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a b s t r a c t

The development of gas smart meters has enabled the collection of data on daily natural gas consump-
tion which can be used to develop and improve methods and models for natural gas consumption
forecasting. This paper presents the development of a model for the short-term forecasting of total
natural gas consumption, which is applicable in different distribution areas where smart meters are
installed in large numbers. The advantages of this model are the use of only two input parameters
(daily natural gas consumption and average daily temperature), forecasting the total consumption in
the determined area by analyzing the consumption data of less than 10% of the total consumers
as well as robustness to consumer types. Daily natural gas consumption data collected from the
more than 3300 gas smart meters over a period of six months was used for the determination
of correlations between lognormal distribution variables and temperature. The defined correlations
between distribution variables and temperature were used for upscaling consumption to a specific
number of final consumers, i.e., to obtain the total consumption of natural gas in the observed area. Best
results were achieved using the ‘‘two-day rolling average temperature’’ in the consumption scenario
up to 250 m3 per day (MAPE was 7.26%). When compared to using ‘‘average temperature’’ as an
input parameter, ‘‘two-day rolling average temperature’’ and ‘‘shaving peaks temperature’’ produced
better results due to the mitigated impact of sudden temperature changes that significantly affected
the simulated consumption in the model while the actual consumption is a little more inert. Also,
consumption scenarios up to 250 m3 can be considered the most representative for forecasting total
natural gas consumption since it achieved the best results.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last ten years, the natural gas market in Europe has
eveloped significantly and has become very dynamic. More and
ore natural gas suppliers are moving away from long-term
ontracts and turning to trading natural gas on a short-term basis,
.e., the spot market. In order to achieve quality business results,
t is important for suppliers to have an accurate forecast of the
atural gas consumption of their end users. More than 20 meth-
ds for forecasting natural gas consumption developed or tested
etween 2015 and 2021 have been described in the scientific
ork of Smajla et al. (2021). Since the last literature overview,
everal other authors dealing with this topic have achieved the
ollowing results.

Li et al. (2021) combined the decomposition-fusion technique
ith a replacement data function, feature selection, and a diversi-

ied Stacking ensemble learning model for short-term natural gas
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load forecasting for cities in China. Data from 1460 samples were
used where 25 different features were considered and rearranged
according to their importance. Empirical results of using this
model showed that base learners’ capabilities and discrepancies
significantly affect the model’s performance.

Liu et al. (2021) gave a historical overview of the develop-
ment of methods for forecasting natural gas consumption. They
concluded that the development of computer science and artifi-
cial intelligence has significantly influenced the improvement of
forecasting methods, mostly those for the short-term. They also
concluded that the long-term consumption forecast is mostly in-
fluenced by production, population, and economic factors, while
the medium-term forecast of natural gas consumption is most
significantly influenced by economic and weather variables.

Peng et al. (2021) suggested the use of a combination of
long short-term memory, local mean decomposition, and wavelet
threshold denoising algorithm for daily natural gas load forecast-
ing in the city of London. They used from 335 to 355 input data
to predict consumption for a period of 10, 20 and 30 days and
compared the results obtained with the proposed model with
four other models. Their model proved to be the best in the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ase of forecasting consumption for a period of 20 days where
t achieved MAPE of 7.09%.

Sharma et al. (2021) used real world natural gas consumption
nd weather data, both of which were recorded at 6-h intervals.
ata were used to forecast natural gas consumption using four
ndividual machine learning models. The results obtained using
ndividual models were compared with the results obtained by
he combined use of individual models and Sharma et al. con-
luded that by combining individual models 15% better MAPE can
e achieved.
Wei et al. (2021) proposed the use of a hybrid white box

odel that combines the PCA algorithm, weighted parallel model
rchitecture (WPMA), and MLR. The model was used to forecast
aily natural gas consumption in four major cities located in
hree different climate zones. For the city of Melbourne, the
roposed model achieved the highest accuracy with a MAPE of
.79% compared to the remaining six machine learning models
MAPE ranging from 9.31% to 35.88%).

