Parametarska kvantifikacija hidrogeoloških svojstava klastičnih naslaga na primjerima pokusnih polja u sjevernoj Hrvatskoj

Urumović, Kosta

Doctoral thesis / Disertacija

2013

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:912984

Rights / Prava: Attribution 3.0 Unported/Imenovanje 3.0

Download date / Datum preuzimanja: 2025-01-06

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

Sveučilište u Zagrebu

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Kosta Urumović

PARAMETARSKA KVANTIFIKACIJA HIDROGEOLOŠKIH SVOJSTAVA KLASTIČNIH NASLAGA NA PRIMJERIMA POKUSNIH POLJA U SJEVERNOJ HRVATSKOJ

DOKTORSKI RAD

University of Zagreb

UNIVERSITY OF ZAGREB FACULTY OF MINING, GEOLOGY AND PETROLEUM ENGINEERING

Kosta Urumović

PARAMETER QUANTIFICATION OF CLASTIC SEDIMENTS HYDROGEOLOGIC PROPERTIES BASED ON TEST FIELDS IN NORTHERN CROATIA

DOCTORAL THESIS

Sveučilište u Zagrebu

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Kosta Urumović

PARAMETARSKA KVANTIFIKACIJA HIDROGEOLOŠKIH SVOJSTAVA KLASTIČNIH NASLAGA NA PRIMJERIMA POKUSNIH POLJA U SJEVERNOJ HRVATSKOJ

DOKTORSKI RAD

Mentor: Doc. dr. sc. Željko Duić

University of Zagreb

UNIVERSITY OF ZAGREB FACULTY OF MINING, GEOLOGY AND PETROLEUM ENGINEERING

Kosta Urumović

PARAMETER QUANTIFICATION OF CLASTIC SEDIMENTS HYDROGEOLOGIC PROPERTIES BASED ON TEST FIELDS IN NORTHERN CROATIA

DOCTORAL THESIS

Supervisor: Doc. dr. sc. Željko Duić

Mentor:

Dr. sc. Željko Duić Docent pri Rudarsko-geološko-naftnom fakultetu.

Zahvala

Zahvaljujem se u prvom redu mom neslužbenom mentoru i prvom učitelju, dr.sc. Kosti Urumoviću, koji me je naučio razmišljati i razlikovati bitno od nebitnog i koji me je savjetima vodio kroz ovo istraživanje. Zahvaljujem mu i na temeljitoj recenziji radne verzije ovog rada.

Zahvaljujem se svome mentoru i prijatelju, dr.sc. Željku Duiću za nesebičnu pomoć u uobličavanju ovog rada i sate koje smo zajedno proveli za ovim rukopisom.

Zahvaljujem se mojoj voditeljici istraživanja i mentorici na Hrvatskom geološkom institutu, dr.sc. Željki Brkić, na bezuvjetnoj potpori i strpljenju tijekom mog boravka na Zavodu za hidrogeologiju i inženjersku geologiju, za brojne savjete i vodstvo kod promišljanja koncepta i pisanja ovog rada. Također joj se zahvaljujem na podatcima, literaturi i ilustracijama kojima me opskrbljivala tijekom izrade rada.

Zahvaljujem dr.sc. Zoranu Nakiću za promptnu i detaljnu reviziju ovog rada.

Također se zahvaljujem kolegama Maji Briški, Vlatku Brčiću i Lászlu Podolszkom na pomoći kod izrade grafičkih priloga i na savjetima tijekom izrade ovog rada.

Zahvaljujem se i kolegama koji su mi omogućili uvid u hidrogeološke i geomehaničke elaborate koje sam koristio kao izvor pouzdanih podataka, prije svega Jasni Kopić iz Vinkovačkog vodovoda, Ivani Žunić Vrbanek iz IGH i Željku Miklinu iz HGI.

Na kraju, najviše od svih, zahvaljujem se svojoj obitelji, Ani, Kosti, Sonji, Kosti i Ladi.

Posveta

Mojoj obitelji

SAŽETAK

U ovom radu od eksperimentalnih metoda izračuna hidrauličke vodljivosti verificirana je točnost Hazenove i Beyerove jednadžbe, te je pokazano da originalne metode Slichtera i Terzaghija daju realne vrijednosti hidrauličke vodljivosti, a njihovi oblici kakvi se u literaturi koriste zadnjih godina donose podcijenjene vrijednosti. Primjenom USBR metode potvrđena je njena redovita netočnost. Teorijska razrada odnosa propusnosti i geometrijskih svojstava poroznog medija predstavljena je Kozeny-Carmanovom (KC) jednadžbom koja je u dosadašnjoj literaturi prikazana s ograničenjem primjene povezanom s granulometrijskim sastavom. Ovdje je pokazano da su degeneracije koje nastaju za šljunčane i prahovitoglinovite naslage posljedica metoda izračuna veličine srednjeg zrna i efektivne poroznosti. Prikazan je postupak izračuna geometrijskog srednjeg zrna koje predočava efektivno zrno za izračun propusnosti i specifične površine za sve vodom saturirane tvorevine za koje vrijedi Darcyjev zakon. Za ovakvo efektivno srednje zrno raspona od 0,001 do 60 mm konstruirana je krivulja efektivne poroznosti. Prikazani postupci verificirani su na razini lokalnog i regionalnog mjerila za nekoherentne i na razini laboratorijskog, lokalnog i regionalnog mjerila za koherentne tvorevine. Propusnost i specifična površina koherentnih tvorevina analizirana je i na temelju proučavanja korelacije ovih parametara s Attebergovim granicama i sukcijskim svojstvima. Od velikog broja korelacijskih jednadžbi između laboratorijski određene masene specifične površine i Attebergovih izdvojene su tri prikladne za izračun iznosa specifične površine pogodnog za određivanje propusnosti primjenom KC jednadžbe. Poseban postupak prikazan je korištenjem korelacijskih odnosa između sukcijskih svojstava i sadržaja gline i praha.

Ključne riječi:

Hidraulička vodljivost, efektivna poroznost, specifična površina, granulometrijski parametri, efektivno srednje zrno, porozni medij

ABSTRACT

In this paper, out of experimental methods of calculating the hydraulic conductivity, the accuracy Hazen and Beyer equation were verified. It was shown that Slichter and Terzaghy authoring methods provide realistic value of hydraulic conductivity, and that previously used forms, as they were used in the literature in recent years, provided undervalued values. Application of USBR method confirmed the regular inaccuracy. Theoretical elaboration of relations between permeability and geometrical properties of porous media is presented by Kozeny-Carman (KC) equation, which has so far been presented in the literature with a limit of application related to the grain size composition. Here it was shown that the degenerations that occur in gravely and siltey - clavey sediments were a consequence of method of calculating mean grain size and effective porosity. Process of calculating the geometric mean grain that demonstrates effective grain for calculation of permeability and specific surface area for all water saturated formations to which Darcy's law applies were presented. For such effective median grain ranges from 0.001 to 60 mm curves of effective porosity were designed. Procedures were verified at the level of local and regional scales for incoherent materials and at the laboratory, local and regional scales for coherent materials. Permeability and specific surface of coherent formation were analyzed on the basis of correlation of these parameters with Atteberg limits and suction properties. A large number of correlation equations between the laboratory determined mass specific surface area and Atteberg limits extracted three convenient methods to calculate the amount of surface area suitable for determination of permeability using the KC equation. A special procedure was shown using the correlation relationship between suction properties and content of clay and dust.

Keywords:

Hidraulic conductivity, effective porosity, specific surface area, grain size parameters, effective mean grain size, porous media

Popis slika

Slika 2.1 Uzdužni litološki profil dravskog aluvijalnog vodonosnika (prema Urumović i
dr.1994.)
Slika 2.2 Uzdužni litološki profil savskog aluvijalnog vodonosnika od Zagreba do Županje
(prema Brkić, 1999)12
Slika 2.3 Lokacija zdenaca Oznake (BMB, BMI i BMZ) istraživačko-piezometarskih bušotina
(oznake BMP i BM) na crpilištu Livade u B. Manastiru, M 1:25.00018
Slika 2.4 Korelacijski litološki profil preko zdenaca crpilišta Livade (prema Urumović i dr.
2008)
Slika 2.5 Položaj hidrogeoloških objekata na crpilištu Donji Miholjac, M 1:5000. Oznake:
MSO-2 - stara istraživačka bušotina; MNB-3 i MNB-4 - stari eksploatacijski zdenci; Z-2 -
novi zdenac; Z-1, Z-3 i Z-4 projektirane lokacije za nove zdence; DP-1 – nova istraživačka
bušotina20
Slika 2.6 Litološki profil preko zdenaca crpilišta D. Miholjac
Slika 2.7 Položaj crpilišta Čepin23
Slika 2.8 Regionalni korelacijski profil kvartarnih naslaga osječke Podravine preko lokacije
crpilišta Čepin. Oznake: 1-oznaka istraživačke bušotine, 2-rasjed s oznakom spuštenog bloka,
3-korelacijski markeri, 4-pijesak s pokojom valuticom, 5-sitno i srednjozrnasti pijesak, 6-
glina, 7-prah (prema Urumović i dr. 2010)23
Slika 2.9 Lokacija pokusnog polja crpilišta Ravnik
Slika 2.10 Profil litološke korelacije bušotina crpilišta Ravnik
Slika 2.11 Položaj istraživačkih bušotina i zdenaca na novom crpilištu Đurđevac
Slika 2.12 Profil litološke korelacije zdenca ZĐ-2 i opažanih bušotina SPB-7 i SPB-829
Slika 2.13 Položaj geomehaničkih bušotina na glinokopu u Iloku
Slika 2.14 Poprečni profil prapornih naslaga IB3 – IVB5 (iz Urumović i dr., 1986)32
Slika 2.15 Položaj korelacijskih profila geomehaničkih bušotina duž trase našičke obilaznice
Slika 2.16 Profil litološke korelacije najdubljih bušotina duž trase našičke obilaznice (trasa
profila na slici 2.15, iz Urumović i dr. 2006)
Slika 2.17 Položaj geomehaničkih bušotina duž trase kanala Dunav-Sava na dionici od Save
kraj Sikirevaca do Rokovaca
Slika 3.1 Vodeće sile pri strujanju tekućine ilustrirane na elementarnom obujmu40

Slika 3.2 Učinak pogonskog (n) i otpornog $(n^2/(1-n)^2)$ oblika funkcije poroznosti na brzinu gibanja tekućine u poroznoj sredini za raspon efektivne poroznosti od 1% do 45%......42 Slika 3.3 Trokutni dijagram teksture tla s USDA (U.S. Department of Agriculture) klasifikacijom u 12 skupina: (1) pijesak, (2) ilovasti pijesak, (3) pjeskovita ilovača, (4) ilovača; (5) prahovita ilovača, (6) prah, (7) pjeskovito-glinovita ilovača, (8) glinovita ilovača, (9) prahovito-glinovita ilovača (10) pjeskovita glina(11) prahovita glina i (12) glina. Opaska: brojevi u čvorovima označavaju točke izračuna srednjeg promjera d_g i standardne devijacije σ_g......45 Slika 3.4 Ortogonalni teksturni dijagram sitnozrnih tvorevina ostvaren rotacijom USDA trokutnog dijagrama sa slike 3.3 u ortogonalni sustav geometrijskog srednjeg promjera d_g i Slika 3.5 Minimalne, maksimalne i srednje vrijednosti specifičnoga davanja ili ocjedite Slika 3.7 Veličina efektivne poroznosti u funkciji srednjeg zrna D_{lng}. Opaska: Crtkana krivulja odgovara jednoličnim zrnima, U<2, a verificirani uzorci dobro graduiranih šljunaka i pijeska na punoj crti su za U>10. Točke na dijagramu, označene kružnicom, predstavljaju veličinu efektivne poroznosti verificiranu izračunom hidrauličke vodljivosti Kozeny – Carman Slika 3.9 Korelacijski odnos između specifične površine i postotka čestica <2µm (prema Slika 4.1 Promjena viskoznosti vode u funkciji temperature i Hazenova aproksimacija......71 Slika 4.2 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna hidrauličke vodljivosti uzoraka prema Hazenovoj jednadžbi (4.2) za temperaturu t=15°C uz prikaz ujednačenosti zrna u uzorcima......72 Slika 4.3 Usporedni prikaz izračuna K iz podataka granulometrijske krivulje uzoraka pijeske iz triju bušotina na pokusnim poljima Oznake: f(n)°Slichterova funkcija poroznosti, D10 Hazenovo efektivno zrno, Aritmetički zbroj udjela aritmetičke Daa, geometrijske Dag i Slika 4.4 Učinak predložene korekcije funkcije poroznosti u Slihterovoj jednadžbi za slučaj korištenja efektivnog zrna D₁₀ na primjeru pokusnih polja Donji Miholjac, Livade i Čepin...76 Slika 4.5 Slijed iznosa Slichterove funkcije poroznosti $(f(n)=1/F_n)$ i alternativnih funkcija ...77 Slika 4.6 Grafička predodžba učinka provedenih korekcija Slichterove funkcije poroznosti..79

Slika 4.7 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema korigiranoj Slichterovoj jednadžbi (4.10) uz prikaz sortiranosti zrna u Slika 4.8 Grafička ilustracija razlike srednje hidrauličke vodljivosti vodonosnika i rezultata izračuna prema publiciranim obrascima Terzaghijeve metode (jedn 4.12) za granice raspona Slika 4.9 Grafička usporedba rezultata izračuna K iz granulometrijskih krivulja uzoraka pijeska iz triju bušotina u D Miholjcu, B, Manastiru i Čepinu prema formuli Hazena i Slika 4.10 Grafička usporedba rezultata izračuna K iz granulometrijskih krivulja uzoraka pijeska iz triju bušotina u D Miholjcu, B, Manastiru i Čepinu za pojedine oblike izračuna Slika 4.11 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema novoj Terzaghijevoj jednadžbi (4.14) uz ilustraciju sortiranosti zrna u uzorku Slika 4.12 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema USBR metodi (jedn. 4.15) uz ilustraciju sortiranosti zrna u uzorcima90 Slika 4.13 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema novoj Beyerovoj metodi (jedn. 4.18) uz ilustraciju sortiranosti zrna u Slika 4.14 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog Slika 4.15 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira......93 Slika 4.16 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira94 Slika 4.17 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine P-1 na pokusnom polju Ravnik kraj Popovače......94 Slika 5.1 Model kapilarnih cjevčica (prema Bear, 1984).....100 Slika 5.2 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine DM-1 i MNB-4 na pokusnom polju u Donjem Miholjcu

Slika 5.3 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira primjenom Slika 5.4 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine OČP-1 na pokusnom polju u Čepinu primjenom Kozeny-Carmanove Slika 5.5 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine P-1 na pokusnom polju Ravnik kraj Popovače primjenom Kozeny-Slika 5.6 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-1.....113 Slika 5.7 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-2.....114 Slika 5.8 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-3.....114 Slika 5.9 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-4......115 Slika 5.10 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-5......115 Slika 5.11 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-6......116 Slika 5.12 Grafička korelacija između testirane Kt i predviđene vrijednosti hidrauličke vodljivosti primjenom Kozeny-Carmanove metode za krupnoklastične tvorevine od sitnozrnih pijesaka do šljunaka srednje veličine. Vrijednosti 0,8 Kt i 1,2 Kt izabrane su kao granice Slika 5.13 Grafička korelacija između testirane hidrauličke vodljivosti pješčanih vodonosnika i najboljih rezultata izračunanih primjenom svih korištenih metoda. Oznake: K(Sl-D_{sr}) Slichterova metoda korištenjem srednjeg zrna, K(T-D_{sr}) Terzaghijeva metoda korištenjem srednjeg zrna, K(T-D_{sr}) Terzaghijeva metoda korištenjem srednjeg zrna......120 Slika 5.14 Grafička korelacija rezultata izračuna hidrauličke vodljivosti KC metodom i metodama efektivnog zrna za uzorke iz pješčanih vodonosnika u istočnoj Slavoniji i Srijemu sa lokaliteta s ograničenom valjanošću uzoraka121 Slika 5.15 Grafička korelacija rezultata izračuna hidrauličke vodljivosti pješčanih vodonosnika u istočnoj Slavoniji i Srijemu sa lokaliteta s ograničenom valjanošću uzoraka Slika 6.1 Odnos mjerene hidrauličke vodljivosti i predviđene primjenom Kozeny-Carmanove jednadžbe za raznovrsne tvorevine od bentonita i kaolinita do pijeska i šljunka (iz Chapuis &

Slika 6.2 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnog zrna s rezultatima laboratorijskog testiranja na primjeru kopnenih Slika 6.3 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnog zrna s rezultatima laboratorijskog testiranja na primjeru močvarnih prapora na lokaciji našičke obilaznice – sjeverozapadni dio......133 Slika 6.4 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnoga zrna s rezultatima laboratorijskog testiranja na primjeru močvarnih prapora na lokaciji našičke obilaznice – sjeverozapadni dio......134 Slika 6.5 Grafička korelacija izračuna hidrauličke vodljivosti određene Kozeny-Carmanovom metodom (KC) uz različit izračun efektivne srednje veličine zrna u uzorku i korelacijskom metodom (K_(COR)) na temelju sadržaja agregata praha i gline te korelacijskih odnosa propusnosti i tlaka ulaska zraka. Indeks Dg-graf odnosi se na veličinu srednjeg zrna očitanog Slika 6.6 Položaj uzoraka kopnenih prapora u Iloku i močvarnih prapora sa našičke obilaznice u ortogonalnom teksturnom dijagramu srednjeg promjera d_g i standardne devijacije σ_g (prama Slika 6.7 Korelacije recipročnih vrijednosti specifične površine i granice tečenja iz literaturnih podataka (prema Chapuis & Aubertin (2003).....143 Slika 6.8 Grafička korelacija testirane i izračunane hidrauličke vodljivosti određene Kozeny-Carmanovom jednadžbom korištenjem specifične površine iz korelacije s granicom tečenja Slika 6.9 Usporedba najuspješnijih rezultata izračuna hidrauličke vodljivosti na temelju korelirane specifične površine (K_{LL-Gill}, K_{LL-Smith} i K_{LL-Zaki}) s rezultatima izračuna prema granulometrijskom sastavu (KC_{Dlng} i K_{COR})145 Slika 6.10 Grafička korelacija testirane i izračunane hidrauličke vodljivosti određene Kozeny-Carmanovom jednadžbom korištenjem specifične površine iz korelacije s granicom tečenja svih analiza iz bušotina po trasi kanala Dunav-Sava pomoću triju najuspješnijih korelacija (Gill & Reavs, 1957; Smith et al. 1985; Zaki Gazalli, 1971) Oznake: K(DlngC)n - prema jedn 6.3, K(DlngL)n – prema jedn 6.5.....147 Slika 6.11 Grafička korelacija testirane i izračunane hidrauličke vodljivosti u ovisnosti o

Slika 6.12 Grafička korelacija testirane i izračunane hidrauličke vodljivosti uz primjenu
jedinstvene srednje veličine efektivne poroznosti $K(D_{lng}C)$ i efektivne poroznosti $K(D_{lng}C)$ n u
funkciji veličine efektivnog zrna prema krivulji na slici 3.7149
Slika 6.13 Grafička korelacija testirane i izračunane hidrauličke vodljivosti primjenom
korelacijske metode uspoređujući pojedinačne laboratorijske podatke mjerene i predviđene K
za istog uzorka150
Slika 6.14 Položaj 28 uzoraka po trasi kanala Dunav – Sava serije AT, ATP, AO i AOP, te 52
uzorka po trasi kanala Dunav–Sava serije BT, BTP, BO u statističkom d_g - σ_g konturnom
dijagramu151
Slika 6.15 Korelacijska usporedba rezultata Korelacijske i Kozeny-Carmanove metode
izračuna hidrauličke vodljivosti istih uzoraka151
Slika 6.16 Verifikacija raspona valjanosti Kozeny-Carmanove metode izračuna hidrauličke
vodljivosti

Popis tablica

Tablica 2.1 Transmisivnost i hidraulička vodljivost vodonosnika na području crpilišta Livade
(prema Urumović i dr. 2008)19
Tablica 2.2 Transmisivnost i hidraulička vodljivost vodonosnika na crpilištu Donji Miholjac
(prema Urumović i dr. 2011)
Tablica 2.3 Hidrogeološki parametri vodonosnika na području crpilišta Čepin (prema
Urumović i dr. 2010)
Tablica 2.4 Hidrogeološki parametri vodonosnika na području crpilišta Ravnik-Popovača26
Tablica 2.5 Hidrogeološki parametri vodonosnika na području novog crpilišta Đurđevac30
Tablica 2.6 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica
na uzorcima jezgre iz bušotina sa prapornog ravljaka iz glinokopa kraj Iloka (kopneni prapori)

Tablica 2.7 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica na uzorcima jezgre iz bušotina duž trase Našičke obilaznice (močvarni prapori)......35 Tablica 2.8 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica na uzorcima jezgre bušotina po trasi kanala Dunav-Sava na dionici od Save do Rokovaca....37

 Tablica 3.1 Vrijednosti poroznosti u nekim popularnijim publikacijama

 Tablica 3.2 Poroznost, ocjedita poroznost i specifična retencija prema analizama u Hydrologic Laboratory of the U.S. Geological Survey provedenim od 1948. do 1960. godine (iz Morris and Johnson, 1967). Napomena: primijenjeni klasifikacijski sustav odgovara Wentworthovoj skali, s granicama navedenim u prvom stupcu, koji je bio službeni u U.S. Geological Survey, Tablica 3.4 Površine oplošja, obujmi i specifična površina čestica karakterističnih Tablica 3.5 Opći oblik, specifična površina i učinak oblika elipsoidnog tijela60 Tablica 3.6 Relativni izgled, debljina i specifična površina uobičajenih minerala glina (prema Holtz and Kovacs 1981, Yong and Warkentin, 1975; Cerato, 2001)......63 Tablica 3.7 Specifična površina oplošja, kapacitet kationske izmjene i gustoća naboja minerala glina, prema nekim metodama određivanja (prema Greenland and Quirk, 1964)63 Tablica 3.8 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za srednjozrne

Tablica 3.9 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za sitnozrne pijeske. Opaska: u žuto označenim poljima efektivna poroznost za uzorke iz bušotine P-1 na crpilištu Tablica 3.10 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za dobro graduirane šljunke. Opaska: u žuto i plavo označenim poljima navedene vrijednosti D_{lng} i n_e za bušotine SPB-8 i SPB-9 određene su prema geometrijskom osrednjenju D_{ga} i D_{lng} zbog ispranosti jezgre67 Tablica 4.1 Raspon vrijednosti Hazenova koeficijenta C_H prema Bowles (1984)......72 Tablica 4.2 Poroznost i Slihterova funkcija poroznosti (prema Lee, 1904)77 Tablica 4.3 Razlike između hidraulički identificirane srednje hidrauličke vodljivosti vodonosnika i njene veličine za pojedine uzorke pijeska izračunane po pojedinim obrascima Slichter. D_{aa} predstavlja aritmetički zbroj udjela aritmetičkih sredina veličine zrna pojedinih prosijeva. Isto vrijedi za D_{ag} i D_{ah}; Opaska: žutom bojom označena je metoda s najmanjom Tablica 4.4 Razlike između hidraulički identificirane srednje hidrauličke vodljivosti vodonosnika i njene veličine za pojedine uzorke pijeska izračunane po pojedinim obrascima Tablica 4.5 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito srednjozrnog pijeska iz bušotine DM-1 i P-1 na pokusnim poljima u Donjem Miholjcu i Livade kraj B. Manastira.....95 Tablica 4.6 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnih pretežito sitnozrnih pijesaka iz bušotine OČP-1 i P-1na pokusnim poljima u Tablica 4.7 Prosječne pogrješke za pojedina pokusna polja. Napomena: žutom bojom označena su vrlo precizna rješenja (odstupanje manje od 10 %), a ružičastom bojom neprihvatljive pogrješke (odstupanja preko 60 %)......97 Tablica 5.1 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito srednjozrnog pijeska iz bušotine DM-1 i P-1 na pokusnim poljima u Donjem Miholjcu i Livade kraj B. Manastira Opaska: žutom bojom označena su vrlo precizna rješenja.....107 Tablica 5.2 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito sitnozrnog pijeska iz bušotine OČP-1 i P-1 na pokusnim poljima u Čepinu i Ravnik kraj Popovače Opaska: žutom bojom označena su preciznija rješenja110 Tablica 5.3 Prosječne pogrješke izračuna hidrauličke vodljivosti Kozeny-Carmanovom metodom za pojedina pokusna polja. Napomena: žutom bojom označena su vrlo precizna rješenja (odstupanje manje od 20 %), a plavom bojom najtočnija (odstupanja manje od 10 %)

Popis Priloga

1	PJEŠČA	ANI VODONOSNICI	166
	1.1 CR 166	PILIŠTE LIVADE - BELI MANASTIR – Bušotina P-1 (pješčani vodonosnil 5	K)
	1.1.1 granulo	Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuirani ometrijskih krivulja	h _166
	1.1.2	Sortiranost i srednja veličina zrna	_166
	1.1.3 D ₁₀ i D ₂	Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog	zrna _166
	1.1.4 Slichter	Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama ra i Terzaghija za različite postupke izračuna veličine srednjeg zrna	ı _167
	1.1.5 metodo	Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom om uz korištenje različitih veličina efektivnig srednjeg zrna	_167
	1.1.6 srednje	Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testira vrijednosti	ne _167
	1.1.7 jednadž zrna	Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovo źbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg	m
	1.2 CR 168	PILIŠTE DONJI MIHOLJAC – Bušotine DP-1 i MNB-4 (pješčani vodonosn	ik)_
	1.2.1 granulo	metrijskih krivulja	n _168
	1.2.2	Sortiranost i srednja veličina zrna	_169
	1.2.3 D ₁₀ i D ₂	Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog	zrna _169
	1.2.4 Slichter	Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama ra i Terzaghija za različite postupke izračuna veličine srednjeg zrna	ι _170
	1.2.5 metodo	Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom om uz korištenje različitih veličina efektivnog srednjeg zrna	_171
	1.2.6 srednje	Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testira vrijednosti	ne _171
	1.2.7 jednadž zrna	Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovo źbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg	m 172
	1.3 CR	PILIŠTE ČEPIN – Bušotina OČP-1 (pješčani vodonosnik)	_173
	1.3.1 granulo	Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuirani ometrijskih krivulja	h _173
	~		

