USPOREDBA METODA PRORAČUNA DETONACIJSKIH PARAMETARA EKSPLOZIVA

Diplomski rad

Matej Cvetković
R 86

Zagreb, 2015.
USPOREDBA METODA PRORAČUNA DETONACIJSKIH
PARMETARA EKSPLOZIVA

MATEJ CVETKOVIĆ

Sveučilište u Zagrebu
Rudarsko-geološko-naftni fakultet
Zavod za rudarstvo i geotehniku
Pierottijeva 6, 10000 Zagreb

Sažetak

Proračun parametara eksplozivnih pretvorba omogućava predviđanje ponašanja eksploziva u uvjetima eksplozivnog sagorijevanja ili uvjetima detonacije. Empirijsko određivanje detonacijskih parametara odnosno parametara sagorijevanja zahtijeva, s metrološkog stajališta, zahtjevne metode i skup instrumentarij. Razvojem i razumijevanjem eksplozivnih procesa te njihovim opisivanjem primjenom kemijskih, hidrodinamičkih i termodinamičkih zakonitosti razvijeni su kodovi, odnosno modeli čiji se algoritmi brzo proračunavaju upotrebom računala. U radu su dane metode proračuna definirane pojedinim pristupima i normama te njihova usporedba.

Ključne riječi: detonacija, detonacijski parametri, računalni program.

Diplomski rad sadrži: 31 stranica, 3 tablice, 15 slika i 7 referenci

Jezik izvornika: hrvatski.

Diplomski rad pohranjen: Knjižnici Rudarsko-geološko-naftnog fakulteta Pierottijeva 6, 10000 Zagreb

Voditelj: Dr. sc. Mario Dobrilović, izvanredni profesor RGNF

Pomagali pri izradi: Dr. sc. Vječislav Bohanek, viši asistent

Ocjenjivači: Dr. sc. Mario Dobrilović, izvanredni profesor RGNF
Dr. sc. Zvonimir Ester
Dr. sc. Želimir Veinović, docent RGNF

COMPARISON OF METHODS DETONATION PARAMETERS OF EXPLOSIVES

MATEJ CVETKOVIĆ

Abstract

The calculation parameters of explosive conversion allows predicting the behavior of explosives in terms of explosive detonation combustion conditions. The empirical determination of detonation parameters and combustion parameters requires a metrological point of view, demanding methods and expensive instruments. The development and understanding of explosive processes and their application describing chemical, thermodynamic and hydrodynamic legality developed codes, or models whose algorithms quickly calculated using the computer. In thesis given calculation methods defined specific approaches and standards and their comparison.

Keywords: detonation, detonation parameters, computer program.

Thesis contains: 31 pages, 3 tables, 15 figures and 7 references.

Original in: Croatian

Thesis deposited in: Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottitjeva 6, Zagreb

Supervisor: PhD Mario Dobrilović, Associate Professor RGNF

Technical support and assistance: PhD Vječislav Bohanek, assistant

Reviewers: PhD Mario Dobrilović, Associate Professor RGNF
PhD Zvonimir Ester
PhD Želimir Veinović, Assistant Professor RGNF

Date of defense: September 24, 2015.
SADRŽAJ

POPIS TABLICA .. III

POPIS SLIKA .. IV

POPIS KORIŠTENIH OZNAKA I ODGOVARAJUĆIH SI JEDINICA V

1. UVOD .. 1
 1.1. Eksplozivi i eksplozivne pretvorbe ... 1

2. FIZIKALNA I DETONACIJSKA SVOJSTVA EKSPLOZIVA 2
 2.1. Fizikalna svojstva eksploziva .. 3
 2.1.1. Gustoća eksploziva .. 4
 2.1.2. Agregatno stanje i konzistencija ... 4
 2.2. Detonacijska svojstva ... 4
 2.2.1. Brzina detonacije .. 5
 2.2.2. Energija detonacije ... 5
 2.2.3. Volumen i specifični tlak plinova eksplozije 5
 2.2.4. Temperatura eksplozije .. 5
 2.2.5. Bilanca kisika ... 6

3. VRSTE EKPLOZIVA ... 6
 3.1. Podjela eksploziva ... 6
 3.1.1. Primarni eksplozivi ... 7
 3.1.2. Sekundarni eksplozivi ... 7
 3.1.3. Monomolekularni eksplozivi ... 8

4. PRORAČUN DETONACIJSKIH PARAMETARA PREMA H.D8.012 (JUS) 8
 4.1. Specifični volumen produkata eksplozije (V_0) 10
 4.2. Toplina eksplozije (Q_v) .. 11
 4.3. Temperatura eksplozije (t) ... 13
 4.4. Primjer izračuna teoretskih karakteristika eksploziva 15
 4.5. Primjer proračuna teoriskih karakteristika eksploziva sa negativnim bilancom kisika .. 16
 4.5.1. Jednadžba eksplozivnog raspada ... 16

5. PRORAČUN DETONACIJSKIH PARAMETARA PREMA HRN EN 13631-15
 EKSPLOZIVI ZA CIVILNU UPOTREBU-JAKI EKSPLOZIVI-IZRAČUN
 TERMODINAMIČKIH SVOJSTAVA .. 19
 5.1. Jednadžba stanja ... 24
5.1.1. Plinovi... 24
5.1.2. H9 jednadžba stanja ... 24
5.2. Kondenzirana faza .. 26
5.3. Izračun ravnoteže ... 27
5.4. Shematski prikaz izračuna .. 28

6. RAČUNALNI PROGRAM EXPLO 5.. 29

7. TEORIJSKE OSNOVE ... 32
7.1. Detonacija ... 32
7.1.1. Opis modela detonacije koji se primjenjuje u EXPLO5 programu 34
7.1.2. Izračun ravnotežnog sastava produkata reakcije .. 35
7.1.3. Izračun tlaka ... 36
7.1.4. Određivanje C - J točke i izračun parametara detonacije ... 39
7.1.5. Procjena energije detonacije .. 40

8. PRIMJER IZRAČUNA DETONACIJSKIH PARAMETARA NA PRIMJERU ANFO EKSPLOZIVA.. 43

9. ZAKLJUČAK ... 51

10. LITERATURA ... 52
POPISTABLICA

Tablica 4-1. Produkti detonacijskog raspada pojedinih eksploziva (jus, 1971) 9
Tablica 4-2. Topline stvaranja Q_p (jus, 1971) .. 12
Tablica 4-3. Sastav eksploziva (jus, 1971) ... 12
Tablica 4-4. Produkti eksploziva (jus, 1971) .. 13
Tablica 4-5. Vrijednosti konstanti a i b za pojedine eksplozive (jus, 1971)...................... 14
Tablica 4-6. Srednje vrijednosti specifične topline za neke čvrste produkte (jus, 1971) 14
Tablica 4-7. Topline taljenja Q_t (jus, 1971) .. 14
Tablica 4-8. Podacij za sastav produkata eksplozije i koeficijenti a i b (jus, 1971) 14
Tablica 4-9. Sastav eksploziva (jus, 1971) ... 15
Tablica 4-10. Sastav eksploziva (jus, 1971) ... 16
Tablica 5-1. Komponente eksploziva i energije stvaranja (EN, 2005) 19
Tablica 5-2. Detonacijski produkti (EN, 2005) ... 21
Tablica 5-3. Konstante i kovolumeni za jednadžbe BKW i H9 (EN, 2005) 25
Tablica 7-1. Setovi vrijednosti konstanti i kovolumena u BKW EOS i modificiranom
BKW EOS korišteni u EXPLO5_V6.01 (Sučeska, 2013) ... 38
Tablica 8-1. Karakteristika AN za proizvodnju mineralnih gnojiva i AN za proizvodnju
eksploziva eksplozive (Krsnik, 1989) ... 44
Tablica 8-2. Prikaz izračunatih parametara ANFO različitih udjela goriva (Matej
Cvetković) .. 48
POPIS SLIKA

Slika 3-1. Podjela eksplozivnih tvari (Ester, 2005) ... 7
Slika 7-1. Shematski prikaz procesa detonacije (Sučeska, 2013) .. 32
Slika 7-2. Udarna adijabata eksploziva i produkta detonacije u slučaju stalnih detonacija (Sučeska, 2013) .. 33
Slika 7-3. Determinacija C – J točke na udarnoj adiabati produkata detonacije (Sučeska, 2013) .. 35
Slika 7-4. Faktor korekcije koovolumena v_s gustoće (a) i specifični volumen (b) eksploziva (Sučeska, 2013) .. 37
Slika 7-5. Promjene brzine detonacije pri specifičnom volumenu produkata detonacije (Sučeska, 2013) .. 39
Slika 7-6. Ekspanzija izentrope produkata detonacije (Sučeska, 2013) 40
Slika 8-1. Granulirani ANFO eksploziv (vikipedia) .. 44
Slika 8-2. Odabir parametara ... 45
Slika 8-3. Ulazni podaci prije početka izračuna .. 46
Slika 8-4. Izgled zaslona s proračunatim parametrima ... 47
Slika 8-5. Brzina detonacije ... 49
Slika 8-6. Tlak detonacije .. 49
Slika 8-7. Volumen produkta ... 50
Slika 8-8. Ukupna energija detonacije ... 50
POPIS KORIŠTENIH OZNAKA I ODGOVARAJUĆIH SI JEDINICA

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Značenje</th>
<th>Jedinica</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>volumen eksploziva</td>
<td>cm3</td>
</tr>
<tr>
<td>ρ</td>
<td>gustoća eksploziva</td>
<td>g/cm3</td>
</tr>
<tr>
<td>D</td>
<td>brzina detonacije</td>
<td>m/s</td>
</tr>
<tr>
<td>E</td>
<td>energija produkta</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>γ</td>
<td>politropski eksponent</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>apsolutna temperatura</td>
<td>°K</td>
</tr>
<tr>
<td>P</td>
<td>tlak</td>
<td>Pa, bar</td>
</tr>
<tr>
<td>G</td>
<td>Gibbs-ova slobodna energija</td>
<td>J</td>
</tr>
<tr>
<td>K_{corr}</td>
<td>korigirani koovolumen</td>
<td>cm3/mol</td>
</tr>
<tr>
<td>V_o</td>
<td>molarni volumen produkta</td>
<td>mol</td>
</tr>
<tr>
<td>α</td>
<td>volumni koeficijent toplinskog rastezanja</td>
<td>/C0</td>
</tr>
<tr>
<td>κ</td>
<td>inverzni obujamski modul</td>
<td></td>
</tr>
<tr>
<td>V_0</td>
<td>specifični volumen eksploziva</td>
<td>cm3/kg</td>
</tr>
<tr>
<td>U_p</td>
<td>brzina čestice</td>
<td>cm/s</td>
</tr>
<tr>
<td>E_o</td>
<td>energija detonacije</td>
<td>kgJ/kg</td>
</tr>
<tr>
<td>E_c</td>
<td>energija šoka</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>V_{CJ}</td>
<td>specifični volumen produkata</td>
<td>cm3</td>
</tr>
<tr>
<td>E_d</td>
<td>energija detonacije</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>ρ_o</td>
<td>specifična gustoća eksploziva</td>
<td>g/cm3</td>
</tr>
<tr>
<td>K_f</td>
<td>faktor korekcije koovolumena</td>
<td></td>
</tr>
<tr>
<td>P_d</td>
<td>tlak detonacije</td>
<td>Pa</td>
</tr>
<tr>
<td>v_d</td>
<td>brzina detonacije</td>
<td>m/s</td>
</tr>
<tr>
<td>ρ</td>
<td>gustoća eksplozivne tvari</td>
<td>kg/m3</td>
</tr>
</tbody>
</table>
1. UVOD

Empirijsko određivanje detonacijskih parametara odnosno parametara sagorijevanja zahtijeva, s metrološkog stajališta, zahtjevne metode i skup instrumentarij. Razvojem i razumijevanjem eksplozivnih procesa te njihovim opisivanjem primjenom kemijskih, hidrodinamičkih i termodinamičkih zakonitosti razvijeni su kodovi, odnosno modeli čiji se algoritmi brzo proračunavaju upotrebom računala. Rezultati proračunati na taj način podudaraju se s eksperimentalnim vrijednostima unutar odstupanja od nekoliko postotaka. S druge strane, algoritmi se redovito poboljšavaju i doradjuju rezultatima mjerenja. Prednost upotrebe računanih programa je u njihovoj brzini, točnosti i mogućnosti mijenjanja ulaznih parametara eksplozivne tvari i praćenja njihovih utjecaja na parametre o kojima ovisi djelovanje eksploziva. Stoga su on korisni kod analize djelovanja poznatih eksploziva i pri simulaciji djelovanja kod istraživanja i sinteze novih eksplozivnih tvari budući da se prema kemijskom sastavu eksplozivne tvari i prema spomenutim zakonitostima egzaktno proračunavaju detonacijski parametri.

1.1. Eksplozivi i eksplozivne pretvorbe

Eksplozivi su kemijske tvari koje brzom kemijskom oksidacijom, pretvaraju kemijsku energiju u toplinsku. Ovisno o primjeni, određeni dio energije se pretvara u namjenski (korisni) mehanički rad. Kemijska pretvorba eksplozivne tvari može se, općenito, prema značajkama procesa pretvorbe odvijati kao detonacija ili eksplozivno sagorijevanje. Ovi procesi razlikuju se u fizikalnim značajkama procesa i razinama veličina parametara eksplozije. Obzirom na to i primjena eksploziva različitih procesa pretvorbe je različita.