Xiong et al. (2021) used a new fractional-order accumulation-
ased incomplete gamma gray forecasting model to forecast an-
ual natural gas consumption from 2008 to 2018 in the Asia-
acific region. The achieved results showed that the MAPE of
his model is lower compared to other models, which means
hat this model can be considered favorable for forecasting the
nnual consumption of natural gas and other energy prediction
roblems.
Zhang et al. (2021) proposed the use of a novel polynomial dis-

rete gray prediction model with fractional order accumulation
o forecast annual natural gas consumption in different regions
f China over the next 5 years. The results obtained using this
odel (overall MAPE of 6.33%) proved to be superior compared

o the four remaining models.
Due to the impact of data complexity on natural gas consump-

ion forecasting Wei et al. (2022) proposed using a hybrid method
f complexity measure, named CMLS. The results showed various
orecasting performances at different complexity levels. In the
ase of very hard level, daily natural gas consumption is very hard
o forecast (R2 of forecasts are all negative).

Ma et al. (2022) used a nonlinear autoregressive model (NARX)
ith exogenous inputs, support vector machine (SVM), Gaussian
rocess regression (GPR), and ensemble tree model (ETREE) to
orecast daily gas load based on previous 3-year gas load data.
ith achieving forecast error below 7% by using an augmenta-

ion data set to train the model they concluded that this was a
otentially good tool to forecast natural gas load.
Lao and Sun (2022) developed a novel discrete fractional non-

inear grey Bernoulli model with power term (DFNGBM(1,1,))
n order to achieve quality prediction of natural gas consump-
ion and production in China. This model showed advantages
hen compared to the existing grey prediction models, such as

ractional-order accumulation operation and time power term.
Song et al. (2022) developed a novel hybrid model that was

roposed to predict the daily natural gas consumption in the
istrict heating systems based on the seasonal decomposition and
emporal convolution network (SDTCN) under the principle of
ivide and conquer strategy and deep learning algorithm. The
odel managed to achieve a prediction accuracy of 94.4% which
roved to be a superior result when compared to several other
odels.
Safiyari et al. (2022) used multi-layer perceptron and support

ector machine as two neural network models and vector autore-
ression and multivariate generalized autoregressive conditional
eteroskedastic as two econometric models to forecast monthly
atural gas demand. Analyzed data from March 2003 to February
021 was used in order to forecast consumption from the begin-

ing of March 2019 to the end of February 2021. The used model

2353
achieved the lowest measure of error compared to three other
models.

Barbiero and Grillenzoni (2022) provided statistical method-
ology to forecast gas demand at the municipal level in the ab-
sence of historical data on gas consumption, by using spatial
autoregressive (SAR) models with exogenous (X) variables. Novel
natural gas infrastructure network in the region of Sardagena was
designed and its economic sustainability was evaluated. The anal-
ysis showed a break-even point within 15 years with a market
penetration rate being under 70%.

Panek and Włodek (2022) used machine learning algorithms,
neural networks, and two regression algorithms, to forecast sev-
eral variants of natural gas demand with different lengths of
the forecast horizon. Obtained results showed that the Random
Forrest algorithm achieved the best results for the tested input
data but the differences between algorithms were not significant.

Ma et al. (2023) proposed using wavelet kernel-based machine
learning and grey system modeling which takes advantage of the
features of nonlinearity and periodicity of the wavelet kernel.
The proposed model was used in three case studies based on
the real-world data sets of urban natural gas consumption and
it outperformed other 15 time series forecasting models.

By integrating domain knowledge into association graph con-
struction and capturing temporal-spatial features via a hybrid
deep learning network, Du et al. (2023) proposed a novel deep
learning prediction method (KE-GB-TSN) for predicting natural
gas consumption. Results demonstrate that the proposed model
can outperform more sophisticated models like decision trees and
gated recurrent units in terms of predicted results that are both
more accurate and efficient. The proposed model’s Mean Absolute
Relative Errors and Root Mean Squared Relative Errors are all less
than 0.11 and 0.14, respectively, indicating an improvement over
earlier research.

Bilici et al. (2023) compared the performances of 4 different
metaheuristic algorithms for estimating Turkey’s natural gas de-
mand. Normalized meteorological data (temperature, pressure,
humidity, wind, and precipitation) over a period of 96 months
were used as training input parameters, while the demand was
tested over a period of 36 months. The PSO-Quadratic model
showed the most successful forecasting results for observed nat-
ural gas consumption.

On the basis of the traditional nonlinear grey Bernoulli model,
Tong et al. (2023) expanded the development coefficient a and
grey action quantity b, proposed a new self-adaptive time-varying
grey Bernoulli prediction model, deduced the time response for-
mula of the model, and explored the relationship between model
parameters and model accuracy. The results demonstrated that, in
comparison to other traditional grey prediction models, the new
model has a better simulation effect, higher prediction accuracy,
and stronger applicability. The effectiveness of the model was
examined by forecasting the natural gas consumption of China,
the United States, and Russia.

