaternary deposits 

composed of Pleistocene non-carbonate loess and Holocene 

alluvium, flooded and splay sediments [30]. It is represented 

by lowlands located at the very southwestern margin of the 

Pannonian Basin System, below Medvednica Mt. These Holo-

cene sediments are carried by the Sava River in numerous 

redeposition cycles originating from the Alpine regions [31]. 
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Apart from alluvial deposition, a significant effect of tectonics 

results in pronounced heterogeneity and anisotropy [32]. 

Quaternary sediments surrounding Zagreb were firstly de-

scribed at the beginning of the century [33]. Based on all 

available geologic-geophysical data, Pleistocene and Holocene 

sediments have been completed to a depth of approximately 

100 m. At this depth, sediments are composed of loose and 

weakly cemented clasts, the sizes of which correspond to 

gravels, sands, silts and clays in variable proportions (Fig. 4). 

The upper part (upper 50 m) is dominated by gravels. 

They are underlain by a thin layer of silty clay overlying the 

following sequence: gravels and sands, thin silty clayed sed-

iments and sand, silts and clays forming the lowermost 10 

meters [34]. Analysed surface soil samples were taken from 

0-20 cm depth in locations S1 and S2 [25], [29], [35], while 

metal concentrations in the total deposited matter were 

measured monthly in 2016 and 2019 at six locations, namely 

A1-A6 (Table 1-3). 

2.3. Statistical analysis 

The Inverse Distance Weighting (IDW) interpolation 

method was selected, which will give the best data for a 

small number of measurements [36]. The IDW method is 

based on the distance ponder with an exponent, mostly the 

second power [37]-[39], between the measured data and the 

location where an unknown value is estimated. Such values 

are in grid nodes. 

 

Figure 4. Lithologic column of the Jakuševec well in the Zagreb 

waste depository [34]  

Table 1. Annual Pb concentrations in the TDM (mg/m2d) 

A1 A2 A3 A4 A5 A6 

2016 2019 2016 2019 2016 2019 2016 2019 2016 2019 2016 2019 

1.89 0.55 8.03 10.9 1.54 0.95 1.99 1.34 1.20 0.76 1.37 0.63 

3.27 1.27 10.5 5.89 4.80 2.02 4.25 3.14 3.29 1.01 3.28 1.31 

2.46 1.19 4.53 7.92 2.59 3.37 4.50 4.04 2.58 1.32 5.80 2.03 

3.66 5.11 4.10 15.5 1.57 4.17 7.42 4.97 1.59 3.12 3.27 3.35 

3.42 1.22 8.76 2.85 3.99 0.47 4.62 1.72 2.38 0.95 3.21 0.81 

2.47 2.42 13.1 8.49 3.47 3.91 5.06 3.64 3.70 2.40 3.39 0.84 

1.85 1.65 3.86 6.38 /  /  4.07 2.70 1.96 1.28 2.13 1.78 

5.42 1.06 4.30 5.97 2.06 1.79 2.19 2.92 2.29 2.36 1.66 1.88 

1.05 1.65 4.41 3.73 1.50 1.99 1.73 2.81 1.32 1.83 1.37 3.23 

5.94 0.53 7.70 1.66 2.55 0.93 3.38 1.29 2.76 0.73 2.25 0.77 

 / /  4.92 1.84 2.52 1.16 4.52 1.46 /  /  2.68 1.11 

0.90 0.46 2.74 7.41 2.09 1.05 4.54 1.07 2.09 0.74 1.25 1.04 

Table 2. Annual Ni concentrations in the TDM (mg/m2d) 

