Optimizacija proizvodnje plinskih bušotina s visokim udjelom slojne vode

Tišljar, Tomislav

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:401338

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-07

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Diplomski studij naftnog rudarstva

OPTIMIZACIJA PROIZVODNJE PLINSKIH BUŠOTINA S VISOKIM UDJELOM SLOJNE VODE

Diplomski rad

Tomislav Tišljar N-224

Zagreb, 2017.

OPTIMIZACIJA PROIZVODNJE PLINSKIH BUŠOTINA S VISOKIM UDJELOM SLOJNE VODE

TOMISLAV TIŠLJAR

Diplomski rad izrađen:	Sveučilište u Zagrebu
	Rudarsko-geološko-naftni fakultet
	Zavod za naftno inženjerstvo
	Pierottijeva 6, 10000 Zagreb

Sažetak

Kvalitetna i stalna analiza proizvodnih parametara plinskih bušotina omogućuje predviđanje kretanja proizvodnje promjenom pojedinih faktora u proizvodnom vijeku samih bušotina. Za modeliranje i predviđanje proizvodnje bušotina za različite zadane slojne tlakove i količine slojne vode u proizvedenom fluidu korišten je programski paket IPM-Prosper. Na temelju analize dobivenih rezultata razmatrana su i ponuđena neka od rješenja optimizacije rada bušotina s visokim sadržajem vode. U konačnici opisana je završna faza proizvodnje plinskih bušotina s niskim dinamičkim tlakom na ušću bušotine korištenjem kompresora.

Ključne riječi: plinske bušotine, visok sadržaj vode, IPM-Prosper programski paket, kompresorska proizvodnja

Diplomski rad sadrži: 44 stranice, 8 tablica, 27 slika i 14 referenci.

Jezik izvornika: hrvatski

Diplomski rad pohranjen:		Knjižnica Rudarsko-geološko-naftnog fakulteta Pierottijeva 6, Zagreb
Voditelj:	Dr. sc. Vla	dislav Brkić, docent RGNF
Ocjenjivači:	Dr. sc. Vla Dr. sc. Kat Dr. sc. Lid	dislav Brkić, docent RGNF arina Simon, redoviti profesor RGNF ia Hrnčević, izvanredni profesor RGNF

Datum obrane: 7. srpanj 2017. Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu

OPTIMIZATION OF PRODUCTION IN GAS WELLS WITH LARGE PROPORTION OF FORMATION WATER

TOMISLAV TIŠLJAR

Thesis completed at: University of Zagreb Faculty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering, Pierottijeva 6, 10 000 Zagreb

Abstract

Quality and constant analysis of gas well production parameters facilitates the prediction of production trends through the change of individual factors in production wells. An IPM-Prosper software package was used for modelling and prediction of the well production at different default layer pressures as well as the amount of salt water in the produced fluid. On the basis of the analysis of the obtained results, some of the optimization solutions for the wells with high water content were considered and offered. Finally, the final production phase of gas wells with low dynamic pressure at the nozzle using compressors was described.

Keywords: Gas wells, High production water content, IPM-Prosper software package, Compression production

Thesis contains: 44 pages, 8 tables, 27 figures and 14 references.

Original in: Croatian

Thesis deposited in: Library of Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb
Supervisor: Assistant Professor Vladislav Brkić, PhD
Reviewers: Assistant Professor Vladislav Brkić, PhD Full Professor Katarina Simon, PhD Associate Professor Lidija Hrnčević, PhD

Date of defense: July 7th, 2017. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering

SADRŽAJ

PC	OPIS SLIKA	I
PC	OPIS TABLICA	II
PC	OPIS KORIŠTENIH OZNAKA I JEDINICA	.III
1.	UVOD	1
2.	PROIZVODNJA PRIRODNOG PLINA IZ PLINSKO-KONDENZATNIH POI	JA
	"DUBOKE PODRAVINE	2
	2.1. Centralna plinska stanica Molve	4
3.	PROIZVODNI SUSTAV PLINSKIH I NAFTNIH BUŠOTINA	6
4.	NODAL ANALIZA	8
5.	PODJELA BUŠOTINA POLJA MOLVE	11
	5.1. Bušotine s visokim dinamičkim tlakom i s velikom proizvodnjom plina	11
	5.2. Bušotine sa srednjim dinamičkim tlakom i sa srednjom proizvodnjom plina	11
	5.3. Bušotine s niskim dinamičkim tlakom i s niskom proizvodnjom plina	12
	5.4. Bušotine s niskim dinamičkim tlakom u povremenom radu	12
6.	ODREĐIVANJE RADNIH TOČAKA BUŠOTINA KORIŠTENJEM IP	PM-
	DDASDED DDACDAMSKAC DAKETA	13
	I KOSI EK I KOGRAMSKOG I AKETA	
	6.1. Bušotina Mol-27	.13
	6.1. Bušotina Mol-27 6.2. Bušotina Mol-37	.13
	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 	.13 18 22
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK 	13 13 18 22
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 	.13 13 18 22 (A I 26
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 	13 18 22 (A I 26 27
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 	.13 18 22 (A I 26 27 28
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 	.13 18 22 A I .26 27 28 29
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 7.4. Predviđanje povećanja WGR-a na bušotini Mol-37 	.13 .13 18 22 A I 26 27 28 29 30
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 7.4. Predviđanje povećanja WGR-a na bušotini Mol-37 7.5. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-42 	.13 .13 18 22 A I 26 27 28 29 30 31
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 7.4. Predviđanje povećanja WGR-a na bušotini Mol-37 7.5. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-42 7.6. Predviđanje povećanja WGR-a na bušotini Mol-42 	13 13 18 22 A I 26 27 28 29 30 31 32
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 7.4. Predviđanje povećanja WGR-a na bušotini Mol-37 7.5. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-42 7.6. Predviđanje povećanja WGR-a na bušotini Mol-42 MOGUĆA UGRADNJA PROIZVODNOG NIZA MANJEG PROMJERA 	.13 .13 18 22 A I 26 27 28 29 30 31 32 33
7.	 6.1. Bušotina Mol-27 6.2. Bušotina Mol-37 6.3. Bušotina Mol-42 IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA SLOJNOG TLAK POVEĆANJA WGR-A 7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27 7.2. Predviđanje povećanja WGR-a na bušotini Mol-27 7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37 7.4. Predviđanje povećanja WGR-a na bušotini Mol-37 7.5. Predviđanje povećanja WGR-a na bušotini Mol-42 7.6. Predviđanje povećanja WGR-a na bušotini Mol-42 8.1. Primjer ugradnje proizvodnog niza malog promjera u bušotinu Mol-37 	.13 .13 18 22 A I 26 27 28 29 30 31 32 33 34
 7. 8. 9. 	 6.1. Bušotina Mol-27	13 13 18 22 A I 26 27 28 29 30 31 32 33 34 38

10. ZAKLJUČAK	
11. LITERATURA	43

POPIS SLIKA

Slika 2-1. "Duboka Podravina" – ležišta polja Molve, Kalinovac, Stari Gradac i Gola
Duboka2
Slika 2-2. Kronološki prikaz proizvodnje plina, kondenzata i slojne vode na polju Molve4
Slika 3-1. Mogući gubitci taka u proizvodnom sustavu bušotine
Slika 4-1. Smještaj najčešćih čvorišta proizvodnog sustava
Slika 4-2. Određivanje protočnog kapaciteta proizvodnog sustava10
Slika 6-1. Ugrađena oprema na bušotini Mol-2714
Slika 6-2. Ulazni podaci IPM-Prosper analize15
Slika 6-3. Podaci potrebni za izračun IPR krivulje16
Slika 6-4. Trenutna radna točka bušotine Mol-2717
Slika 6-5. Ugrađena oprema na bušotini Mol-3718
Slika 6-6. Ulazni podaci IPM-Prosper analize19
Slika 6-7. Podaci potrebni za izračun IPR krivulje20
Slika 6-8. Trenutna radna točka bušotine Mol-3721
Slika 6-9. Ugrađena oprema na bušotini Mol-42
Slika 6-10. Ulazni podaci IPM-Prosper analize
Slika 6-11. Podaci potrebni za izračun IPR krivulje
Slika 6-12. Trenutna radna točka bušotine Mol-4225
Slika 7-1. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-2727
Slika 7-2. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-2728
Slika 7-3. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-3729
Slika 7-4. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-3730
Slika 7-5. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-4231
Slika 7-6. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-4232
Slika 8-1. Shematski prikaz ugrađenog proizvodnog niza malog promjera33
Slika 8-2. IPR i VLP krivulje kod pada ležišnog tlaka (Pi) o proizvodnju kroz postojeći
proizvodni niz te proizvodni niz malog promjera
Slika 9-1. Krivulje pada tlaka i kompresorska proizvodnja plina
Slika 9-2. Prenosivo kompresorsko postrojenje

POPIS TABLICA

Tablica 2-1. Sastav ležišnog fluida iz plinskih i plinsko-kondenzatnih polja Duboke Podravine
i međimurskih plinskih polja3
Tablica 3-1. Udio pojedinih komponenti u ukupnom gubitku tlaka u tubingu7
Tablica 5-1. Dnevna proizvodnja bušotina s visokim dinamičkim tlakom s pripadajućim
tlakom ušća i WGR-om11
Tablica 5-2. Dnevna proizvodnja bušotina sa srednjim dinamičkim tlakom s pripadajućim
tlakom ušća i WGR-om12
Tablica 5-3. Dnevna proizvodnja bušotina s niskim dinamičkim tlakom s pripadajućim
tlakom ušća i WGR-om12
Tablica 8-1. Trenutni radni parametri bušotine Mol-3734
Tablica 8-2. Utjecaj promjene tlaka na ušću (P1) te ležišnog tlaka (Pi) na proizvodne
parametre bušotine Mol-3735
Tablica 8-3. IPM-Prosper analiza protoka ugradnjom proizvodnog niza malog promjera36

POPIS KORIŠTENIH KRATICA

CO₂ – ugljikov dioksid H₂S – sumporovodik WGR – omjer proizvedene slojne vode u odnosu na proizveden plin (engl. *water gas ratio*) IPR – indikatorska krivulja (*engl. inflow performance relationship*) VLP – krivulja istoka (*engl. vertical lift performance*)