	1.3.2	Sortiranost i srednja veličina zrna	174
	1.3.3 D ₁₀ i D ₂	Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog z	rna 174
	1.3.4 Slichtera	Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama a i Terzaghija za različite postupke izračuna veličine srednjeg zrna	175
	1.3.5 metodor	Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom n uz korištenje različitih veličina efektivnog srednjeg zrna	176
	1.3.6 srednje v	Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirar vrijednosti	ne 176
-	1.3.7 jednadžl	Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovon bom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg z	n zrna <u>177</u>
1.4	4 CRI	PILIŠTE RAVNIK - POPOVAČA Bušotina P-1 (pješčani vodonosnik)	178
	1.4.1 granuloi	Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih metrijskih krivulja	178
	1.4.2	Sortiranost i srednja veličina zrna	178
	1.4.3 D ₁₀ i D ₂	Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog z	rna 179
	1.4.4 Slichtera	Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama a i Terzaghija za različite postupke izračuna veličine srednjeg zrna	179
	1.4.5 metodor	Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom n uz korištenje različitih veličina efektivnog srednjeg zrna	180
	1.4.6 srednje v	Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirar vrijednosti	ie 180
-	1.4.7 jednadžl zrna	Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovon bom od hidraulički testirane srednje vrijednosti za rezličite veličine srednjeg	n _181
1.5	5 Crp	ilišta porječja Vuke i Bosuta – (pješčani vodonosnik, pmjeri za verifikaciju)_	182
	1.5.1 području	Granulometrijski sastav uzoraka pijeska iz bušotina na istraživanim crpilištin 1 porječja Vuke i Bosuta	na u 182
	1.5.2	Sortiranost i srednja veličina zrna	185
	1.5.3 D ₁₀ i D ₂ veličine	Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog z 0 i korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna srednjeg zrna	rna 1 186
	1.5.4 metodor	Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom n uz korištenje različitih veličina efektivnog srednjeg zrna	188
	ŠLJUNO	ČANI VODONOSNICI	190

2.1 C	RPILIŠTE ĐURĐEVAC	_190
2.1.1 SPB-4	Granulometrijski sastav uzoraka šljunka iz bušotina SPB-1, SPB-2, SPB-3, SPB-5 i SPB-6, na novom crpilištu Đurđevac	s, _19
2.1.2 crpiliš	Granulometrijski sastav uzoraka šljunka iz bušotina SPB-8 i SPB-9, na no itu Đurđevac	vom _19
2.1.3 Đurđe	Granulometrijski sastav uzoraka šljunka iz bušotine SPB-10 na novom crp	ilištu _19
2.1.4 region Carma	Veličine lokalne hidrauličke vodljivosti na lokaciji pojedinih bušotina i nalne vrijednosti za cijelo novo crpilište Đurđevac predviđenih Kozeny- novom metodom uz korištenje različitih veličina efektivnog srednjeg zrna	_19
3. ISTI Dunav-Sav	RAŽIVAČKA PODRUČJA KOHERENTNIH TVOREVINA- Ilok, Našice i k ′a	anal 19
3.1 Is	traživačko polje ciglana Ilok	_194
3.1.1	Granulometrijski sastav kopnenih prapora u Iloku	_194
3.1.2 maser	Karakteristične veličine granulometrijskoga sastava kopnenih prapora u Ilo na specifična površina iz korelacije s granicom tečenja	oku i _ 19:
3.1.3 vrijed	Hidraulička vodljivost, K (m/s) uzoraka kopnenih prapora u Iloku i preglec nosti određenih pojedinim metodama	l _190
3.2 Is	traživačko polje Našičke obilaznice	_19′
3.2.1	Granulometrijski sastav močvarnih prapora u Našicama	_19'
3.2.2 Našic	Karakteristične veličine granulometrijskoga sastava močvarnih prapora u ama i masena specifična površina iz korelacije s granicom tečenja	_19
3.2.3 pregle	Hidraulička vodljivost, K (m/s) uzoraka močvarnih prapora u Našicama i od vrijednosti određenih pojedinim metodama	_19
4 ISTR	AŽIVAČKO POLJE TRASE KANALA DUNAV-SAVA	_200
4.1.1 Sava_	Granulometrijski sastav uzoraka koherentbih naslaga duž trase kanala Dun	av- _20
4.1.2 naslag granic	Karakteristične veličine granulometrijskoga sastava uzoraka koherentbih ga duž trase kanala Dunav-Sava i i masena specifična površina iz korelacije s com tečenja	_202
4.1.3 predv	Testirana hidraulička vodljivost, K(m/s), uzoraka i pregled vrijednosti iđenih pojedinim metodama	_204

1.	ι	JVOD.		1
	1.1	Opć	enito	1
	1.2	Lite	raturni pregled	4
2	ŀ	HIDRO	GEOLOŠKI UVJETI	8
	2.1	Osn	ovna morfološka i hidrografska obilježja ravničarskih predjela sjeverne Hrv	vatske
	2.2	o Reg	ionalne hidrogeološke prilike	10
	2.3	Hid	ogeološke prilike istraživanih lokaliteta	15
	2	2.3.1	Pokusna polja pješčanih i šljunčanih vodonosnika	15
		2.3.1.1	Crpilište Livade - Beli Manastir	17
		2.3.1.2	2 Crpilište Donji Miholjac	19
		2.3.1.3	B Crpilište Čepin pokraj Osijeka	22
		2.3.1.4	Crpilište Ravnik pokraj Popovače	25
		2.3.1.5	5 Crpilište Đurđevac	28
	2	2.3.2	Istraživani lokaliteti polupropusnih naslaga	31
		2.3.2.1	Istraživačko polje iločkog glinokopa	31
		2.3.2.2	2 Istraživačko polje Našičke obilaznice	33
		2.3.2.3	3 Istraživačko polje trase kanala Dunav-Sava	35
3	Т	ΓEORIJ	SKE OSNOVE I EKSPERIMENTALNI PODACI	39
	3.1	Dar	cyjev zakon izražen djelovanjem sila	40
	3.2	Gra	nulometrijski sastav i klasifikacije	44
	3.3	Pore	oznost taložina i gustoća tvorevina	47
	3	8.3.1	Ukupna i efektivna poroznost	47
	3	3.3.2	Gustoća tvorevina	56
	3.4	Obl	ci izražavanja specifične površine i karakteristične vrijednosti	57
	3.5	Eks	perimentalni podaci	64
P	ARA	4] Metr	HIDRAULIČKA VODLJIVOST IZRAŽENA GRANULOMETRIJSKIM IMA	69
-	4.1	Izvo	rne postavke i rezultati primiene obrazaca	70
	4	.1.1	Hazenov model hidrauličke vodljivosti	70
	4	.1.2	Slichterov model hidrauličke vodljivosti	72
	4	1.1.3	Terzaghijev model hidrauličke vodljivosti	82

SADRŽAJ

	4.1.4	4 C	Stale metode efektivnog polumjera	39
	4.	1.4.1	Metoda USBR-a	39
	4.	1.4.2	Beyerova metoda) 1
4.	2	Verifi	kacija obrazaca za uzorke iz dubokih vodonosnika9) 2
5 SAS	O TAV	DNOS 'A	SI PROPUSNOSTI, SPECIFIČNE POVRŠINE I GRANULOMETRIJSKOG) 9
5.	1	Mode	l propusnosti u funkciji specifične površine i hidrauličkog promjera9) 9
5.	2	Kozer	ıy-Carmanova jednadžba10)2
	5.2.1	1 V	erifikacija Kozeny-Carmanove jednadžbe za pješčane vodonosnike10)6
	5.2.2	2 V	erifikacija Kozeny-Carmanove jednadžbe za šljunčane vodonosnike11	13
	5.2.3 nasla	3 V age 1	'erifikacija univerzalnosti Kozeny-Carmanove jednadžbe za nekoherentne 18	
6	PRC	OPUSI	NOST I SPECIFIČNA POVRŠINA POLUPROPUSNIH TVOREVINA12	24
6.	1	Primje	ena Kozeny-Carmanove jednadžbe za izračun propusnosti polupropusnih	
tv	orevi	ina		27
6.	2	Korel	acijski odnosi hidrauličke vodljivosti i sadržaja praha i gline13	38
6.	3	Korel	acijski odnosi specifične površine i Attebergovih granica14	12
6.	4	Verifi	kacija rezultata14	16
7	ZAŀ	KLJU(ČCI15	53
8	LIT	ERAT	'URA15	57
9	PRI	LOZI		57
9.	1	Prilog	1 –Zemljovid područja istraživanja16	57
9.	2	Prilog	2 - Dokumentacija	70
1	PJE	ŠČAN	II VODONOSNICI	70
1.	1	CRPI 170	LIŠTE LIVADE - BELI MANASTIR – Bušotina P-1 (pješčani vodonosnik)	
	1.1.1 gran	l V ulome	^v eličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih etrijskih krivulja17	70
	1.1.2	2 S	ortiranost i srednja veličina zrna17	70
	1.1.3 D ₁₀	3 V i D ₂₀ .	eličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrn	a 70
	1.1.4 Slict	4 V htera i	^v eličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Terzaghija za različite postupke izračuna veličine srednjeg zrna17	71
	1.1.5 meto	5 V odom	^v eličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom uz korištenje različitih veličina efektivnig srednjeg zrna17	71

1.1.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti
 1.1.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna 172
 1.2 CRPILIŠTE DONJI MIHOLJAC – Bušotine DP-1 i MNB-4 (pješčani vodonosnik) 172
1.2.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja
1.2.2 Sortiranost i srednja veličina zrna
 1.2.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀
1.2.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna174
1.2.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna
1.2.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti
 1.2.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna 176
1.3 CRPILIŠTE ČEPIN – Bušotina OČP-1 (pješčani vodonosnik)177
1.3.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja
1.3.2Sortiranost i srednja veličina zrna178
 1.3.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀
 1.3.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna
1.3.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna
1.3.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti
 1.3.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna 181
1.4 CRPILIŠTE RAVNIK - POPOVAČA Bušotina P-1 (pješčani vodonosnik)

1.4.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja
1.4.2 Sortiranost i srednja veličina zrna
1.4.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D ₁₀ i D ₂₀
1.4.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna183
1.4.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna
1.4.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti
 1.4.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za rezličite veličine srednjeg zrna 185
1.6 Crpilišta porječja Vuke i Bosuta – (pješčani vodonosnik, primjeri za verifikaciju) 187
1.6.1 Granulometrijski sastav uzoraka pijeska iz bušotina na istraživanim crpilištima u području porječja Vuke i Bosuta
1.6.2Sortiranost i srednja veličina zrna190
1.6.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D_{10} i D_{20} i korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna
1.6.4 Veličina predviđene hidrauličke vodljivosti uzoraka određene Kozeny- Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna193
2 ŠLJUNČANI VODONOSNICI
2.1 Crpilište Đurđevac195
 2.1.1 Granulometrijski sastav uzoraka šljunka iz bušotina SPB-1, SPB-2, SPB-3, SPB-4, SPB-5 i SPB-6, na novom crpilištu Đurđevac
2.1.2 Granulometrijski sastav uzoraka šljunka iz bušotina SPB-8 i SPB-9, na novom crpilištu Đurđevac
2.1.3 Granulometrijski sastav uzoraka šljunka iz bušotine SPB-10 na novom crpilištu Đurđevac
2.1.4 Veličine lokalne hidrauličke vodljivosti na lokaciji pojedinih bušotina i regionalne vrijednosti za cijelo novo crpilište Đurđevac predviđenih Kozeny- Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna198
3 ISTRAŽIVAČKA PODRUČJA KOHERENTNIH TVOREVINA- Ilok, Našice i kanal Dunav-Sava
3.1 Istraživačko polje ciglana Ilok

	3.1.1	Granulometrijski sastav kopnenih prapora u Iloku izražen postotkom prolaza 199
	3.1.2 masena	Karakteristične veličine granulometrijskoga sastava kopnenih prapora u Iloku i specifična površina iz korelacije s granicom tečenja
	3.1.3 vrijedno	Hidraulička vodljivost, K (m/s) uzoraka kopnenih prapora u Iloku i pregled osti određenih pojedinim metodama
3	.2 Istra	aživačko polje Našičke obilaznice202
	3.2.1 prolaza	Granulometrijski sastav močvarnih prapora u Našicama izražen postotkom 202
	3.2.2 Našican	Karakteristične veličine granulometrijskoga sastava močvarnih prapora u na i masena specifična površina iz korelacije s granicom tečenja
	3.2.3 pregled	Hidraulička vodljivost, K (m/s) uzoraka močvarnih prapora u Našicama i vrijednosti određenih pojedinim metodama204
4	ISTRAZ	ŽIVAČKO POLJE TRASE KANALA DUNAV-SAVA206
	4.1.1 Sava izr	Granulometrijski sastav uzoraka koherentnih naslaga duž trase kanala Dunav- ražen postotkom prolaza
	4.1.2 naslaga granicor	Karakteristične veličine granulometrijskoga sastava uzoraka koherentnih duž trase kanala Dunav-Sava i i masena specifična površina iz korelacije s m tečenja
	4.1.3 predviđ	Testirana hidraulička vodljivost, K(m/s), uzoraka i pregled vrijednosti enih pojedinim metodama

1. UVOD

1.1 Općenito

Koncept doktorske disertacije pod nazivom "Parametarska kvantifikacija hidrogeoloških svojstava klastičnih naslaga na primjerima pokusnih polja u sjevernoj Hrvatskoj" potaknut je pitanjima povezanosti makroskopskih obilježja taložina u sjevernoj Hrvatskoj i standardnih hidrogeoloških parametara. To se naročito odnosi na pitanja koja se pojavljuju u radu na znanstvenom projektu "Hidrogeološka karta Republike Hrvatske M 1 : 100 000".

U sklopu tih istraživanja promišljanja su usmjerena prema dvjema temama koje su međusobno povezane. To su pitanja povezana sa strujanjem podzemnih voda i pitanja povezana sa zadržavanjem i prenošenjem onečišćivala u i kroz podzemne vode. Ravničarski predjeli sjeverne Hrvatske prekriveni su raznovrsnim uslojenim taložinama izgrađenim od gline, praha, pijeska i šljunka. Njihova su glavna makroskopska i mjerljiva geometrijska obilježja predstavljena veličinom pojedinih čestica, zrna i oblutaka, načinom njihova slaganja, njihovom šupljikavošću i unutarnjom površinom taložina te zbrojem površine individualnih čestica. Uz njih posebno su važni mineraloški i petrološki sastav koji ovdje nisu u središtu rasprave.

Tim tragom postavljeno je pitanje numeričkog izražavanja utjecaja ovih geometrijskih obilježja na veličinu standardnih hidrogeoloških parametara koji proizlaze iz mehanizma fizikalnih procesa strujanja podzemne vode. U središtu takvog promatranja je hidraulička vodljivost, pa je za verifikaciju ispravnosti relacija koje ju izražavaju nužno raspolagati hidrauličkim pokusima kojima je izvedivo pouzdano identificirati stvarnu vrijednost hidrauličke vodljivosti.

Za takva pokusna polja građena od krupno i srednjoklastičnih tvorevina, a gore navedenih značajki, izabrana su crpilišta za koja se raspolaže s pouzdanim podacima o litološkom sastavu i primjerenim pokusnim crpljenjem. Pod pouzdanim podacima o litološkom sastavu pretpostavlja se istraživačka bušotina s kvalitetnim jezgrovanjem i većim

brojem granulometrijskih analiza uzoraka vodonosnika, a pod primjerenim pokusnim crpljenjem pretpostavlja se provedba pokusnoga crpljenja uz redovita opažanja crpne količine i razine vode u zdencu i minimalno jednoj opažačkoj bušotini.

Slijedeći zahtjev dobre istraživačke prakse odnosi se na raznolikost litološkog razvoja vodonosnika kako bi se pokrio spektar granulometrijskoga sastava za koji su valjani analizirani obrasci. Po značajkama veličine zrna i koherentnosti tvorevina, pokusna polja podijeljena su u dvije skupine.

Prvu skupinu karakteriziraju pjeskovite i šljunkovite naslage. Korišteno je 5 pokusnih polja (prilog 1.). To su crpilišta Donji Miholjac i Livade kraj Belog Manastira na kojima je vodonosnik izgrađen pretežito od srednjozrnih pijesaka, zatim crpilište Čepin u Čepinu kraj Osijeka i crpilište Ravnik kraj Popovače na kojima je vodonosnik izgrađen pretežito od sitnozrnih pijesaka i konačno novo crpilište Đurđevac na kojem je vodonosnik izgrađen od šljunka s pijeskom.

Druga skupina pitanja odnosi se na prahovito-glinovite taložine. Za istraživačka polja takvih finoklastičnih tvorevina izabrani su lokaliteti geoloških i geomehaničkih istraživačkih bušotina za koje se raspolaže s podacima o pouzdanom opisu jezgre bušotina te laboratorijskim analizama granulometrijskog sastava, Attebergovih granica i hidrauličke vodljivosti. Kod njih je dodatni zahtjev dobre istraživačke prakse također raznolikost analiziranih uzoraka, te brojnost provedenih analiza. Takvim pristupom izabrana su tri lokaliteta (prilog 1.). Jedan su bušotine na glinokopu tipičnih kopnenih prapora u Iloku, drugi su bušotine po trasi našičke obilaznice koja prelazi preko močvarnih prapora, a treća su bušotine duž trase projektiranog višenamjenskog kanala Dunav-Sava koji presijeca raznovrsne sitnoklastične tvorevine ovih predjela.

U sklopu provedenih istraživanja o identifikaciji hidrogeoloških parametara koherentnih i nekoherentnih naslaga obrađen je veliki broj uzoraka, od kojih je u završne identifikacije uključeno ukupno 283 uzorka i to 105 uzoraka pretežno jednoličnih pijesaka, 46 uzoraka dobro graduiranih šljunaka, te 132 uzorka prahovito glinovitih tvorevina karakterističnih za površinske naslage ravničarskih sjeverozapadnih predjela Hrvatske.

Nakon kratkog uvodnog literaturnog pregleda u drugom poglavlju ukratko su prikazani hidrogeološki uvjeti ravničarskih predjela u kojima se nalaze lokaliteti postojećih i

potencijalnih crpilišta s kojih su korišteni uzorci vodonosnika za proučavanje postupaka identifikacije parametara nekoherentnih naslaga, te istraživačkih lokaliteta s kojih su korišteni uzorci za proučavanje postupaka identifikacije hidrogeoloških parametara koherentnih tvorevina. Za promatrane vodonosne i vodozadržne tvorevine prikazan je i granulometrijski sastav s ilustracijom odnosa razlika srednjeg zrna uzoraka ovisno o metodi njegovoga određivanja, što naročito utječe na hidrauličku vodljivost.

Treće poglavlje je na neki način središnja tema rasprave. U njemu se prvo sažeto prikazuje odnos sila koje djeluju pri gibanju tekućine u poroznom mediju, i taj se završno ilustrira djelovanjem osnovnih geoloških svojstava na gibanje. Zatim slijedi prikaz literaturnih podataka o različitim oblicima poroznosti i specifične površine. Posebna pozornost posvećuje se konstrukciji krivulje kojom se prikazuje veličina efektivne poroznosti u funkciji efektivnog srednjeg zrna koja je kasnije verificirana primjenom Kozeny-Carmanovog modela toka za široki raspon granulometrijskog sastava.

Četvrto poglavlje posvećeno je metodama određivanja hidrauličke vodljivosti u kojima se koristi koncept Hazenova efektivnog zrna, a često se koriste u svjetskoj literaturi i u našoj domaćoj praksi. Pokazano je da su pogrješke koje rezultiraju iz njihove primjene često posljedica njihovih degeneracija u primjeni, a ne u izvornih postavki.

Peto poglavlje posvećeno je Kozeny-Carmanovoj (KC) metodi. Prvo se prikazuje njen pojednostavljeni izvod konceptom Hagen-Poisseuillova zakona ukazujući na identičnost rezultata različitim teorijskim pristupima. To je temelj na kojemu se gradi i njegova primjena prvo za jednolične pijeske, a zatim dobro graduirane šljunke. Pokazuje se da primjenjivost KC metode nije ograničena veličinom sadržanih čestica, niti ujednačenošću agregata, nego metodom izračuna efektivnog srednjeg zrna.

U šestom poglavlju raspravlja se povezanosti veličine zrna, Attebergovih granica i sukcijskih svojstava s poroznošću, specifičnom površinom i propusnošću sitnoklastičnih tvorevina. U prvi plan postavlja se pitanje točnosti mjerenja njihove hidrauličke vodljivosti te probleme identifikacije efektivne poroznosti i efektivnog srednjeg zrna za primjenu Kozeny-Carmanove jednadžbe. Korelacijski odnosi provjeravaju se na regionalnom, lokalnom i laboratorijskom mjerilu.

Sedmo poglavlje, zaključak, daje kratki prikaz postignutih zaključaka kroz provedena istraživanja.

1.2 Literaturni pregled

Dosadašnja istraživanja povezana s predloženom temom mogu se razvrstati u dvije skupine. Jedna je regionalnoga karaktera povezana s geološkim i hidrogeološkim istraživanjima među kojima je nekoliko magistarskih radova i doktorskih disertacija.

Druga skupina istraživanja odnosi se na fizikalno-kemijska svojstva klastičnih tvorevina i polidisciplinarne klasifikacije tih naslaga na temelju organoleptičkih zapažanja. Središnja tema takvih analiza su geometrijska obilježja sadržanih frakcija koja su povezana s mineraloškim sastavom i sadržajem vode, a kao posljedicu imaju njihove geološke, hidrogeološke, geomehaničke i tloznanstvene karakteristike. Geometrijska obilježja sadržanih frakcija opisuju se raspodjelom veličine zrna, poroznošću ili pornim odnosom te površinom oplošja sadržanih krutih frakcija.

Kod hidrogeoloških istraživanja interes o geometrijskim obilježjima u ranijim istraživanjima prvenstveno je bio usmjeren na veličinu efektivnog zrna kao argumenta funkcije propusnosti ili hidrauličke vodljivosti što je aktualno već stotinjak godina, još od prezentacije poznatih obrazaca Alena Hazena (1891-1911), Charlesa Slichtera (1899. 1902. i 1905) i Karla Terzaghija (1925) do recentnih verifikacija (Carier, 2003; Cheng & Chen, 2007; Odong, 2008; Mbonimpa et al.; 2009; Koch et al. 2011). Efektivno zrno se uglavnom koristilo za relativno jednolične pijeske jer je veličina takvoga zrna u vrlo dobroj funkcionalnoj svezi s hidrauličkom vodljivošću i kapilarnim dizanjem.

Realnu nejednoličnost naslaga i utjecaj poroznosti na propusnost ističu već Slichter (1902) i Terzaghy (1925) i uvrštavaju ih u svoje eksperimentalne obrasce. Ipak, u prvom planu praktičnih istraživanja do danas se zadržava korištenje efektivnog zrna s granulometrijskih krivulja, što se u slučaju starijih radova može protumačiti kao izbjegavanje zamornih izračuna hidrauličkoga promjera nejednoličnog poroznog medija.

Teorijski funkcionalan učinak poroznosti i stvarnoga efektivnog promjera zrna u raznovrsnim tvorevinama donose tek Kozeny (1927) i Carman (1937) koristeći NavierStokesove jednadžbe Hagen-Poisseuilleova gibanja kroz snop cjevčica raznovrsnih oblika. U njihovim rješenjima ključni geometrijski čimbenik propusnosti je specifična površina koja se može izraziti hidrauličkim promjerom porozne sredine (Carman, 1937, 1956). Rezultirajuća jednadžba se njima u čast naziva Kozeny-Carmanova jednadžba. Kako se specifična površina može izraziti u odnosu na masu ili obujam sastojaka poroznog medija, a njihova konverzija ostvaruje se preko poroznosti, to mogu postojati različiti oblici funkcije poroznosti, pa i iste Kozeny-Carmanove jednadžbe. Oni se u literaturi ponekad pripisuju dugim autorima.

Uključivanjem funkcije specifične površine oplošja sadržanih čestica poroznog medija nestaje ograničenje veličine i sortiranosti zrna pa takav obrazac za izračun propusnosti, s ili bez nekih modifikacija, postaje teorijski konzistentan, a time i univerzalno primjenjiv u raznim disciplinama. Također, specifična površina kao geometrijski čimbenik uključuje učinak pojedinih oplošja svih čestica sadržanih unutar ukupnoga reprezentativnoga obujma i time predstavlja fundamentalno i prirođeno svojstvo porozne sredine. Stoga se specifična površina nalazi u korelaciji s brojnim važnim pojavama kao što je protjecanje i zadržavanje vode, kationska izmjena, retencija i otpuštanja različitih kemikalija (uključujući i stanovita potencijalna onečišćivala okoliša), bubrenja, i mehanička svojstva kao što je plastičnost, kohezija i čvrstoća (Hillel, 1980). Upravo je njeno svojstvo adsorpcije dušika iskorišteno za razvoj osnovne BET metode mjerenja "vanjske" specifične površine (Brunauer et al., 1938). Raznolikost učinaka specifične površine oplošja čestica poroznog medija i njihova važnost u okolišnom inženjerstvu su razlog da su pitanja povezana sa specifičnom površinom aktualna tema raznovrsnih poli i interdisciplinarnih istraživanja, a posebno se intenziviraju koncem prošlog i početkom ovog stoljeća (Cerato, 2001; Yong & Mulligan, 2004).

Hidrauličko značenje specifične površine pornog prostora kao recipročne vrijednosti hidrauličkoga polumjera analitički detaljno raspravlja Bear (1988), a stohastički Dagan (1989) povezujući Hagen-Poiseuillov i Darcyjev zakon.

Korelacijski odnosi pojedinih svojstava prahovito-glinovitih tvorevina međusobno, i s njihovim granulometrijski sastavom, raširena je tema tloznanstvenih istraživanja. Među njima naročito su zanimljivi rezultati istraživanja sadržanih u doktorskoj tezi Cerato (2001) o utjecaju specifične površine na geotehnička svojstva finozrnih tala u sklopu koje je prikazao rezultate istraživanja uzoraka iz većeg broja država iz USA u laboratoriju University of Massachusetts, te iz laboratorija u Engleskoj i Japanu, kao i rezultati istraživačkog projekta o preciznosti predviđanja propusnosti tla korištenjem Kozeny-Carmanove jednadžbe (Chapuis & Aubertin, 2003) provedenoga na École Polytechnique de Montréal, sponzoriranoga od Natural Sciences and Engineering Council of Canada.