Wang and Zhang (2023) added a novel fractional reverse ac-
cumulation method to the traditional grey model to construct
a novel grey prediction novel. Natural gas consumption in the
Commonwealth of Independent States was forecasted for the
period from 2022 to 2025 and the new accumulation method
performed well and enabled the model to capture the system’s
most recent trends, achieving accurate forecasts.

Ding et al. (2023) proposed Dual Convolution with Seasonal
Decomposition Network method for forecasting natural gas con-
sumption in different areas, from residential quarters to whole
countries in different time spams. Simulations demonstrated that
the proposed approach outperforms state-of-the-art approaches
on city-level forecasting in terms of overall prediction accuracy

and variation sensitivity regardless of different time intervals.
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Ou and Chen (2023) proposed a novel dynamic parameter
discrete grey model after studying the dynamics of parameters
based on the parameter sequence obtained from the discrete grey
model. The results demonstrated that this model performs better
than other models and that its forecasts are more accurate and
trustworthy. In order to provide useful information to the energy
sector, the proposed model was then used to forecast China’s
natural gas production and domestic consumption from 2021 to
2024.

This paper additionally reviewed the literature that was pub-
lished after the Smajla et al. (2021) paper, which thoroughly
reviewed more than 20 forecasting methods for natural gas con-
sumption. After reviewing the literature from both papers, it can
be concluded in general that a variety of forecasting methods and
models, ranging from mathematically straightforward ones to ex-
tremely sophisticated machine learning techniques, can be used
to predict natural gas consumption. Some methods and models
(usually the more complex ones) have shown to be somewhat
more accurate than others in terms of forecasting, but this is
highly subjective because the same methods and models pro-
duced high-quality results as well as low-quality ones depending
on the paper in which they were used and analyzed. Additionally,
forecasting can be done for time periods ranging from short-term
(hourly or daily) to long-term (multi-year consumption forecast)
consumption.

In conclusion, it can be said that there is no method or model
that is universally better or worse for predicting the consumption
of natural gas, but for the most accurate forecasting of natural
gas consumption, it is necessary to carefully tune the method
or model chosen, taking into account the available input and
required output data.

A literature overview showed that the determination of a
statistical distribution of consumption in relation to temperature
has not been used so far for the purpose of forecasting the total
consumption of natural gas in a particular distribution area. As a
novelty, this paper shows that with the availability of high resolu-
tion consumption data (smart metering), using the determination
of the statistical distribution of consumption (mathematically rel-
atively simple method), it is possible to achieve high-quality fore-
casting results. This model uses historical data on daily natural
gas consumption in order to determine the statistical distribution
of consumption in correlation with temperature, i.e., to determine
the total natural gas consumption in the observed distribution
area. The advantage of this model is its robustness, i.e., indepen-
dence from data on types of consumers, independence from all
weather forecast parameters except the temperature forecast for
the next day, and high-quality forecasting results for different
consumption ranges. Apart from the above, the biggest advantage
is the forecasting of the total consumption by analyzing the
consumption data of less than 10% of the total consumers.

2. Smart metering data

Smart meters are increasingly being used around the world,
mostly in terms of smart meters for measuring electricity con-
sumption, but also smart meters for measuring gas and water
consumption (Smajla et al., 2022a). Given that the use of smart
meters provides very high-resolution consumption data, for ex-
ample, electricity consumption every 15 min (Liu and Nielsen,
2016), there will be a large amount of data that needs to be prop-
erly processed (Wilcox et al., 2019). Data processing can be done
using different computer software, algorithms, and/or machine
learning, where it is important to choose the right platform so
that the processing can be done as fast as possible (Liu et al.,
2016). Also, Haben et al. (2016) and Mohajeri et al. (2020) pro-
pose data clustering in order to reduce computational complexity,
high stochasticity, and irregularity of household-level demand.
2354
High-quality processed data collected by smart meters can be
used to forecast energy consumption, create energy efficiency
certificates (Chambers and Oreszczyn, 2019), better understand
user characteristics and optimize the services of utility companies
(Wang et al., 2019a), create official statistics (Carroll et al., 2018)
and define household appliance consumption patterns (Gajown-
iczek and Zabkowski, 2015; Weiss et al., 2012). Also, smart meters
enabled the recognition of fraud attempts, i.e., theft of electricity
(Sahoo et al., 2015), recognition of ‘‘energy’’ poverty (Hurst et al.,
2020a,b), and the reduction of energy consumption with the goal
of financial savings, because consumption data is available to end
users in real-time (Hurst et al., 2020a,b).