CT – savitljivi tubing (engl. coiled tubing)

CPS – Centralna plinska stanica

RSH – merkaptani

POPIS KORIŠTENIH OZNAKA I JEDINICA

- Pt-dinamički tlak na ušću (bar)
- Pi-ležišni tlak (bar)
- Pwf-dinamički tlak na dnu bušotine (bar)

Qg – proizvodnja plina (m³)

Q_k – proizvodnja kondenzata (m³)

Qw – proizvodnja slojne vode (m³)

q - protok (m³/dan)

J-indeks proizvodnosti (m³/dan/bar)

WGR – omjer proizvedene slojne vode u odnosu na proizveden plin (cm³/m³)

- Vgw minimalna brzina protoka za pokretanje slojne vode (m³/s)
- ρ_w gustoća slojne vode (kg/m³)
- Pdr-tlak nizvodno od dubinske protočne spojnice, (bar)
- Pdsc tlak nizvodno od površinske sapnice, (bar)
- Pdsv-tlak nizvodno od dubinskog sigurnosnog ventila, (bar)
- Psep-tlak u separatoru, (bar)
- Pur-tlak uzvodno od dubinske protočne spojnice, (bar)
- Pusv-tlak uzvodno od dubinskog sigurnosnog ventila, (bar)
- P_k tlak kompresorske proizvodnje plina (bar)
- Pn minimalni dinamički tlak na ušću bušotina pri napuštanju plinskog ležišta (bar)

1. UVOD

Diplomski rad obuhvaća analizu trenutnog stanja proizvodnih parametara plinskih bušotina na području eksploatacijskog polja plina Molve te analizu stanja bušotina zbog budućeg pada ležišnog tlaka i povećanja udjela slojne vode u proizvodnji. Opisana je postojeća Centralna plinska stanica Molve (CPS Molve) te ležišta tzv. "Duboke Podravine" iz razloga što se sav fluid, koji se proizvede iz navedenih ležišta, transportira na daljnju preradu u Centralnu plinsku stanicu Molve. Opisan je tipski proizvodni sustav uzlaznog niza cijevi u bušotini (*engl. tubing*), ograničenja proizvodnog sustava poput udjela proizvedene slojne vode u proizvodnji prirodnog plina (*engl. water gas ratio*) te faktora trenja. Kod analize trenutnog stanja te budućeg stanja rada bušotina korišten je programski paket IPM-Prosper. IPM-Prosper paket nudi mogućnost analize trenutne proizvodnje, modeliranja dizajna bušotine (opremanje) te optimizaciju proizvodnje iz odabranih bušotina (<u>http://www.petex.com</u>).

Bušotine polja Molve podijeljene su u nekoliko grupa ovisno o vrijednosti tlaka na ušću bušotine budući da tlak na ušću uvjetuje hoće li razmatrane bušotine morati prolaziti fazu komprimiranja prirodnog plina. Iz svake grupe odabrana je po jedna bušotina koja će se dodatno analizirati u IPM-Prosper programskom paketu. Također će se analizirati mogućnost ugradnje proizvodnog niza malog promjera (*engl. velocity string*) na neku od bušotina kako bi se povećala brzina iznošenja fluida iz bušotine te na taj način smanjila proizvodnja slojne vode. U radu je opisan postupak ugradnje kompresora u krugu same bušotine te definirati njegove prednosti u radu budući da omogućuje proizvodnju plina pri niskom tlaku na ušću, veći iscrpak plina i dulji proizvodni vijek bušotine.

2. PROIZVODNJA PRIRODNOG PLINA IZ PLINSKO-KONDENZATNIH POLJA "DUBOKE PODRAVINE"

U ležišta tzv. "Duboke Podravine" spadaju ležišta Molve, Kalinovac, Stari Gradac i Gola Duboka.

Na plinskom polju Molve prirodni plin se trenutno proizvodi iz 15 bušotina, na polju Kalinovac iz 12 bušotina, iz 3 bušotine na polju Stari Gradac i iz 3 bušotine na polju Gola Duboka. Na slici 2-1. prikazan je raspored polja te pripadajućih bušotina (Tehnička dokumentacija INA d.d, 2017.).

Slika 2-1. "Duboka Podravina" – ležišta polja Molve, Kalinovac, Stari Gradac i Gola Duboka (Tehnička dokumentacija INA d.d, 2017.)

Trenutna dnevna proizvodnja na plinskom polju Molve iznosi 782 000 m³ plina, 35 m³ kondenzata te 895 m³ slojne vode. Dnevna proizvodnja na polju Kalinovac iznosi 524 000

m³ plina, 163 m³ kondenzata te 404 m³ slojne vode. Dnevna proizvodnja polja Stari Gradac je 62 300 m³ plina, 58 m³ kondenzata te 155 m³ slojne vode, a polja Gola Duboka 593 000 m³ plina, 66 m³ kondenzata te 123 m³ slojne vode (Tehnička dokumentacija INA d.d., 2017). Sastav ležišnog fluida na navedenim poljima prikazan je u tablici 2-1.

"DUBOKA PODRAVINA"							
MOLARNI	MOLVE	KALINOVAC	GOLA	STARI GRADAC			
UDIO			DUBOKA				
metan (%)	69,22	69,97	41,04	66,50			
etan (%)	3,26	6,76	1,76	7,19			
propan (%)	1,02	2,35	0,68	2,83			
i-butan (%)	0,2	0,63	0,17	0,92			
n-butan (%)	0,23	0,75	0,18	1,21			
i-pentan	0,09	0,39	0,05	0,67			
(%)							
n-pentan	0,06	0,34	0,08	0,63			
(%)							
heksan +	0,53	5,26	0,02	9,09			
(%)							
dušik (%)	1,64	1,37	2,38	0,94			
CO ₂ (%)	23,75	12,17	53,64	9,02			
H ₂ S (mg/m ³)	170	137	1130	517			

Tablica 2-1. Sastav ležišnog fluida iz plinskih i plinsko-kondenzatnih polja "DubokePodravine" (Simon, 2012.)

Na slici 2-2. prikazano je kretanje proizvodnje plina, kondenzata i slojne vode na polju Molve u proteklih 35 godina proizašlo iz vlastitog istraživanja na temelju izvješća godišnje proizvodnje prirodnog plina, kondenzata te slojne vode. Vidljivo je da je maksimalna proizvodnja prirodnog plina bila 1995. godine te da se od 2007. godine znatno povećala proizvodnja slojne vode.

Slika 2-2. Kretanje proizvodnje prirodnog plina, kondenzata i slojne vode na polju Molve

2.1. Centralna plinska stanica Molve

Otkrićem prirodnog plina u ležištima "Duboke Podravine", bile su nužne složene i rizične aktivnosti u okolišu (istraživanje, pridobivanje, transport, obrada plina) zbog sastava ležišnog fluida. Primjenom najsuvremenijih tehnologija, materijala i poštujući stroge ekološke zahtjeve, ovi rizici su smanjeni na minimum.

Plinsko polje Molve otkriveno je 1973. godine, a privedeno je u proizvodnju 1981. godine preko Centralne plinske stanice Molve I, radnog kapaciteta 1×10^6 m³/dan plina. Daljnjim otkrićem rezervi na polju Molve javila se potreba za izgradnjom CPS Molve II, kapaciteta 3×10^6 m³/dan plina, a ista je puštena u rad 1984. godine. Nakon novih otkrivenih rezervi plina i kondenzata na poljima Molve, Kalinovac i Stari Gradac izgrađeno je postrojenje CPS Molve III i 5 plinskih stanica s pripadajućim bušotinama. Postrojenje CPS Molve III je kapaciteta 5×10^6 m³/dan plina, a cijeli sustav dobave prirodnog plina (tzv. Projekt Podravina) je pušten u rad 1993. godine (Tehnička dokumentacija INA d.d, 1993.).

CPS Molve I, CPS Molve II i CPS Molve III danas imaju zajednički naziv Objekti prerade plina Molve.

Centralne plinske stanice izgrađene su iz razloga što prirodni plin iz ležišta "Duboke Podravine", pored ugljikovodika sadrži i niz štetnih primjesa - ugljični - dioksid (ugljik (IV)-oksid, CO₂), sumporovodik (H₂S,) merkaptane (RSH), živu (Hg) i slojnu vodu, koje se, radi zadovoljenja kvalitete izlaznog proizvoda tj. prirodnog plina i sigurnosti rada procesnih postrojenja, izdvajaju tehnološkim postupcima i na kraju zbrinjavaju bez štetnog utjecaja na okoliš.

Slojna voda, koja se zajedno s plinom i plinskim kondenzatom pridobiva iz ležišta, izdvaja se postupkom separacije. Separirana voda, sustavom klipnih pumpi i cjevovoda se utiskuje u utisne bušotine polja Molve i Kalinovac. U tu namjenu na polju Molve opremljeno je 7 utisnih bušotina, a na polju Kalinovac i Gola duboka po jedna. Slojna se voda utiskuje u propusne slojeve na dubinu oko 1300 m, iznad kojih se nalazi barijera nepropusnih slojeva (Zavod za javno zdravstvo Koprivničko-križevačke županije, 2013.).

3. PROIZVODNI SUSTAV PLINSKIH I NAFTNIH BUŠOTINA

Dizajn proizvodnog sustava bušotina ne može se podijeliti na dva neovisna dijela, ležište i sustav cijevi, budući da količina plina koja protječe iz ležišta u bušotinu ovisi o padu tlaka u uzlaznim cijevima i priključnom plinovodu, a pad tlaka u sustavu cijevi ovisi o količini fluida. Stoga se cjelokupni proizvodni sustav mora analizirati kao jedinstvena cjelina.

Jedna od najvažnijih komponenti ukupnog proizvodnog sustava bušotine je proizvodni ili uzlazni niz cijevi (*engl. tubing*). Gotovo 80% od ukupnog pada tlaka u proizvodnome nizu može biti utrošeno na podizanje fluida s dna bušotine na površinu (Beggs, 2003.). Na slici 3-1. prikazani su mogući gubitci (padovi) tlaka u proizvodnom sustavu bušotine.