Povezanost specifične površine s granulometrijskim sastavom i mehaničkim svojstvima sitnozrnih tvorevina dovodi i do pitanja kako bi organoleptička zapažanja na terenu i laboratorijska ispitivanja mehaničkih svojstava finozrnih tvorevina mogla voditi prema identifikaciji specifične površine oplošja sadržanih čestica. Na tom tragu posebice su zanimljive interpretacije kojima su Shirazi & Boersma (1984) u klasični trokutni dijagram sitnoklastičnih tvorevina prema kategorizaciji USDA uključili podatke geometrijske sredine veličine promjera čestica sadržanih u reprezentativnom uzorku i geometrijsku standardnu devijaciju svih sadržanih čestica, koristeći pri tome formulacije kojima su Irani & Calis, (1963) u statističkoj analizi izbjegli dimenzijsko značenje veličine zrna.

Povezanost granulometrijskog sastava i "skoro saturirane" hidrauličke vodljivosti K_{10} (pri podtlaku od 10 cm) istraživala je skupina autora (Jarvis et al., 2002) na 37 lokaliteta u 13 zemalja Sjeverne Amerike i Europe, a najuspješnija statistička korelacija hidrauličke vodljivosti ostvarena je prema veličini zrna kao geometrijskoj sredini sadržanih čestica u skladu s formulacijom Shirazi & Boersma (1984).

Dobar korelacijski odnos između saturirane hidrauličke vodljivosti i sumarnoga sadržaja praha i gline u tlu standardne relativne gustoće od 1,3 prikazuju Bloemen (1980), te Campbell & Campbell (1982). Takav korelacijski odnos Campbell (1985) transformira u oblik za tlo proizvoljne gustoće koristeći pri tome korelacijske odnose gustoće tla i tlaka ulaska zraka (Hall et al., 1977), te konstantu odnosa hidrauličke vodljivosti s tlakom ulaska zraka (Russo & Bresler, 1980). Rezultirajući odnosi mogu se izraziti odnosima parametara grafičke predodžbe tla u dijagramu statističke srednje vrijednosti veličine čestica i standardne devijacije (Shirazi & Boersma, 1984). Takvim se postupkom ostvaruju vjerodostojni iznosi hidrauličke vodljivosti prahovito-glinovitih naslaga (Urumović, 2003).

Za verifikaciju ovih raznolikih metoda bilo je nužno pronaći primjerene podatke raznolikih tvorevina. Pri tome su postojala dva kriterija. Jedan su regionalni hidrogeološki uvjeti koji su bili vodič u izboru potencijalnih lokacija, a drugi su kakvoća provedbe lokalnih istraživanja na kojima su prikupljeni vjerodostojni podaci, što se naročito odnosilo na istraživačko bušenje, uzimanje uzoraka i rezultirajuće granulometrijske analize.

Za regionalne hidrogeološke uvjete prvenstveno su korištene prezentacije u načinjenim magistarskim radovima i doktorskim disertacijama, (Urumović, 1977; Hernitz, 1980; Urumović, 1982; Bačani, 1997; Brkić, 1999; Duić, 2007).

Za lokalne prilike i podatke, preko kojih je izvodiva pouzdana analiza i verifikacija, korišteni su rezultati istraživačkoga bušenja, granulometrijske analize i pokusnih crpljenja na većem broju crpilišta. Njihov popis naveden je u literaturnom pregledu u kojemu se nalaze i izvješća o istraživačkom bušenju i laboratorijskim analizama glinovito-prahovitih tvorevina na tri istraživačka područja.

2 HIDROGEOLOŠKI UVJETI

2.1 Osnovna morfološka i hidrografska obilježja ravničarskih predjela sjeverne Hrvatske

Istraživano područje je najvećim dijelom omeđeno s tri najveće Hrvatske rijeke. Na istoku je Dunav koji duljinom od 188 km teče istočnim rubom Hrvatskog teritorija. Na sjeveru teče Drava, a na jugu Sava koje se ulijevaju u Dunav. Sve ove tri rijeke protječu prostranim ravnicama u kojima su tijekom kvartara istaložile debele klastične naslage. Izrazito ravničarski tereni imaju bogati mikroreljef u kojemu su najmarkantniji tragovi meandriranja oko korita rijeka i pleistocenske terase u rubnim predjelima ravnica. Najmarkantnije su Đakovački ravnjak koji se naslanja na srednjoslavonsko gorje i Vukovorski ravnjak koji je morfološki produžetak Fruške gore. Ovi ravnjaci su i površinsko razvođe savskog porječja na jugu i dravsko-dunavskog na sjeveru.

Pridravska ravnica je hipsometrijski viša od prisavske. U zapadnim predjelima, kraj staroga grada Križovljana kota terena je oko 191 m n.m. a na krajnjem istoku uz obalu Dunava kraj Borova iznosi 89 m, dakle visinska razlika iznosi 102 m. Savska ravnica na krajnjem zapadu pri ušću Sutle ima kote oko 135 m n.m. i do Lipovca na istoku opadne na 82 m n.m. pa razlika iznosi 53 m, dakle dvostruko manje nego u pridravskoj ravnici.

Između pridravskih i prisavskih ravničarskih područja su zagorsko-prigorska i srednjoslavonska gorja s kojih se slijevaju manji pritoci Drave i Save.

Rijeka Drava izvire u sjevernoj Italiji (južni Tirol), protječe teritorijem Austrije i Slovenije i u Hrvatsku ulazi kod Križovljana (oko 20 km zapadno od Varaždina). Ulaskom u Hrvatsku Drava teče otvorenom podravskom ravnicom, širi joj se korito, a dubine joj se kreću od 4 do 7 m. Drava ima i znatan pad (0,34 %), koji je čak tri puta veći od pada Save u prisavskoj ravnici. Zato su u koritu Drave razvijeni denudacijski procesi. Prirodna obilježja Drave i njenog zaobalja donekle su izmijenjena izgradnjom triju vodnih stuba: Varaždin, Čakovec i Dubrava, koje su izgrađene uzvodno od ušća Mure. Duljina Drave na teritoriju Hrvatske iznosi 305 km što je oko 41 % njene ukupne duljine. U Dunav utječe u Hrvatskoj,
oko 20 km istočno od Osijeka, a srednji protok joj iznosi 625 m³/s. U Hrvatskoj, Drava ima samo jednu veću pritoku, rijeku Muru, koja je u ovome dijelu svoga toka granična rijeka između Hrvatske i Mađarske. Srednji protok Mure na ušću u Dravu iznosi 210 m³/s.

Rijeka Sava izvire u susjednoj Sloveniji. U Hrvatsku ulazi zapadno od Zagreba i na toku kroz Hrvatsku ima karakteristike donjeg toka s prosječnim padom oko 0.1 %. Kroz Hrvatsku Sava teče prostranom dolinom širina koje kod Zagreba iznosi oko 10 km, a u krajnjem istočnom području doseže oko 23 km. U svom toku kroz Hrvatsku rijeka Sava ima izrazito asimetričan slijev. Lijeve pritoke Save formiraju se u relativno uskom području niskih gorskih masiva padine kojih su pretežno izgrađene od slabo propusnih tercijarnih naslaga. Desni dio porječja Save doseže duboko u dinarsko gorje i površinom višestruko premašuje veličinu lijevog dijela porječja. To su Kupa u Hrvatskoj i Una koja u Savu utječe na granici Hrvatske i Bosne i Hercegovine. Svojim daljnjim tokom Sava je granična rijeka i s njene desne bosanskohercegovačke strane ulijevaju se rijeke Vrbas, Ukrina i Bosna, te nizvodno Drina. Utjecaj desnih pritoka snažno je izražen u promjeni protoka Save na toku kroz Hrvatsku. Sava ulazi u Hrvatsku s srednjom protokom od oko 320 m³/s, a otječe iz Hrvatske sa srednjom protokom od oko 1210 m³/s. U koritu Save nizvodno od Zagreba prevladavaju akumulacijski procesi, pa njeno korito izdubljeno u vlastitom nanosu ponegdje nadvisuje okolne ravničarske terene. U takvim uvjetima i tamo gdje je Sava usječena u aluvijalni vodonosnik pojavljuju se zaobalne vode. Dva su veća primjera takvih pojava. Odra koja izvire iz aluvijalnog vodonosnika napajanog vodama rijeke Save u lokalnoj depresiji istočno od Zagreba, zatim teče usporedno sa Savom i utječe u Kupu neposredno iznad njenog ušća u Savu. Drugi je izraziti primjer u istočnohrvatskoj ravnici istočno od Slavonskoga Broda. To je Bosut s pritokom Biđ koji glavninu voda dobivaju od zaobalnih voda Save preko aluvijalnoga vodonosnika u lokalnim depresijama. Bosut se udaljava od Save protječući širokim lukom preko Vinkovaca, a zatim se postupno približava i nizvodno utječe u Savu. Ovi zaobalni izvori su zatomljeni nakon izvedbe hidrotehničkih zahvata kojima je ubrzano otjecanje glavnim koritom Save.

Sadašnja osnovna hidrografska mreža formirana je znatno prije kvartarnoga razdoblja kada su u nižim predjelima savske i dravske ravnice postojala močvarišta, a hidrografskom mrežom su donošeni nanosi kvartarnih taložina značajne debljine.

2.2 Regionalne hidrogeološke prilike

Za hidrogeološke karakteristike sjeverne Hrvatske najznačajniji su vodonosni sustavi formirani u kvartarnim naslagama prisavske i pridravske ravnice. U strukturnogeološkom pogledu radi se o naslagama istaloženim u dvjema izduženim dubokim tektonskim depresijama tipa grabe. To su, na sjeveru Dravska depresija (na koju se zapadno nastavlja Murska depresija) i na južnom rubu Savska i Slavonsko-srijemska depresija, a između njih su niski stari gorski masivi.

U depresijama su istaložene debele klastične naslage tercijarne i kvartarne starosti, najprije u morskoj, a potom u jezerskoj i konačno močvarnoj sredini. Okolnost da je okopnjavanje brže napredovalo u dravskoj nego u savskoj depresiji imalo je posljedice i na hidrogeološke uvjete sve do površinskih naslaga, tako da su u savskoj dolini raširenija teška glinovita tla, a u dravskoj dolini su raširenija pjeskovito prahovita i praporna tla. U dubljim dijelovima raširene su taložine raznovrsnih pijesaka i šljunaka koji se vertikalno i lateralno izmjenjuju sa sitnoklastičnim taložinama. Donja granica tih naslaga nije jasno kronostratigrafski određena, ali je na temelju litološkog profila i karotažnih snimki naftnih i hidrogeoloških bušotina uočen litostratigrafski marker Q' (Urumović i dr. 1978) kao podina paketa naslaga koje karakterizira nekonsolidiranost tvorevina, relativno visoki udjel propusnih gruboklastičnih slojeva i sadržaj slatkih voda. U domaćoj literaturi obično se naziva kvartarni vodonosni kompleks ili kvartarni vodonosnik. Općenito je heterogene litološke građe, značajna je razlika njegovoga razvitka u dravskom i savskom području.

U dravskom području je vrlo karakteristična distribucija krupnozrnih klastičnih tvorevina. Litološki razvoj vodonosnika je u gruboj shematizaciji tipičan primjer aluvijalnih nanosa rijeke od gornjeg do donjeg toka (slika 2.1). Na zapadu su istaloženi krupni šljunci s manjim ili većim sadržajem pijeska. Nizvodno, prema središnjem području, sadržaj valutica šljunka opada, a povećava se sadržaj pijeska i pojavljuju se proslojci praha i gline. U najnižim istočnim predjelima vodonosnik je izgrađen od jednoličnog sitno do srednjozrnastog pijeska s tanjim i debljim proslojcima praha i gline. Debljina vodonosnika raste od desetak metara na zapadu kraj Križovljana na preko 300 m, no najznačajniji vodonosni slojevi su u pravilu iznad dubine od 150 m.

Slika 2.1 Uzdužni litološki profil dravskog aluvijalnog vodonosnika (prema Urumović i dr.1994.)

Slika 2.2 Uzdužni litološki profil savskog aluvijalnog vodonosnika od Zagreba do Županje (prema Brkić, 1999).

Dravski aluvijalni vodonosnik je prekriven relativno slabo propusnim taložinama. U krajnjim zapadnim predjelima pokrovne naslage su pjeskovito-prahovitoga sastava i vrlo male debljine, pa ponegdje vodonosni šljunci dosežu do površine. Vodonosnik je ovdje otvorenog tipa. Idući prema istoku debljina pokrovih polupropusnih naslaga se zadebljava do dvadesetak i više metara, a u njegovom sadržaju ima sve više čestica praha i gline. Dinamika podzemnih voda uvjetovana je okolnošću da se vodonosnik napaja poniranjem padalina kroz slabo propusne pokrovne naslage gotovo na cijeloj površini i da je korito Drave denudacijskim procesima relativno duboko usječeno u aluvijalni vodonosnik. U takvim uvjetima rijeka Drava i unutarnja kanalska mreža u pravilu dreniraju podzemne vode u prirodnim uvjetima. Veličina poniranja padalina ovisi o brojnim čimbenicima povezanim s lokalnim hidrogeološkim prilikama, klimatskim prilikama i zasađenim kulturama, a u gruboj aproksimaciji može se uzeti da od 8 do 30 % oborina ponire do vodonosnika i obnavlja podzemne vode (Urumović i dr. 1994).

Hidraulička vodljivost vodonosnih naslaga u zapadnim predjelima dravskog vodonosnika kreće se od 100-1000 m/dan, a idući prema istoku opada slijedom promjena litološkoga sastava na oko 10-30 m/dan u pješčanim vodonosnicima istočne Slavonije.

Savski vodonosnici su zamršenije građe od Dravskoga vodonosnika (slika 2.2). To je prvenstveno posljedica okolnosti da su u donjem toku Save glavninu vučenog nanosa i u kvartaru donosile njene desne pritoke Una, Vrbas, Ukrina, Bosna i nizvodno Drina. Takvi uvjeti taloženja i raznolika neotektonska aktivnost tijekom kvartara u savskoj depresiji rezultirali su nastankom raznolike distribucije svojstava aluvijalnih vodonosnika. U Zagrebačkom prostoru vrlo propusni šljunci formiraju otvoreni vodonosnik koji idući nizvodno zadebljava, a jugoistočno od Zagreba u vodonosniku se povećava sadržaj pijeska i pojavljuju proslojci gline. Maksimalna debljina vodonosnika doseže oko 100 m. U istom smislu povećava se i debljina pokrovnih slabopropusnih naslaga. U sisačkom području debljina vodonosnika se smanjuje na nekoliko metara. Dalje nizvodno formirani su vodonosnici u nanosima šljunka koje su u obliku lepeze nanijele desne pritoke Save pa se debljina i propusnost vodnosnika više mijenja okomito nego u smjeru toka Save (Miletić & Urumović, 1975). Od ovih najznačajniji su vodonosnici u lepezastim nanosima rijeka Ukrine i Bosne koji se međusobno dodiruju. Maksimalne debljine ovih vodonosnika dosežu preko 200 m (Brkić, 1999). U pravilu su prekriveni slabo propusnim glinovito-prahovitim taložinama debljina kojih se kreće od nekoliko do nekoliko desetaka metara. Okolnost da rijeka Sava velikim dijelom svoga donjega toke ne teče svugdje najnižim dijelovima doline nego je usječena u svoj recentni nanos stvorila je uvjete pri kojima se u lokalnim depresijama pojavljuju izvorišta zaobalnih voda i formiraju tekućice (Biđ, Bosut, Spačva) koje se nizvodno ulijevaju u Savu.

Slijedom litološkog razvitka raspoređena je i veličina hidrauličke vodljivosti koja je najveća u zagrebačkom vodonosniku gdje se obično kreće u rasponu od 100 do 10000 m/dan što je desetak puta više nego kod varaždinskog vodonosnika (Brkić 1999).

2.3 Hidrogeološke prilike istraživanih lokaliteta

Svi istraživani lokaliteti nalaze se na području sjeverne Hrvatske (prilog 1), u prostoru obuhvaćenom projektom izrade Osnovne hidrogeološke karte Republike Hrvatske, te na lokalitetima nekih lokalnih istraživanja Hrvatskog geološkog Instituta, Rudarsko-geološko-naftnog fakulteta i Instituta građevinarstva Hrvatske. Dvije su skupine takvih lokaliteta. Jedna se odnosi na istraživana crpilišta koja su izabrana kao primjerena pokusna polja pješčanih i šljunčanih vodonosnika, a druga se odnose na istraživane lokalitete polupropusnih naslaga praha i gline na iločkom glinokopu, trasi Našičke obilaznice i trasi kanala Dunav-Sava.

Ovdje su ukratko prikazani hidrogeološki uvjeti na pokusnim poljima i granulometrijski sastav uzoraka koji su korišteni u raspravi.

2.3.1 Pokusna polja pješčanih i šljunčanih vodonosnika

Zahtjevima o primjerenosti podataka zadovoljavala su samo neka od istraživanih crpilišta koja je istraživao Rudarsko-geološko-naftni fakultet i Hrvatski geološki institut u zadnjih 30-tak godina. Za eksperimentalna polja najvažnije je kvalitetna snimka granulometrijskog sastava i pouzdana hidraulička identifikacija osrednjene vrijednosti hidrauličke vodljivosti zahvaćenog vodonosnika. Ovi ukratko definirani zahtjevi pretpostavljaju:

- kvalitetno jezgrovanje istraživačke bušotina i pouzdano kartiranje jezgre,
- primjereno uzorkovanje i pouzdani podaci granulometrijskih analiza,
- primjeren položaj istraživačkih bušotina u odnosu na crpljeni zdenac i konačno
- kvalitetni podaci o pokusnom crpljenju i/ili pouzdane identifikacije hidrauličkih parametara.

Izabrano je 5 karakterističnih lokaliteta za osnovnu verifikaciju metode (prilog 1). Dva su u sjeveroistočnim predjelima Republike Hrvatske. To su Donji Miholjac i Beli Manastir gdje u zahvaćenom vodonosniku prevladavaju jednolični srednjozrni pijesci. Dva su na lokalitetima na kojima su vodonosnici izgrađeni uglavnom od jednoličnih sitno dio srednjozrnih pijesaka s učestalom pojavom tankih proslojaka praha. To su Čepin kraj Osijeka u istočnim predjelima i Ravnik kraj Popovače u jugozapadnim predjelima sjeverne Hrvatske.

Poseban primjer je peto pokusno polje gdje je istraživan šljunčani vodonosnik, dakle valutice šljunka i zrna pijeska koji su toliko dobro graduirani da za njih ne vrijede postupci kakvi se preporučaju za jednolične pijeske. To je pokusno polje Đurđevac nedaleko od aktivnoga crpilišta Đurđevac.

Podaci o granulometrijskom sastavu naslaga na ovim pokusnim poljima prikazani su na koncu trećeg poglavlja.

Također je izabrano još 5 kontrolnih lokaliteta za verifikaciju opće primjenjivosti analiziranih metoda. To su podaci istraživanja lokalnih crpilišta u porječju Bosuta i rijeke Vuke na kojima su izvedeni svi zahtijevani istraživački radovi, no ocrti granulometrijskih krivulja ostavljaju sumnju u kakvoću jezgrovanja pri bušenju kroz naslage pijesaka zahvaćenog vodonosnika. U takvim uvjetima oni se nisu mogli uključiti u osnovnu mrežu pokusnih polja ali mogu dati dobru ilustraciju rezultata koji se ostvaruju u danim uvjetima.

2.3.1.1 Crpilište Livade - Beli Manastir

Crpilište Livade nalazi se južno od grada Belog Manastira s istočne strane željezničke pruge, a koristi se za vodoopskrbu sjevernog dijela Baranje. Sastoji se od šest zdenaca (slika 2.5) koji su izgrađeni u tri razdoblja. U prvoj fazi tijekom 1979. i 1980. godine izgrađena su tri zdenca (BMB-1, BMB-2 i BMB-3). U drugoj fazi razvitka crpilišta tijekom 1990. i 1991. godine izvedena su još dva zdenca, južno od postojećih (BMB-4 i BMB-5). Treća faza uslijedila je tijekom 1998. godine. kada je izgrađen zdenac BMZ-1. Kasnije su izvedena i tri zamjenska zdenca i to BMI-1 uz zdenac BMB-1 i BMZ-2 uz zdenac BMB-2, te zdenac Z-3 smješten je pokraj zdenca BMB-3. Na crpilištu je načinjen i veći broj istraživačko-piezometarskih bušotina (oznake BMP i BM, slika 2.5)

Zdencima je zahvaćen pješčani vodonosnik na dubini od oko 20 do 40 m (slika 2.6). Vodonosnik je izgrađen je od sitno do krupnozrnatog pijeska uz nešto valutica šljunka u donjem dijelu vodonosnika.

Najdetaljnija snimka vodonosnika provedena je početku istraživanja (Urumović i dr. 1979) kada je na udaljenosti 10 m od lokacije zdenca BMB-1 izvedena istraživačkopiezometarska bušotina BMP-1, na kojoj je detaljno snimljen litološki profil i prikupljeni uzorci pijeska na kojima je provedeno šest granulometrijskih analiza o kojima su podaci prikazani u tablici u prilogu 1.1.1. Desetodnevno pokusno crpljenje provedeno je s izdašnošću 7,5 l/s, a nastalo sniženje u zdencu iznosilo je 3,45 m.

Slika 2.3 Lokacija zdenaca Oznake (BMB, BMI i BMZ) istraživačko-piezometarskih bušotina (oznake BMP i BM) na crpilištu Livade u B. Manastiru, M 1:25.000

Slika 2.4 Korelacijski litološki profil preko zdenaca crpilišta Livade (prema Urumović i dr. 2008)

Krovinu vodonosnika čini sloj praha i prahovite gline ("močvarni prapori") debljine oko 18 do 22 m. Vodonosnik je izgrađen od dosta jednoličnog pijeska granulacija kojega se lateralno i vertikalno mijenja od sitno do srednjozrnastoga pijeska, a ponegdje se pojavljuju i valutice šljunka, pa i pijesak nešto krupnijeg zrna. Mjestimice se ponegdje javlja i nešto praha, iako je pojava praha najčešća u obliku laminacija unutar sitnozrnatoga pijeska. Ukupna debljina vodonosnika iznosi oko 10-15 m, a podina je izgrađena od gline i praha.

Vodonosnik je poluzatvorenog tipa, a u krovinskim naslagama izrazito dominiraju vertikalni faktori vodne bilance. U takvim uvjetima su parametri vodonosnika identificirani primjenom Hantushove metode točke infleksije za podatke mjerena razine vode u opažačkoj bušotini i Cooper-Jacobovom nestacionarnom metodom za podatke opažanja razine vode u crpljenim zdencima. Identificirana transmisivnost, debljina i srednja hidraulička vodljivost zahvaćenoga vodonosnika prikazane su u tablici 2.1.

Tablica 2.1 Transmisivnost i hidraulička vodljivost vodonosnika na području crpilišta Livade (prema Urumović i dr. 2008)

Transmisivnost vodonosnika $T(m^2/dan)$	290
Debljina vodonosnika, <i>b(m)</i>	10-18
Hidraulička vodljivost <i>K (m/dan)</i>	22

2.3.1.2 Crpilište Donji Miholjac

Crpilište Donji Miholjac predstavlja zdenački zahvat podzemnih voda na intervalu od oko 50 do 90 m dubine. Smješteno je na zapadnoj periferiji grada (slika 2.3). Istraživanja na ovom lokalitetu započeta su još 1978. godine kada je izvedena istraživačka bušotina MSO-2 dubine 300 m na kojoj su izvršena sva tada raspoloživa geofizička snimanja, a na uzorcima iz vodonosnog pijeska s dubina od 55-85 m načinjene su 4 granulometrijske analize. Izvedena su dva eksploatacijska zdenca MNB-3 i MNB-4 (Capar, 1980). Pokusno crpljenje provedeno je u koracima s 3 crpne količine po 48 sati, izdašnosti od 12 l/s do 30 l/s, a sniženje razine vode pri kraju treće crpne količine iznosilo je 3,4 m. 2003. godine izveden je zamjenski zdenac Z-2 (Urumović i dr. 2003) u neposrednoj blizini staroga zdenca MNB-4. Pokusno crpljenje provedeno je 8,06 m.

Slika 2.5 Položaj hidrogeoloških objekata na crpilištu Donji Miholjac, M 1:5000. Oznake: MSO-2 - stara istraživačka bušotina; MNB-3 i MNB-4 - stari eksploatacijski zdenci; Z-2 - novi zdenac; Z-1, Z-3 i Z-4 projektirane lokacije za nove zdence; DP-1 – nova istraživačka bušotina

U sklopu idejnog rješenja razvitka crpilišta izvedene su koncem 2010. godine i dvije istraživačko-piezometarske bušotine dubine 100 m radi dopunjavanja podataka o litološkom razvitku vodonosnika i objekata monitoringa podzemnih voda zahvaćenog vodonosnog sustava.

Hidrogeološka istraživanja uglavnom su usmjerena na naslage do oko 100 m dubine. Na području crpilišta Donji Miholjac na intervalu između 85 i 100 m dubine pojavljuje se sloj gline debljine desetak metara iznad kojega dolazi paket naslaga sa slojevima dobro propusnih pijesaka koji sadrže podzemne vode najzanimljivije za korištenje. Iznad tog sloja gline slijede naslage pijeska debljine oko 50 m koji je zahvaćen sitima zdenaca na crpilištu Donji Miholjac. To je uglavnom kvarcni uglavnom jednolični pijesak, a veličina zrna po vertikali se mijenja od 0,1 do 1,0 mm. U pijesku se ponegdje javlja nešto malo praha. Ukupno 13 granulometrijskih analiza ovoga pijeska iz uzoraka jezgre izvedenih bušotina korišteno je u provedenim proučavanjima, 9 analiza iz uzoraka nove bušotine DP-1 i 4 analize iz uzoraka stare bušotine MSO-2. Korišteni podaci prikazani su u tablici u prilogu 1.2.1.

Slika 2.6 Litološki profil preko zdenaca crpilišta D. Miholjac

Iznad pješčanog vodonosnika na intervalu od 50 do 25 m dubine slijede slojevi sitnoklastičnih tvorevina. To su prah i glina te nešto proslojaka sitnog pijeska. Iznad 25 m dubine slijedi ponovno sloj pijeska debljine 15-tak metara. To je sloj pijeska koji je zahvaćen mjesnim starim kopanim zdencima. Pokrovni sloj je predstavljen prahom i glinom debljine 10-tak metara.