Pod pojmom detonacije podrazumijeva se vrlo brza kemijska reakcija kod koje eksplozivna tvar prelazi najčešće iz čvrstog agregatnog stanja u plinovito. Pritom se oslobađa relativno velika količina potencijalne energije eksploziva koja se u miniranju, najvećim dijelom koristi za razaranje i drobljenje stijena, a manjim se dijelom pretvara u kinetičku energiju seizmičkih i zračnih valova u okolini eksplozivnog naboja.

Zbog velike brzine kemijske reakcije u vrlo kratkom vremenu oslobađa se velika količina energije. Snaga eksplozije jednog kilograma jakog eksploziva premašuje snagu
reda veličina u MW kojima se mjeri snaga električnih centrala. Razlika je u tome što se električnim centralama proizvode u relativno duljem periodu velike količine energije.

Do eksplozije dolazi zbog ubrzavanja kemijskih reakcija oksidacije goriva uslijed ekstremnog povećanja temperature eksploziva uslijed djelovanja visokih tlakova i oslobađanja topline. Za nekoliko milisekundi obavi se kemijsko razlaganje eksploziva nakon kojega nestabilni kemijski spojevi i smjese prelaze u stabilne plinovite proizvode.

Produktni detonacije su plinovi čiji volumen i tlak predstavljaju važne energetske karakteristike eksploziva koje utječu na snagu detonacije. Detonacijski tlak ovisi o početnom volumenu produkata eksplozije i temperaturi eksplozije. Količina oslobađene energije mjerilo radne sposobnosti eksploziva, jest ona većim dijelom pretvara u mehanički rad na razaranju i drobljenju stijene.

Da bi došlo do detonacije, potrebno je u bilo kojoj točki eksplozivnog punjenja izazvati kemijsku promjenu eksploziva. To se postiže energijom početnog impulsa kojom se raskidaju unutarnje molekularne veze, te počinje kemijska reakcija razlaganja eksploziva. Proces pobuđivanja naziva se iniciranje, a najčešće se izvodi inicijalnim eksplozivima koji su vrlo osjetljivi na udar, trenje i plamen. Detonacijom inicijalnog eksploziva razvijaju se velike količine plinova s visokom temperaturom i tlakom. Pod utjecajem visokog tlaka stvara se detonacijski udarni val koji napreduje kroz inicijalni naboj i dovodi do detonacije glavno punjenje brizantnog eksploziva.

Osjetljivost na početni impuls ovisi o kemijskom sastavu i fizikalnim svojstvima eksploziva. Kod postojanijeg kemijskog sastava i čvršćih unutarnjih veza osjetljivost na početni impuls je manja jer je potrebna veća energija za raskidanje tih veza. Osjetljivost na početni impuls smanjuje se s povećanjem gustoće i vlažnosti eksploziva.

2. FIZIKALNA I DETONACIJSKA SVOJSTVA EKSPLOZIVA

Svojstva eksplozivnih tvari mogu se priborijati na nekoliko načina. Fizikalne osobine eksploziva su gustoća, agregatno stanje, granulacija, oblik zrna, kristaličnost i slično. Sigurnosna svojstva uključuju osjetljivost na udar, trenje, toplinsku stabilnost, energiju iniciranja i oblik inicijalnog impulsa i slično. Detonacijska svojstva su tlakovi, temperatura i brzina detonacije, volumen plinovitih produkata, bilanca kisika i energija eksplozije odnosno detonacije.

U minersko-tehničke karakteristike eksploziva ubrajaju se pojedina spomenuta svojstva a koja su važna za djelovanje detoniranog eksploziva u stijeni kao što su: brzina detonacije, radna sposobnost eksploziva, brzantnost eksploziva, relativna snaga ili druga
mjera mogućnosti djelovanja eksploziva, prijenos detonacije, energija eksplozije, volumen i specifični tlak eksplozije, temperatura eksplozije i bilanca kisika (Krsnik, 1989). Koristeći metode izračuna iz različitih izvora, te uspoređivanjem njihovih rezultata mogu se pojaviti značajne razlike. U radu su prikazani tijekovi različitih metoda izračuna i termodinamičkih podataka korištenih u nekim Europskim zemljama. Europski odbor za normizaciju u nizu normi EN 13631xyz proveo je usklađivanje metoda za ispitivanje eksploziva te u normi EN 13631-xy predložio metodologiju za proračun teoretskih parametara detonacije. Određivanje parametara koji se ne mogu izmjeriti eksperimentalno, postiže se pomoću termodinamičkih proračuna. Budući da proizvođači eksploziva deklariraju svojstva dobivena različitim metodama proračune, izostaje mogućnost objektivne komparacije svojstava pojedinih eksploziva te može doći do pogrešnog projektiranja parametara miniranja (Sanchidrian et al., 2000).

Neki od svojstava koja se redovito deklariraju su:

- Brzina detonacije,
- Toplina eksplozije (kJ/kg),
- Temperatura eksplozije (°C)
- Volumen plinova (pri standardnoj temperaturi i tlaku) (l/kg),
- Bilanca kisika (%)
- Specifične sile potiska (za propelante) (N)

Razlike u proračunatih podacima javljaju se zbog primjene pojedinih metoda proračuna, a uzrokovane su proimjenom različitih (Sanchidrian et al., 2000):

- Detonaciskih produkata
- Korištenih Jednadžbi stanja
- Ulaznih Termodinamičkih podataka

2.1. Fizikalna svojstva eksploziva

Fizikalna svojstva eksploziva važna su zbog mogućnosti određene vrste korištenja u pojedinim uvjetima miniranja. Ona opisuju agregatno stanje eksploziva, oblik tvari, gustoću, vodootpornost i slično.
2.1.1. Gustoća eksploziva

Gustoća eksploziva ima veliki utjecaj na detonacijsku brzinu i tlak u detonacijskom udarnom valu. Tlak koji je mjera udarne energije pri detonaciji općenito ovisi prema obrascu (2-1)

\[P_d = \frac{\nu_d^2 \rho}{4} \]

gdje je:

- \(P_d \) – tlak detonacije (Pa),
- \(\nu_d \) – brzina detonacije (m/s),
- \(\rho \) – gustoća eksplozivne tvari (kg/m\(^3\)).

Za većinu rudarskih eksploziva, kod konstantnog promjera patrone, s povećanjem gustoće detonacijska brzina raste do određene kritične granice, tzv. kritične gustoće iznad koje više ne može detonirati (Krsnik, 1989).

Prilikom razmatranja gustoće, potrebno razlikovati gustoću eksploziva i gustoću patroniranja (pakiranja).

2.1.2 Agregatno stanje i konzistencija

Prema potrebama primjene eksplozivne tvari mogu biti:
- čvrste,
- tekuće i tečne,
- plinovite.

Pri tome se na agregatno stanje misli na ono pri kome tvar ima eksplozivna svojstva i agregatno stanje u kojemu je eksplozivna tvar u primjeni (Sanchidrian et al., 2000).

2.2. Detonacijska svojstva

Detonacijska svojstva ovise o kemijskim i fizičkim svojstvima te o načinu i uvjetima odvijanja kemijske reakcije.
2.2.1. **Brzina detonacije**

Brzina detonacije je važna karakteristika eksploziva jer o njoj ovisi razorna snaga, odnosno brizantnost tj. udarno djelovanje eksploziva. Kod veće detonacijske brzine manji su gubici topline isijavanjem, pa je korisni efekt detonacije veći.

Detonacijska brzina je brzina kojom se detonacijski udarni val propagira od mjesta iniciranja do kraja eksplozivnog naboja. Detonacijska brzina ovisi i o gustoći i promjeru patrone eksploziva. Povećanjem gustoće i promjera patrone do određene granice povećava se i detonacijska brzina eksploziva (Krsnik, 1989).

2.2.2. **Energija eksploziva**

Pri detonaciji oslobađa, odnosno eksploziji oslobađa se relativno velika količina energije eksploziva u vidu topline koja se najvećim dijelom pretvara u mehanički rad. Koncentracija energije u eksplozivu računa se na osnovi radnog faktora i specifične mase eksploziva. Radni faktor eksploziva je mehanički ekvivalent detonacijske topline (Krsnik, 1989).

2.2.3. **Volumen i specifični tlak plinova eksplozije**

Pri detonaciji eksploziva razvijaju se plinovi čija količina ovisi o vrsti eksploziva. Volumen plinova koji nastaju pri detonaciji 1 kg eksploziva izražava se u dm3, a mjeri se kod temperature 0°C i tlaka 1 bar.

Maksimalni tlak koji nastaje pri detonaciji 1 kg eksploziva u zatvorenom prostoru volumena 1dm3 naziva se specifični tlak i izražava se u barima. Specifični tlak može se izračunati na osnovi volumena plinova i temperature eksplozije.

Tlak nastalih plinova ovisi o količini razvijenih plinova, temperaturi eksplozije i volumenu u kojem je izvedena eksplozija. Kod brizantnih eksploziva tlak plinova može doseći i nekoliko tisuća bara (Krsnik, 1989).

2.2.4. **Temperatura eksplozije**

To je najviša temperatura koja nastaje prilikom detonacije eksploziva uz konstantan volumen, a teorijski može iznositi 1000 - 6000 °C. Međutim, stvarna temperatura je uvijek
nešto niža zbog hlađenja plinova u dodiru s okružujućom stijenom. Kod rudarskih eksploziva temperatura se kreće u granicama od 2100 - 4200 °C (Krsnik, 1989).

2.2.5. Bilanca kisika

Pod bilancem kisika podrazumijeva se odnos količine kisika koju sadrži eksploziv i količine kisika koja je potrebna za potpuno sagorijevanje odnosno oksidaciju svih gorivih tvari u sastavu eksploziva. Kod toga se ugljik spaja s kisikom u ugljični dioksid, a vodik s kisikom daje vodu (Krsnik, 1989).

3. VRSTE EKPLOZIVA

Eksplozivne tvari mogu se razvrstati prema namjeni (gospodarske, vojne, pirotehničke), kemijskom sastavu (eksplozivi senzibilizirani nitroderivatima, eksplozivi senzibilizirani neeksplozivnim sastojcima itd.), konzistenciji (praškasti, smjese u rasutom stanju, lijevani, vodoplastični, emulzije i dr.), brizantnosti, osjetljivosti i druge (Ester, 2005).

3.1. Podjela eksploziva

Kao što je i vidljivo na slici 3-1. u osnovi eksplozive dijelimo na primarne, sekundarni i tercijarne. Prema osjetljivosti i namjeni eksplozivi su svrstani u inicijalne, brizantne, rudarske i specijalne eksplozive (Ester, 2005).
3.1.1. *Primarni eksplozivi*

Zajednička osobina primarnih eksploziva je vrlo velika osjetljivost na trenje, udar i porast temperature. Pod djelovanjem vanjskih impulsa detoniraju, pa se rabe za inicijalno punjenje rudarskih kapica te električnih i neelektričnih detonatora (Ester, 2005).

3.1.2. *Sekundarni eksplozivi*

Ovoj skupini pripadaju svi eksplozivi kojima se koristi u gospodarstvu. U gospodarskoj uporabi je zamjena monomolekularnih eksploziva eksplozivnim smjesama zbog sigurnosti u proizvodnji, pri transportu i primjeni. Monomolekularni eksplozivi su osjetljiviji na udar, trenje, i porast temperature od eksplozivnih smjesa pa se ponajprije koriste za vojne svrhe. U gospodarstvu se koriste u manjem opsegu za senzibilizaciju.
eksplozivnih smjesa i pri proizvodnji inicijalnih sredstava (detonirajući štapin i brizantno punjenje rudarskih kapica i ostalih detonatora, te pojačnika) (Ester, 2005).

3.1.3. Monomolekularni eksplozivi

Monomolekularni eksplozivi rabe se u gospodarstvu kao senzibilizatori pri proizvodnji eksplozivnih smjesa: želatiniziranih, praškastih i vodoplastičnih eksploziva za glavno (brizantno) punjenje rudarskih kapica i detonatora kao osnovno punjenje detonirajućih štapina i neelektričnih cjevčica neelektričnog sustava za iniciranje. To su trinitrotoluol (TNT), pentrit (PENT), heksogen (RDX), nitroglocerin (NG), nitroglikol (EGDN) (Ester, 2005).

Nitroglikol pomiješan sa nitroglicerinom i nitrocelulozom koristi se kao osnova za proizvodnju želatinoznih eksploziva.

4. PRORAČUN DETONACIJSKIH PARAMETARA PREMA HRN H.D8.012 (JUS)

Norma HRN H.D8.012 propisuje način izračuna slijedećih teoretskih karakteristika eksploziva: sastava produkata eksplozije, specifičnog volumena produkata eksplozije, topline i temperature produkata eksplozije za eksplozive s uravnoteženom, pozitivnom ili negativnom bilancem kisika.