Slika 3-1. Mogući gubitci tlaka u proizvodnom sustavu bušotine (Čikeš, 2015).

Pad tlaka u uzlaznom nizu cijevi po jedinici dužine naziva se gradijent tlaka. Opća jednadžba gradijenta tlaka, primjenjiva za bilo koji fluid koji protječe u cijevi određenog nagiba prema horizontali, dana je jednadžbom (3.1.) (Čikeš, 2015):

$$\frac{dp}{dL} = \left(\frac{dp}{dL}\right)A + \left(\frac{dp}{dL}\right)H + \left(\frac{dp}{dL}\right)F$$
(3-1.)

Komponenta $\left(\frac{dp}{dL}\right)$ A predstavlja gradijent tlaka uslijed kinetičke energije ili djelovanja ubrzanja, komponenta $\left(\frac{dp}{dL}\right)$ H predstavlja gradijent tlaka gustoće stupca smjese plina i kapljevine dok komponenta $\left(\frac{dp}{dL}\right)$ F predstavlja gradijent tlaka uslijed trenja. Približni udio svake od ovih komponenata u ukupnom padu tlaka u bušotini, za naftne i plinske bušotine dan je u tablici 3-1.

Komponenta	Udio u ukupnom gub	Udio u ukupnom gubitku tlaka u tubingu (%)						
gubitka tlaka	Naftne bušotine	Plinske bušotine						
Hidrostatička	70 do 90	20 do 50						
(H)								
Zbog trenja	10 do 30	30 do 70						
(F)								
Zbog	0 do 10	0 do 10						
akceleracije								
(A)								

Tablica 3-1. Udio pojedinih komponenti u ukupnom gubitku tlaka u tubingu (Beggs, 2003).

Gustoća fluida u naftnim bušotinama je znatno veća nego u plinskim, a budući da hidrostatička komponenta ovisi o zaostajanju kapljevine, najvažniji parametar kojeg treba vrjednovati u naftnoj bušotini je koeficijent zaostajanja kapljevine. U plinskim bušotinama, gustoća fluida je manja, ali se plin obično giba relativno velikom brzinom, što generira veće gubitke zbog trenja u cijevi. To iziskuje dobro poznavanje vrijednosti hrapavosti cijevi da bi se odredio faktor trenja (Čikeš, 2015).

4. NODAL ANALIZA

Koncept analize sustava, kojeg se često naziva NODAL analizom, primjenjuje se već odavno za analizu performansi različitih sustava sastavljenih od interaktivnih komponenti, a njegova primjena na proizvodne sustave nafte i plina datira od šezdesetih godina prošlog stoljeća. Postupak se sastoji od odabira razdjelne točke ili čvorišta (*engl. node*) u proizvodnom sustavu i podjele sustava u toj točki na dvije sekcije (Čikeš, 2015).

Sve komponente smještene uzvodno od odabranog čvorišta, tj. od čvorišta do ležišta, čine sekciju utoka fluida u čvorište (*engl. inflow*), dok sekciju istjecanja fluida iz čvorišta (*engl. outflow*) čine sve komponente nizvodno od čvorišta, tj. od odabranog čvorišta do separatora (Čikeš, 2015). U diplomskom radu odabrana je točka čvorišta na dnu bušotine što je na slici 4-1. označeno s brojem 6. Odabirom čvorišta u toj točki, sustav je podijeljen na komponentu u kojoj dominira ležište i komponentu u kojoj dominira cijevni sustav.

Slika 4-1. Smještaj najčešćih čvorišta proizvodnog sustava bušotine (Čikeš, 2015)

Primjena ovakvog sustava služi za izbor proizvodnog niza cijevi, predviđanje utjecaja crpljenja ležišta na proizvodni kapacitet bušotine, izbor površinskog cjevovoda, dimenzioniranje površinske sapnice, dimenzioniranje dubinskog sigurnosnog ventila, analizu postojećih proizvodnih sustava bušotina u svrhu otkrivanja ograničenja protoka, odabir metode umjetnog podizanja fluida, vrjednovanje stimulacijskih zahvata u bušotini, analizu utjecaja načina perforiranja bušotine itd. (Čikeš, 2015.).

Svrha Nodal analize je da se trenutačna proizvodnja (q) grafički prikaže u funkciji dinamičkog tlaka na dnu bušotine (P_{wf}). Takav grafički prikaz naziva se indikatorska ili IPR krivulja (*engl. inflow perfomance relationship*) koja definira odnos protoka i dinamičkog tlaka na dnu bušotine u određenom vremenu. IPR ili indikatorska krivulja zapravo je grafički prikaz indeksa proizvodnosti J (Čikeš, 2015.).

$$\mathbf{J} = \frac{q}{\mathrm{Pi-Pwf}} \tag{4-1.}$$

gdje su :

- J indeks proizvodnosti (m³/dan/bar)
- q protok fluida (m³/dan)

P_i – ležišni tlak (bar)

Pwf – dinamički tlak na dnu bušotine (bar)

Indikatorska ili IPR krivulja služi također kao krivulja utoka u odabrano čvorište kod Nodal analize (krivulja ležišta), dok VLP krivulja (*engl. vertical lift performance*) ili tubing krivulja služi kao krivulja istjecanja iz odabranog čvorišta.

VLP krivulja ovisi o odabiru vanjskog promjera proizvodnog niza, debljini stjenke proizvodnog niza, gustoći, viskoznosti i brzini protjecanja fluida, duljini proizvodnog niza cijevi, tlaku na ušću bušotine, omjeru proizvedene slojne vode i proizvedenog fluida, količini otopljenog plina u nafti te količini protoka proizvodnog fluida. Promjenom nekih od navedenih parametara mijenja se VLP krivulja te se tako dimenzionira i optimizira proizvodni sustav bušotine (Brkić, 2016.).

Sjecište IPR i VLP krivulja daje protočni kapacitet sustava proizvodnih bušotina.

Na slici 4-2. prikazan je grafički način određivanja protočnog kapaciteta proizvodnog sustava.

Slika 4-2. Određivanje protočnog kapaciteta proizvodnog sustava bušotine (Čikeš, 2015)

5. PODJELA BUŠOTINA NA EKSPLOATACIJSKOM POLJU MOLVE

Bušotine na eksploatacijskom polju Molve mogu se, s obzirom na dinamički tlak na ušću, podijeliti u četiri grupe (Tehnička dokumentacija INA d.d 2017.):

- 1. bušotine s visokim dinamičkim tlakom i s velikom proizvodnjom plina,
- 2. bušotine sa srednjim dinamičkim tlakom i sa srednjom proizvodnjom plina,
- 3. bušotine s niskim dinamičkim tlakom i s niskom proizvodnjom plina, te
- 4. bušotine s niskim dinamičkim tlakom u povremenom radu.

Bušotine su podijeljene na ovaj način s obzirom na broj stupnjeva komprimiranja plina korištenjem instaliranih kompresora. Radni tlak Centralne plinske stanice Molve iznosi 48 bar.

5.1. Bušotine s visokim dinamičkim tlakom i s velikom proizvodnjom plina

U ovu skupinu spadaju bušotine Mol-11, Mol-27, Mol-34, Mol-40 i Mol-19 koje imaju tlak na ušću veći od 50 bar. Navedene bušotine spadaju u skupinu bušotina kod kojih ne treba komprimirati plin na ušću. U tablici 5-1. prikazana je dnevna proizvodnja navedenih bušotina s pripadajućim tlakom ušća i WGR-om.

Tablica 5-1. Dnevna proizvodnja iz bušotina s visokim dinamičkim tlakom i pripadajućimWGR-om (Tehnička dokumentacija INA d.d 2017.)

Bušotina	P _t (bar)	Q _g (m ³)	$Q_k(m^3)$	$Q_w(m^3)$	WGR (cm ³ /m ³)
Mol-11	66	27 300	2	43	1569
Mol-27	68	103 574	6	91	870
Mol-34	60	99 990	2	219	2190
Mol-40	50	76 700	3	79	1027
Mol-19	55	62 000	2	54	870

5.2. Bušotine sa srednjim dinamičkim tlakom i sa srednjom proizvodnjom plina

U ovu skupinu spadaju bušotine Mol-9, Mol-29, Mol-31R, Mol-33R, Mol-37, Mol-41, i Mol-1i s tlakom na ušću između 25-50 bar. Plin proizveden iz ovih bušotina mora proći barem jedan stupanj kompresije kako bi se mogao transportirat na Centralnu plinsku stanicu Molve. U tablici 5-2. prikazana je dnevna proizvodnja bušotina s pripadajućim tlakom ušća i WGR-om.

Dučatina	D (har)	$O(m^3)$	O_{1} (m ³)	$O(m^3)$	WCD (om ³ /m ³)
Dusotilia	$\mathbf{r}_{t}(\mathbf{Dar})$	$Q_{g}(\mathbf{m}^{*})$	$Q_k(\mathbf{m}^*)$	$Q_{w}(\mathbf{m}^{*})$	
Mol-9	31	24 100	0	112	4236
Mol-29	28	32 900	1	14	424
Mol-31R	30	66 100	3	4	60
Mol-33R	26	46 000	3	7	152
Mol-37	47	63 703	2	148	2239
Mol-41	28	36 500	2	2	55
Mol-1i	30	75 100	4	23	305

Tablica 5-2. Dnevna proizvodnja bušotina sa srednjim dinamičkim tlakom i pripadajućimWGR-om (Tehnička dokumentacija INA d.d 2017.)

5.3. Bušotine s niskim dinamičkim tlakom i s niskom proizvodnjom plina

U ovu skupinu spadaju bušotine Mol-20R, Mol-25 i Mol-42 koje imaju tlak na ušću od 2,5 do 25 bar. Plin proizveden iz ovih bušotina mora proći više stupnjeva kompresije kako bi se mogao transportirati na Centralnu plinsku stanicu Molve. U tablici 5-3. prikazana je dnevna proizvodnja bušotina s pripadajućim tlakom ušća i WGR-om.