Glavni vodonosnik je poluzatvorenog tipa, pa je pri hidrauličkoj identifikaciji parametara vodonosnika na temelju podataka pokusnih crpljenja primijenjena Hantushova metoda točke infleksije, a za kratkotrajna crpljenja Cooper-Jacobova metoda. Identificirana transmisivnost, debljina i srednja hidraulička vodljivost zahvaćenog vodonosnika prikazane su u tablici 2.2.

ui. 2011)				
	Objekti i nadnevak pokusnoga crpljenja			
Crpljeni zdenci	MNB-3		Z-2	
Nadnevak pokusnoga crpljenja	(prosinac 1979.)		(listopad 2003.)	
Opažani objekti	MNB-4	MSO-2	Z-2	MNB-4
Transmisivnost vodonosnika <i>T</i> , (m^2/dan)	1040	980	1140	1020
Debljina vodonosnika, b, (m)	44	43,5	42,5	44
Hidraulička vodljivost K, (m/dan)	24	23	26	23

Tablica 2.2 Transmisivnost i hidraulička vodljivost vodonosnika na crpilištu Donji Miholjac (prema Urumović i dr. 2011)

U cjelini je relativno dobra ujednačenost transmisivnosti vodonosnika, pa s obzirom na ujednačenu debljinu vodonosnika, to se odnosi i na hidrauličku vodljivost.

2.3.1.3 Crpilište Čepin pokraj Osijeka

Crpilište Čepin predstavlja zdenački zahvat podzemnih voda, a nalazi se u južnom predjelu naselja Čepina između magistralne ceste Osijek-Đakovo i željezničke pruge (slika 2.7).

Istraživanja ove lokacije crpilišta za vodoopskrbu Čepina započeta su u 1981. godini kada je izvedena jedna istraživačko-piezometarska bušotina OČP-1 i pokusno-eksploatacijski zdenac ČB-1 na 69 m udaljenosti od istraživačke bušotine OČP-1. Ovim zdencem je na dubini od 64 do 118 m zahvaćen aluvijalni vodonosnik izgrađen od sitno do srednjozrnog pijeska. Pokusno crpljenje zdenca stalnom količinom Q=10,5 l/s provedeno je u trajanju 122 sata. Na koncu crpljenja sniženje je iznosilo s=2,15 m, pa je specifična izdašnost iznosila Q/s=4,9 (l/s/m). Kasnije, 1990. godine, na ovome je crpilištu načinjen još jedan zdenac oznake ČB-2 koji je imao približno istu specifičnu izdašnost.

Slika 2.7 Položaj crpilišta Čepin

Slika 2.8 Regionalni korelacijski profil kvartarnih naslaga osječke Podravine preko lokacije crpilišta Čepin. Oznake: 1-oznaka istraživačke bušotine, 2-rasjed s oznakom spuštenog bloka, 3-korelacijski markeri, 4-pijesak s pokojom valuticom, 5-sitno i srednjozrnasti pijesak, 6-glina, 7-prah (iz Urumović i dr. 2010)

Za litološki razvitak cjeline kvartarnog vodonosnog kompleksa koji je zahvaćen zdencima crpilišta Čepin, kao i obližnjeg regionalnoga osječkog crpilišta Vinogradi, karakteristična je izmjena slojeva pijeska, praha i gline promjenjive debljine i mjestimičnoga uklinjavanja. U cijelom paketu naslaga zapažena su dva uvjetna markera, Q' i X, ilustrirana regionalnim profilom upravo preko bušotine OČP-1 na crpilištu Čepin (slika 2.8). Uvjetni marker Q' postavljen glinenim slojevima ispod kojih se bitno smanjuje učestalost slojeva jednoličnih pijesaka (Urumović i dr., 1978), Na regionalnom korelacijskom profilu označen je i marker X iznad kojega slijede najgrublje taložine u cijeloj regiji istočnog dijela Dravske depresije (Urumović, 1982). U području crpilišta Čepin to je dubina do koje je zacijevljen istraživačko-eksploatacijski zdenac ČB-1.

Ovdje je prvenstvena pozornost posvećena podacima o izvedbi istraživačkopiezometarske bušotine OČP-1, koja je izvedena uz kontinuirano jezgrovanje. Iz jezgre je prikupljen veći broj uzoraka za granulometrijsku analizu, od kojih se 20 (tablica u prilogu 1.3.1) odnosi na interval slojeva zahvaćenih sitima eksploatacijskoga zdenca.

Vodonosnik je poluzatvorenog tipa, pa je pri identifikaciji hidrogeoloških parametara primijenjena Hantushova metoda točke infleksije za podatke mjerena razine vode u opažačkoj bušotini i Cooper-Jacobobva nestacionarna metoda za podatke opažanja razine vode u crpljenim zdencima. Identificirana transmisivnost, debljina i srednja hidraulička vodljivost zahvaćenog vodonosnika prikazane su u tablici 2.3.

Transmisivnost vodonosnika $T(m^2/dan)$	500-630
Debljina vodonosnika, b (m)	47
Hidraulička vodljivost <i>K (m/dan)</i>	11-13

Tablica 2.3 Hidrogeološki parametri vodonosnika na području crpilišta Čepin (prema Urumović i dr. 2010)

2.3.1.4 Crpilište Ravnik pokraj Popovače

Crpilište Ravnik nalazi se između autoceste i stare ceste Popovača-Voloder. Ovdje se prvenstveno koriste podaci o prvim istraživanjima koja su provedena 1973. godine (Urumović i dr, 1973). U sklopu njih izvedena je istraživačka bušotina s jezgrovanjem, pa je pri kartiranju jezgre izdvojeno 18 uzoraka pijeska i praha za granulometrijsku analizu. Bušotina je zacijevljena, a sito je položeno u sloju pijeska koji je preporučen za zahvat podzemne vode. Na 28 m udaljenosti od ove bušotine izveden je istraživačko-eksploatacijski zdenac sa sitima koja su ugrađena u pješčani vodonosnik debljine 24,2 m na dubini od 31,8 do 56,0 m. Pokusno crpljenje sa stalnom izdašnošću od 14,25 l/s u trajanju od 8 dana, kroz koje je redovito opažana izdašnost, te razina vode u crpljenom zdencu i obližnjem piezometru koji zahvaća sloj na kojemu je provedeno pokusno crpljenja. Tijekom crpljenja razina vode u zdencu je pala s dubine od 9,95 na 17,78 m, pa je specifična izdašnost iznosila 1,84 l/s/m.

Od kasnijih istraživanja valja spomenuti da je na crpilištu načinjeno 10 (+ dva zamjenska) zdenaca, a u sklopu istraživanja razvitka crpilišta izvedeno je 14 bušotina dubine do 120 m

Slika 2.9 Lokacija pokusnog polja crpilišta Ravnik

Slika 2.10 Profil litološke korelacije bušotina crpilišta Ravnik

U litološkom profilu dominira zahvaćeni pješčani vodonosnik na 31 do 56 m dubine. To je sitno do srednjozrni jednolični pijesak u kojem je jako izražena slojevitost vrlo raznolike debljine, a prevladava jednolični sitnozrni pijesak s vrlo tankim, gotovo submilimetarskim proslojcima praha, kako to autori istraživanja naglašavaju. Podinu vodonosnika čini sloj prahovite gline, a u dubljim dijelovima prevladavaju naslage praha i gline te proslojci sitnozrnog i nešto srednjozrnog pijeska a najveća debljina im ne premašuje desetak metara. U krovini vodonosnika, od 31 m dubine pa do površine terena prevladavaju naslage praha i prahovite gline s tanjim proslojcima i lećama sitno i srednjozrnoga pijeska.

Prema rubnim uvjetima zahvaćeni vodonosnih je poluzatvorenoga tipa pa su autori pri identifikaciji hidrogeoloških parametara koristili Waltonovu tipsku krivulju za podatke opažanja sniženja u piezometarskoj bušotini, te nestacionarnu Cooper-Jacobovu metodu za podatke opažanja u zdencu i podatke povratka razine podzemne vode nakon prekida crpljenja.

Transmisivnost vodonosnika $T(m^2/dan)$	190
Debljina vodonosnika, b (m)	19

Tablica 2.4 Hidrogeološki parametri vodonosnika na području crpilišta Ravnik-Popovača

Hidraulička vodljivost <i>K (m/dan)</i>	10

2.3.1.5 Crpilište Đurđevac

Đurđevačka crpilišta nalaze se u zapadnim predjelima dravskog bazena gdje su kvartarne vodonosne naslage pretežito izgrađene od šljunkovitih naslaga. Kao pojam postoje dva đurđevačka crpilišta i to postojeće koje je se dijelom koristi i za javnu vodoopskrbu, te lokacija koja se istražuje za potrebe lokalne i regionalne vodoopskrbe.

Osnovno obilježje postojećega crpilišta Đurđevac je šljunčana građa i relativno velika propusnost vodonosnika, te povoljna kakvoća podzemne vode. Ovo crpilište nalazi se oko 1 km južno od grada Đurđevca s jugozapadne strane željezničke pruge. Izgrađeno je za očekivane potrebe Naftaplina, a povoljna kakvoća podzemne vode potakla je njeno korištenje za lokalnu vodoopskrbu. Na ovom crpilištu su 1978. godine izvedene 3 istraživačke bušotine dubine do 120 m, a 1979. godine izgrađeno je 6 eksploatacijskih zdenaca dubine oko 70 m.

Slika 2.11 Položaj istraživačkih bušotina i zdenaca na novom crpilištu Đurđevac

Slika 2.12 Profil litološke korelacije zdenca ZĐ-2 i opažanih bušotina SPB-7 i SPB-8

U disertaciji je primarna pozornost posvećena novom crpilištu koje se nalazi sjeverno od grada Đurđevca (slika 2. 11) za potrebe regionalne vodoopskrbe. Smješteno je 1,5 km sjeverozapadno od grada Đurđevca i 3,9 km od postojećeg crpilišta Đurđevac. Hidrogeološka istraživanja lokacije započeta su izvedbom 10 strukturno-piezometarskih bušotina s oznakama SPB-1, SPB-2, SPB-3, SPB-4, SPB-5, SPB-6, SPB-7, SPB-8, SPB-9 i SPB-10 (slika 2.11). Pri bušenju je provedeno kontinuirano i vrlo kvalitetno jezgrovanje od ušća bušotine do oko 70 m konačne dubine. Na temelju utvrđenih rezultata istraživačkog bušenja određena je lokacija i 2008. godine izveden je pokusno-eksploatacijski zdenac ZĐ-1 dubine oko 60 m. Na zdencu je provedeno pokusno crpljenje s tri crpne količine od 55 l/s do 100 l/s. Nova dva zdenca ZĐ-2 i ZĐ-3 vrlo sličnih karakteristika izvedena su 2012. godine. Za potrebe praćenja razine podzemnih voda na širem području su izvedene još 4 strukturno istraživačke bušotine, što ukupan zbroj diže na 10 piezometara. Izvedba ovih bušotina provedena je uz kontinuirano jezgrovanje, a iz uzoraka jezgre pojedinih bušotina načinjene su granulometrijske analize sadržanoga šljunka i pijeska. Uzorci su izabrani tako da je po 3 do 8 uzoraka iz svake bušotine, a ukupno je napravljeno 49 granulometrijskih analiza.

Postupak identifikacije hidrogeoloških parametara proveden je korištenjem podataka pokusnog crpljenja zdenca ZĐ-2 primjenom metode sukcesivnih stacionarnih stanja za svaku minutu četverodnevnoga trajanja crpljenja koristeći pritom podatke razine vode snimljene

ugrađenim loggerima u crpljenom zdencu i piezometrima SPBĐ-7 i SPBĐ-8. Iznosi koeficijenta transmisivnosti postignuti ovom metodom održavali u najvećoj mjeri regionalno karakteristične vrijednosti s obzirom na udaljenosti piezometara korištenih za određivanje gradijenta piezometarske razine i dugotrajnost crpljenja. Srednja vrijednosti transmisivnosti i hidrauličke vodljivosti prikazane su u tablici 2.9.

Transmisivnost vodonosnika $T(m^2/dan)$	6130		
Debljina vodonosnika, b (m)	40		
Hidraulička vodljivost <i>K (m/dan)</i>	153		

Tablica 2.5 Hidrogeološki parametri vodonosnika na području novog crpilišta Đurđevac

Posebna pozornost u provedenim istraživanjima novoga crpilišta posvećena je litološkom razvitku vodonosnika što je izraženo relativno velikim brojem bušotina koje su vrlo kvalitetno jezgrovane te izvedbom granulometrijskih analiza na svakih desetak metara dubine bušotine. Pri tome su samo kod dviju bušotina (SPB-8 i SPB-9) zapaženi učinci ispiranja jezgre. Takvim istraživanjem ostvareno je izvrsno pokusno polje za proučavanje izražavanja hidrogeoloških parametara koristeći granulometrijski sastav šljunčanih naslaga. Osnovni podatci o granulometrijskom sastavu ovih naslaga prikazani su tablicom u prilozima 2.1.1 i 2.1.2. Ovdje je naročito istaknut veliki raspon rezultata izračuna srednjega zrna ovisno o primijenjenoj metodi.

2.3.2 Istraživani lokaliteti polupropusnih naslaga

2.3.2.1 Istraživačko polje iločkog glinokopa

Iločki glinokop nalazi se jugoistočno od grada Iloka, na samom rubu naselja. To je glinokop iločke ciglane koji je detaljno istraživan 1982/83. godine (Vlahović i Jovanović, 1983) u sklopu projektiranja razvitka lokalne ciglane. Izvedeno je 25 bušotina dubine 6,5 do 35 m uz kontinuirano jezgrovanje profila 116 mm. Na uzorcima iz triju bušotine (I-B3, III-B3 i IV-B3) provedeno je testiranje hidrauličke vodljivosti na ukupno 6 uzoraka s dubina od 3 do 14 m, granulometrijske analize načinjene su na 15 uzoraka s dubina od 3 do 12 m, a Attebergove granice ispitane su na 4 uzorka s dubina 3 do 18 m. Dubine uzoraka pojedinih ispitivanja nisu identične, pa se može govoriti samo o pojedinačnim ili srednjim vrijednostima za pojedine bušotine.

Slika 2.13 Položaj geomehaničkih bušotina na glinokopu u Iloku (preuzeto iz Vlahović i Jovanović, 1983)

Slika 2.14 Poprečni profil prapornih naslaga IB3 – IVB5 (iz Urumović i dr., 1986)

Glinokopom su zahvaćene praporne naslage. To je tipičan žućkasti kopneni prapor debljine 20 do 40 m koji prekriva Iločko-Vukovarski ravnjak. Na glinokopu mu debljina iznosi od 22 do 30 m. Organoleptičkim pregledom zapažena je ujednačenost s tim da se tamnijom bojom izdvaja nekoliko slojeva tzv. "pogrebne" zemlje (paleotla). Prema laboratorijskim ispitivanjima granica tečenja varira do 2%, a sadržaj glinovitih čestica promjera ispod 2µm kreće se od 8% do 16%. Hidraulička vodljivost uzoraka određena je laboratorijski, permeametrom.

Litološki profil usjeka glinokopa s izdvojenim slojevima "pogrebne" zemlje (paleotlo) prikazan je na slici 2.14, granulometrijski sastav proučavanih uzoraka u tablici u prilogu 3.1.1, a rezultati laboratorijskih analiza u tablici 2.6

Oznaka	Dubina uzorka	Hidraulička	Attebergove granice (%)	
Ozliaka bužotino	(m)	vodljivost	Tečenja	Krutosti
busotific	od-do	Kt (m/s)	LL	Krutosti
	2,0-3,25	3,1E-8		
	5,7-5,95	2,0E-8		
I. B-3	10,0-10,25		30,5	17,7
	13,1-13,35	2,1E-9		
	17,0-17,25	7,30-9		
	3		35,4	21,3
III D 2	4,20-4,45	2,0E-8		
Ш. В-3	12,0-12,25	7,0E-9		
	17,40-17,65		32,5	20,7
IV P 3	7		31,5	20,9
IV. D-3	14,0-14,25	3,3E-8		

Tablica 2.6 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica na uzorcima jezgre iz bušotina sa prapornog ravljaka iz glinokopa kraj Iloka (kopneni prapori)

2.3.2.2 Istraživačko polje Našičke obilaznice

Istraživanja trase našičke obilaznice potaknuto je potrebama osmišljavanja mjera zaštite pri izgradnji ove prometnice koja prolazi pokraj našičkog crpilišta Velimirovac (slika 2.15). Vodonosnik zahvaćen na crpilištu izgrađen je od srednje i krupnozrnoga pijeska i nešto šljunka, a pokriven je naslagama praha i gline debljine oko 15 do 20 m (slika 2.16). U pripovršinskom dijelu ove se naslage pripisuju močvarnim praporima koji su rašireni sediment ravničarskih predjela sjeveroistočne Hrvatske.

Po trasi obilaznice dužine 4 km načinjeno je 10 bušotina dubine 4 m uz kontinuirano jezgrovanje. Na uzorcima iz 5 bušotina (ST-2, ST-4, ST-6, ST-7 i ST-8) laboratorijski je (permeametrom) provedeno testiranje hidrauličke vodljivosti na ukupno 10 uzoraka. Granulometrijske analize načinjene su na 14 uzoraka (tablica u prilogu 3.2.1), a Attebergove granice ispitane su također na 14 uzorka na istim dubinama, ali ne na dubinama uzoraka na kojima je testirana hidraulička vodljivost (tablica 2.7). Prema tome promatrati se mogu samo usporedbe prosječnih vrijednosti pojedinih parametara za pojedine bušotine.

Slika 2.15 Položaj korelacijskih profila geomehaničkih bušotina duž trase našičke obilaznice

Slika 2.16 Profil litološke korelacije najdubljih bušotina duž trase našičke obilaznice (trasa profila na slici 2.15, iz Urumović i dr. 2006)

Oznaka	Dubina uzorka	ubina uzorka Hidraulička Attebergove granice (9		granice (%)
Ozliaka bušotino	(m)	vodljivost	Tečenja	Vrutosti
busotifie	od-do	Kt (m/s)	LL	KIULOSLI
	1,0-1,3	2,3E-10		
	1,3-1,5		54,2	20,8
ST-2	3,0-3,2		44,1	22,4
	4,0-4,2		60,9	18,6
	4,2-4,5	1,8E-09		
	0,5-0,7		51,5	19,9
	1,3-1,5		47,9	19,5
ST-4	2,0-2,3	1,8E-09		
	3,2-3,4		48,3	19,9
	4,0-4,3	9,9E-10		
	1,0-1,3	3,1E-10		
ST-6	1,5-1,7		48,3	22,1
	2,5-2,7		41,3	23,8
	3,0-3,3	6,5E-10		
	4,0-4,2		54,1	20,1
	1,2-1,4		57,2	18,2
	2,2-2,4		46,3	20,4
ST-7	2,7-3,0	5,5E-10		
	4,0-4,3	1,5E-10		
	4,4-4,6		50,0	21,6
	1,0-1,3	8,8E-10		
ST O	2,0-2,3		53,1	20,9
51-0	3,0-3,3	5,2E-10		
	4,0-4,2		51,3	21,2

Tablica 2.7 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica na uzorcima jezgre iz bušotina duž trase Našičke obilaznice (močvarni prapori)

2.3.2.3 Istraživačko polje trase kanala Dunav-Sava

U sklopu istraživanja trase predviđenoga kanala Dunav Sava dužine oko 60 km izvedene su istraživačke bušotine gustoćom približno svaki 1 km. Sve su izvedene sa 100% jezgrovanjem, a dubina im je većinom oko 15 m. Probušene su raznovrsne sitnoklastične tvorevine koje su u geološkim interpretacijama (Miklin, 1996) pripisane eolskim, barskim i poplavnim sedimentima (kopneni i močvarni prapori, te drugi barski sedimenti).

Iz svake bušotine izdvojen je veći broj uzoraka za laboratorijske analize. S podacima o laboratorijskim analizama raspolagalo se za dionicu od Save do šume Fabrički gaj sjeveroistočno od Cerne. Za tu dionicu izvedene su laboratorijske analize na ukupno 249 uzoraka, ali se svi nisu mogli koristiti za provedene interpretacije. Od isključenih uzoraka u prvoj skupini su oni na kojima nije provedeno ispitivanje hidrauličke vodljivosti. Kompletno ispitivanje provedeno je na ukupno 74 uzorka. Međutim, i među njima, su za nekoliko uzoraka, već u prethodnim interpretacijama zapaženi neki izraziti nedostaci. U tu drugu

skupinu neprikladnih uzoraka su oni koji sadrže izrazito kontroverzne podatke hidrauličke vodljivosti, granice tečenja i sadržaja gline, te prekratkog trajanja pokusa.

Slika 2.17 Položaj geomehaničkih bušotina duž trase kanala Dunav-Sava na dionici od Save kraj Sikirevaca do Rokovaca

Treća skupina neispravnosti uzoraka odnosi se na uzorkovanje kao na primjeru BO-21-6 kod kojega je testiranje vjerojatno provedeno iz dijela uzorka koji sadrži glinu, pa ima nisku hidrauličku vodljivost (3,9*10⁻¹¹m/s), a granulometrijska analiza je načinjena iz mješavine pa ima 39% pijeska, a samo 16% gline, pa je besmisleno određivati srednju veličinu zrna i s njome manipulirati. Na koncu je izdvojeno ukupno 17 neispravnih uzoraka, što iznosi oko 23% što nije pretjerano s obzirom na masovnost provedenih analiza. Preostalih 57 primjeraka sadrži raznovrsno mnoštvo podataka koje omogućuje vjerodostojne korelacije hidrauličke vodljivosti, specifične površine, granulometrijskog sastava i Attebergovih granica (tablica 2.8), te primjene metoda određivanja hidrauličke vodljivosti na temelju granulometrijskog sastava.

-		Hidraulička vodljivost		Attebergove granice (%)	
Oznaka uzorka	Dubina uzorka (m) od-do	Horizontalana K _h (m/s)	Vertikalna K _v (m/s)	Tečenja LL	Krutosti
AT-2-4	3 8-4 4	5 00E-10		33.3	18.8
AT-2-5	8.5-9.1	1.70E-10		54.9	20.0
AT-3-5	8.6-9.2	1,10E-10		62.1	24.0
AT-4-6	8,5-8,8	8,40E-11		77.3	24,4
AT-5-6	8,5-9,1	2,50E-10		61,9	21,7
ATP-6-5	3,0-3,5	1,80E-10		54,0	21,7
ATP-6-6	7,0-7,6	1,40E-10		57,2	21,5
ATP-8-4	3,2-3,6	1,80E-10		89,7	27,9
ATP-8-5	3,6-6,0	5,20E-10		93,7	29,6
ATP-10-5	7,0-7,6	3,70E-11		83,2	26,1
ATP-10-6	3,0-3,4	1,10E-10		51,0	21,7
ATP-11-5	3,5-4,1	1,10E-10		48,7	21,2
ATP-11-6	8,5-9,1	2,10E-10		67,0	20,7
ATP-13-6	3,5-4,1	4,20E-09		55,3	21,9
AO-14-5	3,6-4,1	1,80E-09		32,4	18,9
AO-14-6	7,7-8,3	4,10E-10		58,2	20,8
AO-15-5	3,8-4,4	1,30E-09		31,2	24,5
AO-15-6	8,5-9,1	1,60E-10		50,9	19,6
AO-17-7	3,8-4,4	8,50E-10		47,4	23,5
AO-17-8	10,0-10,5	4,00E-10		46,5	22,0
AO-18-5	3,8-4,3	2,20E-09		32,7	22,7
AO-18-6	8,5-9,1	5,00E-10		49,3	20,9
AOP-19-5	7,0-7,6	1,90E-10		46,8	21,9
BO-17-1	5,4-6,0	1,60E-11		84,7	25,1
BT-14-1	1,5-1,8	6,50E-09		31,1	19,6
BT-14-3	7,7-8,0	3,50E-11		59,0	19,5
BTP-16-2	1,5-1,8	9,40E-10	7 205 11	35,3	24,9
BI-4-3	6,1-6,4	3,40E-10	/,30E-11	8/,/	25,8
B1-15-1	1,5-1,8	3,20E-10		51,0	21,8
BO-34-1	5,5-5,7	1,60E-09	2 20E 11	47,1	22,8
BO-34-2	5,8-0,4	9,90E-11	3,30E-11	35,4	19,8
DO-34-3	1,5-1,5	5,00E-11	1 10E 00	42,5	22,3
DO-34-4	17,2-17,7	3,40E-10 4 10E 10	1,10E-09	42,8	21,0
BO 21 1	15.2.0	4,10E-10 8 10E 10	1,00E-10	40,7	21.0
BO-21-1 BO-21-5	1,3-2,0	2 205-09	1 70F-10	40.5	19.4
BO-21-5 BO-36-1	2 5.2 7	1 10E-08	1,701-10	40.2	20.8
BO-36-2	5.3-5.8	9.10E-11	1.50E-10	58.6	22,6
BO-37-3	5.2-5.8	8.00E-12	3.40E-08	66.9	23.7
BO-26-1	1.4-2.0	4.30E-11	5,102.00	46.6	22.0
BT-5-1	1,5-1,8	2.10E-10		40.3	22.8
BT-6-1	1.6-1.9	1,90E-09		43.2	21.8
BO-27-1	1.3-1.8	7,20E-10		33.8	21.2
BO-27-3	5,0-5.6	1,10E-10	4,50E-10	44.7	26.3
BO-28-2	1,4-2,0	4,90E-09		37,3	21,2
BT-8-1	1,5-1,8	2,50E-10		68,2	23,9
BT-9-1	1,5-1,8	1,80E-10		52,4	22,7
BT-9-3	5,0-5,3	1,30E-09	8,60E-10	33,8	20,0
BTP-10-1	1,5-1,8	7,20E-09		43,6	21,2
BO-29-2	1,4-1,8	6,80E-11		52,8	20,8
BTP-11-1	1,8-2,1	2,90E-09		41,0	21,2

Tablica 2.8 Rezultati laboratorijskog testiranja hidrauličke vodljivosti i Attebergovih granica na uzorcima jezgre bušotina po trasi kanala Dunav-Sava na dionici od Save do Rokovaca

BO-32-1	1,3-1,9	5,20E-09	32,2	21,9
BO-33-1	1,4-2,0	5,20E-09	31,5	24,4
BTP-12-1	1,7-2,0	1,60E-09	42,3	19,9
BO-30-1	1,4-2,0	3,70E-11	64,2	21,4
BO-31-1	1,2-1,7	4,00E-10	49,5	16,8
BTP-13-2	1,65 -1,8	1,00E-09	40,6	18,9

3 TEORIJSKE OSNOVE I EKSPERIMENTALNI PODACI

Izvorna hidrogeološka svojstva na lokalnom i laboratorijskom mjerilu povezana su prvenstveno s prostorom u koji se može nakupljati tekućina i kroz koji se ona može gibati. Ovaj vrlo raznoliki prostor i njegov stvarni oblik nije izvedivo matematički opisati. Riječima se o njemu može opširno i vrlo osmišljeno raspravljati, no stanje i pojave gibanja vode u njemu egzaktno se mogu predočavati samo parametrima koji jasno, egzaktno brojčano izražavaju osrednjene učinke stvarnoga ili mogućega nakupljanja i gibanja tekućine kroz te šupljine. U tom smislu tri su osnovna parametra. To su šupljikavost ili poroznost kojom se izražava obujam raznovrsnih šupljina u obujmu stijene, specifična površina kojom se izražava veličina nepravilne dodirne plohe između tih šupljina i krutine te propusnost kojom se izražava lakoća prolaska raznovrsnih tekućina kroz stijenu, a koja snažno ovisi o specifičnoj površini. Svi ti parametri povezani su veličinom, oblikom i načinom slaganja čestica, zrna i valutica u naslagama.