Izračun se obavlja na temelju jednadžbe raspada, polazeći od sastava eksploziva danog recepturom, i odnosi se na 1 kg mase čistog eksploziva, ne računajući omotač patrone (parafinirani papir, polietilen i sl.). Za izračun produkata eksplozije polazi se od jednadžbe raspada. Pri tome je neophodno uzeti u obzir eventualnu obostranu neutralizaciju produkata eksplozije pri kojoj organske tvari i amonij nitrat daju C02, H20, H2 i O2; alkalni i zemnoalkalijski. Nitrati i bikarbonati daju okside; alkalni kloridi, voda i oksidi metala osme skupine se kemijski ne mijenjaju. Ostale, eventualno prisutne komponente, daju termodinamički najvjerojatnije proizvode. U tablici 4-1. dani su produkti detonacijskog raspada pojedinih eksploziva.
Tablica 4-1. Produkti detonacijskog raspada pojedinih eksploziva (jus, 1971)

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>Tvar</th>
<th>Molekularna masa</th>
<th>1 kg tvari daje pri detonaiji</th>
<th>Ostalo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO₂</td>
<td>H₂O</td>
</tr>
<tr>
<td>1</td>
<td>Nitroglicerin</td>
<td>227,1</td>
<td>0,582</td>
<td>0,189</td>
</tr>
<tr>
<td>2</td>
<td>Nitroglikol</td>
<td>152,1</td>
<td>0,579</td>
<td>0,237</td>
</tr>
<tr>
<td>3</td>
<td>Nitrocel. tip NCD</td>
<td>1053,3</td>
<td>1,003</td>
<td>0,265</td>
</tr>
<tr>
<td>4</td>
<td>Trotil</td>
<td>227,1</td>
<td>1,357</td>
<td>0,198</td>
</tr>
<tr>
<td>5</td>
<td>Pentrit PETN</td>
<td>316,15</td>
<td>0,6962</td>
<td>0,227</td>
</tr>
<tr>
<td>6</td>
<td>Heksogen RDX</td>
<td>222,13</td>
<td>0,5946</td>
<td>0,243</td>
</tr>
<tr>
<td>7</td>
<td>Pentolit 50/50</td>
<td>-</td>
<td>1,0267</td>
<td>0,212</td>
</tr>
<tr>
<td>8</td>
<td>Dinitrotoluol</td>
<td>182,1</td>
<td>1,690</td>
<td>0,297</td>
</tr>
<tr>
<td>9</td>
<td>Celuloza</td>
<td>162,1</td>
<td>1,628</td>
<td>0,555</td>
</tr>
<tr>
<td>10</td>
<td>Koks</td>
<td>-</td>
<td>3,153</td>
<td>0,44</td>
</tr>
<tr>
<td>11</td>
<td>Crni ugljen</td>
<td>-</td>
<td>2,200</td>
<td>0,558</td>
</tr>
<tr>
<td>12</td>
<td>Drveno brašno</td>
<td>-</td>
<td>1,704</td>
<td>0,570</td>
</tr>
<tr>
<td>13</td>
<td>Parafin</td>
<td>cca 352,4</td>
<td>3,122</td>
<td>1,132</td>
</tr>
<tr>
<td>14</td>
<td>Dizel ulje</td>
<td>80,08</td>
<td>3,1533</td>
<td>1,260</td>
</tr>
<tr>
<td>15</td>
<td>Aluminij</td>
<td>26,97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Amonijev nitart</td>
<td>85,01</td>
<td>-</td>
<td>0,450</td>
</tr>
<tr>
<td>17</td>
<td>Natrijev nitrat</td>
<td>101,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Kalijev nitrat</td>
<td>164,09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Kalcijev nitrat</td>
<td>84,01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Natrijev bikarbonat</td>
<td>169,22</td>
<td>0,524</td>
<td>0,107 0</td>
</tr>
<tr>
<td>21</td>
<td>Difenilanin</td>
<td>607,22</td>
<td>3,125</td>
<td>0,586</td>
</tr>
</tbody>
</table>
4.1. Specifični volumen produkata eksplozije \((V_0) \)

Volumen produkata eksplozije je volumen plinova nastalih eksplozijom 1 kg eksploziva izrađena u litrama, reducirana na temperaturu od 20 °C i tlak od 760 mm Hg (101324,7 Pa).

Specifični volumen produkata eksplozije računa se prema formuli 4-1.

\[
V_0 = 24,414 \cdot n
\]

(4-1)

gdje je:

\(V_0 \)-specifični volumen plinova (l, dm\(^3\))

\(n \)- broj molova plina nastalih pri eksploziji 1 kg eksploziva.

Odnosno, molarni volumen idealnog plina pri standardnoj temperaturi od 0°C i tlaku od 101 325 Pa iznosi:

\[
V_m = 22,414 \text{ (l/mol)}
\]

On je prema definiciji volumen koji zauzima jedan mol tvari (elementa, spoja, plina) pri određenom tlaku i temperaturi te se računa prema formuli 4-2:

\[
V_m = \frac{M}{\rho}
\]

(4-2)

gdje je:

\(M \)-molarna masa (kg/mol),

\(\rho \)-gustoća tvari (kg/m\(^3\))

a za idealni plin vrijedi obrazac 4-3

\[
V_m = \frac{V}{n} = \frac{nRT}{\rho}
\]

(4-3)
gdje je:
V - volumen plina (m^3),
\(\gamma \) - opća plinska konstanta, 8314 (kJ/mol K),
T - temperatura (K),
p - tlak (Pa)

4.2. Toplina eksplozije (Q_v)

Toplina eksplozije je toplina oslobodena eksplozijom 1 kg eksploziva pri stalnom volumenu i uz pretpostavku da nastaju samo produkti eksplozije navedeni u tablici 4-2. Pri tome se uvijek uzima da je nastala voda u plinovitom stanju.
Topлина eksploзije se izрачунава се према слjедећем обрацу:

\[Q_v = Q_{P2} - Q_{P1} + (V_0 \cdot 0,0242) \]

gdje je:
\(Q_{P1} \) - toplina stvaranja sastojaka eksploziva uz stalni tlak (760 mm Hg, 1 bar) na 20 °C, (kcal/kg) eksploziva,
\(Q_{P2} \) = toplina stvaranja produkata eksplozije uz stalni tlak (760 mm Hg, 1 bar) na 20 °C u (kcal/kg) eksploziva. Topline stvaranja mogu se izražavati u standardnim unutarnjim energijama sastojaka, reaktanata i produkata i to vrijedi za reakcije u uvjetima konstantnog volumena, odnosno za detonaciju i eksplozivno sagorijevanje u komorama (projektila). Pri tome se one označavaju s indeksima \(Q_v \) ili \(U_v \). Topline stvaranja mogu se izražavati u standardnim entalpijama sastojaka, reaktanata i produkata i to vrijedi za reakcije u uvjetima konstantnog tlaka, odnosno za eksplozivno sagorijevanje u mlaznicama (raketa). Pri tome se one označavaju s indeksima \(Q_p \) ili \(U_p \). Obzirom na male razlike u vrijednostima navedenih energija, odnosno entalpije za proračune se one mogu poistovjetiti.

Odgovarajuće vrijednosti toplina stvaranja pri 20 °C i 760 mm Hg dane su u tablici 4-2.
Tablica 4-2. Topline stvaranja Q_p (jus, 1971)

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>Tvar</th>
<th>Formula</th>
<th>Molarana masa Q_p</th>
<th>Toplina stvaranja Q_p (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nitroglicerin</td>
<td>C_3H_5(NO_2)_3</td>
<td>227,1</td>
<td>377</td>
</tr>
<tr>
<td>2</td>
<td>Nitroglikol</td>
<td>C_3H_2(NO_2)_2</td>
<td>152,1</td>
<td>367</td>
</tr>
<tr>
<td>3</td>
<td>Nitrocel. tip NCD</td>
<td>C_{24}H_{31}O_{11}(NO_2)_9</td>
<td>1053,3</td>
<td>664</td>
</tr>
<tr>
<td>4</td>
<td>Trotil</td>
<td>C_6H_2(CH_3)(NO_2)_3</td>
<td>227,1</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Pentrit PETN</td>
<td>C(CH_2ONO_2)_4</td>
<td>316,15</td>
<td>390</td>
</tr>
<tr>
<td>6</td>
<td>Heksojen RDX</td>
<td>C_3H_5N_5O_6</td>
<td>222,13</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Pentolit 50/50</td>
<td>50% PETN+50% TNT</td>
<td>-</td>
<td>324</td>
</tr>
<tr>
<td>8</td>
<td>Dinitrotoluol</td>
<td>C_6H_3(CH_3)(NO_2)_2</td>
<td>182,1</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Celuloza</td>
<td>C_6H_{10}O_2</td>
<td>162,1</td>
<td>1400</td>
</tr>
<tr>
<td>10</td>
<td>Koks</td>
<td>(86%C+5%H+9%O)</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>Crni ugljen</td>
<td>(60%C+4%H+16%O+20H_2O)</td>
<td>-</td>
<td>450</td>
</tr>
<tr>
<td>12</td>
<td>Drveno brašno</td>
<td>(45%C+5%H+35%O+15H_2O)</td>
<td>-</td>
<td>800</td>
</tr>
<tr>
<td>13</td>
<td>Parafin</td>
<td>cca C_{25}H_{32}</td>
<td>cca 352,4</td>
<td>518</td>
</tr>
<tr>
<td>14</td>
<td>Dizel ulje</td>
<td>C86% H14%</td>
<td>80,08</td>
<td>951</td>
</tr>
<tr>
<td>15</td>
<td>Amonije nitart</td>
<td>NH_4NO_3</td>
<td>85,01</td>
<td>1095</td>
</tr>
<tr>
<td>16</td>
<td>Natrijev nitrat</td>
<td>NaNO_3</td>
<td>101,1</td>
<td>1314</td>
</tr>
<tr>
<td>17</td>
<td>Kalijev nitrat</td>
<td>KNO_3</td>
<td>164,09</td>
<td>1168</td>
</tr>
<tr>
<td>18</td>
<td>Kalcijev nitrat</td>
<td>Ca(NO_3)_2</td>
<td>84,01</td>
<td>1365</td>
</tr>
<tr>
<td>19</td>
<td>Natrijev bikarbonat</td>
<td>NaHCO_3</td>
<td>169,22</td>
<td>2708</td>
</tr>
<tr>
<td>20</td>
<td>Difenilanin</td>
<td>(C_6H_2)_2NH</td>
<td>607,22</td>
<td>183</td>
</tr>
<tr>
<td>21</td>
<td>Kalcijev stearat</td>
<td>(C_{18}H_{35}O_3)_2Ca</td>
<td>607,04</td>
<td>1051</td>
</tr>
<tr>
<td>22</td>
<td>Karboksimeticeluloza</td>
<td>(C_{18}H_{35}O_2)(CH_2COOH)_2</td>
<td>278,21</td>
<td>1200</td>
</tr>
<tr>
<td>23</td>
<td>Ugljen dioksid</td>
<td>CO_2</td>
<td>44,01</td>
<td>2137</td>
</tr>
<tr>
<td>24</td>
<td>Voda-tekuće</td>
<td>H_2O</td>
<td>18,02</td>
<td>3791</td>
</tr>
<tr>
<td>25</td>
<td>Voda-plinovito</td>
<td>H_2O</td>
<td>18,02</td>
<td>3207</td>
</tr>
<tr>
<td>26</td>
<td>Natrijev oksid</td>
<td>Na_2O</td>
<td>62,0</td>
<td>1622</td>
</tr>
<tr>
<td>27</td>
<td>Kalijev oksid</td>
<td>K_2O</td>
<td>94,2</td>
<td>921</td>
</tr>
<tr>
<td>28</td>
<td>Kalcijev oksid</td>
<td>CaO</td>
<td>56,1</td>
<td>2711</td>
</tr>
<tr>
<td>29</td>
<td>Alumijev oksid</td>
<td>Al_2O_3</td>
<td>101,94</td>
<td>3821</td>
</tr>
<tr>
<td>30</td>
<td>Ugljen monoksid</td>
<td>CO</td>
<td>28,00</td>
<td>943</td>
</tr>
</tbody>
</table>

Tablica 4-3. Sastav eksploziva (jus, 1971)

<table>
<thead>
<tr>
<th>Sastav eksploziva</th>
<th>Početni sastav</th>
<th>kg</th>
<th>Q_p</th>
<th>Toplina stvaranja Q_p (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGL</td>
<td></td>
<td>0,180</td>
<td>377</td>
<td>67,860</td>
</tr>
<tr>
<td>NCD</td>
<td></td>
<td>0,010</td>
<td>664</td>
<td>6,640</td>
</tr>
<tr>
<td>DNT</td>
<td></td>
<td>0,040</td>
<td>38</td>
<td>1,520</td>
</tr>
<tr>
<td>Sastav pordukata eksploziva</td>
<td>kg</td>
<td>Q<sub>p</sub></td>
<td>Toplina stvaranja Q<sub>p2</sub></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>0,30467</td>
<td>2,137</td>
<td>651,080</td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>O</td>
<td>0,34440</td>
<td>3,207</td>
<td>1104,491</td>
<td></td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>0,03094</td>
<td>1,627</td>
<td>50,185</td>
<td></td>
</tr>
<tr>
<td>Drveno brašno</td>
<td>0,020</td>
<td>800</td>
<td>16,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>864,545</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4-4. Produkti eksploziva (Jus, 1971)

Q_v = Q_{p2} – Q_{p1} + (V₀ * 0,0242)
Q_v = 1805,756 – 864,545 + (895,3 * 0,0242)
Q_v = 962,88 kcal/kg

4.3. Temperatura eksplozije (t)

Temperatura eksplozije je i maksimalna temperatura produkata eksplozije koju oni mogu postići uz pretpostavku izohorne reakcije (bez obavljanja rada na okolini sustava), izračunava se prema sljedećem obrascu:

Q_v – Q_t = C_v(t) • T

gdje je:

Q_v - toplina oslobodena eksplozijom 1 kg eksploziva (kcal),
Q_t - toplina taljenja čvrstih ostataka pri eksploziji 1 kg eksploziva (kcal),
C_v - specifična toplina pri stalnom volumenu (kcal/kg°C),
T - apsolutna temperatura (°K).

Ovisnost C_v(t) za plinovite produce eksplozije dana je obrascem 4-7:

C_v = a-b/T

gdje su:
a,b-konstante.

Vrijednosti konstanti a i b za pojedine eksplozive dane su tablicom 4-3.