A1 A2 A3 A4 A5  A6  

2016 2019 2016 2019 2016 2019 2016 2019 2016 2019 2016 2019 

9.67 0.33 3.05 2.15 2.82 0.66 2.85 0.54 2.74 0.64 5.18 0.65 

7.24 0.26 4.25 2.35 1.24 0.97 3.00 1.39 2.17 0.83 3.14 0.89 

1.83 0.65 2.81 5.30 1.30 1.32 1.55 1.56 1.06 0.64 1.87 1.27 

3.60 2.08 3.25 5.37 1.28 2.26 3.38 2.06 1.52 1.32 2.56 1.72 

5.84 0.86 22.0 2.05 2.86 0.32 2.41 0.72 1.59 0.61 2.10 0.61 

6.17 1.44 3.49 3.26 2.27 2.32 4.88 1.90 2.05 1.22 1.97 0.64 

1.56 0.82 1.71 1.90 / / 1.22 0.86 0.90 0.69 1.16 0.97 

5.96 0.69 0.62 2.41 0.94 1.02 0.89 1.22 1.16 1.46 0.89 1.02 

1.29 0.89 2.47 1.93 1.08 1.06 1.42 1.21 0.84 1.00 0.93 1.89 

3.45 0.30 3.35 1.22 2.29 0.67 2.45 4.78 2.08 0.38 1.64 0.87 

/ / 3.97 1.33 1.84 1.37 2.51 1.18 / / 3.06 1.05 

1.42 0.27 0.38 0.94 1.33 1.11 1.34 0.83 2.54 0.44 1.10 0.64 

 

The measurement data included in the calculations are the 

values within the search radius/radii, i.e. inside the  

circle/ellipsoid of spatial dependency. 

The mathematical expression for inverse distance  

estimation is: 

1 2

1 2

1 2

...

1 1 1
...

p p p
n

UI

p p p
n

ZZ Z

dd d
Z

dd d

+ + +

=

+ + +

n

,            (1) 
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where: 

ZUI – estimated value; di-distance to the “i-th” location; 

p – power of distance; 

Zi – measured values at “i-th” location (i = 1 ,…, n) [40]. 

Table 3. Average annual metal concentrations in the TDM and 

soil samples 

Metal concentrations in the total deposited matter (mg/m2d) 

2016 2019 

 Pb Ni Pb Ni 

A1 

A2 

A3 

A4 

A5 

A6 

2.94 

6.42 

2.61 

4.02 

2.29 

2.64 

4.37 

4.28 

1.75 

2.33 

1.7 

2.13 

1.5 

6.6 

2.1 

2.6 

1.5 

1.6 

0.8 

2.5 

1.2 

1.5 

0.8 

1 

 Metal concentrations in soil samples (mg/kg) 

 2016 2019 

 Pb Ni Pb Ni 

S1 18.24 205.07   

S2 18.26  27.1 38.3 

 

The result of IDW interpolation depends on the value of 

the exponent p, which is obtained experimentally and has a 

different value in different fields of science [38]. Specifical-

ly, in this work, the value of 2 was used as the exponent p, 

which in previous studies in similar areas was shown to be 

optimal [38], [39]. This means that the weight given to each 

point is inversely proportional to the square of the distance 

between the unknown point and the known point. This gives 

more weight to nearby points and less weight to distant 

points, resulting in a smoother and more accurate interpola-

tion surface. However, the choice of power exponent de-

pends on the nature of the data and the desired accuracy of 

the interpolation. For example, a power exponent of 1 will 

give equal weight to all neighbouring points, while a higher 

power exponent will give more weight to the closest points. 

To investigate the correlation between variables (in this 

case, metal concentrations), it is useful to check the normality 

of the TDM annual data distribution. In the limited datasets, a 

normality check is quite an unreliable analysis. However, the 

amount of data for normality analyses, t-test and interpolation 

was different. Statistical data were checked based on monthly 

averages for two compared years (t-test) or single years (nor-

mality check). It included 24 or 12 values, respectively.  

Oppositely, for interpolation, the datasets included 6 points 

and 2 auxiliary (for interpretation) data. So, 10+ data points 

are considered the minimum for the logical selection of for-

mal normality tests, where also one was “stricter” (Shapiro-

Wilk) and another “lighter” (Kolmogorov-Smirnov). One of 

the most frequently used and reliable (strong) tests for con-

firming the hypothesis of a normal distribution, the Shapiro-

Wilk (SW) test is expressed by the Equation: 

( )( )
( )

2

1

2

1

n
i ii

n
ii

a x
W

x x

=

=

 
=

−

,             (2) 

where:  

x(i) – the i-th smallest number in the sample; 

x  – a sample mean; 

ai – a constant. 