Tablica 5-3. Dnevna proizvodnja bušotina s niskim dinamičkim tlakom s pripadajućimtlakom ušća i WGR-om (Tehnička dokumentacija INA d.d 2017.)

Bušotina	P _t (bar)	$Q_g(m^3)$	$Q_k(m^3)$	$Q_w(m^3)$	WGR (cm ³ /m ³)
Mol-20R	4	8 600	1	12	1379
Mol-25	22	31 700	2	8	252
Mol-42	29	21 026	1	56	2670

5.4. Bušotine s niskim dinamičkim tlakom u povremenom radu

U ovu skupinu spadaju bušotine Mol-12α, Mol-15, Mol-26α i Mol-35R koje rade povremeno zbog loših fizičkih karakteristika ležišta u području njihovog drenažnog radijusa i visokog udjela slojne vode u proizvodnji. Puštaju se u rad kad se akumulira dovoljna ležišna energija za pokretanje proizvodnje i rade do samo ugušenja (rad u ciklusima).

6. ODREĐIVANJE RADNIH TOČAKA BUŠOTINA KORIŠTENJEM IPM-PROSPER PROGRAMSKOG PAKETA

Za određivanje radnih točaka bušotina korišten je dostupan IPM-Prosper programski paket. Ulazni podaci u IPM.Prosper programskom paketu koriste se kako bi se točno odredila promjena vrijednosti tlaka i temperature iz ležišta kroz bušotinu i proizvodni niz sve do površine. Dobiveni izlazni podaci prikazuju proizvodnju fluida, dinamičke tlakove u bušotini te IPR i VLP krivulju kojima je sjecište radna točka bušotine.

U nastavku rada napravljen je izračun radne točke (protočni kapacitet) za po jednu bušotinu iz svake grupe prema podjeli iz prethodnog poglavlja (bušotine Mol-27, Mol-37 i Mol-42), osim onih bušotina koje se povremeno puštaju u rad.

6.1. Bušotina Mol-27

U bušotini Mol-27 ugrađen je proizvodni niz promjera 88,9 mm (3 $\frac{1}{2}$ "). Ležišni tlak (P_i) iznosi 135,5 bar, tlak na ušću (P_t) 68,2 bar, a trenutni WGR iznosi 870 cm³/m³.

NAZIV BUŠOTINE:	2					
Mal 27	I BRC		L	н	OD	ID
IVIOI - 27	REDN		m	m	mm	mm
	1	V.IEŠALICA TUBINGA " WKM " 7 ½," x 3 ½" ABTC-4S 12 95# (nova)	0.28	0.28		
1	2	KRATKI TI JBING 3 ¹ / " ABTC-4S 12 95#	1 99	2 27	88.9	70.5
	3	KRATKI TUBING (2 kom) + TUBING (3 kom x 6 23 m) 3 ¹ /." ABTC-4S 12 95#	23 32	2,27	88.9	70.5
2		KRATKI TUBING 3 ¹ / " ABTC-4S 12 95#	2.31	27,00	88.0	70.5
3	5	PROTOČNA SPO INICA 3 ¹ / " ABTC-AS 12 95#	2.66	20,56	114.0	67.3
4	6	DSV "Wellstar" ID=2 562" 3 ¹ / "ABTC-4S 12 95#	1.38	31 94	136.0	65.07
5	7	PROTOČNA SPO INICA 3 ¹ / " ABTC-4S 12 95#	1 12	33.06	114.0	68.5
	8	$TUBING 3^{1}/."ABTC-4S 12.95# (4 kom)$	47.94	81.00	88.9	70.5
6	9	PRUFLAZ 3 ¹ /" ABTC-4S 12 95# x 3 ¹ /" ABTC-4S 10 3#	0.80	81.80	88.9	74.5
7	10	NIZ TUBINGA 3 ⁻¹ /." ABTC-4S 10.3# (21 kom.)	244.72	326.51	88.9	74.5
	11	PRIJELAZ 3 ¹ /." ABTC-4S 10.3# x 3 ¹ /." ABTC-4S 9.3#	0.69	327.20	88.9	75.9
9	12	NIZ TUBINGA 3 ¹ /." ABTC-4S 9.3# (246 kom.)	2817.34	3144 54	88.9	75.9
10	13	PRUFLAZ 3 ¹ / "ABTC-4S 9 3# x 3 ¹ / "ABTC-4S 12 95#	0.79	3145.33	88.9	70.5
11	14	KRATKI TUBING 3 ¹ /." ABTC-4S 12 95#	2.31	3147 64	88.9	70.5
	15	KLIZNA VRATA "RDH" 3 '/." ABTC-4S 12.95# ID=2.562"	1.03	3148.66	120.0	65.07
12	16	TUBING 3 1/2" ABTC-4S 12 95# (1 kom.)	9.93	3158.59	88.9	70.5
12	17	PR//FLAZ 3 ¹ / " ABTC_4S 12 95# x 2 ⁷ / " New VAM 6 4#	0.31	3158.90	101.6	60.5
	18	I OKATOR ".I"-slot 2 ⁷ / " New VAM 6 4# + ATR-RTR brivene jedinice i vodilica tubinga	1.06	3159.96	101,6 LOKATOR	60.5
15	19	"TW/B" PERMANENTNI PAKER ID=3.25" A" 10.9# New VAM	0.90	3160.85	82,55 BRIVE	82.55
	20	PRUELAZ 4" 13 2# PIN x PIN New VAM	1.05	3161.90	101.8	82.7
17	21	PRUELAZ 4" VAM AG 13# x 4 1/ " 13 5# VAM AG	0.20	3162 11	115.0	87.7
H E	22	$PRUELAZ 4^{-1}/VWAAG 126# \times 5^{\circ} 15# VAMAG$	0.26	3162.37	127.0	104.0
19	23	PRIJELAZ ZA OBUŠIVANJE PAKERA 5" 15# VAM AG	2.46	3164.83	142.0	111.7
	24	PRUELAZ 5" 15# VAMAG × 3 ¹ /" 9 3# ABTC-4S	0.10	3164.92	127.0	69.8
	25	PRIJELAZ 3 ¹ /." 9.3# ABTC-4S x 2 ⁷ /." New VAM 6.4#	0.38	3165.31	100.0	60.2
	26	TUBING 2 ⁷ / ₂ " New VAM 6.4# (1 kom.)	9.65	3174.96	73.02	60.3
	27	"X" PRIJELAZ ZA OGLAGANJE 2 ⁷ / ₆ " New VAM 6.4# ID=2.313"	0.35	3175.30	82.5	58.75
	28	TUBING 2 ⁷ / _a " New VAM 6.4# (1 kom.)	9.64	3184.94	73,02	60.7
20	29	VODILICA ZA ALATKE NA ŽICI 2 ⁷ /." New VAM 6.4#	0.80	3185.74	127.0	60.5
22	30	· · · · · · · · · · · · · · · · · · ·	.,	,		
23						
- 25						
26						
27						
29						
3220,0 m						
3260.0 m						
CT						
3.	377 m					
3395,5	9 m - L	DNO U KOLONI				
3549	.6 m -	PETA KOLONE				
3550 () m - 「					
3335,0	, L					

Na slici 6-1. prikazana je ugrađena oprema na bušotini Mol-27

Slika 6-1. Ugrađena oprema u bušotini Mol-27 (Tehnička dokumentacija INA d.d., 2017)

PVT - INPUT DATA (FFO MOL-27.Out) (Condensate - Black Oil)									
Done Cancel Tables Match Data Matching Correlations Calculate Save Import Composition Help									
Use Tables Export									
_ Input Parameters			Reservoir Data						
Separator Pressure	48.8	BARg	Dewpoint at Reservoir Temp	288.987	BARg				
Separator Temperature	41	deg C	Reservoir Temperature	180	deg C				
Separator GOR	17020.3	Sm3/Sm3	Deservoir Dressure	135.5	BADa				
Separator Gas Gravity	0.8445	sp. gravity		155.5	DARg				
Tank GOR	51	Sm3/Sm3							
Tank Gas Gravity	1.1386	sp. gravity							
Condensate Gravity	775.51	Kg/m3	- Correlations						
Water to Gas Ratio	0.000877	m3/m3	Gas Viscosity	Lee et al	_				
Water Salinity	30000	ppm							
Mole Percent H2S	0.065	percent	water vapour Data		-				
Mole Percent CO2	24.972	percent	Minimum WGR	ļ					
Mole Percent N2	1.61	percent	Calculate Minimum WGR	Plot					

Na slici 6-2. prikazani su ulazni podaci potrebni za izračun radne točke bušotine Mol-27.

Slika 6-2. Ulazni podaci IPM-Prosper analize

Na slici 6-3. prikazani su podaci korišteni za proračun IPR krivulje.

Slika 6-3. Podaci potrebni za izračun IPR krivulje

IPR krivulja dobivena je korištenjem metode MultiRate Jones zbog nedovoljno PVT ulaznih podataka, dok je VLP krivulja dobivena korištenjem metode Petroleum Experts 3. Sjecište IPR i VLP krivulje se najbolje podudaralo kod usporedbe s posljednjim realnim mjerenim podacima.

Metode MultiRate Jones i Petroleum Experts 3 korištene su u IPM-Prosper analizi kod sve tri razmatrane bušotine (bušotine Mol-27, Mol-37 i Mol-42). Na slici 6-4. grafički je prikaz trenutne radne točke bušotine Mol-27.

Slika 6-4. Trenutna radna točka bušotine Mol-27

Dinamički tlak na dnu (P_{wf}) bušotine iznosi 127 bar, a ostvarena depresija na sloj 8,5 bar. Pri ovim uvjetima bušotina Mol-27 proizvodi 103 574 m³/dan plina (Q_g), 6 m³/dan kondenzata (Q_k) i 91 m³/dan slojne vode (Q_w).