Tablica 4-5. Vrijednosti konstanti a i b za pojedine eksplozive (jus, 1971)

<table>
<thead>
<tr>
<th>Kemijski spoj</th>
<th>Temperatura</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>preko 1200 ° K</td>
<td>0,290</td>
<td>87,8</td>
</tr>
<tr>
<td>H₂O</td>
<td>1600 do 2400 ° K</td>
<td>0,586</td>
<td>276</td>
</tr>
<tr>
<td>-</td>
<td>preko 2400 ° K</td>
<td>0,943</td>
<td>1153</td>
</tr>
<tr>
<td>N₂</td>
<td>preko 1200 ° K</td>
<td>0,234</td>
<td>49</td>
</tr>
<tr>
<td>O₂</td>
<td>preko 800 ° K</td>
<td>0,212</td>
<td>34,40</td>
</tr>
<tr>
<td>CO₂</td>
<td>preko 1200 ° K</td>
<td>0,246</td>
<td>67,70</td>
</tr>
<tr>
<td>H₂</td>
<td>preko 1200 ° K</td>
<td>3,11</td>
<td>860,00</td>
</tr>
</tbody>
</table>

Za produkte eksplozije u čvrstom stanju, specifične topline nisu zavisne od temperature. Srednje vrijednosti za neke čvrste spojeve dane su tablicom 4-4.

Tablica 4-6. Srednje vrijednosti specifične topline za neke čvrste produkte (jus, 1971)

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>Spoj</th>
<th>Formula</th>
<th>C (kcal/kg ° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natrijev oksid</td>
<td>Na₂O</td>
<td>0,310</td>
</tr>
<tr>
<td>2</td>
<td>Kalijev oksid</td>
<td>K₂O</td>
<td>0,204</td>
</tr>
<tr>
<td>3</td>
<td>Kalcijev oksid</td>
<td>CaO</td>
<td>0,228</td>
</tr>
<tr>
<td>4</td>
<td>Aluminijev oksid</td>
<td>Al₂O₃</td>
<td>0,279</td>
</tr>
<tr>
<td>5</td>
<td>Natrijev klorid</td>
<td>NaCl</td>
<td>0,219</td>
</tr>
<tr>
<td>6</td>
<td>Magnezijev oksid</td>
<td>MgO</td>
<td>0,317</td>
</tr>
</tbody>
</table>

Podaci za toplinu taljenja Q_t dani su tablicom 4-7.

Tablica 4-7. Topline taljenja Q_t (jus, 1971)

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>Spoj</th>
<th>Toplina (°C)</th>
<th>Vrenje (°C)</th>
<th>Q_t (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natrijev oksid</td>
<td>-</td>
<td>-</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>Kalijev oksid</td>
<td>-</td>
<td>-</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>Kalcijev oksid</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>Aluminijev oksid</td>
<td>2040</td>
<td>-</td>
<td>255</td>
</tr>
<tr>
<td>5</td>
<td>Natrijev klorid</td>
<td>804</td>
<td>1440</td>
<td>124</td>
</tr>
<tr>
<td>6</td>
<td>Magnezijev oksid</td>
<td>-</td>
<td>-</td>
<td>174</td>
</tr>
</tbody>
</table>

Tablica 4-8. Podaci za sastav produkata eksplozije i koeficijente a i b (jus, 1971)

<table>
<thead>
<tr>
<th>Sastav produkata eksploziva</th>
<th>Masa (kg)</th>
<th>Koeficijent specifične topline</th>
<th>Q_t (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>0,30467</td>
<td>0,08835</td>
<td>26,75003</td>
</tr>
<tr>
<td>H₂O(g)</td>
<td>0,34440</td>
<td>0,32477</td>
<td>397,09320</td>
</tr>
</tbody>
</table>
\[
\begin{array}{l}
N_2 & 0,27671 & 0,05475 & 13,55830 & - \\
O_2 & 0,04327 & 0,00917 & 1,48849 & - \\
Na_2O & 0,03094 & 0,00960 & - & 3,4962 \\
\hline
0,99998 & 0,48664 & 438,89002 & 3,4962 \\
\end{array}
\]

\(Q_v - Q_t = C_v \cdot t\)

\[
T = \frac{Q_v \cdot Q_t}{B} = \frac{962,88 - \frac{3,4962}{438,89}}{0,48664} = 2873 \text{ K}
\]

\(t = 2873 - 273 = 2600 \, ^\circ \text{C}\)

4.4. Primjer izračuna teoretskih karakteristika eksploziva

Tablica 4-9. Sastav eksploziva (Jus, 1971)

<table>
<thead>
<tr>
<th>Sastav eksploziva</th>
<th>%</th>
<th>Masa (kg)</th>
<th>Sastav produkata eksplozije u kg/kg eksploziva</th>
<th>Ostalo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO₂</td>
<td>H₂O</td>
<td>N₂</td>
</tr>
<tr>
<td>NGL</td>
<td>18</td>
<td>0,180</td>
<td></td>
<td>0,1047</td>
</tr>
<tr>
<td>NCD</td>
<td>1</td>
<td>0,010</td>
<td></td>
<td>0,0103</td>
</tr>
<tr>
<td>DNT</td>
<td>4</td>
<td>0,040</td>
<td></td>
<td>0,06760</td>
</tr>
<tr>
<td>TNT</td>
<td>6,5</td>
<td>0,065</td>
<td></td>
<td>0,08821</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>60</td>
<td>0,600</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>8,5</td>
<td>0,085</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Dreveno brašno</td>
<td>2</td>
<td>0,020</td>
<td></td>
<td>0,03408</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1</td>
<td></td>
<td>0,30467</td>
</tr>
</tbody>
</table>

\(V_0 = 24,04 \cdot n\)

\(V_0 = 24,04 \cdot \left(\frac{0,30467}{0,04401} + \frac{0,34440}{0,01802} + \frac{0,27671}{0,02802} + \frac{0,04327}{0,032} \right)\)

\(V_0 = 895,31\)

Bilanca kisika je 4,327
4.5. Primjer proračuna teoriskih karakteristika eksploziva sa negativnim bilancom kisika

Tablica 4-10. Sastav eksploziva (jus, 1971)

<table>
<thead>
<tr>
<th>Sastav eksploziva</th>
<th>%</th>
<th>Formula</th>
<th>Molarna masa</th>
<th>Masa g mol/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>30</td>
<td>C₂H₇O₆N₃</td>
<td>227,10</td>
<td>1,32</td>
</tr>
<tr>
<td>AN</td>
<td>70</td>
<td>H₃O₃N₂</td>
<td>80,05</td>
<td>8,75</td>
</tr>
</tbody>
</table>

Prema tablici dobije se formula eksploziva koja glasi:

\[
\begin{align*}
C_7H_5O_6N_3 \times 1,32 &= C_{9,24}H_{6,50}O_{7,92}N_{3,96} \\
H_4O_3N_2 \times 8,75 &= H_{35}O_{26,50}N_{17,50} \\
\text{Ukupno} &= C_{9,24}H_{41,60}O_{34,19}N_{21,46}
\end{align*}
\]

4.5.1. Jednadžba eksplozivnog raspada

\[
C_{9,24}H_{41,60}O_{34,19}N_{21,46} \rightarrow xCO + yCO_2 + zH_2 + uH_2O + vN_2
\]

\[
\begin{align*}
x + y &= 9,24 \\
2z + 2u &= 41,60 \\
x + 2y + u &= 34,19 \\
2v &= 21,46
\end{align*}
\]

Pretpostavljena temperatura je 3200 °C

Za 3200 °C, K= 7,69

\[
\frac{xu}{yz} = 7,69
\]

\[
y = 9,24 - x
\]

\[
x + 2(9,24 - x) = 34,19
\]

\[
u = 34,19 + x - 18,48
\]

\[
u = 15,71 + x
\]

\[
2z + 2u = 41,60
\]

\[
2z = 41,60 - 2u
\]

\[
2z = 41,60 - (15,71 + x) 2
\]
\[z = \frac{10.18 - 2x}{2} \]
\[z = 5.09 - x \]
\[2v = 21.46 \]
\[v = 10.73 \]
\[\frac{x \cdot u}{y \cdot z} = 7.69 \]
\[\frac{x \cdot (15.71 + x)}{9.24 + (5.09 - x)} = 7.69 \]
\[\frac{15.71x + x^2}{47.0316 + 9.24x - 5.09x + x^2} = 7.69 \]

\[15.71x + x^2 = 7.961x^2 - 14.33x + 47.03161 \]
\[x = 3.54 \]
\[y = 9.24 - x \]
\[y = 5.70 \]
\[u = 15.71 + x \]
\[u = 19.25 \]
\[z = 5.09 - x \]
\[z = 1.55 \]
\[C_{9.24}H_{41.60}O_{34.19}N_{21.46} \rightarrow 3.54 CO + 5.70 CO_2 + 1.55 H_2 + 19.25 H_2O + 10.73 N_2 \]
\[M \cdot \tau = 1000 \]
\[CO_{\frac{3.54 \cdot CO}{1000}} = \frac{3.53 \cdot 28}{1000} = \frac{99.12}{1000} = 0.0991 \text{ kg/kg} \]
\[CO_{2\frac{5.70 \cdot CO_2}{1000}} = \frac{5.70 \cdot 44}{1000} = \frac{250.80}{1000} = 0.2508 \text{ kg/kg} \]
\[H_2\frac{1.55 \cdot H_2}{1000} = \frac{1.55 \cdot 2}{1000} = \frac{3.10}{1000} = 0.0031 \text{ kg/kg} \]
\[H_2O\frac{19.25 \cdot H_2O}{1000} = \frac{19.25 \cdot 18}{1000} = \frac{346.50}{1000} = 0.3465 \text{ kg/kg} \]
\[N_2\frac{10.73 \cdot N_2}{1000} = \frac{10.73 \cdot 28}{1000} = \frac{300.44}{1000} = 0.3004 \text{ kg/kg} \]
\[V_0 = 24.04 \cdot (3.54 + 5.70 + 1.55 + 19.25 + 10.70) \]
\[V_0 = 979.41 \text{ /kg} \]
\[Q_p = Q_{p2} - Q_{p1} \]
\[Q_{p2} \]
\[CO = 940 \cdot 0.0991 = 93.154 \]
\[\text{CO}_2 = 2137 \times 0.2508 = 535.9596 \]
\[\text{H}_2\text{O} = 3207 + 0.3465 = 1109.622 \]
\[\text{Q}_{p1} = 1738.736 \text{ kcal} \]
\[\text{Q}_{p} = 784.2 \text{ kcal} \]
\[\text{Q}_{v} = 1738.74 - 784.2 \]
\[\text{Q}_{v} = 954.54 \text{ kcal/kg} \]
\[\text{Q}_{v} = \text{Q}_{p} + (\text{V}_0 \times 0.0242) \]
\[\text{Q}_{v} = 954.54 + (979.39 \times 0.0242) \]
\[\text{Q}_{v} = 978.24 \text{ kcal/kg} \]
\[T = \frac{Q_v + b}{a} \]

\[\text{CO} 0,0991 \]
\[x 67.7 = 6.70907 = b \]
\[x 0.290 = 0.07273 = a \]
\[\text{CO}_2 0.2508 \]
\[x 87.8 = 22.02024 = b \]
\[x 3.11 = 0.00964 = a \]
\[\text{H}_2 0.0991 \]
\[x 860 = 2.66600 = b \]
\[x 0.943 = 0.32674 = a \]
\[\text{H}_2\text{O} 0.3465 \]
\[x 1153 = 398.938 = b \]
\[x 0.234 = 0.07029 = a \]
\[\text{N}_2 0.3004 \]
\[x 49 = 14.7196 = b \]

\[a = 0.5038 \]
\[b = 445.05 \]
\[T = \frac{978.24 + 445.05}{0.5038} \]
\[T = 2825 \text{ °K} \]
\[t = 2552 \text{ °C} \]
5. PRORAČUN DETONACIJSKIH PARAMETARA PREMA HRN EN 13631-15
EKSPLOZIVI ZA CIVILNU UPOTREBU-JAKI EKSPLOZIVI-IZRAČUN TERMODINAMIČKIH SVOJSTAVA

Pojedina svojstva eksploziva koriste se kako bi se definiralo djelovanje eksploziva a rezultat su termodinamičkih proračuna. Rezultati izračuna ovisi o sastav i gustoći eksploziva te o vrsti eksplozije koja se pretpostavlja, termodinamičkim ulaznim podacima i primijenjenoj metodi. Najjednostavnija metoda polazi od stanja konstantnog volumena odnosno stanje eksplozije u konstantnom volumenu. Uz spomenutu metodu, koriste se proračuni za Chapman-Jouguet (CJ) stanje detonacije kojima su rezultat vrijednosti brzine i tlaka detonacije, na taj način dobivene vrijednosti nisu ispravne za eksplozivne smjese koje se koriste za gospodarska miniranja.

Za proračun je potrebno poznавati za sastojke eksploziva:
-kemijsku (molekularnu ili empirijsku) formulu,
-energiju stvaranja.

Za uobičajene komponente eksploziva formule i energije stvaranja dane su u tablici 5-1.