Many analysis possibilities of collected smart meter data have
caused different public opinions about the privacy of smart meter
users and the misuse of data (Efthymiou and Kalogridis, 2010).
Gough et al. (2022) proposed an innovative algorithm compliant
with differential privacy (DP) to ensure the protection of data
from consumers’ smart meters, while Asghar et al. (2017) pro-
vided a comprehensive overview, shortcomings, and research rec-
ommendations for security solutions that are needed for privacy-
preserving meter data delivery and management.

2.1. Data collection and database design

For the purpose of this research, data on daily natural gas
consumption was collected by using the modules for remote
reading of natural gas consumption. The installation of a module
for remote consumption reading actually represents the imple-
mentation of smart meters, because by installing them, the classic
membrane meter acquires the characteristics of a smart gas me-
ter. This module collects consumption data every 6 h and sends
the sum of measured values to the central module every 24 h.
This will provide high-resolution data that needs to be processed
in a quality and organized manner, so it does not adversely
affect the efficiency and cost-effectiveness of business decisions
(Lu et al., 2012; Wang et al., 2019b; Zakariazadeh, 2022). Also,
Wei et al. (2022) state that the complexity of data often has
a negative impact on the accuracy of forecasting daily natural
gas consumption. Considering that and the literature overview
given by Smajla et al. (2021) in previous research, the model
developed in this paper observes only natural gas consumption
and temperature as input parameters.

This model uses data on the daily natural gas consumption
of around 3300 end users from the area of two closely located
small cities with 124 593 inhabitants in the east of the Republic
of Croatia. Consumption data refers to different types of users
from households, which are certainly the most common to small
business facilities, public buildings, small industrial facilities, etc.
The mentioned consumption data was collected for a period of
six months, from October 1st, 2021, to March 31st, 2022 (around
450 000 measurements).

For the same time period, temperature data was collected
from a meteorological station near the observed cities. Tempera-
ture data contain temperature measurements in periods of every
3 h, i.e., 8 measurements in a period of 24 h. Temperatures were
measured in the following hours during the day: 0 h, 3 h, 6 h, 9 h,
12 h, 15 h, 18 h and 21 h. Since most remote reading modules
(more than 85 percent) send consumption information to the
central module in the morning hours (between 4 and 8 a.m.),
an average of 8 measurements starting from 6 a.m. was taken
to calculate the average daily temperature. This means that, for
example, to calculate the average daily temperature for the date
5th of January, 6 measurements (at 6 h, 9 h, 12 h, 15 h, 18 h,
and 21 h) will be taken from that day as well as measurements
at 0 am and 3 a.m. from the next day. The reason for this is to
match the timeframe between the temperature data and natural
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as consumption, which mostly corresponds to the consumption
n one gas day (from 6 a.m. to 6 a.m. the next day). The gas day
s a timeframe is important because it serves as the foundation
imeframe for the nominations made for the transfer of natural
as from the transportation system to the distribution network
he following day.

Since the data on natural gas consumption (in which the
onsumptions for areas and time periods that are not relevant
or this research were also recorded) was transferred to SQLite
atabase, the obtained data was filtered to different temporary
ables (table views). Also, as Tureczek and Nielsen (2017) and
ureczek et al. (2019) concluded, filtering and pre-processing of
nput data can greatly speed up the run time of simulations. The
ata was first filtered only for the area of the observed cities
nd then for 5 different daily consumption ranges (consumption
p to 40, 50, 60, 250, and 500 m3 per day). The reason for
bserving the maximum daily consumption in 5 different cases is
o observe the influence of larger consumers (daily consumption
60 m3) on the parameters that define the statistical distribu-

ion of consumers according to daily consumption. Also, in the
ollected consumption data, slightly more than 10% of the data
as declared invalid due to incorrectly recorded consumption
examples: −1, NULL, double recorded consumption, abnormally
igh consumption, etc.). It was very important to separate such
mproperly recorded data because if that data was included in
he simulation model, forecasting errors would be significantly
igher.