This is a hypothesis test that is applied to a sample and 

whose null hypothesis is that the sample was generated from 

a normal distribution. If the p-value is low, we can reject 

such a null hypothesis and say that the sample was not gen-

erated from a normal distribution [41]. 

Due to the small number of data (monthly averages), we 

additionally check the normality with another test called the 

Kolmogorov-Smirnov (KS) test [42]. The test is based on the 

empirical distribution function (ECDF). Given N ordered 

data points Y1, Y2, ..., YN, the ECDF is defined as: 

( )
N

n i
E

N
= ,              (3) 

where: 

n(i) – the number of points less than Yi; 

Yi – ordered from the smallest to the largest value. 

This is a step function that increases by 1/N at the value 

of each ordered data point. 

For groups where normality is confirmed by at least one 

formal test, the parametric t-test was made to compare the 

means of the two groups of monthly values between 2016 

and 2019. The paired sample t-test was chosen to determine 

whether the mean difference between two sets of observa-

tions is zero [43]. In the t-test, we used the p-value as a 

measure of the statistical significance of the observed result. 

If the p-value is small (less than 0.05), it suggests that the 

observed result is unlikely to have occurred by chance, and 

we reject the null hypothesis. On the other hand, if the  

p-value is large, this suggests that the observed result could 

have been obtained by chance (the concentration of individu-

al metals in different years is statistically significant). It is 

important to note that the p-value does not provide infor-

mation on the magnitude of the effect or the size of the dif-

ference between groups; it only shows us whether the ob-

served effect is statistically significant. Two sets of observa-

tions are paired if each observation in one set has a special 

correspondence of relationship with exactly one observation 

in the other data set [44]. The formula for estimating the 

paired t-test is: 

m
t

n


= ,              (4) 

where: 

m – the mean of the group; 

σ – the standard deviation of the group; 

n – the sample size. 

Also, for samples with a normal distribution, a correlation 

was made using Pearson correlation coefficient [45]. The 

Pearson correlation coefficient is a measure of the strength of 

a linear relationship between two variables [46]. It is com-

monly denoted by the Greek letter ρ (rho) and may be re-

ferred to as the population correlation coefficient. Given a 

pair of random variables (X, Y), the formula for ρ [44] is: 

( )
,

,
X Y

X Y

cov X Y


 
= ,             (5) 

where: 

cov – the covariance; 

σX – the standard deviation of X; 

σY – the standard deviation of Y [47]. 

When applied to a sample, it is commonly represented as 

r and may be referred to as the sample correlation coefficient 

or the sample Pearson correlation coefficient. 
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( )( )

( ) ( )
2 2

i i

i i

x x y y
r

x x y y

 − −
=

 −  −

,            (6) 

where: 

r – correlation coefficient; 

xi – values of the x-variable in a sample; 

x  – a mean of the values of the x-variable; 

yi – values of the y-variable in a sample; 

x  – a mean of the values of the y-variable. 

3. Results and discussion 

In order to check the normality of the distribution of month-

ly values of Pb and Ni concentrations in the air during 2016 and 

2019, Shapiro-Wilks and Kolmogorov-Smirnov formal tests 

were performed. The results are presented in Table 4. 

Table 4. Results of the statistical tests of Pb, Ni concentration in 

the TDM (green – normal distribution is confirmed, red – 

is not confirmed) 

2016 

 
A1 A2 A3 A4 A5 A6 

Pb Ni Pb Ni Pb Ni Pb Ni Pb Ni Pb Ni 

KS 

test 
            

SW 

test 
            

2019 

KS 

test 
            

SW 

test 
            

 

Most monthly concentrations have a normal distribution, 

especially when analysed using the KS test. It was expected 

because the KS test is not as strict as the SW test. The month-

ly Ni concentrations at the A2 measurement site in 2016 are 

an exception, since there was one extreme value, which was 

probably real and not a measurement error. Based on this, we 

can compare the monthly concentrations of individual meas-

urement stations in 2016 and 2019 (except for Ni at A2) using 

the t-test and Person correlation coefficient (Table 5). 