Tablica 5-1. Komponente eksploziva i energija stvaranja (EN, 2005)

<table>
<thead>
<tr>
<th>Naziv</th>
<th>Skraćenica</th>
<th>Formula</th>
<th>ΔE_{f}^{298}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliminij</td>
<td>Al</td>
<td>Al</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amonijev klorid</td>
<td>ClH$_4$N</td>
<td>-5739</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Amonijev nitrat</td>
<td>H$_4$N$_2$O$_3$</td>
<td>-4428</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Amoniperklorat</td>
<td>ClH$_4$NO$_3$</td>
<td>-2412</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Kalcij karbonat</td>
<td>CaCO$_3$</td>
<td>-12022</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Kalcij nitrat</td>
<td>CaN$_2$O$_6$</td>
<td>-5657</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Kalcij stearat</td>
<td>C${36}$H${70}$CaO$_4$</td>
<td>-4416</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Ugljik, grafit</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celuloza</td>
<td>C6H${10}$O$_5$</td>
<td>-5670</td>
<td>USAMC</td>
<td></td>
</tr>
<tr>
<td>Dinitrotoluen 2,4</td>
<td>DNT 2,4</td>
<td>C$_7$H$_6$N$_2$O$_4$</td>
<td>-292,8</td>
<td>Meyer</td>
</tr>
<tr>
<td>Dinitrotoluen 2,6</td>
<td>DNT 2,6</td>
<td>C$_7$H$_6$N$_2$O$_4$</td>
<td>-159,5</td>
<td>Meyer</td>
</tr>
<tr>
<td>Etilendiamindinitrat</td>
<td>EDDN</td>
<td>C2H${10}$N$_4$O$_6$</td>
<td>-3378</td>
<td>Meyer</td>
</tr>
<tr>
<td>Name</td>
<td>Formula</td>
<td>Molecular Weight</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Glikon</td>
<td>C₂H₆O₂</td>
<td>-7177</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Guar guma</td>
<td>C₃₇₂₆H₅₅₈₉O₁₁₀₅</td>
<td>-6900</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Heksanitrostilben</td>
<td>C₁₄H₆N₆O₁₂</td>
<td>239,8</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Heksogen, cyclonite</td>
<td>C₃H₆N₆O₆</td>
<td>-401,8</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Metilamin nitrat</td>
<td>CH₆N₂O₃</td>
<td>-3604</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Tri nitro celuloza 11,5 % N</td>
<td>C₆₀₀₈H₇₈₉₀N₂₁₁₁O₉₂₂₂</td>
<td>-2793</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Tri nitro celuloza 12,0 % N</td>
<td>C₆₀₀₈H₇₇₃₉N₂₂₆₁O₉₅₂₀</td>
<td>-2663</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Tri nitro celuloza 12,5 % N</td>
<td>C₆₀₀₈H₇₅₇₉N₂₄₁₆O₉₈₃₃</td>
<td>-2534</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Nitroglicerin</td>
<td>C₃H₅N₅O₉</td>
<td>-1540</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Nitoglikol</td>
<td>C₂H₄N₂O₆</td>
<td>-1499</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Nitroguanidine</td>
<td>CH₄N₄O₂</td>
<td>-773,0</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Nitro metan</td>
<td>CH₃NO₂</td>
<td>-1731</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Oktogen</td>
<td>C₄H₈N₈O₈</td>
<td>353,6</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Ulje, goriv oulje,dizel</td>
<td>C₁₆H₃₂</td>
<td>-1828</td>
<td>Lide</td>
<td></td>
</tr>
<tr>
<td>Parfin, kruto ,vosak</td>
<td>C₇₁H₁₄₈</td>
<td>-2094</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Pentaeritritol</td>
<td>C₅H₈N₄O₁₂</td>
<td>-1611</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Poliizobutilen</td>
<td>CH₂</td>
<td>-1386</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Kalij klorat</td>
<td>CIKO₃</td>
<td>-3205</td>
<td>Lide</td>
<td></td>
</tr>
<tr>
<td>Kalij nitrat</td>
<td>KNO₃</td>
<td>-4841</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Kalij sulfat</td>
<td>K₂O₄S</td>
<td>-8222</td>
<td>Lide</td>
<td></td>
</tr>
<tr>
<td>Natrijev klorit</td>
<td>ClNaO₃</td>
<td>-3390</td>
<td>Lide</td>
<td></td>
</tr>
<tr>
<td>Natrijev klorid</td>
<td>ClNa</td>
<td>-7013</td>
<td>Chase</td>
<td></td>
</tr>
<tr>
<td>Natrijev nitrat</td>
<td>NNaO₃</td>
<td>-5447</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>Naziv</td>
<td>Formula</td>
<td>ΔE_f^{298}</td>
<td>ΔH_f^{298}</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Natrijev perklorat</td>
<td>ClNaO$_3$</td>
<td>-3080</td>
<td></td>
<td>Lide</td>
</tr>
<tr>
<td>Trintrofenil metil nitoamin</td>
<td>TETRYL ClNaO$_4$</td>
<td>147,6</td>
<td></td>
<td>Meyer</td>
</tr>
<tr>
<td>Trinitrotoluen</td>
<td>TNT</td>
<td>C$_7$H$_5$N$_5$O$_8$</td>
<td>-219,0</td>
<td>Meyer</td>
</tr>
<tr>
<td>Urea</td>
<td>CH$_3$N$_2$O</td>
<td>-5403</td>
<td></td>
<td>Meyer</td>
</tr>
<tr>
<td>Voda (tekuće)</td>
<td>H$_2$O</td>
<td>-15660</td>
<td></td>
<td>Chase</td>
</tr>
<tr>
<td>Drveno brašno</td>
<td>C${41,7}$H${60,4}$O$_{27,4}$</td>
<td>-4564</td>
<td></td>
<td>Meyer</td>
</tr>
</tbody>
</table>

Za produkte raspada potrebno je poznati:

-kemijsku formulu,

-unutarnju energiju ili entalpiju stvaranja na standardnoj temperaturi od 298 K (ΔE_f^{298}, ΔH_f^{298}).

Za neke produkte podaci su dani u tablici 5-2.

Tablica 5-2. Detonacijski produksi (EN, 2005)
<table>
<thead>
<tr>
<th></th>
<th>Chemical Formula</th>
<th>ΔH (kJ/mol)</th>
<th>ΔS (J/mol·K)</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>monoksid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klor</td>
<td>Cl₂</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vodik</td>
<td>H₂</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Klorovodik</td>
<td>ClH</td>
<td>-92,4</td>
<td>-92,4</td>
<td>Meyer</td>
</tr>
<tr>
<td>Željažo III oksid (s)</td>
<td>Fe₂O₃ (s)</td>
<td>-821,8</td>
<td>825,5</td>
<td>Chase</td>
</tr>
<tr>
<td>Magnezijev oksid (g)</td>
<td>MgO (g)</td>
<td>-56,9</td>
<td>58,2</td>
<td>Chase</td>
</tr>
<tr>
<td>Magnezijev oksid (l)</td>
<td>MgO (l)</td>
<td>-531,4</td>
<td>532,6</td>
<td>Chase</td>
</tr>
<tr>
<td>Magnezijev oksid (s)</td>
<td>MgO (s)</td>
<td>-600,00</td>
<td>601,2</td>
<td>Chase</td>
</tr>
<tr>
<td>Metan</td>
<td>CH₄</td>
<td>-72,4</td>
<td>74,9</td>
<td>Chase</td>
</tr>
<tr>
<td>Dušik</td>
<td>N₂</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dušikov monoksid</td>
<td>NO</td>
<td>90,3</td>
<td>90,3</td>
<td>Meyer</td>
</tr>
<tr>
<td>Kisik</td>
<td>O₂</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kalijev karbonat (l)</td>
<td>CK₂O₃ (l)</td>
<td>-1127</td>
<td>1137</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalijev karbonat (s)</td>
<td>CK₂O₃ (s)</td>
<td>-1146</td>
<td>1150</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalijev klorid (g)</td>
<td>ClK (g)</td>
<td>-215,9</td>
<td>214,7</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalijev klorid (l)</td>
<td>ClK (l)</td>
<td>-420,6</td>
<td>421,8</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalijev klorid (s)</td>
<td>ClK (s)</td>
<td>-435,4</td>
<td>436,7</td>
<td>Chase</td>
</tr>
<tr>
<td>Silicijev dioksid (l)</td>
<td>O₂Si (l)</td>
<td>-900,2</td>
<td>902,7</td>
<td>Chase</td>
</tr>
<tr>
<td>Silicijev dioksid (s)</td>
<td>O₂Si (s)</td>
<td>-908,4</td>
<td>910,9</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalcijev karbonat (l)</td>
<td>CNa₂O₃ (l)</td>
<td>-1105</td>
<td>1109</td>
<td>Chase</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Kalcijev karbonat (s)</td>
<td>CNa₂O₃ (s)</td>
<td>-1127</td>
<td>1131</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalcijev klorid (g)</td>
<td>ClNa (g)</td>
<td>-182,7</td>
<td>181,4</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalcijev klorid (l)</td>
<td>ClNa (l)</td>
<td>-384</td>
<td>385,9</td>
<td>Chase</td>
</tr>
<tr>
<td>Kalcijev sulfat</td>
<td>Na₂SO₄</td>
<td>-1382</td>
<td>1387</td>
<td>Lide</td>
</tr>
<tr>
<td>Voda (g)</td>
<td>H₂O (g)</td>
<td>-240,6</td>
<td>241,8</td>
<td>Chase</td>
</tr>
</tbody>
</table>

U proračun prema normi potrebno je najmanje, ovisno o sastavu eksploziva uključiti navedene produkte.

Prilikom izračuna sustava u ravnoteži, minimaliziranjem slobodne energije, za izračun kemijskog potencijala potrebno je poznavati konstantu entropije ili entropiju na određenoj temperaturi.

S tim podacima može se izraziti slijedeća termodinamička funkcija idealnog plina, referentno stanje je uzeto za stabilne elemente na temperaturi od 298 K i atmosferskog tlaka.

Unutarnja energija:

\[E_l = \Delta E_f^{298} + (E^T - E^{298})_l = \Delta E_f^{298} + (H^T - H^{298})_l - R(T - 298) \] \hspace{1cm} (5-1)

\[\begin{align*}
\text{● Za produkте u čvrstem stanju:} \\
E_l &= \Delta H_f^{298} + (H^T - H^{298})_l \hspace{1cm} (5-2) \\
\text{● Za kemijski potencijal} \\
\mu_i^0 &= \Delta H_f^{298} + (H^T - H^{298})_l - TS_l \hspace{1cm} (5-3) \\
\text{● Za entropiju} \\
S &= \int^c \frac{\mu_i}{T} dT + S_{cl} \hspace{1cm} (5-4)
\end{align*} \]
- \(S_{\text{Ci}} \) postaje konstanta integracije za entropiju, podatak.
- molarno zagrijavanje (\(H^T - H^{298} \)) dano je kao polinomi temperature \(T \) ili su izračunati integracijom toplinskog kapaciteta CPI (također kao polinom \(T \))

5.1. Jednadžba stanja

5.1.1. Plinovi

Za izračunavanje termodinamičkih funkcija za produkte detonacija potrebna je jednadžbu stanja (EOS). Utjecaj jednadžbe stanja na rezultate prikazan je u poglavlju 6. U Mogu se koristiti slijedeće EOS, a osim njega pojavljuju se i drugi:
- BKW (Becker, Kistiakowsky, Wilson (Madev 1963, madev 1979))
- H9 (Henze i Bauer 1989) Francuskoj

BKV EOS ima slijedeći oblik

\[
\frac{p_v}{RT} = 1 + X e^{\beta X} \quad (5-5)
\]

\(\beta \) je konstanta.

\[
X = \frac{K \sum x_i k_i}{v(T+\theta) \alpha} \quad (5-6)
\]

Gdje je:
- \(v \) je molarni volumen plina
- \(K, \Theta, \alpha \) su empirijske konstante
- \(k_i \) je kovolumen od i-tih sastojaka (plinova)
- \(X \)- molarni udio

5.1.2. H9 jednadžba stanja

H9 (Henze i Bauer 1989)
- Jednadžba stanja

\[
\frac{p_v}{RT} = \sigma(X) \quad (5-7)
\]

Gdje je

\[
\sigma(X) = 1 + X \frac{d \phi(X)}{dX} \quad (5-8)
\]
\[\phi(X) = X + 0.625 \frac{x^2}{2} + 0.287 \frac{x^3}{3} - 0.093 \frac{x^4}{4} + 0.0014 \frac{x^5}{5} \] (5-9)

Tako da je

\[\frac{PV}{RT} = \sigma(X) = 1 + X + 0.625X^2 + 0.287X^3 - 0.093X^4 + 0.0014X^5 \] (5-10)

\[\Omega = k \sum x_i L_i \] (5-12)

☑ K je konstanta \((k=63.5 \times 10^{-5})\)
☑ \(x_i\) molarni udio
☑ Kovolumen

U tablici 5-3 prikazane su konstante i kovolumeni za jednadžbe BKW i H9.

Tablica 5-3. Konstante i kovolumeni za jednadžbe BKW i H9 (EN, 2005)

<table>
<thead>
<tr>
<th>Konstante</th>
<th>BKW(^a)</th>
<th>H9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>0,298</td>
<td></td>
</tr>
<tr>
<td>(\Theta) (K)</td>
<td>6620</td>
<td></td>
</tr>
<tr>
<td>(\kappa) (cm(^3)K(^\alpha)/mol)</td>
<td>10,50</td>
<td></td>
</tr>
<tr>
<td>(K)</td>
<td>6,35 (\times) 10(^{-3})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ko-volumeni</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amonijak</td>
<td>H(_3)N</td>
<td>418</td>
</tr>
<tr>
<td>Kalcij klorid</td>
<td>Cl(_2)Ca</td>
<td>318</td>
</tr>
<tr>
<td>Ugljični dioksid</td>
<td>CO(_2)</td>
<td>663</td>
</tr>
<tr>
<td>Ugljični monoksid</td>
<td>CO</td>
<td>614</td>
</tr>
<tr>
<td>Klor</td>
<td>Cl(_2)</td>
<td>872</td>
</tr>
<tr>
<td>Vodik</td>
<td>H(_2)</td>
<td>153</td>
</tr>
<tr>
<td>Klorovodik</td>
<td>Cl(_2)H</td>
<td>570</td>
</tr>
<tr>
<td>Magnezij oksid</td>
<td>MgO</td>
<td>938</td>
</tr>
<tr>
<td>Metan</td>
<td>CH(_4)</td>
<td>493</td>
</tr>
<tr>
<td>Dušik</td>
<td>N(_2)</td>
<td>376</td>
</tr>
<tr>
<td>Dušični monoksid</td>
<td>NO</td>
<td>394</td>
</tr>
<tr>
<td>Kisik</td>
<td>O(_2)</td>
<td>316</td>
</tr>
<tr>
<td>Kalij klorid</td>
<td>CIK</td>
<td>1810</td>
</tr>
<tr>
<td>Natrij klorid</td>
<td>CI(_2)Na</td>
<td>2070</td>
</tr>
<tr>
<td>Voda</td>
<td>H(_2)O</td>
<td>376</td>
</tr>
</tbody>
</table>
5.2. Kondezirana faza

Gospodarski eksplozivi imaju približno ravnotežnu bilancu kisika tako da je formiran mali udio grafita u produktima detonacije. Ako nije previsoka količina kondeziranih produkata, oni se mogu tretirati kao nestlačivi.