Već se iz ovoga nabrajanja naslućuje međusobna povezanost ovih parametara. Ona nije jednoznačna, pa je treba egzaktno pojasniti fizikalnim zakonima, i eksperimentalno provjeriti što je bio predmet rada i raznovrsnih istraživanja brojnih istraživača od Henry Darcyja sredinom devetnaestoga stoljeća praktično do danas, kako zapažamo iz nedavno objavljenih radova u svjetski uglednim časopisima (primjerice Carrier, W.,2003.; Cheng, C. & Chen, X., 2007, Carlson, 2007, Odong, 2008, Koch, et al., 2011).

3.1 Darcyjev zakon izražen djelovanjem sila

Učinak poroznosti, specifične površine i propusnosti na proces gibanja može se jednostavno objasniti razmatrajući djelovanje sila koje upravljaju gibanjem tekućine na način kako to opisuju Hantush (1964) i Urumović (2003). Na slici 3.1 primjer je elementarnog obujma $\delta V = \delta A \, \delta s$ koji je proizvoljno orijentiran u polju toka unutar vodonosnika, a djelovanje sila prikazano je u smjeru elementarne dužine δs koja je okomita na elementarnu površinu δA . Ako je *p* tlak vode koji djeluje na stražnjoj stranici δA elementarnoga obujma, a tlak na prednjoj stranici obujma je $p + (\partial p/\partial s) \delta s$, rezultirajuća sila tlaka u pravcu δs izražena je odnosom:

$$f_p = -n\delta A \frac{\partial p}{\partial s} \delta s.$$
(3.1)

Druga sila predstavljena je težinom vode u δV , $G = \rho gn \delta A \delta s$, pa je komponenta te sile paralelna stranici δs :

$$f_{g} = -\rho gn \delta A \,\delta s \frac{\partial z}{\partial s}, \tag{3.2}$$

gdje je $\partial z/\partial s$ sinus kuta α koji δs zatvara sa svojom projekcijom na pravac u smjeru δs .

Slika 3.1 Vodeće sile pri strujanju tekućine ilustrirane na elementarnom obujmu

Treće su viskozne sile τ koje se suprotstavljaju toku. Uz pretpostavku da je ukupna površina zrna unutar δV proporcionalna njegovom obujmu $\delta A \delta s$, i budući da je dinamička viskoznost vode μ , te da je q_s Darcyjeva (osrednjena) brzina u smjeru δs , viskozne sile koje djeluju usporedno s δs mogu se u skladu s definicijom koeficijenta viskoznosti izraziti odnosom:

$$f_{\mu} = -\mu a_s \delta A \delta s q_s, \tag{3.3}$$

gdje je a_s konstanta koja izražava učinak geometrije šupljina na veličinu viskoznih sila u smjeru δs pri saturiranom toku kroz obujam $\delta V = \delta A \, \delta s$, a ima dimenzije $a_s = [L^{-2}]$

Jedn. (3.1) i (3.2) izražavaju povezanost poroznosti *n* s djelovanjem tlačnih i gravitacijskih sila koje kao pogonske sile djeluju preko tekućine u porama, a jedn. (3.3) izražava zadržavanje tekućine izazvanog otporom trenja unutar tekućine i s nepokretnom krutinom koju ona oplahuje (sl. 3.1).

Kada su sile $f_p(1)$., $f_g(2)$ i $f_{\mu}(3)$ uravnotežene dobije se odnos:

$$-\left[\frac{\partial p}{\partial s} + \frac{\rho g \partial z}{\partial s} + \frac{\mu a_s q_s}{n}\right] n \delta V = 0$$
(3.4)

a rješenjem po q_s dobije se funkcija Darcyjeve brzine:

$$q_{s} = -\frac{n\rho g}{a_{s}\mu} \frac{\partial(p/\rho g + z)}{\partial s} = -\frac{n\rho g}{a_{s}\mu} \frac{\partial h}{\partial s},$$
(3.5)

$$q_{s} = -\frac{n}{a_{s}}\frac{\rho}{\mu}g\frac{\partial h}{\partial s} = \frac{1}{a_{s}}\frac{1}{\mu}n\rho g\frac{\partial h}{\partial s} = -K_{s}\frac{\partial h}{\partial s} = K_{s}J_{s}$$
(3.6)

gdje je

$$K_s = \frac{n}{a_s} \frac{\rho g}{\mu} = k_s \frac{\rho g}{\mu}, \qquad (3.7)$$

 $k_s = n/a_s$ s dimenzijom $k_s = [L^2]$ predstavlja svojstvo vodonosne stijene da propušta tekućinu u smjeru δs , pa se naziva propusnošću, dok je K_s hidraulička vodljivost, tj. Darcyjev koeficijent proporcionalnosti. Poroznost *n* izražava obujam gibajuće tekućine i povezana je sa specifičnim učinkom djelovanja pogonskih sila tlaka (jedn. 3.1) i gravitacije (jedn. 3.2). Konstanta a_s u jedn. 3.3 i 3.7 izražava učinak geometrije šupljina na veličinu viskoznih sila, a prema navedenim odnosima predstavlja specifični iznos koji pomnožen s obujmom $\delta A \delta s$ izražava ukupni učinak geometrije šupljina na zadržavanje vode. Takav specifični iznos ekvivalentan je specifičnoj površini oplošja pora, a_p unutar poroznog medija, tj. odnosu površine sadržanih krutih zrna koja izražava otpore strujanju i obujma pora saturiranih tekućinom koja prenosi pogonsku silu strujanja što je slijedom Hagen-Poiseuillova zakona obrnuto proporcionalno hidrauličkom radijusu. Kako je pri tome $a_s \propto a_p^2$, propusnost se može pisati u obliku

$$k = \frac{n}{a_s} = C \frac{n}{a_p^2} = C n D_H^2, \qquad (3.8)$$

gdje je *C* bezdimenzijski koeficijent proporcionalnosti koji prvenstveno ovisi o obliku čestica, a $D_H=1/a_p$ hipotetični hidraulički promjer porozne sredine koji izravno predočava učinak specifične površine efektivnih šupljina.

Slika 3.2 Učinak pogonskog (n) i otpornog $(n^2/(1-n)^2)$ oblika funkcije poroznosti na brzinu gibanja tekućine u poroznoj sredini za raspon efektivne poroznosti od 1% do 45%

Ako se specifična površina šupljega obujma (a_p) , zamjeni s masenom specifičnom površinom krutine $(a_m, \text{ jedn. } 3.30)$, a ona se izrazi srednjom veličinom sadržanih zrna $(D_{sr}, \text{ jedn. } 3.35, 3.36 \text{ ili } 3.40)$ dobije se odnos:

$$k = \frac{n}{a_s} = C \frac{n}{a_p^2} = n \left(\frac{n}{1 - n} \frac{D_{sr}}{c_z} \right)^2$$
(3.9)

u kojemu prvi član (*n*) predočava prostor šupljina u kojemu djeluju pogonske sile gibanja tekućine, a drugi član $((nD_{sr}/(1-n)c_z)^2$ učinak otpora unutarnje geometrije poroznog medija na brzinu gibanja tekućine u njemu. Taj drugi član predočava veličinu hidrauličkoga promjera, pa prema tome D_H i D_{sr} nisu identični pojmovi. Međutim, D_H ovisi o veličini D_{sr} i to u sprezi s

učinkom funkcije poroznosti n/(1-n) koja se snažno mijenja s veličinom efektivne poroznosti (slika 3.2). Time je ilustrirana važnost načina određivanja primjerene vrijednosti, ne samo veličine srednjega zrna, nego i efektivne poroznosti za koju se u postojećoj literaturi često nalaze vrlo različiti navodi.

Funkcionalna povezanost ovih geometrijskih obilježja šupljina poroznog medija s propusnošću naslaga istraživana je proučavanjem utjecaja granulometrijskog sastava na hidrauličku vodljivost i mjerenjem brzine protoka pri laboratorijskim analizama raznovrsnih uzoraka u brojnim proučavanjima valjanosti Darcyjeva zakona. Temeljitiji pokusi su redovito teorijski analizirani, obično primjenom Hagen-Poisseuillova zakona zamišljanjem različitih modela toka, a u pravilu su bili usmjereni na izračun hidrauličke vodljivosti kao Darcyjeva koeficijenta proporcionalnosti.

Valja podsjetiti da, kod nas, a i u svijetu, u literaturi postoje različiti nazivi Darcyjeva koeficijenta proporcionalnosti. Također, u prošlosti su se mijenjali nazivi ovih parametara što može dovesti i do njihove zamjene. U zadnje vrijeme se u svjetskoj stručnoj literaturi usvojio naziv hidraulička vodljivost (hydraulic conductivity) za koeficijent proporcionalnosti u Dacyjevu zakonu koji se u pravilu označava s K [LT⁻¹], a propusnost (permeability) za propusnost krutine poroznog medija koja se označava s k [L²]. Takvi nazivi, oznake i dimenzije u ovom se radu koriste neovisno o nazivu koji je koristio autor odnosne formule, osim kada je posebno naglašeno izvorno nazivlje. U tekstu se više puta koristi termin propusnost jer geometrija poroznog medija i generira propusnost, no u kalibracijskim postupcima uključen je učinak tekućina pa se hidraulička vodljivost koristi u svim kalibracijskim postupcima pošto je u svim korištenim pokusima određivana hidraulička vodljivost.

3.2 Granulometrijski sastav i klasifikacije

Granulometrijski sastav osnovno je obilježje svih klastičnih taložina, pa su i osnovne klasifikacije redovito povezane s veličinom sadržanih rezidua (valutica, zrna i sitnih čestica), te njihovom sortiranošću. Veličina i raspodjela valutica, zrna i sitnih čestica u taložinama imaju veliki utjecaj na hidrogeološka svojstva i u značajnoj su korelaciji s hidrogeološkim parametrima. U hidrogeološkim istraživanjima se za prezentaciju granulometrijskog sastava koriste granulometrijski dijagrami, a za sitnozrne tvorevine i trokutni dijagrami.

Pri prezentaciji granulometrijskih obilježja u hidrogeologiji se najviše koristi tzv. Hazenovo efektivno zrno D_{10} , i koeficijent sortiranosti $U_{H}=D_{60}/D_{10}$.

Trokutnim dijagramima prikazuje se raspodjela triju teksturnih grupa: gline, praha i pijeska, koje se različito razvrstavaju u nekim međunarodnim i nacionalnim udruženjima. Kod nas se najviše koristi klasifikacija preporučena od U.S. Department of Agriculture pa se naziva USDA, te MIT (Massachusetts Institute of Tehnology), kod koje su frakcije praha razlučena na sitne, srednje i krupne, dok je ostala podjela identična.

Ovdje je korištena klasifikacija po USDA prema kojoj frakcije dimenzije <0,002 mm odgovaraju glinama, od 0,002-0,05 prahu, a od 0,05-2,0 pijesku. Ove su frakcije i njihove mješavine podjeljenje u 12 grupa prikazanih na slici 3.3.

Slika 3.3 Trokutni dijagram teksture tla s USDA (U.S. Department of Agriculture) klasifikacijom u 12 skupina: (1) pijesak, (2) ilovašti pijesak, (3) pjeskovita ilovača, (4) ilovača; (5) prahovita ilovača, (6) prah, (7) pjeskovito-glinovita ilovača, (8) glinovita ilovača, (9) prahovito-glinovita ilovača (10) pjeskovita glina(11) prahovita glina i (12) glina. Opaska: brojevi u čvorovima označavaju točke izračuna srednjeg promjera d_g i standardne devijacije σ_g

Slika 3.4 Ortogonalni teksturni dijagram sitnozrnih tvorevina ostvaren rotacijom USDA trokutnog dijagrama sa slike 3.3 u ortogonalni sustav geometrijskog srednjeg promjera d_g i standardne devijacije σ_g (prema Shirazi & Boersma, 1984)

Egzaktniju predodžbu teksturnih grupa USDA klasifikacije ostvarili su Shirazi & Boersma (1984) transformacijom trokutnoga dijagrama u ortogonalni koordinatni sustav s logaritamskom vrijednošću geometrijskoga srednjeg promjera zrna d_g na apscisi i standardnom devijacijom σ_g u linearnom mjerilu na ordinati (slika 3.4). Korišteni su opći matematički izrazi geometrijske veličine promjera čestice d_g i standardne devijacije σ_g prema Irani & Callis, (1963):

$$d_g = \exp a \tag{3.10}$$

$$\sigma_g = \exp b \,, \tag{3.11}$$

gdje su

$$a = 0,01\sum P_i \ln d_i \tag{3.12}$$

$$b = \left[0,01\sum P_i \left(\ln d_i\right)^2 - a^2\right]^{1/2},$$
(3.13)

Umnožak 0,01 u jedn. 3.12 i 3.13 uključen je radi konverzije postotka P_i sadržane mase frakcija teksturne vrste "*i*", a d_i je aritmetička sredina promjera zrna teksturne grupe "*i*". Teksturne grupe su glina ($d_i=(0+0,002)/2=0,001$), prah ($d_i=(0,002+0,05)/2=0,026$) i pijesak ($d_i=(0,05+2,0)/2=1,025$). Rotacija sa slike 3.3 na sliku 3.4 ostvarena je za označenih 66 čvornih točaka izračunom njihovoga položaja u ortogonalnom koordinatnom sustavu d_g - σ_g prema jednadžbama 3.10 do 3.13.

3.3 Poroznost taložina i gustoća tvorevina

3.3.1 Ukupna i efektivna poroznost

Brojni su autori iznosili iste ili različite podatke o veličini poroznosti pojedinih tvorevina i njihovih mješavina, a obično su navodili podatke o ukupnoj poroznosti. Raspon poroznosti različitih geoloških tvorevina rezimiranih prema sedmorici autora iz raznih krajeva svijeta prikazani su u tablici 3.1.

				Р	oroznost %			
Tyorevine	Todd	Castany	Davis	Sarnavka	Bouwer	Raghuna	th (1987)	Kasenow
i voie vine	(1964)	(1967)	(1060)	(1075)	(1978)	Efektivna	Ukupna	(1007)
	(1)04)	(1)07)	(1)())	(1)75)	(1)/0)	poroznost	poroznost	(1))/)
Šljunak	30-40	25-40	25-40	30-40	20-30	15-30	30-40	
Mješavina šljunka i	20-35	25-30		20-35	10-30	15-25	20-35	25,1-44,1
pijeska	20 33	25 50		20 33	10.50	10 20	20 55	
Krupni pijesak	35-40			35-40	25-35			30,9-46,4
Pijesak, srednji	30-40	26-48	25-50	30-40	25-40	10-30	35-45	28.5-48.9
pijesak								
Sitni pijesak	30-35			30-35	40-50			26,0-53,3
Prah	40-50		35-50	40-50				33,9-61,1
Prah i glina		35-40			50-60			
Glina	45-55	44-50	40-70	45-55		1-10	45-55	34,2-56,9

Tablica 3.1 Vrijednosti poroznosti u nekim popularnijim publikacijama

Posebno je pitanje povezano uz vrste poroznosti ovisno o prevladavajućim silama koje upravljaju s gibanjem tekućine. Kod nas je najgrublja podjela na:

- efektivnu poroznost koja se definira dijelom šupljina kroz koji se voda giba pod utjecajem gravitacijskih sila, pa je definirana odnosom specifičnoga protoka i brzine tekućine i na
- ukupnu poroznost koja obuhvaća i dio šupljina u kojem se voda zadržava utjecajem molekularnih sila.

U navedenim literarnim navodima obično se navode podaci o poroznosti općenito, a rijetko se specificira posebno ukupna i efektivna poroznost kako to navodi Raghunath (tablica 3.1), a i

tada se obično koristi naziv specifično davanje (specific yield) što ne mora biti pojmovno identično. Prema tome se, pri korištenju literaturnih podataka, pojavljuje i pitanja odnosa efektivne i ocjedite poroznosti, te specifičnoga davanja koji imaju različitu definiciju, pa i iznos iako su te veličine vrlo bliske i često se poistovjećuju. Naime, dok je efektivna poroznost povezana je s brzinom strujanja tekućine (odnos Darcyjeve i Hagen-Poiseuillove brzine) i prema tome odnosi se na svojstvo saturirane sredine, ocjedita poroznost i specifično davanje su svojstva kojima se izražava desaturiranje vodonosnika, pa prema tome ovise i o vremenu.

Veličina srednjeg zrna - D (mm)

Slika 3.5 Minimalne, maksimalne i srednje vrijednosti specifičnoga davanja ili ocjedite poroznosti u funkciji veličine zrna prema tablici 3.2

U ovoj raspravi koristi se efektivna poroznost i to u obliku koji zadovoljava verifikaciju odnosa ekvivalentnog jednadžbi 3.9. Njena ovisnost o granulometrijskom sastavu odavno je tema objavljivanih radova, međutim u njima prevladavaju podaci ostvareni laboratorijskim ispitivanjima ukupne poroznosti i retencije vlage u uzorcima, pa se prema tome oni uglavnom odnose na ukupnu poroznost i ocjeditu poroznost koja se u anglosaksonskoj literaturi obično naziva specific yield. U njima se u pravilu prikazuju podaci

za pojedine vrste tvorevina ili ovisno o veličini zrna pretežitoga sadržaja. Među takvima je i preporuka Kerantha (2008) za korištenje podataka o poroznosti klastičnih naslaga u funkciji granulometrijskog sastava koje su objavili Johnson (1967), te Moris et Johnson (1967) na temelju obrade podataka o desetak tisuća analiza uzoraka naslaga provedenih u središnjem laboratoriju U.S. Geological Survey-a kroz razdoblje od njegovog osnivanja 1948. do 1960. godine. Raspon veličina za ukupnu poroznost, specific yield i specifičnu retenciju te njihove aritmetičke sredine uz odnosni broj analiziranih uzoraka prikazani su u tablici 3.2. Hod minimalnih, maksimalnih i srednjih vrijednosti laboratorijskih rezultata ocjedite poroznosti koja se u originalu naziva specific yield u funkciji veličine zrna prikazan je dijagramom na slici 3.5.

Tablica 3.2 Poroznost, ocjedita poroznost i specifična retencija prema analizama u Hydrologic Laboratory of the U.S. Geological Survey provedenim od 1948. do 1960. godine (iz Morris and Johnson, 1967). Napomena: primijenjeni klasifikacijski sustav odgovara Wentworthovoj skali, s granicama navedenim u prvom stupcu, koji je bio službeni u U.S. Geological Survey, a i danas se koristi u sedimentologiji

	Pore	oznost		Ocjedita p	oroznos	st	Specifična	retenci	ija
Vrsta tvorevine	Raspon	Aritmetička sredina	Broj uzoraka	Raspon	Aritmetička sredina	Broj uzoraka	Raspon	Aritmetička sredina	Broj uzoraka
Pješčenjak sitni	13,7-49,3	33	55	2,1-39,6	21	47	1,2-30,8	13	47
Pješčenjak sred.	29,7-43,6	37	10	11,9-41,1	27	10	5,2-19,2	10	10
Prahovnjak	21,2-41,0	35	7	0,9-32,7	12	13	5,4-44,8	29	15
Glinjak	41,2-45,2	43	4	-			-		
Šejl	1,4-9,7	6	20	-			-		
Glina, neporemećena čestice <0,004 mm	34,2-56,9	42	74	1,1-17,6	6	27	24,6-46,9	38	27
Glina, presložena	39,9-52,8	48	16						
Prah, neporemećen čestice 0,004-0,062 mm	33,9-61,1	46	281	1,1-38,6	20	266	3,2-45,0	28	26 6
Prah, presložen	41,0-56,0	46	85						
Pijesak sitni, neporemećen zrna 0,062-0,25 mm	26,0-53,3	43	243	1,0-45,9	33	287	0,3-43,2	8	26 4
Pijesak sitni, presložen	26,7-50,2	32	134						
Pijesak srednji, neporem. zrna 0,25-0,5 mm	28,5-48,9	39	127	16,2-46,2	32	297	0,1-17,8	4	29 2
Pijesak srednji, presložen	27,2-52,3	35	213						
Pijesak krupni, neporem. zrna 0,5-2,0 mm	30,9-46,4	39	26	18,4-42,9	30	143	0,5-17,6	5	14 3
Pijesak krupni, presložen	37,0-42,0	34	132						
Šljunak sitni, valutice 2,0-4,0 mm	25,1-38,5	34	38	12,6-39,9	28	33	0,06-16,7	7	33
Šljunak srednji, valutice 4,0-8,0 mm	23,7-44,1	32	22	16,9-43,5	24	13	0,6-14,9	7	13
Šljunak krupni, valutice 8,0-64,0 mm	23,8-36,5	28	15	13,2-25,2	21	9	3,1-13,8	9	9
Prapor, neporemećen	44,0-57,2	49	5	14,1-22,0	18	5	21,8-29,8	27	5
Prapor, presložen	43,0-53,0	46	6						
Eolski pijesak, neporem.	39,9-50,7	45	6	32,3-46,7	38	14	0,5-5,8	3	14
Eolski pijesak, presložen	36,8-41,5	38	9						

Poroznost vodonosnih naslaga, a i veličina šupljina u njima, također ovisi o njihovoj konsolidaciji koja je obično povezana sa starošću slojeva, dubinom zalijeganja i vrstama tvorevina. Ipak, bilo je pokušaja matematički izraziti poroznost samo u funkciji granulometrijskog sastava. U recentnoj literaturi ističe se formula:

$$n = 0,255 \left[1 + 0,83^{U_H} \right], \tag{3.14}$$

u kojoj U_H predstavlja Hazenov koeficijent sortiranosti (ujednačenosti) zrna, a koja je proizišla iz eksperimenata V.S. Istomina (1957), a prenose je Vuković i Soro (1991, 1992) te Kasenow (1997). Ova formula, grafički predočena na slici 3.6, isključuje poroznost manju od 25,5% pa je lako zaključiti da većina dobro graduiranih raznovrsnih tvorevina vodonosnika ima poroznost ispod te granica. Međutim valja naglasiti da je navedena formula povezana s autorskim eksperimentima, jamačno samo s čistim i jednoličnim pijescima, pa u tom smislu može biti zanimljiva.

Slika 3.6 Dijagram poroznosti prema jedn. 3.14 (Istomina, 1957)

Obrazac izračuna efektivne poroznosti iznose Lörincz et al. (2008) nazivajući ga prema Ziemsu (1969) Leibensonovom formulom:

$$n_e = n \left(1 - 0.114 \, \frac{1 - n}{n} \right) \tag{3.15}$$

prema kojoj bi pri poroznosti od 0,1023 efektivna poroznost bila ništavna, a i za više poroznosti rasla bi paralelno s ukupnom poroznošću što može biti realno samo za šljunak i krupni pijesak. Za sitne pijeske, te prah i glinu odnosi su izrazito obrnuti. Za određivanje poroznosti sitnozrnastih tvorevina Thomsen et Mastrolonardo (2003) preporučaju Vomocil-ove (1965) analize u kojima se kombiniraju odnosi ukupnog obujma uzroka V_T , kao zbroja pornoga prostora V_p i obujma krutine V_k te težine cijeloga uzroka W_T , kao zbroja težine vode u saturiranom pornom prostoru W_v i težine krutine W_k :

$$V_T = V_p + V_k; \ W_T = W_v + W_k,$$
 (3.16)

prema kojima je poroznost

$$n = \frac{V_p}{V_T} = \frac{V_p}{V_p + V_k} = \frac{W_v \rho_T}{\rho_v W_T} = \frac{W_v \rho_T}{\rho_v (W_v + W_k)}$$
(3.17)

a sadržaj vode u uzorku dana odnosom:

$$S = \frac{W_v}{W_T} \tag{3.18}$$

Uvrštavanjem 3.18 u 3.16 i rješavajući za W_k dobije se:

$$W_k = W_T - SW_T = W_T (1 - S)$$
(3.19)

a za slučaj potpune saturiranosti jedn. 3.17 može se izraziti obujmom vode u porama:

$$V_p = \frac{SW_T}{\rho_v} \tag{3.20}$$

Udjel krutine u uzorku (3.19) izražen njegovim obujmom $V_k = W_k / \rho_k$ iznosi

$$V_{k} = \frac{W_{T}(1-S)}{\rho_{k}},$$
(3.21)

a ukupni obujam uzorka:

$$V_{T} = \frac{SW_{T}}{\rho_{v}} + \frac{W_{T}(1-S)}{\rho_{k}},$$
(3.22)

pa jednadžba poroznosti izgleda

$$n_{T} = \frac{SW_{T}}{\rho_{v} \left(\frac{SW_{T}}{\rho_{v}} + \frac{W_{T}(1-S)}{\rho_{k}}\right)} = \frac{S}{S + \frac{1-S}{\rho_{k}}}.$$
(3.23)

Koristeći prosječnu specifičnu težinu krutine $\rho_k=2,65$

$$n_T = \frac{S}{S + \frac{1 - S}{2,65}}.$$
(3.24)

Freeze et Cherry (1979) koriste istu osnovnu zamisao uz pretpostavku da se težina W_T i gustoća uzorka ρ_T odnosi na suhi (žareni) uzorak, pa je tada $W_T = W_k$, a ukupna poroznost:

$$n = \frac{V_p}{V_T} = \frac{V_T - V_k}{V_T} = 1 - \frac{V_k}{V_T} = 1 - \frac{W_k \rho_T}{\rho_k W_T} = 1 - \frac{\rho_T}{\rho_k}$$
(3.25)

Matematički egzaktno može se izračunati poroznost za određene geometrijske oblike zrna i točno definirane načine njihova slaganja. Najbolju ilustraciju hoda poroznosti jednoličnih tvorevina može se dati navodeći matematički izračun poroznosti medija kugličnih zrna za tri karakteristična načina slaganja:

n=47,64% - kubično slaganje kugli istoga promjera *n*=26,96% - romboedarsko slaganje kugli istoga promjera *n*=12,5% -gusto kubično slaganje kuglastih zrna dvaju veličina

Prirodna slaganja i oblik zrna nikada nisu jednaka pravilnim geometrijskim modelima no oni daju dobar okvir prema kojem se može procjenjivati efektivna poroznost stvarnih krupnozrnatih taložina. Tako se uzima da je efektivna poroznost pijesaka jednoličnog zrna oko 25-35%, a kod slabo sortiranih klastičnih tvorevina pretežito 12-25 %. U naslagama izgrađenim od sitnijih zrna, a i kod šljunaka, sortiranost je u pravilu reducirana, sitnije čestice ispunjavaju šupljine između krupnijih, pa efektivna poroznost opada. Slijed ocjedite poroznosti u funkciji veličine zrna pretežitoga sadržaja od gline do oblutaka predstavljali su brojni autori od Eckis-a (1934) do Davis & De Viest-a (1966) i Bear-a (1988).