Table 5. Results of statistical paired t-test (p-value) and Pearson 

correlation coefficient (r) between concentrations  

in 2016 and 2019 

A1 A2 A3 A4 A5 A6 

 Pb Ni Pb Ni Pb Ni Pb Ni Pb Ni Pb Ni 

r 0.04 -0.12 -0.07 -0.05 -0.06 -0.32 0.49 0.24 -0.02 -0.37 0.09 -0.26 

p 0.05 0.002 0.93 0.33 0.26 0.12 0.01 0.07 0.04 0.01 0.03 0.02 

 

In the t-test, we used the p-value as a measure of the sta-

tistical significance of the observed result. If the  

p-value is less than 0.05, it suggests that the observed result 

is unlikely to have occurred by chance, and we reject the null 

hypothesis (the concentration of individual metals in differ-

rent years is not statistically significant). When normality is 

not satisfied, this means that the data distribution is not 

Gaussian, and therefore statistical methods based on this 

assumption may not be valid. In the context of air pollution 

data, this may happen because air pollution sources are not 

evenly distributed in space and time, or because some pollu-

tants are more persistent in the atmosphere than others. In 

this case it is important to use non-parametric methods, such as 

the Wilcoxon rank-sum test, the Kruskal-Wallis test, Spear-

man’s rank correlation or Robust regression, which do not 

assume a specific data distribution. Alternatively, one can 

transform the data using a suitable transformation, such as 

logarithmic or square root transformation, to make the distri-

bution more normal before applying parametric methods. 

Pearson correlation coefficient does not significantly dif-

fer from zero. According to this correlation coefficient, there 

is not significant linear relationship between monthly con-

centrations of Ni in 2016 and 2019, as well as between re-

spective Pb concentrations. A paired t-test is used because it 

can be assumed that, without additional external pollutants, 

the sample means will be similar, i.e., statistically related. 

The null hypothesis assuming similarity between 2016 and 

2019 monthly means is rejected based on the p value at loca-

tions A1, A5 and A6 for both Pb and Ni concentrations. At 

measurement station A4, the null hypothesis is not rejected 

for Ni concentrations, and it is rejected for Pb. At measure-

ment station A2 and measurement station A3, null hypothesis 

is not rejected for both Pb and Ni concentrations. 

In short, using an additional t-test, the hypothesis of equa-

lity of their means is mostly rejected (H1 : μ1 ≠ μ2), which 

places the time-shifted data of majority of air samples in dif-

ferent weather and soil conditions. This can be compared to 

negative correlations often calculated between the same da-

tasets, where both values mask any relationship between 

stations, which probably cannot be the prevailing statement. 

However, finding the critical value of the rock petrophysical 

values when applying t-test in geological research could be a 

tentative process [48], and an increase in the number of data 

can help reach the representativeness of the statistics, i.e., 

belonging to the so called “parent population”. This means 

that increasing the network of stations probably improve the 

relationship between different stations, expressed by statisti-

cal values such as correlation coefficient or t-test values. 

Significant differences in the sample means are also visi-

ble geographically on maps of Ni and Pb concentrations in 

both analysed years (Figs. 5 and 6). Measurement stations 

A3 and A2, for which null hypothesis is not rejected, are 

adjacent and geographically located from the central to the 

western side of the mapped area. Mapped Pb concentrations 

in 2016 and 2019 show the highest values in the central area 

(A3, A4) as well as at the western margin (A2). The average 

annual Pb concentration reaches 4.02 µg/m2d at the meas-

urement A4 station in 2016 and 2.59 µg/m2d at the same 

station in 2019. At A2 station, an average annual concentra-

tion of Pb in 2016 is 6.42 µg/m2d and 6.55 µg/m2d in 2019. 

Pb concentrations of soil samples from S1 and S2 locations 

are 18.24 mg/kg and 18.26 mg/kg in 2016, respectively. 

Although S1 data for 2019 is not available, S2 reaches a high 

of 27.1 mg/kg in 2019. 