6.2. Bušotina Mol-37

U bušotini Mol-37 ugrađen je proizvodni niz promjera 88,9 mm (3 $\frac{1}{2}$ "). Ležišni tlak (P_i) iznosi 149,5 bar, tak na ušću (P_t) 47 bar, a trenutni WGR 2239 cm³/m³. Na slici 6-5. prikazana je ugrađena oprema na bušotini Mol-37

Slika 6-5. Ugrađena oprema na bušotini Mol-37 (Tehnička dokumentacija INA d.d., 2017)

PVT - INPUT DATA (FFO MOL-37_SB_velocity_TT_1.Out) (Condensate - Black Oil)								
Done Cancel Tables Match Data Matching Correlations Calculate Save Import Composition								
Use Tables Export								
-Input Parameters			-Reservoir Data					
Separator Pressure	49.7	BARg	Dewpoint at Reservoir Temp	288.987	BARg			
Separator Temperature	59	deg C	Reservoir Temperature	180	deg C			
Separator GOR	27301.5	Sm3/Sm3	Reservoir Pressure	149.5	BARg			
Separator Gas Gravity	0.8689	sp. gravity		1.010	bring			
Tank GOR	35.72	Sm3/Sm3						
Tank Gas Gravity	1.0891	sp. gravity						
Condensate Gravity	786	Kg/m3	Correlations					
Water to Gas Ratio	0.002293	m3/m3	Gas Viscosity	Lee et al	<u> </u>			
Water Salinity	30000	ppm						
Impurities								
Mole Percent H2S	0.065	percent	Minimum WGR	6.3455e-5	m3/m3			
Mole Percent CO2	24.885	percent						
Mole Percent N2	1.496	percent	Calculate Minimum WGR	Plot				

Na slici 6-6. prikazani su ulazni podaci potrebni za izračun radne točke bušotine Mol-37.

Slika 6-6. Ulazni podaci IPM-Prosper analize

Na slici 6-7. prikazani su podaci korišteni za proračun IPR krivulje.

Slika 6-7. Podaci potrebni za izračun IPR krivulje

Na slici 6-8. grafički je prikaz trenutne radne točke bušotine Mol-37.

Slika 6-8. Trenutna radna točka bušotine Mol-37

Dinamički tlak na dnu bušotine (Pwf) iznosi 113 bar, a ostvarena depresija na sloj 36,5 bar. Pri ovim uvjetima bušotina Mol-37 proizvodi 63 703 m³/dan plina (Qg), 2 m³/dan kondenzata (Qk) i 148 m³/dan slojne vode (Qw).

6.3. Bušotina Mol-42

U bušotini Mol-42 ugrađen je proizvodni niz promjera 73,025 mm (2 7/8"). Ležišni tlak (P_i) iznosi 133 bar, tak na ušću (P_t) 29 bar, trenutni WGR iznosi 2670 cm³/m³. Na slici 6-9. prikazana je ugrađena oprema na bušotini Mol-42

naziv bušotine: Mol - 42	EDNI BROJ	PROIZVODNA OPREMA	L	н	OD	ID
	R	· · · · · · · · · · · · · · · · · · ·	m	m	mm	mm
	1	VJESALICA TUBINGA CAMERON "FMTBS" 7 1/16" x 3 1/2" New VAM 12,7#	0,518	0,518	177,5	
	2	KRATKI TUBING - PRIJELAZ 3 ½" New VAM 12,7# x 3 ½" ABTC-4S 12,95#	2,012	2,53	89,0	69,8
2	3	KRATKI TUBING 3 ½" ABTC-4S 12,95# (2 kom.)	6,24	8,77	89,0	69,8
3	4	10BING 3 72" AB1C-45 12,95# (2 KOTT.)	23,10	29,11	89,0	69,8
4	5	KRATKI TUBING 3 ½" ABTC-4S 12,95# (T kom.)	2,31	31,42	89,0	69,8
5	6	PROTOCNA SPOJNICA 3 1/2" ABTC-45 12,95# (duža)	2,656	34,07	114,5	68,2
6	7	DSV OTIS "FMR" 3 ½" ABTC-4S 12,95# ID = 2,562"	2,407	36,48	142,0	65,07
7	8	PROTOCNA SPOJNICA 3 1/2" ABTC-4S 12,95# (kraća)	1,141	37,62	114,5	68,2
8	9	PRIJELAZ 3 1/2" ABTC-4S 9,3# (z) x 2 1/8" New Vam 6,4# (m)	0,30	37,92	100,5	60,5
9	10	NIZ TUBINGA 2 7/8" New Vam 6,4# (260 kom.)	3075,84	3113,76	73,0	61,0
	11	KRATKI TUBING 2 %" New Vam 6,4# (1 kom.)	2,12	3115,88	73,0	61,0
	12	KLIZNA VRATA OTIS "YXD" 2 γ_{a} " New Vam 6,4# TD = 2,313"	1,32	3118,22	98,5	58,75
	13	TUBING 2 '/ ₈ " New Vam 6,4# (1 kom.)	11,84	3130,06	73,0	61,0
	14	GRANICNIK "J-SLOT" s "RTR" i "ATR" BRTVENOM JEDINICOM	1,29	3131,35	82,55	60,5
	15	VODILICA TUBINGA 2 1/8" New Vam 6,4#	0,14	3131,49	81,4	60,5
10	16	PERMANENTNI PAKER "TWB" 7" 32-38# ID=3,25"	1,104	3132,59	144,6	82,55
	17	PRIJELAZ 4" Vam AG 13# (m) x 4 ½" Vam AG 13,5# (m)	0,16	3132,75	114,3	82,55
	18	PRIJELAZ ZA OBUŚIVANJE PAKERA ID = 4,0"	2,446	3134,60	127,0	101,6
	19	PRIJELAZ 4 ½" Vam AG 13,5# (m) x 2 ½" New Vam 6,4# (m)	0,20	3134,80	114,5	60,3
	20	TUBING 2 ⁷ / ₈ " New Vam 6,4# (1 kom.)	11,61	3146,41	73,0	61,0
	21	"X" PRIJELAZ ZA ODLAGANJE 2 7/8" New Vam 6,4# ID = 2,313"	0,35	3146,76	82,5	58,75
	22	TUBING 2 ⁷ / ₈ " New Vam 6,4# (1 kom.)	11,85	3158,61	73,0	61,0
	23	VODILICA ZA ALATKE NA ŽICI 2 $\frac{7}{8}$ " New Vam 6,4#	0,31	3158,92	95,0	59,0
	24	PROIZVODNA KOLONA 7"		3175,0	177,8	159,4
11	25					
13 14 16 16 15 17 18 19 20 21 22 21 22 23						
apout uedo 3290.0 m Talog 3330	CT nasje oješčan 0 m	ed prilikom ispiranja og čepa 12/2006.				

Slika 6-9. Ugrađena oprema na bušotini Mol-42 (Tehnička dokumentacija INA d.d 2017.)

PVT - INPUT DATA (FFO MOL-42.Out) (Condensate - Black Oil)									
Done Cancel Tables Match Data Matching Correlations Calculate Save Import Composition									
Use Tables Export									
- Input Parameters			Reservoir Data						
Separator Pressure	6	BARg	Dewpoint at Reservoir Temp	288.987	BARg				
Separator Temperature	62	deg C	Reservoir Temperature	180	deg C				
Separator GOR	69267	Sm3/Sm3	Deservoir Dressure	132.883	BADa				
Separator Gas Gravity	0.8803	sp. gravity		152.005	DARG				
Tank GOR	2.11	Sm3/Sm3							
Tank Gas Gravity	0.9422	sp. gravity							
Condensate Gravity	785	Kg/m3	Correlations						
Water to Gas Ratio	0.00267	m3/m3	Gas Viscosity	Lee et al	_				
Water Salinity	30000	ppm							
			u u						
Mole Percent H2S	0.0065	percent	Minimum WCD						
Mole Percent CO2	25.148	percent	Minimum WGR						
Mole Percent N2	1.585	percent	Calculate Minimum WGR	Plot					

Na slici 6-10. prikazani su ulazni podaci potrebni za izračun radne točke bušotine Mol-42.

Slika 6-10. Ulazni podaci IPM-Prosper analize

Na slici 6-11. prikazani su podaci korišteni za proračun IPR krivulje.

Slika 6-11. Podaci potrebni za izračun IPR krivulje

Na slici 6-12. grafički je prikaz trenutne radne točke bušotine Mol-42.

Slika 6-12. Trenutna radna točka bušotine Mol-42

Dinamički tlak na dnu bušotine (P_{wf}) iznosi 99 bar, a ostvarena je depresija na sloj 34 bar. Pri ovim uvjetima bušotina Mol-42 proizvodi 21 026 m³/dan plina (Q_g), 1 m³/dan kondenzata (Q_k) i 56 m³/dan slojne vode (Q_w).

7. IPM-PROSPER ANALIZA ZA BUDUĆE STANJE PADA LEŽIŠNOG TLAKA I POVEĆANJA WGR-A

Eruptivni način eksploatacije plinskog ili plinsko-kondenzatnog polja najdulji je i najvažniji period eksploatacije. Tada je izdašnost bušotine dobra, a ležišna energije dovoljna za kontinuiranu proizvodnju fluida koji se sastoji od prirodnog plina, kondenzata i vode. Kad se proizvodnjom smanji tlak u ležištu i promijene uvjeti dotoka fluida, potrebno je promijeniti brzinu protoka fluida ili dovesti dodatnu energiju u ležište da bi se osiguralo podizanje kapljevite faze (Beggs, 1985).

Pri proizvodnji prirodnog plina uvijek se pojavljuje više ili manje kapljevine (kondenzata), koja se sastoji od viših ugljikovodika što su nastali zajedno s prirodnim plinom. Agregatno stanje tih viših ugljikovodika ovisi o slojnom tlaku i temperaturi, mijenja se tijekom protjecanja fluida od ležišta do površinskih uređaja. Kapljevina koja protječe zajedno s plinom, zbog trenja i veće gustoće, zaostaje u protjecanju, te uvjetuje čepoliko protjecanje. To otežava strujanje plina, usporava protjecanje i guši bušotinu (Beggs, 1985).

Problem podizanja kapljevine naročito je izražen u plinsko-kondenzatnim ležištima gdje je dotok kondenzata u bušotinu znatan te u ležištima s visokom proizvodnjom slojne vode u odnosu na proizvedeni prirodni plin – WGR faktor (*engl. water gas ratio*).