5.3. Izračun ravnoteže

Minimalizacijom ukupne slobodne energije produkata koristi se za izračunavanje sastava produkata
Ravnotežni sastav sustava sa određenom temperaturom minimizira ukupnu slobodnu Helmholtzovu energiju.
Ukupna slobodna energija računa se prema formuli 5-13.

\[F = \sum n_i (\mu_i^\circ - RT) + RT \sum n_i \ln n_i + n_g RT \ln \frac{RT}{\nu p_0} + n_g RT \frac{e \beta x - 1}{\beta} + \sum \Delta h_i \] (5-13)

\(n_i \) - molovi po kilogramu smjese
\(n_g \) - ukupni molovi plina po kilogramu smjese
\(\mu_i^\circ \) - potencijal
\(R \) - opća plinska konstanta
\(T \) - apsolutna temperatura
\(p_0 \) - atmosferski tlak
\(\nu \) - specifični volumen

Ukoliko se koristi BKW jednadžba:

\[(E_{imp})_{BKW} = n_g RT \frac{\alpha + T}{\alpha + T + \theta} (\sigma - 1) \] (5-14)

Ukoliko se koristi H9 jednadžba:

\[(E_{imp})_{H9} = n_g RT \frac{1}{3} (\sigma - 1) \] (5-15)
5.4. Shematski prikaz izračuna

a) Izračuna se formula eksploziva po kilogramu i energija foemacije koju možemo naći u tablici 5-1. Na temelju tih podataka možemo izračunati unutarnju energiju \(E_0 \) prema slijedećoj formuli

\[
E_0 = \sum c_i \cdot E^\Delta_{f_i}^{298}
\]

\(\Delta E^\Delta_{f_i}^{298} \) - su energije formacija po jedinici mase

\(N_S \) komponente eksploziva pri 298 K

\(c_i \) - je njihova frakcija mase

Stoga \(E_0 \) je masa eksploziva po jedinici (npr. po kilogramu).

b) Oblikuje se vrsta produkata, ovisno o prisutnim elementima.

c) Predpostavlja se \(T \)

d) Izračunavaju se termodinamički podacij

d) Izračuna se sastav produkta, \(n_i \). On će se odrediti kao onaj u ravnoteži pri temperaturi i specifičnom volumenu izračuna jednakom onom nereaktivnih eksploziva, kada se proveđe izračun stanja eksplozije pri konstantnom volumenu.

e) Za izračun \(T \) potrebno je upotretiti jednadžbu održavanja energije

Kako se ne provodi CJ izračun, jedino je potrebna jednadžba energije. Jednadžba energije za stanje eksplozije pri konstantnom volumenu je jednostavna:

\[
E - E_0 = 0
\]
Gdje je E unutrašnja energija produkata i E_0 unutrašnja energija eksploziva dana jednadžbom

Unutrašnja energija produkata E je:

$$E = E_{\text{gas}} + E_{\text{cond}}$$ (5-18)

Gdje su E_{gas} i E_{cond} ukupne unutrašnje energije za plinovita i kondenzirana stanja. Za plinovitu fazu:

$$E_{\text{gas}} = \Sigma n_i^* E_i^0 + E_{\text{imp}}$$ (5-19)

gdje se E_i^0, sa istim referentnim stanjem kao i gore izračunava kao:

$$E_i^0 = E \Delta_{f_i}^{298} + (E^T - E_{f_i}^{298})_i = \Delta E_{f_i}^{298} + (H^T - H_{f_i}^{298})_i - R(T - 298)$$ (5-20)

a E_{imp} je stavka nesavršenstva. Ako je odabran BKW EOS:

$$(E_{\text{imp}})_{\text{BKW}} = n_g R T \frac{\alpha_T}{T+\theta} (\sigma - 1)$$ (5-21)

a za H9 EOS:

$$(E_{\text{imp}})_{\text{H9}} = n_g R T \frac{1}{3} (\sigma - 1)$$ (5-22)

Unutrašnje energije pojedinih vrsta su molarne vrijednosti.

Za kondenziranu fazu pretpostavlja se da je nestlačiva:

$$E_{\text{cond}} = \Sigma n_i E_i$$ (5-23)

gdje je

$$E_i = \Delta H_{f_i}^{298} + (H^T - H_{f_i}^{298})$$ (5-24)
Jednadžba energije je dana dole navedenim izrazom (5-25)

\[\sum_{i_{gas}} n_i E_{f_i}^{298} + \sum_{i_{gas}} n_i (H^T - H_i^{298})_T - n_g R (T - 298) \sum_{i_{gas}} n_i H_{f_i}^{298} \]

\[+ \sum_{i_{gas}} n_i (H^T - H_i^{298})_T + E_{imp} - E_0 = 0 \]

Jednom kada se odredi sadržaj, (5-25) je samo funkcija T.

g) Postupak se ponavlja od formule 5-20 do formule 5-22 sve do konvergencije u T

h) Temperatura eksplozije pri stalnom volumenu: \(T_v = T \)

i) Trebamo naći sljedeće parametre kako bi mogli dalje u račun:

1) Toplina eksplozije pri konstantnom volumenu:

\[Q_v = E_0 - \sum n_i E_{f_i}^0 \quad (5-26) \]

2) Volumen plina pri standardnoj temperaturi i pritisku; za ovu svrhu standardna temperatura je 273,15 K, a standardni pritisak je 100 kPa.

\[V_{STP} = 0,0227 * n_g \quad (5-27) \]

3) Specifična sila (ili specifična energija):

\[f = n_g R T_v \quad (5-28) \]

Ostali parametri mogu se izvesti iz rezultata izračuna.

6. RAČUNALNI PROGRAM EXPLO 5
EXPLO5 je termokemijski računalni kod koji proračunava detonacijske parametre energetskih materijala (npr. brzinu detonacije, tlakove, energiju, toplinu i temperaturu na kraju reakcija, i sl.) i parametre izgaranja (npr. specifični impuls, snagu, tlak, itd.) (Sučeska, 2013).

Izračun detonacijskih parametara temelji se na kemijskoj ravnoteži statičkog modela detonacije. Ravnotežni sastav produkata detonacije i sagorijevanja izračunava se primjenom modificirane White, Johnson, i Dantzigovu jednadžbe metodu minimalizacije slobodne energije (Sučeska, 2013).

Program koristi Becker-Kistiakowsky-Wilson (BKW) jednadžbu stanja za plinovite produkte detonacije, za idealni plin i virijalnu jednadžbu stanja plinovitih produkata izgaranja, a za kondenzirane produkte Murnaghan-ovu jednadžbu stanja (Sučeska, 2013).

Program je osmišljen tako da omogućava izračun sastava produkata u kemijskoj ravnoteži i termodinamičkih parametara stanja uzduž udarne adijabate produkata detonacije, C - J stanja i detonacijske parametre C - J stanja, kao i parametre stanja uzduž izentrope ekspanzije produkata. Potprogram nelinearnog podešavanja krivulje relativne odnose o volumenu i tlaku uzduž izentrope ekspanzije prema Jones-Wilkins-Lee (JWL) modelu, što omogućava izračun energije detonacije raspoložive za mehanički rad (Sučeska, 2013).

U zadnjim verzijama programa, uvođenjem koncepta ovisnosti gustoće ovisi o koovolumenima produkata detonacije, čime je poboljšana prognoza brzina i tlakova detonacije za CHNO eksplozive nižih gustoća (ispod 1,35 g/cm³) (Sučeska, 2013).

Program EXPLO5-V6.01 omogućava dodavanje novih kemijskih elemenata u formule reaktanta (C, H, N, O, Al, Cl, Si, C, B, Ba, Ca, Na, P, Li, K , S, Mg, Mn, Zr, Mo, Cu, Fe, Ni, Pb i Sb), kao i mogućih, novih produkata reakcija što omogućuje simulaciju za veliki raspon eksploziva, goriva, i pirotehničkih smjesa (Sučeska, 2013).

EXPLO5 je termokemijski računalni kod koji može predvidjeti djelovanje jakih eksploziva idealne detonacije i raznih eksplozivnih smjesa, goriva, i pirotehničkih smjesa. On simulira eksploziju u uvjetima konstantnog volumena izgaranja, konstantnog tlaka izgaranja i idealnu detonaciju (Sučeska, 2013).
I. Detonacija
- Izračun ravnotežnog sastava i termodinamičkih parametara stanja produkata detonacije uzduž udarne adiabate produkata detonacije.
- Izračun C – J točke i parametara detonacije (tlak detonacije, brzina detonacije, temperatura i toplina detonacije, gustoća produkata detonacije u C – J točki i sl.).
- Izentropna ekspanzija produkata detonacije iz C – J točke na atmosferski tlak i sobnu temperaturu i termodinamičke funkcije stanja uzduž izentrope ekspanzije.
- Procjena koeficijenata u JWL jednadžbi stanja uzduž ekspanzije izentrope i izračun energije detonacije primjenom JWL modela.

II. Izobarno izgaranje
- Izračun ravnotežnog sastava produkata izgaranja i termodinamičkih parametara stanja pod uvjetima konstantnog tlaka.
- Izračun temperature i topline adijabatskog sagorijevanja.
- Izračun ravnotežnog sastava produkata sagorijevanja i njihovih termodinamičkih parametara stanja tijekom ekspanzije kroz mlaznice.
- Izračun teoretskog djelovanja rakete (npr. tlak i brzina protoka u grlu, ispuh i brzina zvuka na izlazu mlaznice, potisni koeficijent, omjer širenja mlaznice, specifični impuls, itd.).

III. Izohorno izgaranje
- Izračun ravnotežnog sastava produkata sagorijevanja i termodinamičkih parametara stanja u uvjetima stalnog volumena.
- Izračun temperature i topline adijabatskog sagorijevanja izgaranja u uvjetima stalnog volumena.
- Izračun tlaka, kovolumena i kompresijskog faktora plinovitih produkata izgaranja u ovisnosti o gustoći punjenja.
- Izračun sile (energije) energetskih materijala (Sučeska, 2013).
7. TEORIJSKE OSNOVE

EXPLO5 omogućava izračun parametara detonacije eksploziva, kao i parametre izgaranja u izobarnim i izohornim uvjetima (Sučeska, 2013).

7.1. Detonacija

Detonacija je proces „sloj-po-sloj“, ultrazvučnim širenjem kemijskih reakcija kroz eksploziv. Prema opću prihvaćenom Zeldovich-von Neumann-Doering (ZND) modelu detonacije: kemijske reakcije se odvijaju u određenom omjeru odnosno zoni kemijske reakcije, pod djelovanjem udarnog vala (Slika 7-1.) (Sučeska, 2013).

Pod utjecajem dinamičkog djelovanja udarnog vala, tanki sloj eksploziva je zbijen iz početnog specifičnog volumena $V_0 (\text{cm}^3/\text{g})$ ($V_0 = 1/\rho_o$ početna gustoća eksploziva) u volumen $V_1 (\text{cm}^3)$ u skladu s šok (ili Hugoniot) adijabatom za dani eksploziv (Slika 7-2.). Jednadžba je određena odnosom između gustoće (ili obujma) i tlaka tijekom šok kompresije eksploziva. Kao posljedica šoka dolazi do povećanja tlaka na vrijednost p_1 što rezultira značajnim porastom temperature, u sloju komprimiranog eksploziva, gdje se inicira kemijska reakcija. Kad su kemijske reakcije pri kraju mijenaju se volumen i tlak produkata reakcije V_2 i p_2 (Pa). Ovo stanje odgovara točci koja leži na šok adijabati produkata detonacije. Od tog trenutka produkti se šire izentropno (Taylorov val) u okolni medij (Sučeska, 2013).

Slika 7-1. Shematski prikaz procesa detonacije (Sučeska, 2013)
Prema statičkom modelu detonacije, točke \((V_0, \rho_0), (V_1, \rho_1) i (V_2, \rho_2)\) lež na ravnoj liniji. Ta linija se zove Rayleigheva linija. Nagib Rayleighove linije određuje brzinu detonacije određenog eksploziva. Prema Chapman i Jouguet hipotezi, Rayleigh linija je tangent šok adijabate produkata detonacije na točku koja odgovara kraju kemijske reakcije. Toj je točci dodijeljeno ime Chapman -Jouguet točka (C-J točka) (Sučeska, 2013).