Unlike Pb, the average annual concentrations of Ni are 

maximal only at the margin of the mapped area in 2016. The 

A1 and A2 stations show 4.37 and 4.28 µg/m2d, respectively. 

This changed in 2019, with station A2 retained the highest 

mapped concentration, while Ni concentration at station A1 

became the lowest mapped concentration. Soil samples from 

location S1 show a value of 205.07 mg/kg in 2016, and no 

data is available for 2019. Similarly, location S2 shows a 

sample concentration of 38.3 mg/kg in 2019, while data at S1 

for 2016 is not available. 

Since the spatial distribution of these potentially toxic  

elements (Pb and Ni) can be significantly affected by wind 

direction and speed, both factors were observed using an 

annual wind rose valid for Zagreb (meteorological station 

located in the uptown). 
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(a) 

 

(b) 

 

Figure 5. Map of Pb concentration in the TDM and soil (Gauss-

Krüger projection): (a) 2016; (b) 2019 

The data for measured wind properties reflect the same 

time frames (2016 and 2019) as the Pb and Ni concentration 

measurements from the air. The length of each wind direction 

spike is the cardinal direction frequency in which the wind 

blows. It is represented as a percentage (0, 10, 20, 30…). 

In both years (Fig. 7), the wind direction was predomi-

nantly towards the NE with speed of 0-2 m/s. In addition, the 

second spike was directed towards the SE with speed of 

mostly 0-1 m/s, rarely higher. Wind roses for 2016 and 2019 

are very comparable. 

Moreover, we used points S1 and S2 for a quantitative 

comparison of mapping results (A1-A6) and dominant wind 

directions (Figs. 9 and 10). Two soil samples were taken as 

an example to see if metal concentrations in soils increase 

or decrease over the years, as metals from the TDM settle 

and accumulate in the topsoil over the years. Of course, this 

is an assumption that cannot be precisely confirmed with 

such a small amount of data, and this paper is precisely a 

guide for further research into the relationship between air 

and soil metal pollution. 

(a) 

 

(b) 

 

Figure 6. Map of Ni concentration in the TDM and soil (Gauss-

Krüger projection): (a) 2016; (b) 2019 

                      (a)                                               (b) 

 

Figure 7. The wind rose: (a) 2016; (b) 2019 

4. Conclusions 

This paper is focused on the comparison of Ni and Pb 

concentrations in air and soil pollution in the Zagreb area. 

Due to the very limited amount of publicly available data 

from soil analysis samples, 2016 and 2019 were chosen as 
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the best possible indicators of related changes in metal con-

centrations in soil and air. 

The main problem was that the input data contained only 

six measurement stations for air quality and, more important-

ly, just two analysed soil sampling sites for the same metals 

(measured in total deposited matter). As can be seen on the 

maps, the only area defined by the air measurement stations 

can be mapped, due to the inadequate number of soil sam-

pling sites. Moreover, those two subareas cannot be mapped 

simultaneously, but each by itself due to different physical 

values, but they are interpreted as possibly dependent. 

Moreover, a larger dataset of air concentrations was sta-

tistically analysed by itself, based on monthly averages for 

2016 and 2019 used to calculate the (mapped) annual aver-

ages. This included formal normal distribution testing, linear 

correlation calculations, and t-test. 

Testing the normality of Ni and Pb concentrations in the 

TDM confirmed the feasibility of using two parametric sta-

tistical tools – the Pearson correlation coefficient and the  

t-test. Interestingly, the Pearson correlation coefficient does 

not significantly differ from zero, i.e., the “r” is “not signifi-

cant” and there is no significant linear relationship between 

the monthly concentrations of Ni and Pb in 2016 and 2019. 

Furthermore, the t-test for most of the data shows that the 

null hypothesis is rejected. Thus, it can be concluded that the 

environment, i.e., the pollutant sources operating in the ob-

served area, have changed over the three years. This is also 

confirmed by the absence of a linear correlation. In the loca-

tions where the null hypothesis was not rejected (A2 and 

A3), it is concluded that the area is still potentially polluted 

by the same sources in similar proportions. 