Da bi se spriječilo nakupljanje kondenzata, odnosno slojne vode na dnu bušotine, potrebno je odabrati promjer uzlaznih cijevi koji osigurava brzinu protoka dovoljnu za iznošenje kapljica i sloja kapljevine. Budući da se gustoće kondenzata i vode međusobno razlikuju, potrebno je postići različite brzine iznošenja za te dvije vrste kapljevine. Minimalna brzina protoka za pokretanje slojne vode iznosi (Beggs, 1985):

$$Vgw_{=1,23} \frac{\left(\frac{\rho w}{16} - 0,0405 * Pt\right)^{0,25}}{(0,0405 * Pt)^{0,5}}$$
(7-1.)

gdje su

 V_{gw} - minimalna brzina protoka za pokretanje slojne vode (m³/s)

 ρ_w – gustoća slojne vode (kg/m³)

Pt – dinamički tlak na ušću bušotine (Pa)

U daljnjem radu korišten je IPM-Prosper programski paket za predviđanje budućeg stanja smanjenja ležišnog tlaka i povećanja WGR-a na bušotinama Mol- 27, Mol-37 i Mol-42. Kao rezultat analize modeliranja dobiva se točna vrijednost tlaka i WGR-a do koje bušotina može proizvoditi pri zadanim uvjetima.

7.1. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-27

Na slici 7-1. prikazano je predviđanje pada ležišnog tlaka (Pi) uz konstantan trenutni WGR i tlak na ušću (Pt) za bušotinu Mol-27.

Slika 7-1. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-27

Analizom dobivenih rezultata, uz pretpostavljen daljnji pad ležišnog tlaka (P_i) na vrijednosti od 110 bar te 90 bar uz konstantni trenutni WGR i tlak na ušću bušotine (P_t) bušotina će prestati proizvoditi, jer ležišni tlak nije dovoljan za iznošenje fluida iz bušotine (IPR i VLP krivulja se ne sijeku).

7.2. Predviđanje povećanja WGR-a na bušotini Mol-27

Na slici 7-2. prikazano predviđanje povećanja WGR-a uz konstantan trenutni ležišni tlak (P_i) i tlak na ušću (P_t) za bušotinu Mol-27.

Slika 7-2. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-27

Analizom dobivenih rezultata, s povećanjem WGR-a na vrijednost od 1000 cm³/m³ smanjit će se proizvodnja plina sa 103 574 m³/dan na 92 697 m³/dan (Q_g), proizvodnja kondenzata sa 6 m³/dan na 5,4 m³/dan (Q_k) dok će se proizvodnja slojne vode povećati s 91 m³/dan na 93 m³/dan (Q_w). Dinamički tlak na dnu bušotine povećat će se sa 127 bar na 128 bar. Daljnjim povećanjem WGR-a do vrijednosti od 2000 cm³/m³ neće više biti moguće proizvoditi iz bušotine Mol-27 jer neće biti moguće ostvariti minimalnu brzinu protjecanja potrebnu za iznošenje fluida iz bušotine (IPR i VLP krivulje se ne sijeku).

7.3. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-37

Na slici 7-3. prikazano predviđanje pada ležišnog tlaka (P_i) uz konstantan trenutni WGR i tlak na ušću (P_t) za bušotinu Mol-37.

Slika 7-3. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-37

Analizom dobivenih rezultata, uz pretpostavljeni daljnji pad ležišnog tlaka na vrijednost od 125 bar (P_i) uz konstantni trenutni WGR i tlak na ušću bušotine (P_t) smanjit će se proizvodnja plina sa 63 703 m³/dan na 32 501 m³/dan (Q_g), proizvodnja kondenzata s 2 m³/dan na 1 m³/dan (Q_k) te proizvodnja vode sa 148 m³/dan na 75,5 m³/dan (Q_w). Dinamički tlak na dnu bušotine smanjit će se sa 113 bar na 108 bar (P_{wf}). Daljnjim padom ležišnog tlaka na vrijednost od 100 bar (P_i) razmatrana bušotina Mol-37 će prestati proizvoditi jer ležišni tlak nije dovoljan za iznošenje fluida iz bušotine.

7.4. Predviđanje povećanja WGR-a na bušotini Mol-37

Na slici 7-4. prikazano predviđanje povećanja WGR-a uz konstantan trenutni ležišni tlak (P_i) i tlak na ušću (P_t) za bušotinu Mol-37.

Slika 7-4. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-37

Analizom dobivenih rezultata, s povećanjem WGR-a na vrijednost od 3000 cm³/m³ smanjit će se proizvodnja plina sa 63 703 m³/dan na 52 979 m³/dan (Q_g), proizvodnja kondenzata s 2 m³/dan na 1,7 m³/dan (Q_k) dok će se proizvodnja slojne vode povećati sa 148 m³/dan na 159 m³/dan (Q_w). Dinamički tlak na dnu bušotine povećat će se sa 113 bar na 122,5 bar (P_{wf}) Daljnjim povećanjem WGR-a do vrijednosti od 5000 cm³/m³ neće više biti moguće proizvoditi iz bušotine Mol-37 jer neće biti moguće ostvariti minimalnu brzinu protjecanja potrebnu za iznošenje fluida iz bušotine.

7.5. Predviđanje smanjenja ležišnog tlaka na bušotini Mol-42

Na slici 7-5. prikazano predviđanje pada ležišnog tlaka (P_i) uz konstantan trenutni WGR i tlak na ušću (P_t) za bušotinu Mol-42.

Slika 7-5. IPR i VLP krivulje predviđanja pada ležišnog tlaka na bušotini Mol-42

Analizom dobivenih rezultata, uz pretpostavljen daljnji pad ležišnog tlaka na vrijednost od 100 bar (P_i) uz konstantne trenutne uvijete WGR-a i tlaka na ušću bušotine (P_t) smanjiti će se proizvodnja plina s 21 026 m³/dan na 7 163 m³/dan (Q_g), proizvodnja kondenzata s 1 m³/dan na 0,2 m³/dan (Q_k) te proizvodnja vode s 56 m³/dan na 19 m³/dan (Q_w). Dinamički tlak na dnu bušotine smanjit će se s 99 bar na 89 bar (P_wf). Daljnjim padom ležišnog tlaka na vrijednost od 60 bar (P_i) razmatrana bušotina Mol-42 će prestati proizvoditi jer ležišni tlak nije dovoljan za iznošenje fluida iz bušotine.

7.6. Predviđanje povećanja WGR-a na bušotini Mol-42

Na slici 7-6. prikazano predviđanje povećanja WGR-a uz konstantan trenutni ležišni tlak (P_i) i tlak na ušću (P_t) za bušotinu Mol-42.

Slika 7-6. IPR i VLP krivulje predviđanja povećanja WGR-a na bušotini Mol-42

Analizom dobivenih rezultata, s povećanjem WGR-a na vrijednost od 6000 cm³/m³ smanjit će se proizvodnja plina s 21 026 m³/dan na 14 315 m³/dan (Q_g), proizvodnja kondenzata s 1 m³/dan na 0,45 m³/dan (Q_k), dok će se proizvodnja slojne vode povećati s 56 m³/dan na 86 m³/dan (Q_w). Dinamički tlak na dnu bušotine povećat će se s 99 bar na 113 bar (P_{wf}). Daljnjim povećanjem WGR-a do vrijednosti od 12000 cm³/m³ neće više biti moguće proizvoditi iz bušotine Mol-42 jer neće biti moguće ostvariti minimalnu brzinu protjecanja koja je potrebna za iznošenje fluida iz bušotine.

8. MOGUĆA UGRADNJA PROIZVODNOG NIZA CIJEVI MANJEG PROMJERA

Proizvodni niz cijevi malog promjera (engl. velocity string) obično podrazumijeva cijevi vanjskog promjera od 0,254 mm (1") do 0,889 mm $(3^{1}/2^{"})$. Ugrađuje se u postojeći proizvodni niz kako bi se povećala brzina protjecanja plina iznad kritične brzine potrebne za iznošenje fluida u kojem je osim plina prisutna i velika količina slojne vode. Protok fluida u tom slučaju može biti kroz prstenasti prostor između proizvodnog niza malog promjera i postojećeg proizvodnog niza, samo kroz proizvodni niz malog promjera ili kombinacija oba načina. Ako u bušotini iz nekog razloga nakon remontnih radova ili nekog dužeg zastoja nema dotoka iz ležišta u tom slučaju neće pomoći ni ugradnja proizvodnog niza malog promjera. Proizvodni niz malog promjera pomaže bušotini kod stabiliziranja protoka, ali za dotok u bušotini potrebno je koristiti druge metode pridobivanja poput snižavanja dinamičkog tlaka na dno bušotine ili kiselinskih obrada. Veliki problem kod primjene proizvodnog niza cijevi malog promjera je pad tlaka uslijed trenja. Potrebno je dobro odrediti koji će se promjer koristiti, jer bi u suprotnome moglo doći do velikog povećanja trenja u proizvodnom nizu i do smanjenja proizvodnje fluida. Također, jedan od čestih problema proizvodnog niza malog promjera je korozija uzrokovana kiselim plinovima poput CO₂. Životni vijek proizvodnog niza malog promjera kod bušotina s parcijalnim tlakom CO₂ od 20684.2 Pa (0,206842 bar) do 48263.2 (0,482632 bar) iznosi dvije do četiri godine (izvor podataka?). Iz navedenih razloga potrebno je prije ugrađivanja proizvodnog niza malog promjera napraviti analizu isplativosti. Na slici 8-1. nalazi se shematski prikaz konvencionalnog proizvodnog niza cijevi (a) te ugrađenog proizvodnog niza cijevi malog promjera (b).