![Diagram udarne adijabate i produkata detonacije](image)

Slika 7-2. Udarna adijabata eksploziva i produkta detonacije u slučaju stalnih detonacija (Sučeska, 2013)

Detonacijski procesi mogu biti opisani matematičkom primjenom termodinamičkih i hidrodinamičkih zakona. Stanje i gibanje materije u detonacijskom valu može se izraziti pomoću zakona o očuvanju mase, količine gibanja i energije. Te zakone možemo zapisati u obliku:

\[
\begin{align*}
\rho_0 D &= \rho (D - U_p) \quad (7-1) \\
p - p_0 &= \rho_0 DU_p \quad (7-2) \\
E - E_0 &= \left(\frac{1}{2}\right)(p + p_0)(V_0 - V) \quad (7-3)
\end{align*}
\]
gdje je D (m/s) brzina detonacije, U_p (cm/s) je brzina čestice, E (kJ/kg) je unutarnja energija produkata detonacije, V je specifični volumen (indeks "0" se odnosi na neizreagirani eksploziv).

Kombinirajući gornje jednadžbe i jednadžbe uzimajući u obzir jednadžbe nastale iz Chapman-Jouguet hipoteze dobiva se:

$$
gamma = -\left(\frac{\partial \ln p}{\partial \ln V}\right)_S = -\frac{V}{p} \left(\frac{\partial p}{\partial p}\right)_S = -\frac{V}{p} \left(\frac{p-p_0}{V-V_0}\right)
$$

gdje je γ (bezdimenzijska veličina) politropni eksponent, moguće je otkriti odnos između drugih detonaciskih parametara (Sučeska, 2013).

7.1.1. Opis modela detonacije koji se primjenjuje u EXPLO5 programu

EXPLO5 računalni program se temelji na kemijskoj ravnoteži statičkog modela detonacije. Model detonacije temelji se na sljedećem:

- Becker-Kistiakowsky-Wilson jednadžba stanja (tzv. BKW EOS) opisuje stanje plinovitih produkata detonacije
- Murnaghan jednadžbe stanja opisuje stanje čvrstog ugljika
- Termodinamičke funkcije plinovitih produkata (kao pravih plinova) izvode se pomoću BKW EOS.
- Termodinamičke funkcije kondenziranih produkata (kao kompresijski izvode se pomoću Murnaghan-ove jednadžbe stanja
- Termodinamičke funkcije detonacije produkata u standardnom stanju izračunati su iz entalpije (koja se izražava u obliku polinoma četvrtog stupnja kao funkcija temperature)
- Kemijska ravnoteža produkata detonacije je izražena matematički primjenom metode minimiziranja slobodne energije razvijene od strane White-Johnson-Dantzing
- Modificirana Newton-Raphson metoda rješava sustav jednadžbi opisan kemijskom ravnotežom produkata detonacije
- C - J točka se određuje kao točke na udarnoj adijabati produkata detonacije na kojoj brzina detonacije (D) ima svoju minimalnu vrijednost prema jednadžbi 7-5.:

$$
D = V_0 \sqrt{\frac{p-p_0}{V_0-V}}
$$
Postoje dvije metode određivanja C – J točke u programu EXPLO5:

1. primjenom tzv. metoda "pretrage zlatnim rezom" za pronalazak minimuma funkcije

2. izračun cijele udarne adijabate produkata detonacije koristeći proizvoljno odabrane vrijednosti maksimalnog tlaka na udarnoj adiabati, i određivanjem gustoće povećati korak/omjer, i onda pomoću metode "pretrage zlatnog reza" pronaći minimum funkcije $D = f(V)$ (Sućeška, 2013).

![Diagrama udarnih adiabata i C-J točke](image)

Slika 7-3. Determinacija C – J točke na udarnoj adiabati produkata detonacije (Sućeška, 2013)

7.1.2. Izračun ravnotežnog sastava produkata reakcije

Transformacija CHNO eksploziva u detonaciju (ili izgaranje) produkata može biti opisana sljedećom općom formulom:

$$C_{c}H_{n}N_{n}O_{n} \rightarrow n_{1}H_{2}O + n_{2}H + n_{3}O_{2} + n_{4}CO_{2} + n_{5}CO + n_{6}CH_{4} + n_{7}NH_{3} + n_{8}N_{2}$$

$$+ n_{9}NO + n_{10}C +$$

gdje su $n_1 - n_n$ mol iznosi za r pojedinih produkata.

Produkti reakcije rade reaktivni sustav u kojem se koncentracija pojedinih produkata određuje se prema stanju ravnoteže u danim p, T, V uvjetima. Određivanje
ravnotežnog sastava produkata detonacije za određene \(p, V, T \), uvjete, odnosno određivanje količine molova pojedinih produkata \((n_i) \), prvi je korak u izvedbi izračuna detonacije/sagorijevanje.

Koncentracija (broj molova) produkata može se izračunati matematičkim opisom stanja ravnoteže u više-komponentnom i više-faznom sustav, primjenjujući tehniku minimiziranja slobodne energije i principa bilance mase. Ovu su metodu izvorno razvili White i suradnici (White et al., 1958), a kasnije ju je Mader prilagodio za kompjutersku primjenu (Mader, 2008). Metoda se temelji na činjenici da je u kemijskoj ravnoteži kemijski potencijal produkata reakcije jednak kemijskom potencijalu reaktanata, tj. na činjenici da u stanju ravnoteže slobodna energije produkata ima svoju minimalnu vrijednost.

Gibbs-ova slobodna energija \((G)(J)\) smjese koja se sastoji od \(N \) različitih kemijskih vrsta koje se nalaze u različitim \(P \) faznim stanjima, je funkcija temperature, tlaka i broja molova od svake komponente u svakoj fazi \((n_i^F) \) (Rossi et al., 2009).

\[
G = \sum_{k=1}^{p} \sum_{t=1}^{p} n_i^F \mu_i^F
\]

gdje je \(n_i^F \) broj molova komponenta i u fazi \(k \), i \(\mu_i^F \) je kemijski potencijal komponenata i u fazi \(k \) (Sücska, 2013).

7.1.3. Izračun tlaka

Tlak uzduž udarnih adijabate produkata detonacije izračunava se primjenom Becker-Kistiakowsky-Wilson EOS za plinovite produkte, a Murnaghan EOS za kondenzirane produkte.

BKW jednadžba stanja se primjenjuje u obliku:

\[
\frac{pV}{RT} = 1 + xe^{\beta x} = f(x)
\]

gdje je \(V \) volumen koji zauzimaju plinoviti produkti (molarni volumen plinova)

\[
x = \frac{K}{[V(T+\Theta)^a]}
\]

\(k_i \) - koovolumeni i-tih produkata detonacije

\[
K = \kappa \sum_{i=1}^{N} x_i k_i,
\]

\[
x_i = n_i/n_T, \quad (\text{mol frakcija i-tog produkta detonacije}),
\]

\(\alpha, \beta, \kappa \) i \(\Theta \) su konstante.
Poznato je da BKW EOS ne može predvidjeti točno svojstva eksplozije koji imaju niže gustoće (otprilike ispod 1,35 g/cm\(^3\)), odnosno pri nižim tlakovima detonacije (otprilike ispod 100 kbar). Kako bi riješio ovaj problem EXPLO5 primjenjuje dvije metode:

a) Koristeći modificirani BKW EOS, koji ima oblik:

\[
\frac{pV}{RT} = 1 + \varepsilon e^{\beta x} = f(x)
\]

gdje je \(\varepsilon\) konstantna prilagođena da da rezultat za brzine detonacije i tlaka u širokom rasponu gustoće eksploziva (za izvorni BKW EOS konstantna \(\varepsilon = 1\)).

b) Primjenjuju koncepta gustoće ovisnih koovolumena (Sućeska et al., 2013).

Kooovolumen korekcija izračunava se jednačnom:

\[
K_{corr} = k_f(\rho_0) \cdot K = k_f(\rho_0) \cdot (\kappa \sum x_i k_i) \tag{7-9}
\]

gdje je \(K_{corr}\) korigirani koovolumen produkata detonacije i \(k_f(\rho_0)\) je faktor korekcije koovolumena.

Slika 7-4. Faktor korekcije koovolumena \(v_s\) gustoće (a) i specifični volumen (b) eksploziva (Sućeska, 2013)

Korekcijski faktor se određuje podešavanjem istog kako bi se dao najbolje rješenje između izračunatih i eksperimentalnih brzina detonacije, tlaka i gustoće detonacije produkata u C-J točci za dani set koovolumena.

Koovolumeni su dobiveni na različite načine:
- podudaranje eksperimentalnog udara Hugoniot (gdje je dostupno),
- ab-initio izračun,
- izvor literature,
BKW EOS konstante su prilagođene kako bi dale najbolje rezultate između eksperimentalnih i izračunatih \(D, p, \rho_C \) i \(Q \) za određeni set koovolumena. Vrijednosti BKW konstanti koovolumeni u BKW EOS su pohranjeni u bazi produkata za sve plinovite produkte. Za ilustraciju, tablica 7.1 daje vrijednosti za neke produkte CHNO-a eksploziva (Sućeska 2013).

Za postizanje volumena zauzetog plinovitim produktima detoniacije, ukupni volumen zauzet svim produktima detoniacije, moraju se ispraviti (tj. smanjiti) za volumen stlačivog čvrstog ugljika (i ostali čvrsti produkti, ako je prisutan).

Volumen kondenziranih produkata u određenim \(p, T \) uvjetima izračunava se primjenjujući Murnaghan EOS (Braithwaite 2002).

\[
V = V_0 \left\{ \beta \cdot P + \exp \left[-\alpha(T - T_0)\right] \right\}^{-1/\eta} \tag{7-10}
\]

gdje je \(V_0 \) molarni volumen produkta kad je \(p = 0 \) i \(T = T_0 \) (za \(T_0 \) se obično uzima 298,15 K)

\(\alpha \) je volumni koeficijent toplinskog rastezanja (\(^{\circ}C\))

\(\beta = \eta \cdot \kappa \), gdje je \(\kappa \) inverzni obujamski modul i \(\eta \) je izveden iz \([dB(p,T)/dp]\)

EXPO5 koristi tri seta od konstanti u BKW i modificiranom BKW EOS (tablica 7-1.).

Tablica 7-1. Setovi vrijednosti konstanti i koovolumena u BKW EOS i modificiranom BKW EOS korišteni u EXPO5_V6.01 (Sućeska, 2013)

<table>
<thead>
<tr>
<th>Set konstanti</th>
<th>BKWG-S</th>
<th>BKWG-CC</th>
<th>BKWG-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.29</td>
<td>0.113</td>
<td>0.22</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>10.45</td>
<td>15.1</td>
<td>9.35</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>1</td>
<td>1</td>
<td>1.35</td>
</tr>
<tr>
<td>(\theta)</td>
<td>4120</td>
<td>3200</td>
<td>4150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koovolumeni seta 1</th>
<th>Koovolumeni seta 2</th>
<th>Koovolumeni seta 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>(\text{O}_2)</td>
<td>335</td>
<td>335</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>635</td>
<td>635</td>
</tr>
<tr>
<td>(\text{CO})</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>556</td>
<td>556</td>
</tr>
<tr>
<td>(\text{CH}_2\text{O}_2)</td>
<td>692</td>
<td>768</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>(\text{NH}_3)</td>
<td>359</td>
<td>359</td>
</tr>
<tr>
<td>(\text{NO})</td>
<td>487</td>
<td>487</td>
</tr>
</tbody>
</table>

38
7.1.4. Određivanje C - J točke i izračun parametara detonacije

C – J točka se određuje kao točka na udar adijabati produkata detonacije pri kojoj brzini detonacije, izračunate pomoću jednadžbe:

\[D = V_0 \sqrt{\frac{p-p_0}{V_0-V}} \]

ima svoj minimum (\(V_0 = 1/\rho_0 \) je specifični volumen eksploziva, \(\rho_0 \) je ambijentalni tlak, a \(p \) i \(V \) su vrijednosti tlaka i specifični volumen na udar adijabati).

Ostali parametri detonacije u C – J točki izračunavaju se primjenom sljedeće jednadžbe:

- brzina čestice (\(U_p \)):

\[U_p = \sqrt{(p - p_0) \cdot (V_0 - V)} \]

- politropni eksponent (\(\gamma \)):

\[\gamma = \frac{\rho_0 D^2}{p} - 1 \]

Slika 7-5. Promjene brzine detonacije pri specifičnom volumenu produkata detonacije (Sučeska, 2013)
7.1.5. Procjena energije detonacije

Pri detonaciji eksploziv prelazi u vruće, vrlo komprimirani plin čija je gustoća detonacijskog vala veći od izvorne gustoće eksploziva (pri C – J stanju). Ovaj komprimirani vrući plin je sada dostupan za guranje u svoju okolinu. Ovo guranje je pritom rad koji se radi, ili energija koja se prenosi.

Radni proces se smatra izentropskim (dS = 0) i ekspanzija je prikazana pomoću ekspanzijske izentrope na $p – V$ dijagramu (slika 7-6.). Izentropski proces je idealizirani ekspanzijski proces koji pretpostavlja da nema prijenosa topline između sustava i njegove okolice (adiabatski proces). To je zato što je entropija izravno povezana s prijenosom topline pomoću jednadžbe $dQ = T dS$, to znači da ako $dQ = 0$ tada je i $dS = 0$.

Pretpostavljajući da je detonirajući eksploziv odmah komprimiran od sobne temperature i atmosferskog tlaka do Rayleigh-ove linije na C – J točki, a zatim se širi niz isentropu, dostupna energije za rad u okolini može se izračunati kao razlika između energije ekspanzijske isentrope (ES) i kompresijske energije (EZ-a) (slika 7-6.) (Sučeska, 2013).