Since the mean values of Pb and Ni concentrations in the 

air in 2019 are lower compared to 2016, while the Pb con-

centration in soil, on the contrary, increased in 2019, it can 

be concluded that, as expected, pollution from the air is ac-

cumulated in the surface soil layers. From the graphic display 

of wind directions and speeds, it is evident that the most 

dominant wind directions were in the northeast and southeast 

directions. The influence of the NE direction cannot be con-

firmed due to the absence of soil samplings, but the SE is 

clearly reflected in the increase in Pb in S1 and S2, although 

the air concentration in the Zagreb urban area decreased over 

the analysed years. 

The deposition of particles from the air, their accumula-

tion and behaviour within soil horizons is a very complex 

issue. Some analytical methods on how to deal with them are 

shown in this work. However, the most substantial conclu-

sion is probably that the insufficient amount of data is the 

main shortcoming for urban health policy in a large area like 

Zagreb. The small number of air measurement stations and 

especially soil sampling sites cannot lead to any reliable 

conclusions about urban pollutants, their activity over time 

and direct links to soil toxic degradation based on statistical 

or geological methods and analyses. There is no doubt that 

urban pollution sources fill the soil with accumulated toxic 

elements such as Ni and Pb, especially in suburban areas 

located along the paths of the dominant wind directions. 

However, with a rather restricted dataset and no meaning-

ful spatial network of stations, normality and t-test could be 

used as some of the rare available statistical tools that could 

help to explain meaningless correlation values (all were in 

the range of r = +/-0.25, which was very strange depending 

on the number of calculations, where at least one pair could 

randomly reach a high correlation). Such an approach could 

be much more effective if the sampling network were ex-

panded in the future. This is considered a necessary condition 

for any proper protection of urban soils and waters, and es-

pecially citizens, and is crucial for any reliable health policy 

that people can trust based on qualitative and quantitative 

statistical and geological tools, methods, and facts. 
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Зв’язок між забрудненням повітря та ґрунту на основі статистичного аналізу та інтерполяції 

нікелю (Ni) і свинцю (Pb): тематичне дослідження на прикладі Загребу, Хорватія 

Н. Рачич, Т. Мальвіч 

Мета. Порівняння концентрацій Ni та Pb у забрудненні повітря та ґрунту для встановлення їх взаємозв’язка у районі Загреба. 

Методика. Тестування нормальності концентрацій Ni та Pb у загальному обсязі відкладеної речовини (TDM) підтвердило доці-

льність використання двох параметричних статистичних інструментів – коефіцієнта кореляції Пірсона та t-тесту. Метод інтерполя-

ції зі зважуванням зворотної відстані (IDW) був обраний як найкращий підхід для невеликої кількості вимірювань. Через дуже 

обмежену кількість загальнодоступних даних з аналізу зразків ґрунту 2016 та 2019 роки були обрані як найкращі можливі індика-

тори відповідних змін концентрації металів у ґрунті та повітрі. 

Результати. Визначено, що недостатній обсяг даних є головним недоліком міської політики в галузі охорони здоров’я на такій 

великій території як Загреб. Зазначено, що невелика кількість станцій вимірювання повітря та особливо місць відбору проб ґрунту 

не може призвести до будь-яких достовірних висновків щодо міських забруднювачів, їхньої активності в часі та прямого зв’язку з 

токсичною деградацією ґрунту на основі статистичних чи геологічних методів та аналізів. Встановлено, що міські джерела забруд-

нення заповнили ґрунт накопиченими токсичними елементами, такими як Ni та Pb, особливо в приміських районах, розташованих 

уздовж шляхів панівних напрямків вітру. 

Наукова новизна. Це оригінальне дослідження, в якому вперше проводиться статистичний аналіз та надаються загальнодосту-

пні дані про забруднення повітря та ґрунту за період 2016-2019 років. 

Практична значимість. Дане дослідження є необхідним кроком у визначенні майбутнього планування станцій для вимірю-

вання повітря та ґрунту у міській зоні Загреба. 

Ключові слова: забруднення, Ni, Pb, статистичне тестування, геостатистичне картографування, Загреб, Хорватія 
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