Slika 3.7 Veličina efektivne poroznosti u funkciji srednjeg zrna D_{lng} . Opaska: Crtkana krivulja odgovara jednoličnim zrnima, U<2, a verificirani uzorci dobro graduiranih šljunaka i pijeska na punoj crti su za U>10. Točke na dijagramu, označene kružnicom, predstavljaju veličinu efektivne poroznosti verificiranu izračunom hidrauličke vodljivosti Kozeny – Carman metodom

U provedenim istraživanjima se pokazalo da je definicija pretežitog zrna previše fluidna pri određivanju hidrauličke vodljivosti u funkciji granulometrijskog sastava. Po logici granulometrijske krivulje pretežiti sastav nalazi se oko točke infleksije koja je obično negdje oko 50% težine uzorka (D₅₀) što Davis & De Viest (1966) nazivaju medijanskom veličinom zrna (median grain-size). Međutim takva veličina zrna ne predstavlja zrno reprezentativno za funkcionalne odnose sa specifičnom površinom i propusnošću. Verifikacija ovih krivulja poroznosti u funkciji veličine zrna provedena je u sklopu postupaka izračuna specifične površine i hidrauličke vodljivosti na temelju srednje veličine zrna. Time je veličina zrna definirana kao efektivna veličina koja demonstrira sumarni učinak svih čestica u uzorku pri izračunu specifične površine (jedn. 3.9). Pri tome su korištene jedn. 3.31 do 3.40. Najbolja suglasnost eksperimentalnih rezultata i prognoziranih vrijednosti hidrauličke vodljivosti ostvarena je korištenjem geometrijske sredine veličine zrna prosijeva i cijeloga uzorka, a označena je s D_{lng} (jedn. 3.40, 6.2). Ostvarena krivulja slijeda efektivne poroznosti u funkciji efektivne veličine zrna uzorka (slika 3.7) u jednom dijelu koji prezentira glinovito-prahovite tvorevine bliska je krivulji koju je objavo Hölting (1984), no za vodonosne naslage značajno se razlikuje. Valja naglasiti da krivulja na slici 3.7 slijedi veličinu srednjega zrna D_{lng} , a ne

pretežitoga sadržaja odnosno medijanske veličine, pa kod dobro graduiranih šljunaka efektivno srednje zrno odgovara veličini zrna pijeska sadržanog između valutica šljunka. Takve D_{lng} šljunaka slijede punu crtu i mogu dosegnuti sve do područja sitnozrnastih pijesaka. Slični rezultati vrijede i za dobro graduirane pijeske, dok za jednolične pijeske (U<2) veličina poroznosti slijedi crtkanu krivulju (sl. 3.7) koja je verificirana do područja srednjozrnih pijesaka.

Učinak poroznosti u pojedinim stanjima i pojavama izražava se funkcijama poroznosti. U mehanici tla rašireno je korištenje funkcije poroznosti koja predstavlja odnos obujma pora (V_p) i obujma krutine (V_k) , a naziva se porni odnos, indeks poroznosti ili koeficijent poroznosti, *e*:

Slika 3.8 Hod pojedinih oblika funkcije poroznosti

$$e = \frac{V_p}{V_k} = \frac{n}{1-n}; \ n = \frac{e}{1+e}$$
(3.26)

U jednadžbama propusnosti i hidrauličke vodljivosti koristi se više oblika bezdimenzijske funkcije poroznosti. Njihov odnos s poroznošću, n, u rasponu od 0,05 do 0,5 prikazan je slikom 3.8.

3.3.2 Gustoća tvorevina

Gustoća krutih čestica vrlo je jednolična. Gustoća uobičajenih krutih sastojaka sitnozrnastih tvorevina kreće se od 2,5 do 3,3 tisuće kg/m³ (tablica 3.1), no kako je kvarc izrazito pretežiti sastojak to se kao srednja vrijednost u pravilu uzima 2650 kg/m³. Kada se govori o gustoći, u literaturi se u pravilu podrazumijeva gustoća čestica, a ne gustoća reprezentativnoga obujma, no ima i izuzetaka. To je posebice važno kada se govori o masenoj specifičnoj težini. Ovdje se za gustoću podrazumijeva gustoća čestica $\rho=2,65*10^3$ (kg/m³). Gustoća ukupnog agregata ima veći raspon, ovisno o njegovoj saturiranosti i rastresitosti. U tloznanstvenim raspravama se kao standardna relativna gustoća se obično kreće od oko 1,5 za osušeni uzorak do oko 2,1 za saturirani uzorak.

Mineralne tvorevine	Gustoća, $\rho * 10^3 (\text{kg/m}^3)$
Kvarc	2,65
K feldspati	2,54-2,57
Na-Ca feldspati	2,62-2,76
Kalcit	2,72
Dolomit	2,85
Muskovit	2,7-3,1
Biotit	2,8-3,2
Klorit	2,6-2,9
Pirofilit	2,84
Serpentin	2,2-2,7
Kaolinit	2,64±0,02
Ilit	2,60-2,86
Montmorilonit	2,75-2,78

Tablica 3.3 Gustoća zrna uobičajenih tvorevina

3.4 Oblici izražavanja specifične površine i karakteristične vrijednosti

Specifična površina je parametar svojstva poroznog medija o kojemu najviše ovisi brzina strujanja i interakcije krutine i sadržane tekućine. U literaturi se pojavljuju četiri oblika izražavanja specifične površine oplošja krutine, kojima se površina oplošja izražava u odnosu na: ukupni obujam (krutine i sadržanih pora) V_T , masu krutine M_k , obujam krutine V_k gustoću ρ i obujam sadržanih pora V_p . Sve su one povezane s pojmom hidrauličkog polumjera R_H poroznog medija. Njihovi međusobni odnosi su:

• specifična površina ukupnog obujma:

$$a_{T} = \frac{A_{k}}{V_{T}} = \rho(1-n)a_{m} = (1-n)a_{k} = na_{p} = \frac{n}{R_{H}};$$
(3.27)

• masena specifična površina:

$$a_{m} = \frac{A_{k}}{M_{k}} = \frac{a_{T}}{\rho_{k}(1-n)} = \frac{a_{k}}{\rho_{k}} = \frac{na_{p}}{\rho_{k}(1-n)} = \frac{n}{\rho_{k}(1-n)R_{H}}; \quad (3.28)$$

• specifična površina krutine:

$$a_{k} = \frac{A_{k}}{V_{k}} = \frac{a_{T}}{(1-n)} = \rho_{k}a_{m} = \frac{na_{p}}{(1-n)} = \frac{n}{(1-n)R_{H}};$$
 (3.29)

specifična površina pora:

$$a_{p} = \frac{A_{k}}{V_{p}} = \frac{a_{v}}{n} = \frac{\rho_{k}(1-n)a_{m}}{n} = \frac{(1-n)a_{k}}{n} = \frac{1}{R_{H}}$$
 i (3.30)

• hidraulički polumjer:

$$R_{H} = \frac{V_{p}}{A_{k}} = \frac{1}{a_{p}} = \frac{n}{(1-n)a_{k}} = \frac{n}{\rho(1-n)a_{m}} = \frac{n}{a_{T}}.$$
 (3.31)

U hidrauličkom smislu specifična površina izravno je povezana s otporima koje izaziva kruti porozni medij pri strujanju tekućine. Dakle, specifična površina je upravo nasuprot hidrauličkog polumjera koji se može zamisliti kao odnos pokretne sile (predstavljene obujmom tekućine u porama) prema otporu povlačenja tekućine preko nepokretne površine krutog matriksa vodonosnika. U tom smislu specifična površina pora i hidraulički polumjer su obrnuto proporcionalne veličine (jedn. 3.8, 3.31).

Iz definicije pojma specifične površine oplošja proizlazi da ona prvenstveno ovisi o veličini čestice, a zatim o njenom obliku. U literaturi se gotovo redovito koristi čestica oblika kugle promjera D=2r za prezentaciju odnosa specifične površine i veličine čestice. Površina oplošja kugle $A_k=4\pi r^2$, a obujam $V_k=(4/3)\pi r^3$, pa je njihov odnos

$$a_k = \frac{3}{r} = \frac{6}{D} \tag{3.32}$$

U laboratorijskoj praksi više se koristi masena specifična površina:

$$a_m = \frac{6}{\rho D}.$$
(3.33)

To je minimalna površina oplošja danog obujma čestice, pa prema tome predstavlja minimalnu specifičnu površinu oplošja čestice (tablica 3.4).

Opadanjem koncentracije obujma čestice raste njena relativna površina, a velikim istanjenjem čestica postaje zanemariv prinos površina bočnih stanica, pa za čestice oblika tankoga diska i pločica, specifična površina prvenstveno ovisi o njihovoj debljini *l*, i vrijedi odnos:

$$a_m \approx \frac{2}{\rho l} \approx \frac{0.75}{l}.$$
(3.34)

Za čestice podjednakih oblika kao što su to obično čestice pijeska i praha, specifična površina se može odrediti na temelju podataka granulometrijskih analiza ili raspoloživih granulometrijskih krivulja. Pritom se, polazeći od jedn. 3.33, sumiraju specifične površine za masu frakcija oko prosječnog promjera D_i unutar susjednih prosijeva ili unutar odsječka granulometrijske krivulje. Za slučaj izrazito sferičnih zrna:

$$a_m = \frac{\alpha}{\rho_k} \sum \frac{m_i}{D_i} = \frac{6}{\rho_k} \sum \frac{m_i}{D_i}$$
(3.35)

gdje je α čimbenik oblika, *k* gustoća krutine, *m_i* dio mase uzorka između dva prosijeva, a *d_i* promjer prosječnoga zrna. Ako se podaci vade iz granulometrijskih dijagrama:

$$a_m = \frac{\alpha}{100\rho_k} \sum \frac{P_i}{D_i}$$
(3.36)

gdje je P_i postotak mase zadržane između dva prosijeva ili postotak koji pripada izdvojenom segmentu krivulje, D_i prosječan promjer zrna unutar u odnosne mase ili segmenta krivulje, a α je bezdimenzijski čimbenik oblika zrna.

Naziv	Oblik	Površina oplošja A (m ²)	Obujam geometrijskoga tijela V _k (m ³)	Odnos $a_k = A/V_k (m^{-1})$	Odnos A/V _k za jedinični obujam	Učinak oblika u _α
<u>Tetraedar</u> stranica dužine r	1	$r^2\sqrt{3}$	$\frac{r^3\sqrt{2}}{12}$	$\frac{12\sqrt{3}}{r\sqrt{2}} \approx \frac{14,697}{r}$	7.21	1,49
<u>Kocka</u> stranica dužine r		6r ²	r^3	$\frac{6}{r}$	6	1,24
<u>Oktaedar</u> stranica dužine r		$2r^2\sqrt{3}$	$\frac{r^3\sqrt{2}}{3}$	$\frac{6\sqrt{3}}{r\sqrt{2}} \approx \frac{7,348}{r}$	5.72	1,18
<u>Dodekaedar</u> stranica dužine r		$3r^2\sqrt{25+10\sqrt{5}}$	$\frac{r^3}{4} \left(15 + 7\sqrt{5} \right)$	$\frac{12\sqrt{25+10\sqrt{5}}}{r(15+7\sqrt{5})} \approx \frac{2,694}{r}$	5.31	1,10
<u>Ikosahedron</u> stranica dužine r		$5r^2\sqrt{3}$	$\frac{5}{12}\left(3+\sqrt{5}\right)r^3$	$\frac{12\sqrt{3}}{\left(3+\sqrt{5}\right)r} \approx \frac{3,970}{r}$	5.148	1,07
Kugla promjera d=2r		$4\pi r^2$	$\frac{4\pi r^3}{3}$	$\frac{3}{r} = \frac{6}{D}$	4.83	1,00

Tablica 3.4 Površine oplošja, obujmi i specifična površina čestica karakterističnih geometrijskih oblika

Tablica 3.5 Opći oblik, specifična površina i učinak oblika elipsoidnog tijela

,, ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,	
Elipsoid s polumjerima a, b, c	
Površina oplošja (eksponent <i>p=1,605</i> uz pogrješku < <i>1,061%</i>	$S \approx 4\pi \sqrt[p]{\frac{a^p b^p + a^p c^p + b^p c^p}{3}}$
Obujam	$V_k = \frac{4}{3}\pi abc$
Odnos <i>S/V_k</i> za jedinični obujam tijela pri odnosu polumjera c=3a, b=2a	5,71
Učinak oblika	1,18

U literaturi postoji više alternativa za segmentiranje krivulje i nema suglasja koji je prosječni promjer unutar segmenta: aritmetički $(D_{i,a})$, geometrijski $(D_{i,g})$ ili harmonijski $(D_{i,h})$ primjerena veličina zrna. Ove sredine definirane su odnosima:

aritmetička sredina ,
$$D_{i,a} = \frac{D_{i<} + D_{i>}}{2}$$
, (3.37)

geometrijska sredina, $D_{i,g} = \sqrt{D_{i<} \times D_{i>}}$ (3.38)

harmonijska sredina
$$D_{i,h} = \frac{2}{\frac{1}{D_{i<}} + \frac{1}{D_{i>}}}$$
 (3.39)

gdje je $D_{i<}$ najmanje, a $D_{i>}$ najveće zrno u segmentu. U svim slučajevima $D_{i,h} < D_{i,g} < D_{i,a}$.

Čimbenik oblika α =6 u jednadžbi 3.35 i 3.36 vrijedi za izrazito sferična zrna, pa je to njegova minimalna vrijednost α_0 . U prirodi su zrna pijeska i sitnijih čestica vrlo različitog oblika. U tablicama 3.4 i 3.5 prikazani su pravilni geometrijski oblici za koje se može egzaktno izračunati $\alpha = \alpha_0 * u_\alpha$. Oni dobro ilustriraju i prirodne oblike, pa se može zaključiti da u praksi vrijedi raspon $6 \le \alpha \ge 15$. Mbonimpa et al. (2009) navode raspon $6 \le \alpha \ge 18$.

Sitnozrnasta tla imaju veliku specifičnu površinu, što je prvenstveno povezano s njihovim granulometrijskim sastavom, oblikom čestica i naročito sadržajem različitih minerala glina koji su lisnatih i izduženih oblika. Učinak veličine čestica snažno je izražen za prahovita tla. Međutim, za gline niske plastičnosti sadržaj čestica manjih od $2\mu m$ slabo utječe na veličinu specifične površine (Chapuis et Aubertin, 2003, slika 3.9). Minerali glina razlikuju se i po tipu specifične površine. Nebubreći kao što je kaolinit imaju samo vanjsku površinu, dok bubreći kao što je montmorilonit imaju veliku vanjsku, a i unutarnju površinu (tablice 3.6 i 3.7).

Slika 3.9 Korelacijski odnos između specifične površine i postotka čestica <2µm (prema Chapuis et Aubertin, 2003; Locat et al. 1984)

Specifična površina oplošja finozrnih tvorevina određuje se laboratorijski. Postupak se sastoji u određivanju količine plina ili tekućine, kao adsorbata, koji čine jednoslojni plašt na površini čestica. Dva najvažnija čimbenika u svakom laboratorijskom mjerenju specifične površine oplošja uzorka su izbor adsorbata i raspoloživost čestica tla za njegovo prihvaćanje. To dovodi do pojave da laboratorijsko određivanje SSA može rezultirati s različitim vrijednosti za isti uzorak tla.

Pri određivanju vanjske specifične površine adsorbat je nepolarizirani plin N₂. Iznos plina (tj. broj molekula dušika) koji se veže na čestice tla ovisi o parcijalnom tlaku plina i o temperaturi. U proceduri testa se na čestice tla veže više od jednoga sloja plina. Za određivanje iznosa (obujma) ekvivalentnog za adsorpciju jednomolekularnoga sloja plina, odnos su razvili Stephen Brunauer, Paul Hugh Emmett i Edward Teller i objavili 1938. godine. Po njima se ovaj odnos naziva BET jednadžba, i vjerojatno je najpoznatiji odnos za višeslojnu sorpciju.

Ukupna specifična površina određuje se koristeći kao adsorbate polarizirane fluide koji prodiru u unutarnju površinu bubrećih glina. Koristi se tehnika koju su opisali Mortland et al. (1965): za ethylene glycol i Carter et al (1986) za ethylene glycol-monoetyl eter, te Greenland et Quirk za cetyl pryidinium bromid, koje se po korištenim fluidima nazivaju EG, EGME i CPB.

Tablica 3.6 Relativni izgled, debljina i specifična površina uobičajenih minerala glina (prema Holtz and Kovacs 1981, Yong and Warkentin, 1975; Cerato, 2001)

		Geometrijsk	i odnosi	Eksperimentalna	mjerenja		
Minerali	Tipična	Tipični	Specifična površina, a	Specifična površina,			
Trinorun	debljina promjer		(m^2/g)	$a_m(m^2/g)$			
	nm nm		(11.78)	Vanjska	Ukupna		
Montmorilonit	3	100-1000	800	50-120	600-870		
Ilit	30	10000	80	40-80	65-100		
Klorit	30	10000	80				
Kaolinit	50-2000	300-4000	15	10-20	10-20		

Tablica 3.7 Specifična površina oplošja, kapacitet kationske izmjene i gustoća naboja minerala glina, prema nekim metodama određivanja (prema Greenland and Quirk, 1964)

	Specifi	čna površina <i>(</i>	$m(m^2/g)$	Kapacitet kationske	Gustoća naboja *10 ³ (me/m ²)		
	speem	ena potroma, e	(111/8)	zamjene			
	N_2	N ₂ CPB		CEC(me/g)	N_2	СРВ	
Montmorilonit	47-101	600-800		0,98-0,99	9,8-21	1,22-1,6	
Ilit	93-132	96-138	91-141	0,26-0,41	2,8-3,0	2,7-2,9	
Kaolinit	17-40	9-21	13-21	0,30-0,50	0,75-2,5	1,4-3,3	

Specifična površina povezana je s učincima ionske zamjene (tablica 3.6 i 3.7) i hidrauličkog otpora. Ovdje su prvenstveno interesantni hidraulički učinci. Oni su ilustrirani jednadžbama 3.3., 3.7. i 3.8. Prema njima hidraulički učinak ima samo dio vanjske specifične površine, tj. onaj dio preko kojega se odvija strujanje podzemne vode, pa bi prema tome za strujanje podzemne vode mogao definirati pojam sličan pojmu ovlažene specifične površine u pedologiji.

3.5 Eksperimentalni podaci

U provedenim istraživanjima u velikoj mjeri korišteni su podaci objavljeni kao rezultati analiza iz uglednih laboratorija, zatim podaci iz izvješća o istraživanjima pojedinih lokaliteta u sjevernoj Hrvatskoj kao i podaci prikupljeni u sklopu znanstvenog projekta Izrade Osnovne hidrogeološke karte Republike Hrvatske.

Za prezentaciju hoda poroznosti i specifične retencije posebno su bili vrijedni podaci o analizama u Hydrologic Laboratory of U.S. Geologic Survey (tablica 3.2, slika 3.5) koje su objavili Moris et Johnson (1967), te nekih lokalnih laboratorija (Johnson, 1967) koji su provedeni uz jednoznačne kriterije. U zaključnom prikazu slijeda poroznosti u funkciji granulometrijskog sastava uključena su brojna zapažanja iz kasnije literature, dakle i od autora kojima su na raspolaganju bili ovi radovi. Ovo se posebice odnosi na raspored efektivne poroznosti, no u kreaciji ovoga novog dijagrama (slika 3.7) presudni su bili kalibracijski postupci provedeni za izabrana pokusna polja i istraživačka polja izabrana iz raspoloživih izvješća o istraživanjima Hrvatskog geološkog instituta, Rudarsko-geološko naftnog fakulteta i Instituta građevinarstva Hrvatske iz Zagreba.

Za istraživanje odnosa granulometrijskog sastava nekoherentnih tvorevina i hidrogeoloških parametara korišteni su podaci o rezultatima granulometrijskih analiza i pokusnih crpljenja na 5 pokusnih polja. Podaci su svrstani u tri skupine ovisno o vrsti i sortiranosti zrna.

Prva skupina su dva crpilišta na kojima je vodonosnik izgrađen od jednoličnih, srednjozrnih pijesaka (tablica 3.8) koji zadovoljavaju kriterije praktično svih metoda izračuna hidrauličke vodljivosti na temelju veličine efektivnoga zrna. To su crpilišta u Donjem Miholjcu i Belom Manastiru. Kasnije se pokazalo da i tu ima prostora za poboljšanja.

Druga skupina su podaci o vodonosnicima izgrađenim pretežito od sitnozrnih pijesaka (tablica 3.9) u kojima se pojavljuju raznovrsni proslojci prahovitih frakcija koji znatno otežavaju primjene klasičnih metoda efektivnog zrna, iako je sortiranost zrna u njihovim uzorcima unutar granica koje su postavljene za primjenjivost tih metoda. To su crpilišta Čepin kraj Osijeka i Ravnik kraj Pitomače.

U trećoj skupini je projektirano crpilište Đurđevac na kojemu je vodonosnik izgrađen od dobro graduiranih šljunka. Kako je na njemu izvedeno desetak istraživačkih bušotina na kojima je ostvarena izuzetno kvalitetna jezgra iz koje su načinjene granulometrijske analize, ovo crpilište se pokazalo kao izvrstan primjer za istraživanje uspješnosti identifikacije hidrogeoloških parametara na temelju autentičnog granulometrijskog sastava (tablica 3.10).