. Methodology

In terms of methodology, the first step was to determine the
istributions of consumption for each day in the observed period,
imilar to the research published by Smajla et al. (2021). This was
one in a way that all gas consumption data on each observed
ay was distributed in steps of 1 m3, that is, for each step of
m3, the number of users who had such consumption on the
bserved day was determined. After processing all the data, the
onsumption distribution curve was obtained for each day in the
bserved period from October 1st, 2021, to March 31st, 2022.
During the determination of consumption distributions, the

inimum analyzed consumption was set to 0.001 m3 in order to
void the negative effect of consumption that was recorded as 0.
t was necessary to separate the consumption that was recorded
s 0, especially in the winter months, because it represents users
ho do not currently reside in the location where the smart
eter is located, users who once used natural gas and have not

erminated the contract with the supplier even though they are
ot using natural gas anymore, and users who have switched
o alternative heating sources. It is very important to single out
onsumption 0 because analyzing it in the model would lead to a
ignificant shift of the distribution curve to the left (the number of
imulated very low consumptions would increase significantly),
hat is, the simulated total consumption would be significantly
ess than the real one. The maximum analyzed daily consumption
or all cases was equal to the previously determined 5 different
onsumption ranges (consumption up to 40, 50, 60, 250, and
00 m3 per day). Most of the analysis in terms of selecting the

observed period (October 1st, 2021, to March 31st, 2022) and
minimum and maximum consumption was done by SQL query
in Python programming language (Pandas, 2022).

Using the conclusions presented in the work of Smajla et al.
2021) it was assumed that consumption distributions for each
ay best fit a lognormal statistical distribution. The same was
roven to be correct by the analysis of distributions for the
bserved area but with a smaller number of users and a consump-
ion range of up to 50 m3 (Fig. 1) (Smajla et al., 2022b).
2355
Fig. 1. Consumption distributions for the observed area (Smajla et al., 2022b).

The next step was to determine the variables (shape, loc and
cale) that define the shape of statistical lognormal distributions
or each day of the observed period by using scipy.stats library
Jones et al., 2001). The obtained variables (shape, loc, and scale)
ere then correlated with average daily temperatures by match-

ng the dates (Fig. 2) and the parameters of the linear equation
ere calculated automatically in the code for each variable.
In order to forecast total natural gas consumption in the area

he developed model needs a temperature forecast for the next
ay as well as the total number of users in the analyzed and
ested area. Temperature data is then used in the correlations for
alculating shape, loc, and scale parameters in order to determine
he shape of lognormal statistical distribution for each day. The
efined distributions are then used for upscaling consumption
o a specific number of final consumers, i.e., to obtain the total
onsumption of natural gas in the observed area. Considering
hat about 15% of consumption data was reported outside the
orning hours, unknowns about large temperature-independent
onsumers, and neglecting consumptions that amount to 0, a
‘flat deviation’’ appears in the model, which is canceled after the
imulation by fine-tuning the model with median consumption
f large consumers in every case.
In addition to using the average temperature for each day,

his model also uses the ‘‘two-day rolling average temperature’’
nd the ‘‘shaving peaks temperature’’. ‘‘Two-day rolling average
emperature’’ is obtained as an average of the temperature for the
bserved day and the temperature from the previous day, while
‘shaving peaks temperature’’ is obtained by reducing/increasing
he average temperature on the observed day by 50% of the
ifference compared to the temperature on the previous day.

. Discussion and results

To obtain results, i.e., validate the accuracy of this model,
otal natural gas consumption was simulated for the same area
nd period as observed in data collection (two small cities, from
ctober 1st, 2021, to March 31st, 2022) but for a significantly
arger number of users.

Since the temperature forecast for the next day can be realized
ith very high precision, in the validation of this model the his-
orical temperatures represented the temperature forecast for the
ext day. The total number of end users in the observed area was
lso well known (around 46870), and it changed insignificantly
ver a longer period (+−1%). With the use of the data mentioned
bove, this natural gas consumption forecasting model managed
o upscale the consumption data of around 3300 users with gas
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s
o
2

Fig. 2. Correlation between distribution variables shape, loc and scale and temperature for observed period.
Table 1
MAPE for all simulated consumption ranges and scenarios.
smart meters in order to forecast the total consumption of natural
gas in the entire observed area for around 46870 end users.

From the data collected by using gas smart meters (con-
umption scenario up to 250 m3), it is evident that the share
f consumers who have never had a consumption greater than
50 m3 is more than 99%. Given that consumption data is avail-

able for around 3300 users out of a total of 46870, it is not
possible to determine the exact number of small (consumption
less than 250 m3) and large (consumption equal to or more than
250 m3) consumers. For this reason, five different scenarios were
prepared for each consumption range, where the share of small
consumers ranges from 95% to 99%. Mean Absolute Percentage Er-
rors (MAPE) for all consumption ranges and scenarios are shown
in Table 1.