(http://gekengineering.com)

8.1. Primjer ugradnje proizvodnog niza malog promjera u bušotinu Mol-37

U tablici 8-1. u posljednjem retku prikazani su trenutni proizvodni parametri bušotine Mol-37 u koju je ugrađen proizvodni niz 88,9 mm (3 ½") s trenutnim WGR-om 2293 cm³/m³. Također su prikazani i pretpostavljeni budući uvjeti smanjenja vrijednosti ležišnog tlaka i njihov utjecaj na proizvodnju prirodnog plin, kondenzata i slojne vode.

proizvoo	proizvodni niz 88,9 mm (3 ½'')', Pt=47 bar, WGR =2293 cm ³ /m ³ - trenutni parametri									
		Proizvod	Inja							
Pi	plina	kondenzata	vode	Pwf	dP	dP				
							gustoća			
(barg)	(1000Sm ³ /d)	0Sm ³ /d) (Sm ³ /d) (Sm ³ /d) (Sm ³ /d)				(bar)	(bar)			
60										
100										
110										
120										
130	40,677	1,3	93,3	94,5	108,43	7,718	53,711			
140	53,271	1,7	122,1	123,8	110,32	11,045	52,275			
149,5	63,703	2	146,1	148,1	113,01	14,057	51,953			

Tablica 8-1. Trenutni radni parametri bušotine Mol-37

Očito je da će smanjenje ležišnog tlaka (Pi) uzrokovati smanjenje proizvodnje prirodnog plina i kondenzata.

U tablici 8-2. prikazana je analiza ponašanja bušotine s konstantnim WGR-om u vrijednosti 2293 cm³/m³ te sa promjenom tlaka na ušću bušotine i ležišnog tlaka kroz proizvodni niz promjera 88,9 mm (3 ¹/₂").

proizvodni niz 88,9 mm (3 ½'') uz konstantni WGR = 2293 cm ³ /m ³								
Pt	Pi <mark>plin </mark> kondenzat voda tekućina Pwf		dP	dP				
							trenje	gustoća
(barg)	(barg)	(1000Sm ³ /d)	(Sm ³ /d)	(Sm ³ /d)	(Sm ³ /d)	(barg)	(bar)	(bar)
21	60							
21	100	43,466	1,4	99,7	101	66,03	13,561	31,468
21	110	52,134	1,6	119,5	121,2	69,88	17,091	31,787
21	120	60,496	1,9	138,7	140,6	74,1	20,58	32,519
21	130	68,875	2,2	157,9	160,1	78,5	24,004	33,497
21	140	77,2	2,4	177	179,4	83,11	27,483	34,627
21	149,5	85,01	2,7	194,9	197,6	87,59	30,796	35,792
26	60	· · ·	,					
26	100	38,386	1,2	88	89,2	72,26	10,243	36,022
26	110	47,956	1,5	110	111,5	75,28	13,699	35,584
26	120	56,891	1,8	130,4	132,2	78,97	17,096	35,872
26	130	65,647	2,1	150,5	152,6	83,01	20,496	36,518
26	140	74,266	2,3	170,3	172,6	87,22	23,8	37,415
26	149,5	82,418	2,6	189	191,6	91,46	27,074	38,389
31	60		,		,	,	,	,
31	100	31	0.97213	71.1	72.1	79.89	6.989	41.898
31	110	42.442	1.3	, 97.3	98.6	81.53	10.535	39,998
31	120	52.358	1.6	120.1	121.7	84.52	13.899	39.625
31	130	61.595	1.9	141.2	143.2	88.09	17.207	39.885
31	140	70.718	2.2	162.1	164.4	91.97	20.467	40,503
31	149.5	79.072	2.5	181.3	183.8	95.85	23.584	41.264
36	60		/-	- /-	/ -	/	-,	, -
36	100							
36	110	34.856	1.1	79.9	81	88.9	7.428	45.47
36	120	46.514	, 1.5	106.7	108.1	90.75	10.865	43.89
36	130	56.664	1.8	129.9	131.7	93.72	14.134	43.59
36	140	66.281	2.1	152	154.1	97.21	17.382	43.823
36	149.5	75.155	2.4	172.3	174.7	100.76	20.39	44.373
41	60		,	7-	,	, -	- /	/
41	100							
41	110							
41	120	38.582	1.2	88.5	89.7	97.95	7.842	49.112
41	130	50.518	, 1.6	115.8	117.4	99.93	11.205	47.726
41	140	61.03	1.9	139.9	141.8	102.88	14.43	47.447
41	149,5	70,491	2,2	161,6	163,8	106,13	17,489	47,64
46	60		,		-,-	, -	,	, -
46	100							
46	110							
46	120	23,957	0,75126	54,9	55,7	108,56	4,045	58,52
46	130	42,569	1.3	97.6	98.9	106.9	8,307	52,594
46	140	54,662	1,7	125,3	127	109,03	11,594	51,437
46	149,5	64,958	2	148,9	151	111,82	14,621	51,2

Tablica 8-2. Utjecaj promjene tlaka na ušću (Pt) te ležišnog tlaka (Pi) na proizvodneparametre bušotine Mol-37

Tablica 8-3. prikazuje analizu protoka kroz proizvodni niz malog promjera i to kroz prstenasti prostor proizvodnog niza 88,9 mm (3 $\frac{1}{2}$)' / CT 0,3353 mm (1,32").

proizvodn	proizvodni niz malog promjera - prsten proizvodnog niza 88,9 mm (3 ½'')' / CT 0,3353 mm (1,32'')									
Pt	Pi	plin	kondenzat	voda	tekućina	Pwf				
(barg)	(barg)	(1000Sm ³ /d)	(Sm³/d)	(Sm³/d)	(Sm³/d)	(barg)				
21	60									
21	100	31,112	0,97566	71,3	72,3	79,78				
21	110	37,677	1,2	86,4	87,6	86,26				
21	120	44,105	1,4	101,1	102,5	93,03				
21	130	50,487	1,6	115,8	117,3	99,96				
21	140	56,865	1,8	130,4	132,2	106,99				
21	149,5	62,937	2	144,3	146,3	113,72				
26	60									
26	100	27,038	0,84789	62	62,8	83,38				
26	110	34,418	1,1	78,9	80	89,26				
26	120	41,319	1,3	94,7	96	95,66				
26	130	47,979	1,5	110	111,5	102,31				
26	140	54,576	1,7	125,1	126,8	109,11				
26	149,5	60,824	1,9	139,5	141,4	115,67				
31	60									
31	100	20,802	0,65233	47,7	48,3	88,25				
31	110	30,094	0,94372	69	69,9	92,86				
31	120	37,645	1,2	86,3	87,5	98,73				
31	130	44,799	1,4	102,7	104,1	105,05				
31	140	51,754	1,6	118,7	120,3	111,61				
31	149,5	58,258	1,8	133,6	135,4	117,99				
36	60									
36	100									
36	110	23,956	0,75124	54,9	55,7	97,4				
36	120	33,022	1	75,7	76,8	102,36				
36	130	40,972	1,3	93,9	95,2	108,21				
36	140	48,332	1,5	110,8	112,3	114,46				
36	149,5	55,13	1,7	126,4	128,1	120,6				
41	60									
41	100									
41	110									
41	120	26,704	0,83742	61,2	62,1	106,78				
41	130	36,129	1,1	82,8	84	111,8				
41	140	44,194	1,4	101,3	102,7	117,65				
41	149,5	51,466	1,6	118	119,6	123,54				
46	60									
46	100									
46	110									
46	120									
46	130	29,852	0,93614	68,4	69,4	116,02				
46	140	39,188	1,2	89,9	91,1	121,24				
46	149,5	47,169	1,5	108,2	109,6	126,78				
47	60									
47	100									
47	110									
47	120									
47	130	28,185	0,88386	64,6	65,5	117,03				
47	140	38,039	1,2	87,2	88,4	122,01				
47	149,5	46,177	1,4	105,9	107,3	127,46				

Tablica 8-3. IPM-Prosper analiza protoka ugradnjom proizvodnog niza malog promjera

Na slici 8-2. prikazane su IPR krivulje za različite ležišne tlakove (P_i) te VLP krivulje pada tlaka u slučaju proizvodnje kroz proizvodni niz 88,9 mm (3 $\frac{1}{2}$) odnosno proizvodni niz malog promjera 0,3353 mm (1,32") i to kroz prstenasti prostor proizvodnog niza 3 $\frac{1}{2}$ " / CT 0,3353 mm (1,32") uz konstantni WGR od 2293 cm³/m³.

Slika 8-2. IPR i VLP krivulje kod pada ležišnog tlaka (Pi) i proizvodnju kroz postojeći proizvodni niz te proizvodni niz malog promjera

Na temelju provedene analize i usporedbe podataka u tablici 8-2. i tablici 8-3. te grafičkim prikazom IPR i VLP krivulja može se vidjeti da u slučaju ugradnje proizvodnog niza cijevi malog promjera dolazi do znatnog smanjenja proizvodnje prirodnog plina te do određenog smanjenja proizvodnje slojne vode. Gledajući ekonomske parametre ugradnje proizvodnog niza cijevi malog promjera, zamjenu istog te cijenu održavanja uz dobivenu količinu prirodnog plina te slojne vode potrebno je voditi računa i o ekonomskoj isplativosti kompletnog rudarskog zahvata što nije predmet razmatranja ovog diplomskog rada.

9. KOPRESORSKA PROIZVODNJA

Kompresorska proizvodnja posljednja je faza eksploatacije prirodnog plina. Zbog crpljenja fluida u ležištu ugljikovodika tlak pada. U određenom trenutku u ležištu više nema dovoljno energije (tlaka) koja treba savladati otpor pri protjecanju fluida kroz ležišne stijene do kanala bušotine, hidrostatski tlak u bušotini, otpor pri protjecanju u uzlaznom nizu, otpor pri protjecanju u priključnom plinovodu te tlak ulaza u postrojenje. Tada protok iz bušotine prestaje te ga je potrebno ponovo pokrenuti umjetnim dodavanjem energije u sustav (kompresorima kad se radi o plinu). Zbog određenog udjela tekuće faze u pridobivenim količinama, uslijed male brzine protjecanja, dolazi do zaostajanja kapljevine u protoku i do njenog slijeganja na dno bušotine. Tako nakupljena kapljevina povećava otpor protjecanju plina i na kraju uzrokuje samo ugušenje bušotine. Povećanje vertikalne brzine protjecanja smjese plina i kapljevine poboljšava iznošenje kapljevine te smanjuje mogućnost samo ugušenja bušotine.