ø		a	Postotak t	ežine uzorl	ca s čestica	ama manje	veličine	. 6	Srednja	veličina zr	na u uzork	u (mm)	tt a
polje	ina	zork		od nav	edenoga iz	enosa		enost D_{I0}	Aritmetička			н	tivna znos
ousr	ušoti	ina u	D_{10}	D ₂₀	D_{40}	D_{50}	D_{60}	lnač€ =D ₆₀ ∕	Sredin	a vel. u pro	osijevu	omet jska	Efek poro
Pokı	В	Dub	Gı	ranična vel	ičina zrna	u prosijevu	1	Ujec $U_{=}$	aritm.	geom.	harm.	Ge	
					(mm)				D_{aa}	D_{ag}	D_{ah}	D_{lng}	n _e
		58	0,13	0,18	0,24	0,27	0,30	2,31	0,228	0,221	0,214	0,259	0,340
		64	0,15	0,18	0,23	0,25	0,27	1,80	0,217	0,211	0,206	0,230	0,328
		66	0,16	0,18	0,24	0,28	0,30	1,88	0,227	0,221	0,215	0,245	0,335
		68	0,16	0,18	0,24	0,28	0,30	1,88	0,234	0,229	0,223	0,256	0,337
	DP-1	71	0,17	0,21	0,28	0,33	0,36	2,12	0,264	0,257	0,249	0,293	0,347
	Ι	73	0,16	0,19	0,24	0,28	0,30	1,88	0,240	0,234	0,227	0,259	0,340
oljac		78	0,14	0,18	0,23	0,27	0,28	2,00	0,227	0,221	0,215	0,246	0,335
Mih		82	0,14	0,18	0,23	0,27	0,29	2,07	0,225	0,219	0,213	0,248	0,335
iluo		89	0,13	0,17	0,22	0,26	0,28	2,15	0,221	0,216	0,210	0,241	0,332
Д		55	0,15	0,18	0,22	0,24	0,25	1,70	0,216	0,210	0,205	0,231	0,330
		60	0,17	0,20	0,24	0,25	0,27	1,64	0,239	0,233	0,227	0,250	0,338
	B-4	64	0,22	0,27	0,34	0,38	0,41	1,86	0,343	0,335	0,327	0,364	0,350
	MM	70	0,18	0,23	0,28	0,30	0,32	1,83	0,268	0,261	0,255	0,288	0,346
		80	0,16	0,20	0,28	0,32	0,36	2,29	0,273	0,267	0,260	0,317	0,349
		85	0,15	0,19	0,26	0,28	0,30	2,03	0,233	0,227	0,221	0,253	0,338
		20	0,15	0,18	0,24	0,27	0,29	2,00	0,232	0,226	0,220	0,258	0,330
astir		21	0,16	0,19	0,24	0,25	0,28	1,81	0,235	0,230	0,225	0,254	0,330
Man	P-1	24	0,17	0,22	0,24	0,25	0,26	1,58	0,235	0,232	0,228	0,246	0,335
Beli		30	0,18	0,23	0,25	0,26	0,28	1,51	0,255	0,253	0,250	0,267	0,342
Ι		33	0,17	0,20	0,26	0,29	0,33	2,00	0,266	0,260	0,255	0,299	0,348

Tablica 3.8 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za srednjozrne pijeske jednolične veličine zrna

Tablica 3.9 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za sitnozrne pijeske. Opaska: u žuto označenim poljima efektivna poroznost za uzorke iz bušotine P-1 na crpilištu Ravnik određena je prema D40, a ne Dlng zbog pojava proslojaka praha u uzorku

		T	Postotak t	ežine uzor	ka s čestica	ama manje	veličine		Srednja	veličina zr	na u uzork	u (mm)	
polje	na	zorka		od nav	edenoga iz	znosa		nost, D ₁₀		Aritmetička	ı	<u>ц</u>	tivna znost
ous	ıšotii	na uz	D_{10}	D_{20}	D_{40}	D_{50}	D_{60}	nače :D ₆₀ /.	Sredin	a vel. u pro	osijevu	omet ska	Efek poro
Poku	Bı	Jubi	Gı	ranična vel	ičina zrna	u prosijevi	1	Ujed U=	aritm.	geom.	harm.	Geo	
					(mm)			,	D_{aa}	D_{ag}	D_{ah}	D_{lng}	n _e
		72	0,09	0,11	0,14	0,15	0,18	2,00	0,143	0,141	0,139	0,293	0,293
		74	0,11	0,14	0,17	0,18	0,19	1,73	0,161	0,158	0,155	0,302	0,302
		76	0,10	0,14	0,19	0,23	0,27	2,84	0,182	0,177	0,171	0,320	0,320
		77	0,07	0,10	0,15	0,17	0,20	2,71	0,140	0,137	0,135	0,295	0,295
		79	0,08	0,11	0,19	0,24	0,29	3,92	0,167	0,163	0,160	0,320	0,320
		82	0,08	0,10	0,16	0,19	0,22	3,14	0,147	0,144	0,142	0,310	0,310
		84	0,07	0,09	0,13	0,14	0,16	2,39	0,121	0,117	0,114	0,275	0,275
		86	0,09	0,13	0,17	0,19	0,20	2,22	0,159	0,155	0,151	0,308	0,308
ek		88	0,07	0,10	0,17	0,19	0,24	3,43	0,150	0,148	0,145	0,315	0,315
Osij	-1	90	0,06	0,07	0,09	0,10	0,12	2,03	0,094	0,092	0,091	0,235	0,235
- uic	OČI	93	0,07	0,09	0,11	0,13	0,14	1,87	0,114	0,112	0,111	0,260	0,260
Čel		96	0,09	0,11	0,16	0,15	0,17	1,89	0,143	0,140	0,136	0,293	0,293
		97	0,10	0,12	0,14	0,17	0,19	2,01	0,156	0,152	0,147	0,308	0,308
		100	0,09	0,12	0,15	0,16	0,18	2,00	0,148	0,144	0,141	0,300	0,300
		103	0,09	0,12	0,17	0,19	0,22	2,44	0,159	0,155	0,151	0,312	0,312
		106	0,13	0,17	0,24	0,27	0,30	2,31	0,222	0,212	0,200	0,340	0,340
		110	0,10	0,14	0,21	0,24	0,27	2,70	0,182	0,169	0,155	0,315	0,315
		112	0,05	0,07	0,16	0,21	0,29	5,80	0,127	0,123	0,119	0,310	0,310
		115	0,13	0,19	0,28	0,32	0,37	2,96	0,245	0,225	0,204	0,345	0,345
		122	0,08	0,11	0,15	0,16	0,17	2,13	0,141	0,138	0,135	0,294	0,294
		33	0,05	0,13	0,192	0,223	0,26	5,2	0,075	0,070	0,065	0,178	0,310
		34	0,082	0,13	0,173	0,190	0,213	2,6	0,118	0,112	0,107	0,179	0,300
/ača		37	0,008	0,03	0,13	0,150	0,17	21,3	0,024	0,022	0,020	0,083	0,270
vodo	1	40	0,05	0,09	0,156	0,175	0,193	3,9	0,064	0,060	0,056	0,136	0,288
ik-P	P-	41	0,085	0,16	0,195	0,220	0,243	2,9	0,118	0,112	0,106	0,188	0,315
Ravn		44	0,006	0,026	0,16	0,180	0,21	35,0	0,023	0,021	0,019	0,098	0,290
		49	0,04	0,16	0,275	0,310	0,35	8,8	0,075	0,070	0,065	0,228	0,345
		52	0,0075	0,026	0,155	0,180	0,215	28,7	0,026	0,024	0,022	0,101	0,290

- U		1		<i>d d</i>					1				
lje		ka	Posto	tak težine	uzorka s č	esticama n	nanje	st, 0	Srednja	veličina zr	na u uzork	tu (mm)	la st
od c	tina	IOZN		vencine od	navedenc	oga iznosa		eno 0/D1		Aritmetička	a	tr	ctivr ozno
cusno	3ušo	oina 1	D_{10}	D_{20}	D_{40}	D_{50}	D_{60}	dnač ⊨=D _e	Sredin	a vel. u pro	osijevu	some jska	Efek porc
Pok	Π	Dul	G	ranična vel	ičina zrna	u prosijev	u	Uje	aritm.	geom.	harm.	Ge	
					(mm)	1 9			D_{aa}		D_{ah}	D_{lng}	n _e
		26	0,170	0,330	2,200	4,600	6,300	37,1	0,105	0,098	0,093	2,096	0,273
		37	0,100	0,270	0,850	1,800	3,000	30,0	0,041	0,039	0,037	0,617	0,323
	3-1	49	0,036	0,120	0,300	0,450	1,200	33,3	0,048	0,046	0,044	1,110	0,305
	SPF	53	0,035	0,125	0,350	0,600	1,100	31,4	0,045	0,042	0,040	0,574	0,323
	•1	54	0,035	0,120	0,350	0,570	1,000	28,6	0,032	0,031	0,029	0,536	0,324
		62	0,120	0,250	0,850	3,300	6,000	50,0	0,106	0,100	0,094	1,642	0,287
		22	0,013	0,053	0,400	1,650	3,000	230,8	0,021	0,020	0,019	0,628	0,323
		40	0,004	0,010	0,056	0,145	0,350	85,4	0,011	0,010	0,010	0,171	0,285
	B-2	34	0,011	0,047	0,135	0,170	0,190	17,3	0,020	0,019	0,018	0,106	0,235
	SP	50	0,006	0,016	0,070	0,150	0,280	50,0	0,014	0,014	0,013	0,186	0,290
		56	0,006	0,017	0,140	0,280	0,850	151,8	0,014	0,013	0,013	0,286	0,315
		60	0,013	0,100	0,330	0,480	0,800	61,5	0,022	0,021	0,020	0,414	0,325
		24	0,070	0,220	1,400	2,500	3,550	50,7	0,056	0,053	0,051	1,196	0,304
	~	27	0,015	0,075	0,550	2,000	3,800	262,1	0,025	0,024	0,023	0,806	0,316
	Å.	31	0,039	0,120	0,500	1,700	3,000	76,9	0,048	0,045	0,043	0,821	0,315
	$_{\rm SP}$	42	0,006	0,018	0,140	0,400	1,750	312,5	0,014	0,013	0,012	0,307	0,313
		48	0,095	0,200	1,000	3,300	6,000	63,2	0,047	0,044	0,042	1,629	0,285
		55	0,009	0,032	0,185	0,340	0,850	94,4	0,018	0,017	0,017	0,373	0,324
		23	0,065	0,185	1,000	2,400	4,000	61,5	0,037	0,035	0,034	1,187	0,307
		29	0,100	0,240	0,850	2,900	5,000	50,0	0,033	0,031	0,030	1,302	0,300
	3-4	33	0,005	0,017	0,123	0,300	0,850	157,4	0,014	0,013	0,012	0,268	0,312
2	SPE	39	0,035	0,180	0,850	2,200	3,800	108,6	0,030	0,028	0,027	1,050	0,308
eva	•1	48	0,009	0,044	0,170	0,270	0,400	44,4	0,018	0,017	0,017	0,203	0,310
urđ		58	0,009	0,065	0,370	0,900	2,000	01.4	0,018	0,017	0,017	0,549	0,325
Đ		10	0,055	0,100	2,700	1,230	5,200	20.2	0,029	0,028	0,027	0,795	0,317
		19	0,150	0,340	2,700	4,000	3,900	200.0	0,077	0,074	0,070	2,120	0,270
		23	0,015	0,073	2,800	1,400	5,000	200,0	0,029	0,027	0,020	0,715	0,320
	8-5	32	0,200	0,000	2,800	4,000	2,500	136.8	0,114	0,108	0,102	2,330	0,203
	SPI	47	0.120	0.280	1 300	3,000	4 900	40.8	0.103	0.020	0.092	1 611	0,321
		53	0.017	0.630	0.450	1,350	2,900	170.6	0.028	0.027	0.025	0.691	0.320
		57	0.020	0.700	0.330	0.820	2.000	100.0	0.046	0.044	0.041	0.593	0.322
		18	0.023	0.090	0.430	1.000	2,600	113.0	0.030	0.028	0.027	0.654	0.322
		23	0.050	0.190	0.850	2.000	3.400	68.0	0.041	0.039	0.037	1.062	0.306
		27	0.036	0.130	0.600	1.300	2.200	61.1	0.033	0.031	0.029	0.724	0.317
	9-0	33	0,013	0,053	0,240	0,410	0,850	65,4	0,023	0,021	0,020	0,353	0,324
	SPE	40	0,004	0,017	0,048	0,063	0,100	23,3	0,011	0,010	0,010	0,056	0,150
	01	50	0,021	0,140	0,550	1,100	2,000	95,2	0,030	0,028	0,027	0,687	0,321
		59	0,012	0,070	0,400	0,730	1,500	125,0	0,020	0,019	0,018	0,479	0,325
		61	0,018	0,090	0,370	0,620	1,150	63,9	0,026	0,025	0,024	0,448	0,325
	8	22,6	0,14	0,52	2,8	4,9	7,0	50	0,185	0,174	0,164	0,823	0,315
	B	33,5	0,35	1,3	5,1	7,0	9,5	27	0,115	0,110	0,105	0,494	0,325
	SI	52,5	0,53	2,5	10,1	16	19	36	0,126	0,120	0,115	0,502	0,325
	6	24	0,29	0,74	4,3	7,0	10	19	0,120	0,115	0,110	0,540	0,324
	B-	33	0,2	0,45	1,9	4,0	6,5	32,5	0,218	0,207	0,197	0,919	0,312
	SF	50	0,2	0,43	1,8	3,7	5,7	28,5	0,305	0,291	0,277	1,528	0,290

Tablica 3.10 Srednje veličine zrna i odnosna efektivna poroznost uzoraka za dobro graduirane šljunke. Opaska: u žuto i plavo označenim poljima navedene vrijednosti D_{lng} i n_e za bušotine SPB-8 i SPB-9 određene su prema geometrijskom osrednjenju D_{ga} i D_{lng} zbog ispranosti jezgre

U tablicama su u dva zadnja stupca prikazani iznosi efektivne veličine zrna i odnosne efektivne poroznosti kojima je verificiran slijed funkcije $n_e=f(D_{lng})$ na slici 3.7 uz prateće

podatke o drugačijim postupcima izračuna srednjeg zrna, te drugih karakterističnih podataka o položaju efektivnog promjera zrna.

Veličina efektivnog srednjeg zrna, D_{lng} , izvorno odgovara potpunom geometrijskom osrednjenju veličine sadržanih zrna:

$$D_{\ln g} = EXP\left[\frac{1}{M}\sum m_i \ln D_{i,g}\right]$$
(3.40)

gdje je M masa uzorka, m_i masa pojedinih prosijeva, a njihova srednja veličina $D_{i,g}$ određena prema jedn. 3.38. Dakle, ekvivalentna je jedn 3.10 i 3.12 uz razliku da se one odnose na agregate gline, praha i pijeska, a jedn 3.40 na pojedine prosjeve istoga uzorka. Kasnije će se pokazati da je ovakav prosjek univerzalno valjan od glinovitih sadržaja do šljunaka, međutim njegova vjerodostojnost ovisi o vjerodostojnosti uzorka.

4 HIDRAULIČKA VODLJIVOST IZRAŽENA GRANULOMETRIJSKIM PARAMETRIMA

Darcyjevi pokusi bili su prvenstveno usmjereni na eksperimentalno pronalaženje egzaktnoga zakona prijenosa vode kroz kontinuum poroznoga medija kao što to izražava Hagen Poisseuillov zakon za tok vode kroz cijevi ili još stariji Fourierov zakon za prijenos topline. Darcy pritom nije analizirao izravnu svezu propusnosti i granulometrijskog sastava pijeska u uzorku, nego je pokazao da pri odnosu protoka i hidrauličkog gradijenta svaki uzorak karakterizira neki "koeficijent proporcionalnosti" koji se danas zove Darcyjev koeficijent ili hidraulička vodljivost.

Prva dokumentirana provjera valjanosti Darcyjeva zakona uslijedila je tridesetak godina kasnije istraživanjima Alena Hazena pri kojima su se istraživači jamačno služili sličnim aparaturama, no Hazenova istraživanja bila su usmjerena utvrđivanju izravne povezanosti granulometrijskog sastava pješčanih tvorevina i hidrauličke vodljivosti, tražeći pritom parametre granulometrijskog sastava kojima bi se ta povezanost funkcionalno izrazila. Nakon Hazena uslijedio je niz istraživača koji su kroz cijelo prošlo stoljeće istraživali utjecaj raznovrsnih svojstava vodonosnih tvorevina na hidrauličku vodljivost. U njihovim istraživanjima ima puno zajedničkoga, no ipak ih možemo podjeliti u dvije skupine.

- Jednu u kojoj su autori koji su u načelu slijedili Alena Hazena u traženju odnosa između nekog efektivnog zrna i hidrauličke vodljivosti i
- Drugu u kojoj su autori koji su taj isti odnos tražili preko specifične površine ili hidrauličkog promjera.

U ovom poglavlju analizirani su i verificirani obrasci koji su izravno povezani s nekim efektivnim zrnom izraženim težinskim postotkom. Verifikacijom nekih od takvih obrazaca ostvarene su korekcije kojima se značajno povećava točnost izračuna hidrauličke vodljivosti.

4.1 Izvorne postavke i rezultati primjene obrazaca

4.1.1 Hazenov model hidrauličke vodljivosti

Prve sustavne eksperimente s riječnim pijescima i šljuncima radi istraživanja učinka veličine zrna vodonosnog materijala na brzinu strujanja vode kroz porozni medij na aparatu sličnom Darcyjevu proveo je američki znanstvenik Allen Hazen u razdoblju od 1880. do 1892. godine u Massachusettsu. Rezultate je objavio u nekoliko navrata (1892, 1893, 1901 i i 1911) dodajući nadopune prethodnim navodima pojednostavljenje izraza. Eksperimentirajući s homogenim materijalima uočio je da se brzina mijenja s kvadratom promjera zrna vodonosnih tvorevina, a pri razmatranju hidrauličke vodljivosti uvažio je, te izrazio, i učinak temperature na viskoznost vode. Izvorni vodonosni materijal sadržavao je zrna mnogih veličina, no Hazen je eksperimentirao sa sortiranim materijalima kod kojih je zrno variralo od 0,1 do 3 mm. Utvrdio je da se može uzeti "efektivni promjer" zrna koje je definirao na dva načina

- efektivna veličina (promjer zrna) je veličina zrna teorijskog tijela homogenog materijala iste veličine zrna koja može prenijeti vodu iste količine kao razmatrani materijal i
- efektivno zrno je zrno veličine od koje prema mehaničkim analizama ima 90% materijala većega zrna, a veće je od veličine zna 10% materijala.

Time je definirao efektivno zrno koje se kasnije označavalo kao D_{10} , a sortiranost vodonosnog materijala definirao je odnosom

$$U_{H} = \frac{D_{60}}{D_{10}}$$
(4.1)

gdje U_H je koeficijent ujednačenosti zrna, D_{60} je zrno od kojega ima 60%, a D_{10} 10% težine uzorka sitnijega zrna.

Takvu definiciju efektivnoga zrna i koeficijenta ujednačenosti zadržali su gotovo svi kasniji istraživači sve do današnjih dana.

Hazenova formula hidrauličke vodljivosti glasi:

gdje *K* hidraulička vodljivost u m/dan, C_H je konstanta (oko 1000 m⁻¹dan⁻¹), *d* efektivna veličina u mm, a *T* je temperatura u stupnjevima Celzija. Kada je temperatura vode 10°C tada je (0,7+0,03t)=1, što je jamačno bio slučaj za Massachusetts.

Slika 4.1 Promjena viskoznosti vode u funkciji temperature i Hazenova aproksimacija

Za koeficijent C_H u svjetskoj literaturi ima različitih veličina što je dijelom uzrokovano razlikama korištenih jedinica, no moguće i Hazevovih navoda u radovima koji su nadopunjavani novim iskustvima. U ranijim originalnim navodima brzina je u cm/s, a promjer zrna u cm. Kashef (1987, p.87) prenosi navod "*In Hazen's tests (Taylor, 1948), the constant* C_h varied from 81 to 117 (average 100), and some individual values were as low as 41 and as high as 146" (tablica 4.1). U recentnoj literaturi prevladavaju vrijednosti:

- $C_H \approx 100$ ako se K izražava u cm/s, a d u cm,
- $C_H \approx 0,01$ ako se K izražava u m/s, a d u mm
- $C_H \approx 864$ ako se *K* izražava u m/dan, a *d* u mm, a

puna valjanost Hazenove formule uzima se za dobro sortirane pijeske Hazenova koeficijenta ujednačenosti $U_H \leq 5$.

1	ablica 4.1 Kaspo	H vijednosti Hazenova Koencijenta C_H prema Bowles (1964)
	$C_H (\mathrm{cm}^{-1}\mathrm{s}^{-1})$	Sadržaj uzoraka
	40-80	Vrlo sitni dobro graduirani pijesak ili materijali sa zamjetnom prisutnošću sitnijih čestica
	80-120	Srednje krupni, slabo graduirani pijesak i čisti te krupni, ali dobro graduiran pijesak
	120-150	Vrlo krupni i vrlo slabo graduirani šljunkoviti, čisti pijesak

Tablica 4.1 Raspon vrijednosti Hazenova koeficijenta C_H prema Bowles (1984)

Slika 4.2 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna hidrauličke vodljivosti uzoraka prema Hazenovoj jednadžbi (4.2) za temperaturu t=15°C uz prikaz ujednačenosti zrna u uzorcima

4.1.2 Slichterov model hidrauličke vodljivosti

Zanimljiv trag svojih istraživanja ostavio je Charles Sumner Slichter, koji je nakon znamenite teorijske rasprave o gibanju podzemne vode (1899) proveo eksperimente procjeđivanja vode kroz pijesak i šljunak koristeći velike aparature i široki spektar gradijenata (J=0,32% do 20%) s težnjom da se približi prirodnim uvjetima. Rezultate istraživanja izrazio je jednadžbom u kojoj količina protoka vode varira s kvadratom veličine efektivnog zrna poroznog medija, te s temperaturom vode i s poroznošću. (Slichter, 1902, p 24):

$$q = 0,2012 \frac{pd^2s}{\mu hF_n}$$
(4.3)

gdje q je količina vode u kubnim stopama po minuti; p gubitak tlaka vode u stopama, s površina presjeka u kvadratnim stopama, h udaljenost kroz koju se voda giba u stopama, d je srednja veličina sadržanih zrna u milimetrima. Koeficijent C=0,2012 primjeren je pri dinamičkoj viskoznosti vode $\mu=0,01787g/cms$ koja odgovara pri temperaturi vode od 32°F (0°C), a F_n je definiran kao konstanta koja ovisi o poroznosti (u izvornom članku označena kao K) za koju Slichter daje tablični pregled iznosa za raspon poroznosti od 26% do 47% (tablica 4.2, slika 4.4). Kada se jedn. 4.3 preuredi u funkciju hidrauličke vodljivosti i izrazi u homogenom SI sustavu dobije se odnos:

$$K = 0.0104 \frac{\rho g}{\mu} f(n)^0 D_e^2$$
(4.4)

gdje je C=0,0104 bezdimenzijska konstanta Slichterove metode, a $f(n)^0 = 1/F_n$. Promjer efektivnog zrna D_e označen je velikim slovom D kao i drugdje u ovoj raspravi.

Predloženom metodom određivanja hidrauličke vodljivosti koju on naziva *transmisijska konstanta*, kao i pratećom raspravom, Slichter uvodi pojmove triju funkcija koje dominantno utječu na veličinu ovoga parametra: veličine zrna, poroznosti i temperature. Svoju raspravu Slichter povezuje s Hazenovim istraživanjima i ističe da je učinak poroznosti (slika 4.4) na veličinu hidrauličke vodljivosti jednako važan kao i utjecaj temperature (slika 4.1) o kojoj ovisi veličina viskoznosti. Uz ovaj značajni prinos njegovog tumačenja transmisijskih obilježja porozne sredine ostale su i kontroverze izazvane nejasnoćama u definiciji funkcije poroznosti i veličine referentnog promjera zrna u jedn. (4.3), odnosno (4.4).

Dominantno je pitanje referentne veličine zrna. Pozornim proučavanjem Slichterovih (1902, 1905) navoda stječe se dojam da su tu nedoumicu prvenstveno izazvali kasniji korisnici primjenjujući D_{10} za efektivno zrno. Naime, Slichter u raspravi o granulometrijskom sastavu ističe: "…. It therefore become necessary to determine the extend to which grains of various size are present in any sample and to be able to express the results in convenient way...... In order to compare one soil with another as to its capacity to transmit water, it is necessary to have some way of arriving at mean or average-sized grain wich it is appropriate to associate with each sample"(Slichter, 1902, p.22). To isto potvrđuje 3 godine kasnije:,,The

effective size of a sample of sand is such a number that if all grains were of that diameter the sand would have the same transmission capacity that it actually has. It is therefore, the true mean or average size of sand grain in that sample" (Slichter, 1905. p.14). Ovim se eksplicitno izražava njegovo značenje, pa je kasnija prezentacija Slichterove formule s promjerom D_{10} u stvari promjena originala.

Na takav način Slichter promatra i Hazenovo efektivno zrno D_{10} , posvećujući njegovim rješenjima u svojem članku dosta prostora uz izraženo uvažavanje. Naglašava da je smisao Hazenovoga efektivnog zrna za tok kroz srednje i sitne jednolične pijeske takav da u njima 10% manjih zrna ima isti utjecaj na količinu protoka vode kao 90% većih zrna. Prema tome Slichter, uz uvažavanje Hazenovoga rješenja za jednolične pijeske, naglašava osrednjeni učinak pa i veličinu zrna, jer, kako to i sam spominje, uobičajene vodonosne taložine obično nisu jednolične. Na koncu postoji i jedan egzaktan podatak da je veličina efektivnog zrna Picnic Point šljunaka koje je Slichter koristio u eksperimentima iznosila 0,93 mm što je odgovaralo prolazu 25,6% težine ukupnoga uzorka (Slichter, 1905, p. 29, 30).

Time je priča o *efektivnom zrnu* trebala biti okončana kada bi se *K* promatrao funkcionalno. No izgleda da je kasnije površno prihvaćanje efektivnoga zrna D_{10} vjerojatno nastalo iz više razloga. Jedan je nesumnjivo prikladnost takve veličine zrna u analizama kapilarnosti (primjerice Attebergova formula kapilarnoga dizanja) pa se prihvaćao univerzalnim, a drugi je jednostavnost izračunavanja, što je dugo bilo važan inženjerski čimbenik.

Slika 4.3 Usporedni prikaz izračuna K iz podataka granulometrijske krivulje uzoraka pijeska iz triju bušotina na pokusnim poljima Oznake: $f(n)^{\circ}$ Slichterova funkcija poroznosti, *D10* Hazenovo efektivno zrno, Aritmetički zbroj udjela aritmetičke *Daa*, geometrijske *Dag* i harmonijske *Dah* sredine promjera zrna u pojedinim prosjevima

Učinak izbora veličine zrna na izračun hidrauličke vodljivosti pomoću originalne Slichterove jednadžbe (4.3 i 4.4) za vodonosnike pokusnih polja u Donjem Miholjcu, Belom Manastiru i Čepinu grafički je prezentiran na slici 4.3, a numerički u tablici 4.3.

Dvije su pojave grafički jasno izražene. Prvo, da korištenje D_{10} kao funkcije veličine zrna donosi značajno i sustavno podcjenjivanje testirane veličine hidrauličke vodljivosti vodonosnika (K_{test}) i to čak i onda kada se to odnosi na vrlo jednolične pijeske s $U=D_{60}/D_{10}\approx 2$. Drugo, da je ta pogrješka približno dvostruko manja ako se primjenjuje srednja veličina zrna što je u skladu s izvornim Slichterovim navodima.

Primjena efektivnog zrna D_{10} u Slichterovoj formuli zadnjih godina naročito je raširena (Carlson, 2007; Cheng & Chen, 2007; Odong, 2008) uz citiranje radova Vukovića i Sore (1991, 1992) u koji navode Slichterovu jednadžbu u obliku:

$$K = \frac{\gamma}{\mu} 0.01 f(n)^0 d_{10}^2 \tag{4.5}$$

gdje $f(n^{\circ}) \approx n^{3,287}$. U objavljenim radovima je zapaženo značajno podcjenjivanje hidrauličke vodljivosti, no uzrok tome nije razmatran.

Poboljšanje rezultata uz primjenu efektivnog zrna D_{10} moguća je jedino promjenom funkcije poroznosti u jedn. 4.4 u oblik:

$$K = \frac{\gamma}{\mu} 0,0104 \frac{n^3}{(1-n)^3} d_{10}^2$$
(4.6)

što rezultira iznosima koji se ne razlikuju bitno od prosječne hidrauličke vodljivosti (slika 4.5, tablica 4.2) za poroznosti manje od 35%.

Slika 4.4 Učinak predložene korekcije funkcije poroznosti u Slihterovoj jednadžbi za slučaj korištenja efektivnog zrna D₁₀ na primjeru pokusnih polja Donji Miholjac, Livade i Čepin

Podcjenjivanje hidrauličke vodljivosti u originalnoj aplikaciji Slichterove jednadžbe nisu bile prevelike, pa se u kasnijim istraživanjima to moglo tumačiti minimalnim protocima (Lee, 1904). Međutim, kako su bile sustavne, prevladavale su ocjene netočnosti Slichterove jednadžbe što u svojoj knjizi javno iznosi Cyrus Fisher Tolman ističući da postignuti rezultati nisu u suglasju s rezultatima korištenja Darcyjeva zakona i koeficijentom propusnosti određenoga eksperimentalno, uz komentar:,,*Slichter's equations apply only to types of materials he studied and not of general application to nonuniform materials*" (Tolman, 1937, p. 204, 205) i naglašava da je Hazenova formula održava preko većega raspona hidroloških uvjeta.