The results obtained by using the ‘‘two-day rolling average
temperature’’ achieve the best forecasting results, where the
MAPE is from 0.94% to 1.52% better than using the daily av-

erage temperature. The reason for this is the mitigation of the

2356
effect of sudden temperature changes that significantly affect
the simulated consumption in the model, while in reality, the
consumption is a little more inert (Figs. 3 and 4). For example, in
the case of a warm day after several cold days, gas consumption
in the majority of households will not decrease proportionally
to the rise in temperatures (customer habits). Also, it can be
concluded that the consumption scenario up to 250 m3 achieves
the best results, which means that it can be considered the
most representative sample for forecasting total natural gas con-
sumption in the observed area. Real and normalized values of
reported total consumption, simulated total consumption, and
temperatures in the observed period for the cases ‘‘250avg_temp’’
and ‘‘250rolling_2_days’’ are shown in Figs. 3 and 4. It should be
noted that consumption was simulated for a total of 175 out of
a possible 182 because there is no temperature data for 7 days

(repairs at the meteorological station).
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Fig. 3. Reported total consumption, simulated total consumption, and temperatures for cases ‘‘250avg_temp’’ and ‘‘250rolling_2_days’’.
. Conclusion

This research has shown the use of statistical distributions
s one of the possible methods for forecasting natural gas con-
umption which has not been encountered in the literature so
ar. The advantages of this model are the use of only two input
arameters (daily natural gas consumption and average daily
emperature), forecasting the total consumption by analyzing the
onsumption data of less than 10% of the total consumers as well
s robustness to consumer types (households, business facilities,
ublic facilities). This model achieved Mean Absolute Percentage
rrors from 7.26% to 12.15% depending on the observed con-
umption range, used temperature datasets, and chosen scenario
or the number of small users. The best results were achieved
sing the ‘‘two-day rolling average temperature’’ for the observed
onsumption range from 0.001 m3 to 250 m3. As far as the
emperature datasets are concerned, in all cases the best results
ere achieved using the ‘‘two-day rolling average temperature’’,
hen the ‘‘shaving peaks temperature’’ dataset, while the worst
esults were achieved using the average daily temperature.
2357
The reason behind this is the partial cancellation of the ef-
fect of sudden temperature changes that significantly affect the
simulated consumption in the model, while in reality, the con-
sumption is a little more inert. The model also showed relatively
high-quality results for all other consumption ranges, except for
the largest one where the consumption of up to 500 m3 was
observed. It can also be concluded that the selection of a high-
quality temperature dataset has a much greater impact on accu-
rate forecasting than the selection of a scenario for the share of
small consumers.

Future research will be based on the formation of a better
database of input data with the aim of preventing the recording of
unwanted and incorrect data and further automation of the entire
forecasting process. In order to improve the results, it is necessary
to ensure that all smart meters report in the morning hours and
that all errors during reporting are removed. In this way, the
number of useful data will increase, which will ultimately lead
to a more accurate consumption forecast. Also, with the further
installation of gas smart meters in the observed distribution sys-
tem, the percentage of total installed smart meters will increase,
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Fig. 4. Normalized reported total consumption, simulated total consumption, and temperatures for cases ‘‘250avg_temp’’ and ‘‘250rolling_2_days’’.
and thus the number of input data. As this research has shown
so far, a significant amount of input data is of utmost importance
and has the greatest impact on increasing the accuracy of natural
gas consumption forecasting. Furthermore, this research should
be expanded in the future in terms of integration of the proposed
model with the nomination systems of different suppliers in
more distribution areas. After the integration, the development
of a mobile application for end consumers with smart meters
is also proposed, so that they too have insight into their own
consumption in real time.

Nomenclature

CMLS — novel hybrid method of complexity measure
DFNGBM (1,1,) — novel Discrete Fractional Nonlinear Grey
Bernoulli Model with power term
2358
ETREE — Ensemble Tree Model
GPR — Gaussian Process Regression
KE-GB-TSN — Knowledge Enhanced Graph Based Temporal Spa-
tial Network
MAPE — Mean Absolute Percentage Error
MLR — Multiple Linear Regression
NARX — Nonlinear Autoregressive Model
PCA — Principal Component Analysis
PSO — Particle Swarm Optimization
SDTCN — Seasonal Decomposition and Temporal Convolution
Network ()
SVM — Support Vector Machine
WPMA — Weighted Parallel Model Architecture
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