U pridobivanju prirodnog plina kompresorima na kopnu postoje tri koncepcije koje se nadopunjuju, a to su (Tehnička dokumentacija INA d.d., 2010.):

- Kompresorsko pridobivanje s centralnom kompresornicom na plinskoj stanici gdje je priključen određeni broj bušotina. To je početna faza, a u nekim slučajevima i završna faza kompresorskog pridobivanja;
- Ugradnja kompresora na početku priključnog plinovoda, u bušotinskom krugu, tj. što bliže samoj bušotini;
- Ugradnja kompresora na ušću bušotine predstavlja završnu fazu u kompresorskom pridobivanju.

Često se plinsko polje sastoji od više hidrodinamičkih cjelina, pa će krivulja pada tlaka tijekom proizvodnog života tih ležišta izgledati kao na slici 9-1., gdje je P_k tlak ispod kojeg počinje kompresorska proizvodnja, a uvjetovan je tlakom transportnog sustava; P_n je minimalan tlak na ušću plinske bušotine pri kojem se napušta ležište dok su P_{11} , P_{12} i P_{13} dinamički tlakovi na ušću bušotine. Ako se razmatra područje tlakova između P_k i P_n , potrebno je znati promjenu količine proizvodnje po vremenu kako bi se mogli odrediti broj i vrsta kompresorskih jedinica (INA – NAFTAPLIN; 1989.).

Slika 9-1. Krivulje pada tlaka i kompresorska proizvodnja plina (INA – NAFTAPLIN; 1989.)

Zbog različitog ponašanja pojedinih bušotina unutar istog plinskog polja, od P_n do P_k , pri odabiru tlačnih razina od P_n do P_k moraju se odabrati ovi bitni elementi (INA – NAFTAPLIN; 1989.):

- 1. Najpovoljniji tip kompresora prema količinama i tlakovima plinskih bušotina;
- 2. Najpovoljniji kompresorski omjer;
- 3. Optimalan broj stupnjeva komprimiranja (što će ujedno i definirati tlačne razine).

9.1. Ugradnja kompresora na ušće bušotine Mol-20R

Bušotina Mol-20R spada u grupu bušotina s niskim dinamičkim tlakom i visokim WGR-om. Osnova komprimiranja plina na samom ušću bušotine je u tome da se omogući unos energije u sustav čim bliže ležištu plina ili plinskog kondenzata. S obzirom da je bušotina Mol-20R u radu više od trideset godina, došlo je do smanjenja ležišnog tlaka. Posljedica toga je nemogućnost otpreme plina na usis kompresora na CPS Molve, čiji tlak iznosi 18 bar. Da bi se omogućilo daljnje pridobivanje smjese prirodnog plina, kondenzata i slojne vode iz bušotine Mol-20R, potrebno je sniziti usisni tlak na ušću bušotine na 2 bar. S takvim sniženim tlakom, smjesa ne može biti otpremljena na CPS Molve (Tehnička dokumentacija INA d.d., 2015.). Zahtijevani tlak na koji se tlak smjese mora povećati iznosi 24 bar, jer hidraulički gubitak tlaka od prenosivog kompresorskog postrojenja na bušotini Mol-20R do usisa kompresora na CPS Molve iznosi oko 6 bar ($\Delta p = 24 - 18 = 6$ bar). Zbog toga će se ugraditi novo prenosivo kompresorsko postrojenje (jednovijčani kompresor). Uvjeti koje novo prenosivo kompresorsko postrojenje, ugrađeno na bušotinskom radnom prostoru Mol-20R, treba zadovoljiti su (Tehnička dokumentacija INA d.d., 2015.):

- usisni (ulazni) tlak u kompresor (dinamički tlak bušotine) = 2 bar
- izlazni (otpremni) tlak iz kompresora = 24 bar
- ulazna temperatura plina = $45 \text{ }^{\circ}\text{C}$
- minimalna količina plina = $25\ 000\ \text{m}^3/\text{dan}$
- ulazna količina slojne vode = $40 \text{ m}^3/\text{dan}$
- ulazna količina kondenzata = 1,7 m3/dan

Zbog nepovoljno visokog kompresijskog omjera i sastava smjese plina, kondenzata i slojne vode ograničena je mogućnost odabira kompresorske jedinice. Ovakve zahtjeve za visoki kompresijski omjer mogu osigurati vijčani i stapni kompresori. Jednovijčani kompresori pripadaju u skupinu obujamskih (volumnih) kompresora i konstruirani su za sve rashladne kompresore za industriju. Ovi kompresori imaju samo tri pomična dijela, glavni rotor koji međusobno zahvaća zupce s dva dijametralno suprotna zvjezdasta kola, geometrija koja rezultira u ujednačenom djelovanju bez gubitaka snage između rotora i zvjezdastih kola, a s minimalnim opterećenjem rotora. Najvažnija značajka jednovijčanog kompresora je mogućnost postizanja velikih kompresijskih omjera u jednom stupnju. Da bi se postigao visoki kompresijski omjer, vijčani kompresor mora biti hlađen uljem. Maksimalno je moguće postići omjer kompresije čak i iznad 20, a mogući su veliki promjenjivi omjeri obujamskog protoka (Tehnička dokumentacija INA d.d., 2015.).

Na slici 9-2. prikazano je prenosivo kompresorsko postrojenje ugrađeno na bušotini Mol-20R.

Slika 9-2. Prenosivo kompresorsko postrojenje (Tehnička dokumentacija INA d.d., 2015.)

Kazalo:

- AC-1 zračni hladnjak ulja
- C-01 jednovijčani kompresor
- F-01 filtri ulja (F-01A, F-01B)
- P-01 centrifugalna sisaljka za recirkulaciju ulja
- P-02 centrifugalna sisaljka za otpremu smjese kondenzata i slojne vode (P-02A, P-02B)
- V-01 usisni separator
- V-02 uljni separator

10. ZAKLJUČAK

U izradi diplomskog rada koristio se IPM-Prosper programski paket pomoću kojeg su se odredile radne točke razmatranih bušotina Mol-27, Mol-37 i Mol-42. Korištenjem trenutnih radnih točaka razmatranih bušotina predviđalo se smanjenje ležišnog tlaka i povećanja WGR-a te su analizirani rezultati takvih promjena na proizvodnju prirodnog plina, kondenzata i slojne vode.

Analizom rezultata dobivenih IPM-Prosper programskim paketom moguće je zaključiti sljedeće:

- Analizom predviđanja pada ležišnog tlaka dolazi do smanjenja proizvodnje razmatranih bušotina te u konačnici uz dovoljno veliki pad tlaka i do prestanka rada bušotina zbog nedovoljne energije koja je potrebna za svladavanje pada tlaka kroz proizvodni niz;
- Analizom predviđanja povećanja WGR-a također dolazi do smanjenja proizvodnje razmatranih bušotina te u konačnici do prestanka rada bušotina zbog nedovoljne brzine iznošenja fluida u proizvodnome nizu;
- IPM-Prosper programskim paketom analitički i grafički se dobivaju točni rezultati kojima se određuje do koje razine smije doći do pada tlaka te do povećanja WGR-a, a da bušotine nastave s radom;
- Ugradnjom proizvodnog niza malog promjera povećava se brzina iznošenja fluida iz bušotine u slučaju velike količine slojne vode u proizvodnome fluidu;

Završna faza proizvodnje plinske bušotine je kompresorska proizvodnja, kod kompresorske proizvodnje tlak na ušću bušotine smanjuje se korištenjem pokretnih kompresora kako bi se što duže nastavila proizvodnja i postigao što veći konačni iscrpak plina.

11. LITERATURA

- 1. BEGGS, H. D., 1985. Gas Production Operations, Tulsa: OGCI Publications
- BEGGS, H. D., 2003. Production Optimization using Nodal Analysis. Tulsa, Oklahoma: OGCI and Petroskills Publications
- BRKIĆ, V., 2016. Indikatorske ili IPR krivulje + NODAL analiza sustava proizvodnje. Bilješke s predavanja. Rudarsko-geološko-naftni fakultet, Zagreb (neobjavljeno)
- ČIKEŠ, M., 2015. Proizvodno inženjerstvo nafte i plina. Zagreb: Rudarsko-geološkonaftni fakultet Sveučilišta u Zagrebu
- PERIĆ, M., 2007. Englesko hrvatski enciklopedijski rječnik istraživanja i proizvodnje nafte i plina. Zagreb: Ina Industrija nafte d.d.
- SIMON, K., 2012. Sušenje (dehidracija) plina. Bilješke s predavanja. Rudarskogeološko-naftni fakultet, Zagreb (neobjavljeno)
- 7. INA NAFTAPLIN: Prirodni plin; 1989.
- 8. INA Industrija nafte, 1993. Dopunski rudarski projekt polja Molve
- INA Industrija nafte, 2010. Rudarski projekt za eksploataciju ugljikovodika na eksploatacijskom polju Kalinovac
- 10. INA Industrija nafte, 2015. Pojednostavljeni rudarski projekt za komprimiranje plina iz eksploatacijske bušotine Mol-20R
- 11. INA Industrija nafte, 2017. Dnevni parametri rada bušotina na pogonu Molve
- ZAVOD ZA JAVNO ZDRAVSTVO KOPRIVNIČKO-KRIŽEVAČKE ŽUPANIJE, 2013. Monitoring okoliša na pogonu Molve 2012/2013. godina. Koprivnica.

Internetski izvori:

- 1. PETROLEUM EXPERTS, PROSPER,
 - URL: <u>http://www.petex.com/products/?ssi=3</u> (05.05.06.2017.)

2. VELOCITY STRINGS,

URL: <u>http://gekengineering.com/Downloads/Free_Downloads/Velocity_Strings.pdf</u> (15.05.2017.)

IZJAVA

Ovom izjavom izjavljujem da sam ovaj rad izradio samostalno na temelju znanja i vještina stečenih na Rudarsko-geološko-naftnom fakultetu Sveučilišta u Zagrebu, služeći se navedenom literaturom.

Tomislav Tišljar