![Diagram ekspanzija izentrope produkata detonacije](image)

Slika 7-6. Ekspanzija izentrope produkata detonacije (Sučeska, 2013)
Energija produkata detonacije pri beskonačnom volumenu produkata detonacije \((E_d(v \to \infty)) \) definira se kao energija detonacije \(E_0 \) (kJ/kg). Ona se izračunava kao razlika između unutarnje energije produkata detonacije u C-J točki \(E_s \) (C-J) i energije udara kompresiju produkata detonacije u C–J točki (tzv. šok energija, \(E_c \)).

\[
E_0 = -[E_s(CJ) - E_c]
\]
\((7-13) \)

Energija udara kompresije može se izračunati iz sljedećih jednadžba:

\[
E_c = (1/2)(p_{CJ} + p_0)(V_0 - V_{CJ}),
\]

ili

\[
E_c = \frac{\rho_0 B^2 (1-v_{CJ})^2}{2},
\]
\((7-14) \)

gdje je: \(V_0 \) je specifični volumen početnog eksploziva, \(V_{CJ} \) je specifični volumen produkata detonacije u C–J točci, \(v_{CJ} \) je relativni volumen produkata detonacije u C–J točci \((v_{CJ} = V_{CJ}/V_0) \), \(p_0 \) je atmosferski tlak, a \(p_{CJ} \) je tlak produkata detonacije u C–J točci (Sučeska 2013).

\[
p = A \exp(-R_1 v) + B \exp(-R_2 v) - C v^{-(1+\omega)}
\]
\((7-15) \)

gdje je: \(v \) relativni volumen, \(A, B, C, R_1, R_2, \) i \(\omega \) su JWL koeficijenti koji mogu biti izvedeni eksperimentalno cilindričnim testom, ili teoretski iz termokemijskih izračuna.

Integriranje JWL jednadžbe stanja, jednadžba za izračun energije produkata detonacije na izentropi pri bilo kojem relativnom volumenu dobiva se \(((E_s(v))): \)

\[
E_s(v) = -\int_0^v p \, dv = \frac{A}{R_1} \exp(-R_1 v) + \frac{B}{R_2} \exp(-R_2 v) + \frac{C}{\omega} v^{-\omega}
\]
\((7-16) \)

Energija detonacije u bilo kojem relativnom volumenu \((E_d(v)) \) dana je jednadžbom:

\[
E_d(v) = -\{[E_s(CJ) - E_s(v)] - E_c\}
\]
\((7-17) \)

Budući da je pri beskonačnom volumenu energija na izentrope jednaka nuli, energija detonacije je:

\[
E_d(v \to \infty) = -[E_s(CJ) - E_c] = E_0
\]
\((7-18) \)

Za izračun energije detonacije prema JWL modelu trebali bi biti poznati koeficijenti u JWL jednadžbi stanja, tj. trebali bi biti prethodno utvrđeni. Uobičajeni način za dobivanje JWL koeficijenata je iz cilindričnog testa podataka: podudaranjem zidna brzina – povijest vremena pomoću velikog računala konačnih elemenata hidro-kodova.
Koeficijenti su konačno dobiva nelinearnim podešavanjem $p - v$ vrijednosti napretka ekspanzije plina (Sučeska, 2013).

Druga mogućnost je teoretska procjena energije detonacije iz termokemijskog izračuna. Metoda se sastoji u izračunu podataka tlaka-volumen uzduž ekspanzije izentrop (uz pretpostavku ravnoteže ili zamrznute ekspanzije), a zatim podešavanje tako dobivenih podataka u JWL jednadžbe za dobivanje JWL koeficijenata. Tada se JWL koeficijenti koriste za izračun energije detonacije (Sučeska, 2013.).

Valja napomenuti da se energija produkata detonacije pri 1-om baru i 298 K obično naziva "ukupna energija detonacije". Ukupna detonacije energija odgovara kalorimetrijskom određivanju topline eksplozije (Sučeska, 2013.).
8. PRIMJER IZRAČUNA DETONACIJSKIH PARAMETARA NA PRIMJERU ANFO EKSPLOZIVA.

Eksploziv tipa ANFO izvode se u dvije izvedbe:

- mješavina AN zrnaca (granula) i goriva (plinskog ulja), a rabe se u rasutom stanju
- kao mješavina drobljenog AN goriva

Osnovna sirovina za ANFO je amonijev nitrat (AN).

Svojstva amonijevog nitrata (NH₄NO₃):

Bezbojni kristal

Energija stvaranja: -4413 kJ/kg
Gustoća: \(\rho = 1,72 \text{ g/cm}^3 \)
Brzina detonacije: \(D = 2500 \text{ m/s kod gustoće } \rho = 1,42 \text{ g/cm}^3 \)
Topljivost u vodi (u g na 100g tekućine): 66,1g.

Pojavljuje se u pet kristalnih formi koji se transformiraju iz jedne u drugu ovisno o temperaturi:

Tetragonalna \((\alpha) \) \(-18^\circ C \leftrightarrow \) ortorompska \((\beta) \) \(^{32.1} \leftrightarrow \) ortorompska \((\gamma) \) \(^{84.2} \leftrightarrow \) teragonalna \((\delta) \) \(^{125.2} \leftrightarrow \) kubična \((\epsilon) \) \(^{169.9} \leftrightarrow \) tekuća.

Pri normalnim okolnostima dvije se temperature od navedenih mogu javiti pri rukovanju, a naročito pri skladištenju (\(-18^\circ C \) i \(32,2^\circ C \)). Prilikom oscilacije temperature i priješa iz jednog oblika u drugi dolazi do raspadanja kristala u prašinu (AN također), posljedica čega je povećanje gustoće s 0,8 g/m³ na 1,2 g/m³. Daljnjim povećanjem može izostati detonacija. Izrađuju se u dva oblika, kojima se koristi za izradu umjetnih gnojiva i za izradu eksploziva.

Amonijev nitrat za izradu eksploziva, nakon procesa stvaranja zrnaca iz otopine u bubnju, sadrži oko 4% vlage i odlazi na dvostupanijsko sušenje gdje se, uz lagano hlađenje i isparavanje vlage, stvaraju porozne strukture (upijanje 6-12%).
Tablica 8-1. Karakteristika AN za proizvodnju mineralnih gnojiva i AN za proizvodnju eksploziva eksplozive (Krsnik, 1989)

<table>
<thead>
<tr>
<th>Svojstvo</th>
<th>AN za umjetno gnojivo</th>
<th>AN za eksplozive</th>
</tr>
</thead>
<tbody>
<tr>
<td>inertna stijenka</td>
<td>3% - 5%</td>
<td>0.5% - 1%</td>
</tr>
<tr>
<td>tvrdoća</td>
<td>velika</td>
<td>mala</td>
</tr>
<tr>
<td>oblik</td>
<td>kristalna</td>
<td>porozna</td>
</tr>
<tr>
<td>distribucija goriva</td>
<td>po površini</td>
<td>kroz granule</td>
</tr>
<tr>
<td>minimalni promjer za detonaciju na otvorenom</td>
<td>228 mm</td>
<td>64 mm</td>
</tr>
<tr>
<td>brzina detonacije u cijevi Ø 100 mm</td>
<td>1.829 m/s</td>
<td>3.353 m/s</td>
</tr>
</tbody>
</table>

Idealna mješavina eksploziva tipa ANFO je 94,5% AN i 5,5% goriva, pri čemu se oslobađa energija od 3536 kJ/kg eksploziva do 3850 kJ/kg eksploziva. Ekploziv ANFO nije vodootporan stoga treba koristiti samo u suhim uvjetima. ANFO ne smije se koristiti u opasnim uvjetima u kojima ima zapaljivih plinova ili zapaljive prašine. ANFO je pogodan za korištenje na temperaturama od -10 °C do maksimalno 55 °C. ANFO ima maksimalni rok trajanja od šest mjeseci ovisno o uvjetima temperature i vlažnosti. Na slici 6-1. prikazana je fotografija granule ANFO eksploziva.

Slika 8-1. Granulirani ANFO eksploziv (Wikipedia)

Slika 8-2. Odabir parametara

Po odabiru parametara program iz baze prikazuje podatke za odabranu eksplozivnu tvar. Ulazni podaci prije početka izračuna prikazani su na slici 8-3.
Slika 8-3. Ulazni podaci prije početka izračuna

Nakon odabira parametara pokreće se proračun, po čijem završetku su izračunati parametri u CJ točki (tlak, brzina, specifični volumen i specifična gustoća plinovitih produkata). Izgled zaslona s proračunatim parametrima prikazan je na slici 8-4.
Slika 8-4. Izgled zaslona s proračunatim parametrima

Na primjeru ANFO eksploziva, proračunati su parametri detonacije za odnose smjese AN: diesel ulje od 94:6 % do 97:3 % masnih udjela. Zbirni rezultati proračuna dani su u tablici 8-2.
Tablica 8-2. Prikaz izračunatih parametara za ANFO različitih udjela goriva (Matej Cvetković)

<table>
<thead>
<tr>
<th></th>
<th>Amonijev nitrat (AN), 97% Dizel ulje 3%</th>
<th>Amonijev nitrat (AN), 96% Dizel ulje 4%</th>
<th>Amonijev nitrat (AN), 95% Dizel ulje 5%</th>
<th>Amonijev nitrat (AN), 94% Dizel ulje 6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toplina detonacije (kJ/kg)</td>
<td>-2837,03</td>
<td>-3252,88</td>
<td>-3664,78</td>
<td>-3925,37</td>
</tr>
<tr>
<td>Temperatura detonacije (K)</td>
<td>2456,12</td>
<td>2667,08</td>
<td>2864,17</td>
<td>2988,94</td>
</tr>
<tr>
<td>Tlak detonacije (GPa)</td>
<td>4,62</td>
<td>4,98</td>
<td>5,30</td>
<td>5,58</td>
</tr>
<tr>
<td>Brzina detonacije (m/s)</td>
<td>4522,84</td>
<td>4687,15</td>
<td>4836,68</td>
<td>4939,45</td>
</tr>
<tr>
<td>Brzina čestice (m/s)</td>
<td>1229,92</td>
<td>1281,23</td>
<td>1320,91</td>
<td>1360,71</td>
</tr>
<tr>
<td>Brzina zvuka (m/s)</td>
<td>3292,92</td>
<td>3405,92</td>
<td>3515,78</td>
<td>3578,74</td>
</tr>
<tr>
<td>Gustoća produkata (g/cm³)</td>
<td>1,14</td>
<td>1,14</td>
<td>1,14</td>
<td>1,15</td>
</tr>
<tr>
<td>Volumen produkata (cm³/g)</td>
<td>0,88</td>
<td>0,88</td>
<td>0,88</td>
<td>0,87</td>
</tr>
<tr>
<td>Gama eksponent</td>
<td>2,68</td>
<td>2,66</td>
<td>2,66</td>
<td>2,63</td>
</tr>
<tr>
<td>Molovi plinovitih produkata (mol/mol exploziva)</td>
<td>3,51</td>
<td>3,51</td>
<td>3,52</td>
<td>3,54</td>
</tr>
<tr>
<td>Molovi kondenziranih produkata (mol/mol exploziva)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Volumen plinova pri STP (dm³/kg)</td>
<td>1059,12</td>
<td>1055,80</td>
<td>1052,73</td>
<td>1056,09</td>
</tr>
<tr>
<td>Entropija produkata (kJ/kgK)</td>
<td>8,16</td>
<td>8,32</td>
<td>8,47</td>
<td>8,57</td>
</tr>
<tr>
<td>Unutarnja energija produkata (kJ/kg)</td>
<td>3593,40</td>
<td>4073,67</td>
<td>4537,19</td>
<td>4851,15</td>
</tr>
<tr>
<td>Kompresijska energija (kJ/kg)</td>
<td>756,36</td>
<td>820,79</td>
<td>872,41</td>
<td>925,78</td>
</tr>
<tr>
<td>Ukupna energija detonacije (kJ/kg)</td>
<td>-2837,03</td>
<td>-3252,88</td>
<td>-3664,78</td>
<td>-3925,37</td>
</tr>
</tbody>
</table>
Na bazi proračunatih parametara detonacije konstruirani su dijagrami ovisnosti brzine detonacije prikazanih na slici 8-5., tlaka detonacije prikazanog na slici 8-6., volumena plinovitih produkata prikazanih na slici 8-7., te energije detonacije o masenim udjelima smjese prikazanih na slici 8-8.

Slika 8-5. Brzina detonacije

Slika 8-6. Tlak detonacije
Slika 8.7. Volumen produkta

Slika 8.8. Ukupna energija detonacije
9. ZAKLJUČAK

Za izračunavanje parametara detonacije u primjeni su različiti modeli. Razvojem teoretskih modela i u novije vrijeme, proračuni se obavljaju primjenom računalnih programa. Modeli su primjenjivi za izračun parametara monomolekularnih eksploziva koji reagiraju gotovo idealnom detonacijom. Za gospodarske eksplozive koji detoniraju neidealno, takvi modeli ne daju rezultate u skladu s eksperimentalnim podacima, odnosno odstupanja su značajna. Računalni program Explo 5 proračunava parametre eksplozivnih procesa energetskih materijala. Prema rezultatima proračuna za ANFO eksploziv primjenom programa Explo 5 vidljivo je da s povećanjem udjela goriva, odnosno diesel ulja raste brzina i tlak detonacije a smanjuju se energija detonacije i volumen plinovitih produkata.

Program omogućuje jednostavnu simulaciju detonacijskog procesa te utjecaj značajki početne eksplozivne tvari na parametre detonacije. U slučaju neidealne detonacije ti podaci daju trendove utjecaja pojedinih komponenata smjesa a ne točne vrijednosti parametara detonacije.
10. LITERATURA

HRN EN 13631-15, 2005 (EN)

HRN H.D8.012, IX-1971., (JUS)

SUČESKA, M., 2013. EXPLO5 EXPL5 Version 6.01/2013 USER’S GUIDE ‘I

WIKIPEDIA