Stvarna kontroverzija povezana s funkcijom poroznosti koju Slichter ne izražava matematički niti opisuje njenu ovisnost o bilo kojim parametrima osim što navodi da ovisi o poroznosti i predstavlja je tablicom u kojoj su recipročne vrijednosti funkcije tipografskom pogrješkom upisane 10 puta umanjene. Korektne iznose (tablica 4.2) objavio je Willis T. Lee (1904) citirajući taj dio Slichterova članka.

Slika 4.5 Slijed iznosa Slichterove funkcije poroznosti (f(n)=1/F_n) i alternativnih funkcija

п	f(n)												
0,26	0,01187	0.29	0,01694	0,32	0,02356	0,35	0,03163	0,38	0,04154	0,41	0,05339	0,44	0,06776
0,27	0,01350	0,30	0,01905	0,33	0,02601	0,36	0,03473	0,39	0,04524	0,42	0,05789	0,45	0,07295
0,28	0,01517	0,31	0,02122	0,34	0,02878	0,37	0,03808	0,40	0,04922	0,43	0,06267	0,46	0,07838
												0,47	0,08455

Tablica 4.2 Poroznost i Slihterova funkcija poroznosti (prema Lee, 1904)

Naglašavajući važnost uključivanja funkcije poroznosti pri određivanju "koeficijenta transmisije" podzemne vode kroz porozni medij Slichter ne razmatra fizikalne pojave preko kojih se manifestira učinak poroznosti, kako su to kasnije, analizom Hagen-Poiseullova gibanja, iznijeli Blake (1922), Kozeny (1927) i Fair and Hatc (1933). U takvim okolnostima se funkcija poroznosti može identificirati samo metodom pokušaja. Takvim pristupom Vuković i Soro (1991, 1992) pronalaze da funkcija $f(n) \approx n^{3,287}$ dobro slijedi vrijednosti Slihterove funkcije, pa se u recentnoj literaturi (Carlson, 2007; Cheng and Chen, 2007; Odong 2008) koristi takva funkcija. U ovom slučaju iskušane su i funkcije poroznosti u oblicima kakvi se koriste u konverziji geometrijskih obilježja porozne sredine, pa je otkriveno da funkcija

$$f(n)^{0} \approx \frac{n^{3}}{2(1-n)} \approx n^{3,287}$$
 (4.7)

dobro slijedi sve vrijednosti Slichterove funkcije (slika 4.3) i da pri n < 0,30 odstupanje iznosi <1%, a pri n=0,40 oko 8%. Međutim, značajnija je okolnost da njoj paralelna funkcija

$$f(n) = \frac{n^3}{(1-n)}$$
(4.8)

izvrsno zamjenjuje Slichterovu funkciju poroznosti jer se njenom primjenom ostvaruju rezultati hidrauličke vodljivosti koja u prosjeku odstupaju od testiranih rezultata manje od 10%. Prema tome korigirana Slihterova jednadžba u dimenzijski homogenom obliku:

$$K = 0,0104 \frac{\rho g}{\mu} \frac{n^3}{(1-n)} d_e^2$$
(4.9)

prikladna je za vrlo precizan izračun hidrauličke vodljivosti na temelju granulometrijskog sastava uzoraka. Nakon uključivanja svojstava tekućine $\gamma/\mu=7,50*10-6$ (pri temperaturi od $10^{\circ}C$) u konstantu C dobije se oblik:

$$K = 0.078 \frac{n^3}{(1-n)} d_m^2(m/s) = 7.8 \frac{n^3}{(1-n)} d_m^2(cm/s) = 6740 \frac{n^3}{(1-n)} d_m^2(m/dan)$$
(4.10)

izražavajući pri tome srednji promjer zrna d_e u mm.

Slika 4.6 Grafička predodžba učinka provedenih korekcija Slichterove funkcije poroznosti

U zaključku analize o primjeni Slichterove metode valja istaknuti da ona donosi dvije važne novosti u promatranju učinka granulometrijskog sastava na hidrauličku vodljivost. Jedna je osrednjenje veličine sadržanih zrna u uzorku čime se implicite otklanja strogi uvjet jednoličnosti zrna i širi valjanost metode za izračun hidrauličke vodljivosti na temelju granulometrijskog sastava. Drugi je uvođenje funkcije poroznosti, koja nažalost nije bila teorijski razrađena ali je vjerojatno potakla razmišljanja o kasnijoj teorijskoj razradbi funkcije poroznosti koja se iskristalizirala u Kozeny-Carmanovoj jednadžbi.

Tablica 4.3 Razlike između hidraulički identificirane srednje hidrauličke vodljivosti vodonosnika i njene veličine za pojedine uzorke pijeska izračunane po pojedinim obrascima Slichter. D_{aa} predstavlja aritmetički zbroj udjela aritmetičkih sredina veličine zrna pojedinih prosijeva. Isto vrijedi za D_{ag} i D_{ah}; Opaska: žutom bojom označena je metoda s najmanjom pogrješkom

polje	Funkcija poroznosti	$n^{3}/(1-n)^{3}$ $n^{3}/2(1-n) \approx n^{3.287}$					n ³ /(1-n)			() iz čke tcije
Pokusno J	Efektivno zrno	D ₁₀				Srednja ve	ličina zrna			(m/dar nidrauli
	Dubina			\mathbf{D}_{aa}	\mathbf{D}_{ag}	\mathbf{D}_{ah}	\mathbf{D}_{aa}	\mathbf{D}_{ag}	\mathbf{D}_{ah}	K h id
Livade-B.Manastir	20,1	-12	-81	-46	-52	-59	10	-2	-15	
	21,3	1	-78	-47	-50	-52	8	4	-1	22
	23,8	21	-73	-42	-44	-46	19	15	11	
	30,1	36	-70	-41	-42	-43	21	19	17	
	32,7	14	-75	-36	-38	-41	32	27	22	
	Prosjek	12	-75	-42	-45	-48	18	12	7	
Čepin kraj Osijeka	72,2	-46	-88	-69	-71	-72	-37	-40	-42	12
	74,7	-8	-80	-57	-59	-60	-12	-16	-19	
	76,2	-21	-83	-38	-42	-45	28	20	13	
	77,2	-67	-93	-71	-73	-74	-41	-45	-48	
	79,2	-57	-91	-44	-47	-49	15	10	5	
	81,7	-67	-93	-66	-67	-68	-30	-33	-35	
	84,2	-72	-94	-78	-79	-80	-55	-58	-60	
	87,7	-38	-86	-58	-59	-61	-13	-17	-21	
	86,2	-63	-92	-61	-62	-64	-20	-23	-25	
	90,2	-82	-96	-89	-90	-90	-78	-79	-80	
	92,7	-67	-93	-81	-81	-82	-61	-62	-63	
	95,7	-31	-85	-57	-59	-62	-11	-17	-22	
	96,7	-29	-85	-63	-65	-66	-24	-27	-31	
	100,2	-38	-86	-64	-65	-67	-25	-29	-32	
	103,2	-38	-86	-56	-58	-60	-10	-14	-18	
	106,2	48	-69	-6	-20	-33	95	66	37	
	110,2	-13	-82	-33	-41	-48	38	22	8	
	112,2	-86	-97	-77	-79	-80	-54	-57	-60	
	115,2	64	-68	40	18	-3	194	146	102	
	122,2	-57	-90	-69	-71	-72	-38	-40	-43	
	Prosjek	-38	-87	-55	-58	-62	-7	-14	-22	
Donji Miholjac	58	-15	-83	-47	-50	-53	10	4	-3	
	64	-1	-79	-56	-59	-61	-10	-14	-19	
	65,5	29	-74	-47	-50	-53	9	4	-2	24
	67,5	29	-74	-44	-47	-49	17	11	5	
	70,5	45	-70	-29	-33	-36	48	40	32	
	73	29	-74	-41	-44	-47	22	16	10	
	78	-1	-80	-48	-50	-53	9	4	-2	
	82,2	-1	-80	-48	-51	-54	7	1	-4	
	88,8	-15	-83	-50	-53	-55	4	-1	-6	
	Prosjek	11	-77	-46	-49	-51	13	7	1	
---------	---------	----	-----	-----	-----	-----	----	---	----	--
Prosjek		-5	-80	-48	-51	-54	8	2	-5	

Ovom prigodom provedena je analiza uključivanja raznih oblika funkcije poroznosti (slika 3.7, 4.5) koje se koriste pri preobrazbi geometrijskih svojstava poroznoga medija i predloženo rješenje (jedn. 4.9 i 4.10) kojim se otklanja sustavno podcjenjivanje hidrauličke vodljivosti izračunane prema originalnoj Slichterovoj jednadžbi.

Slika 4.7 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema korigiranoj Slichterovoj jednadžbi (4.10) uz prikaz sortiranosti zrna u uzorcima s analiziranih pokusnih polja

Valjanost pojedinih jednadžbi kontrolirana je prosječnom hidrauličkom vodljivosti vodonosnika identificiranom na svim pokusnim poljima na temelju podataka pokusnog crpljenja pomoću više metoda. Nasuprot tako hidraulički određene osrednjene vrijednosti, iznosi hidrauličke vodljivosti izračunane prema jedn. 4.5, 4.6 i 4.10 odnose se na dubinu s koje je analizirani uzorak (slike 4.3, 4.4, 4.6 i 4.7). Ekvivalentna vrijednost hidrauličke vodljivosti vodonosnika nije analizirana jer se ne raspolaže s pouzdanim podacima za koji interval vodonosnika su reprezentativni pojedini uzorci. Unatoč tome razlike su vrlo jednoznačne jer su hidrauličke vrijednosti određene ranije korištenim obrascima (jedn. 4.5)

značajno manje od testirane vrijednosti, dok iznos hidrauličke vodljivosti izračunane jedn. 4.6 i 4.10 koleba oko srednje vrijednosti. Može se dakle zaključiti da se novim obrascem predstavljenim jedn 4.10 mogu dobiti vrijednosti relevantne za istraživanje distribucije propusnosti vodonosnih slojeva u planu, a i po vertikali. U takvim uvjetima ovakvi rezultati postaju relevantni čak i u procesima projektiranja, naravno uz uvjet kvalitetnog bušenja i jezgrovanja. Pritom je posebice važno detaljno kartiranje jezgre, primjereno uzorkovanje i kvalitetne granulometrijske analize.

Na slici 4.7 prikazani su odvojeno rezultati izračunane hidrauličke vodljivosti za 4 crpilišta. Livade kraj B. Manastira, Donji Miholjac, Čepin i Ravnik kraj Popovače. Za prva tri su i odstupanja od srednje hidraulički određene vrijednosti prikazane u postotcima u tablici 4.3. koji potvrđuju prikladnost korištenja ovakvoga oblika Slichterove formule (jedn. 4.10) u koju je uključena primjerena funkcija poroznosti (jedn. 4.8). Dobri rezultati ostvaruju se uz sve tri vrste srednje vrijednosti promjera zrna u prosijevu, a najstabilnije rezultate donosila je harmonijska sredina (tablica 4.3).

Poseban slučaj zapažen je u slučaju crpilišta Ravnik kraj Popovače (slika 4.7) na kojem prikupljani uzorci sitnozrnih pijesaka sa submilimetarskim proslojcima praha imali granulometrijski sastav kakav nije reprezentativan za transmisijski dio vodonosne sredine. O tome je dodatna rasprava u poglavlju 4.2.

4.1.3 Terzaghijev model hidrauličke vodljivosti

Karl Terzaghi (1925) je razvio slijedeću formulu za hidrauličku vodljivost pijeska:

$$K = C_T \frac{\mu_0}{\mu_t} \left[\frac{n - 0.13}{\sqrt[3]{1 - n}} \right]^2 d_w^2$$
(4.11)

gdje C_T =800-600 u cm⁻¹s⁻¹, d_w je efektivna veličina zrna u cm, *n* poroznost, μ_0 koeficijent viskoznosti pri 10°C, μ_t viskoznost pri temperaturi t°C. Osnovna pretpostavka u toj jednadžbi je da u šupljim kanalima najširi dio kanala je najmanje pet puta veći od promjera najužega dijela. Gubitak razine u najužim mogao bi biti 25 puta veći nego u najširim dijelovima kanala.

U kasnijoj literaturi se za efektivno zrno uzima D_{10} . Vuković i Soro (1991) iznose da se u literaturi navode slijedeće vrijednosti Terzaghijeva koeficijenta C_T :

- kopneni eolski pijesak 800,
- morski pijesak 750-663,
- čisti riječni pijesak 696-460,
- riječni muljeviti pijesak 203,

a za vodonosnike preporučaju raspon 400-500.

Osnovno obilježje Terzaghijeve jednadžbe je snažno isticanje funkcije poroznosti pri izračunu hidrauličke vodljivosti što je jamačno povezano s analizama primjenom Hagen-Poiseuillova zakona. Numerički hod njegove funkcije poroznosti za raspon poroznosti od 15 do 45 prikazan je slikom 3.8. U našoj hidrogeološkoj praksi ova metoda nije raširena.

Ponovna pojava primjene Terzaghijeve metode može se povezati s porastom interesa za proučavanje prostorne distribucije propusnosti vodonosnih slojeva u svjetskoj literaturi zadnjih dvadesetak godina. U objavljenim radovima se gotovo redovito citira rad Milana Vukovića i Anđelka Sore objavljenog u USA 1992. godine što je vjerojatno u velikoj mjeri povezano s nedostatkom primjerenih rasprava i knjiga o odnosu granulometrijskog sastava i hidrauličke vodljivosti. Porast interesa za prostornu distribuciju propusnosti posebno je povezan u razmatranjima prijenosa onečišćivala kroz porozni medij. Tako Ayers et al. (1998) u sklopu istraživanja ponašanja nitrata u podzemnoj vodi hidrauličku vodljivost istražuju na temelju granulometrijskog sastava uključujući Terzaghijevu metodu citirajući Vuković & Soro (1992) kao izvor formulacija, Slijedom toga Cheng & Chen (2007), te Odong, (2008) koristeći Terzaghijevu metodu prosljeđuju komentar da je ona najprimjerenija za krupni pijesak.

Ovi, kao i drugi citati Terzaghijeve formule, primjerice Carlson, 2007, uzimaju D_{10} kao efektivno zrno i citiraju oblik:.

$$K = C_T \frac{\mu_0}{\mu_t} \left[\frac{n - 0.13}{\sqrt[3]{1 - n}} \right]^2 d_{10}^2$$
(4.12)

Takvo rješenje Terzaghijeve jednadžbe u ovoj studiji dovodilo je do jasno izraženog podcjenjivanja hidrauličke vodljivosti kako u odnosu na srednju hidrauličku vodljivost

vodonosnika identificiranom na temelju podataka pokusnoga crpljenja (sl. 4.8), tako i na vrijednosti određene Hazenovim obrascem (sl. 4.9).

Slika 4.8 Grafička ilustracija razlike srednje hidrauličke vodljivosti vodonosnika i rezultata izračuna prema publiciranim obrascima Terzaghijeve metode (jedn 4.12) za granice raspona koeficijenta C=400 cm⁻¹s⁻¹(hrapavo zrno) i 800 cm⁻¹s⁻¹(glatko zrno)

Slika 4.9 Grafička usporedba rezultata izračuna K iz granulometrijskih krivulja uzoraka pijeska iz triju bušotina u D Miholjcu, B, Manastiru i Čepinu prema formuli Hazena i varijantnim jednadžbama Terzaghijeve metode (jedn. 4.10 i 4.12)

Promatrajući podcijenjenost hidrauličke vodljivosti pojedinih uzoraka pijeska unutar vodonosnika u tablici 4.4 vidimo da se ona kreće od -33% do -95% u odnosu na

eksperimentalno određenu hidrauličku vodljivost, a srednja vrijednost je za pojedina pokusna polja podcijenjena od -50% do -84%. To neprijeporno ukazuje na sustavnu pogrješku ovakvoga izražavanja Terzagijeve metode.

Istraživanje poboljšanja temeljeno je na originalnoj formulaciji Terzaghijeve jednadžbe (Terzaghi, 1925) koju vjerno prenosi Tolman (1937) do te mjere da naglašava kako je K u formuli 4.9 ima različite jedinice od Meinzerovog koeficijenta propusnosti P. Tadašnje različito izražavanje hidrauličke vodljivosti može se povezati s Terzaghijevim neposrednim iskustvom iz "Forchheimerove, bečke škole s metričkim sustavom" u kojoj su istraživanja bila na tragu uvođenja specifične površine u formulacije toka kroz porozni medij. Na tom tragu je autorovo naglašavanje pretpostavke da su najširi dijelovi šupljih kanala najmanje pet puta veći od najužih dijelova, kako to prenosi Tolman. I konačno, oblik funkcije poroznosti u Terzaghijevoj jednadžbi upozorava da se radi o obrascu analiziranom u skladu s Hagen-Poiseuillovim zakonom i rezultatima eksperimenata. Takav pristup vodi nekom osrednjenom reprezentativnom zrnu, d_w kako je označen u jedn. 4.11, što se s puno razloga može funkcionalno povezati s nekim srednjim efektivnim promjerom poroznoga medija. Ovdje su u tom smislu analizirani primjeri sa "srednjim zrnom" koji je računan na tri načina, preko aritmetičke sredine $D_{i,a}$ (jedn. 3.37), geometrijske sredine $D_{i,g}$ (jedn. 3.38) i harmonijske sredine $D_{i,h}$ (jedn. 3.39) pojedinih prosijeva, i njihovom aritmetičkom sredinom u uzorku (tablica 3.10 i 3.11):

$$D_{ha} = 100 \sum_{1}^{n} \frac{D_{i,h}}{P_{i}}$$
(4.13)

pa hidraulička vodljivost izražena u *m/s* prema Terzaghijevoj jedn. 4.11 poprima oblik:

$$K = C_T \frac{\mu_0}{\mu_t} \left[\frac{n - 0.13}{\sqrt[3]{1 - n}} \right]^2 D_{ha}^2 = 0,08 \left[\frac{n - 0.13}{\sqrt[3]{1 - n}} \right] D_{ha}^2$$
(4.14)

uzimajući pri tome $C_T = 8 m^{-1} s^{-1}$ i za temperaturu podzemne vode od 10°C, pa je $\mu_0/\mu_T=1$, te uvrštavajući za D_{ah} srednju vrijednost promjera zrna u *mm* prema jedn. 4.13.

lje	n)	Uz efektivn vrijednosti ko rec	o zrno peficije entnoj 1	D_{10} te ekstren nta C_T navede literaturi	nne ene u	Uz srednju Dh vriječ	aritmet Inost ve	ičku <i>Da</i> , geon eličine zrna uz	netrijsk orka za	u Dg i harmon a $C_T = 800 \ cm^{-1}$	nijsku ¹ s ⁻¹	rauličke je
od ousn	oina, d (r	$C_T=400\ cm^2$	- ¹ s ⁻¹	С _Т =800 сп	n ⁻¹ s ⁻¹	Daa		Dag		Dah) iz hidı ntifikaci
Pok	Duł	Iznos razlike %	Prosjek %	Iznos razlike %	Prosjek %	Iznos razlike %	Prosjek %	Iznos razlike %	Prosjek %	Iznos razlike %	Prosjek %	K (m/dan ide
	20,1	-77		-60		10		-2		-15		
Beli tir	21,3	-74		-55		8		4		-1		
de,] anas	23,8	-69	-71	-45	-50	19	18	15	13	11	7	22
Liva Mi	30,1	-65		-39		22		19		17		
	32,7	-71		-49		32		27		22		
	72,2	-86		-75		-37		-40		-43		<u> </u>
	74,7	-76		-58		-12		-15		-19		
	76,2	-80		-65		28		21		13		
	77,2	-91		-85		-41		-45		-48		
	79,2	-89		-81		16		10		5		
	81,7	-91		-85		-30	-7	-33		-36		
	84,2	-93		-87		-55		-58		-60		
	87,7	-84		-72		-13		-17		-21		
	86,2	-90		-83		-20		-22		-25		
pin	90,2	-95	-84	-91		-79		-79	-14	-80	-22	12
Če	92,7	-91	Ŭ.	-85	,,,	-61	,	-62		-63		12
	95,7	-82		-69		-11		-16		-21		
	96,7	-82		-69		-23		-27		-30		
	100,2	-84		-72		-25		-29		-32		
	103,2	-84		-72		-9		-14		-18		
	106,2	-63		-35		96		67		38		
	110,2	-78		-62	_	38	-	23		8	-	
	112,2	-96		-93		-54		-57		-60		
	115,2	-62	-	-33		195	-	148	-	103	-	
	122,2	-89		-80		-38		-41		-43		
	58	-79		-64		11		4		-2		
	64	-75		-57	_	-9	-	-14		-19	-	
jac	65,5	-69		-45		10		4		-1		
ihol	67,5	-69		-45		17		12		6		
i Mi	70,5	-65	-73	-38	-53	49	14	41	8	33	2	24
Jonj	73	-69		-45		23		16		10		
	78	-76		-58	-	10		4		-1		
	82,2	-76		-58		8		2		-3		
	88,8	-79		-64		4		-1		-6		<u> </u>
PROSJ		JEK	-77		-59		6		0		-6	

Tablica 4.4 Razlike između hidraulički identificirane srednje hidrauličke vodljivosti vodonosnika i njene veličine za pojedine uzorke pijeska izračunane po pojedinim obrascima Terzaghia

Slika 4.10 Grafička usporedba rezultata izračuna K iz granulometrijskih krivulja uzoraka pijeska iz triju bušotina u D Miholjcu, B, Manastiru i Čepinu za pojedine oblike izračuna srednjeg zrna uzoraka

Prikladnost pojedinih načina izračuna srednje vrijednosti također je kontrolirana prosječnom hidrauličkom vodljivosti vodonosnika identificiranom na temelju podataka pokusnog crpljenja (slika 4.10, tablica 4.4). Najbolji su rezultati izračuna pomoću geometrijske i harmonijske sredine. Odstupanje srednjih vrijednosti izračunanih ovakvim postupkom u odnosu na hidraulički identificiranu hidrauličku vodljivost nalazi se u rasponu od -22% do +18%, a srednja vrijednost za sva tri pokusna polja je u rasponu od -6% do +6% (tablica 4.4) čime se približilo granici točnosti identifikacije prema podacima pokusnoga crpljenje, a zadržana je prednost izražena uvidom na raspored propusnosti unutar vodonosnika.

Slika 4.11 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema novoj Terzaghijevoj jednadžbi (4.14) uz ilustraciju sortiranosti zrna u uzorku

Grafički prikaz pojedinih pokusnih polja prikazan je na slici 4.11. Zanimljiv je podatak da pokusna polja Beli Manastir i Donji Miholjac imaju vrlo dobru podudarnost hidrauličke vodljivosti po cijelom profilu vodonosnika izgrađenog od pretežito srednjozrnoga pijeska. Za njih se može reći da Terzaghijeva metoda primjenom prosječnoga promjera zrna daje projektantski prihvatljivu točnost izračuna propusnosti po cijelom profilu vodonosnika. Kod pokusnog polja Čepin izračunata je dobra vrijednost srednje hidrauličke vodljivosti (tablica 4.4), međutim, snažno je izraženo rasipanje podataka oko srednje vrijednosti (slika 4.11). Konačno za pokusno polje Ravnik karakteristična je snažna divergencija sortiranosti zrna i veličine hidrauličke vodljivosti (slika 4.11) što je najlakše objasniti pojavama tankih proslojaka praha u uzorcima sitnozrnog pijeska ovoga vodonosnika. Pojave karakteristične za pokusno polje Čepin i Ravnik detaljnije će se raspraviti kasnije.

Uz sve probleme postignute su vrlo vjerne predodžbe rasporeda propusnosti, tako da se i u ovom slučaju može zaključiti da se korektnim obrascem Terzaghijeve formule predstavljene jedn 4.14 dobivaju vrijednosti relevantne za istraživanje distribucije propusnosti vodonosnih slojeva u planu, a i po vertikali. U takvim uvjetima se ovakvi rezultati postaju relevantni čak i u procesima projektiranja, naravno uz uvjet kvalitetnog bušenja i jezgrovanja. Pritom je posebice važno pozorno kartiranje jezgre, primjereno uzorkovanje, i kvalitetne granulometrijske analize.

4.1.4 Ostale metode efektivnog polumjera

Teško je prebrojiv broj obrazaca određivanja propusnosti i hidrauličke vodljivosti na temelju granulometrijskog sastava. Od onih koji su izravno povezani s granulometrijskim sastavom ovdje su prikazane dvije. To su metoda USBR koja se uz Hazenovu metodu kod nas najviše koristi, te Beyerova metoda koja uključuje učinak koeficijenta sortiranosti U_H , proširujući time primjenu Hazenove metode.

4.1.4.1 Metoda USBR-a

Za formulu razvijenu u U.S. Bureau of Reclamation (USBR) u literaturi se ne navode autori. Vuković i Soro (1991) navode da su to Justin, Hinds i Krüger, no ne navode detalje o literaturnom izvoru. Korektan oblik literaturnoga izvora (Justin et al. 1944) navodi Brkić (1999).

Valja naglasiti da je ova jednadžba izrazito eksperimentalnog tipa što je vjerojatno razlog da je dimenzijski neusklađena. Predstavljena je odnosom:

$$K = C D_{20}^{2,3} = 0,0036 D_{20}^{2,3} (m/s)$$
(4.15)

gdje je zrno D_{20} u *mm*, tj. veličina zrna od kojega ima 20% težine uzorka s manjim zrnom, što je posebnost ove metode. Preporuča se primjena za srednjozrne jednolične pijeske $U_H < 5$.

Slika 4.12 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema USBR metodi (jedn. 4.15) uz ilustraciju sortiranosti zrna u uzorcima

Vuković i Soro (1991) pokušavaju dimenzijski homogenizirati jednadžbu razdvajajući funkciju veličine zrna $D^{2,3}=D^2*D^{0,3}$, i uključujući ovaj zadnji dio u koeficijent pa se dobije:

$$K = \frac{\rho g}{\mu} 4,87 * 10^{-4} D_{20}^{0,3} D_{20}^2$$
(4.16)

dakle isto, pa fizikalna nehomogenost ostaje nepromijenjena:

$$\left[LT^{-1}\right] \neq \left[L^{-1}T^{-1}\right] * \left[L^{0,3}\right] * \left[L^{2}\right]$$
(4.17)

Ovakve okolnosti mogu se tumačiti eksperimentalno-statističkim postupkom, pri kojemu korelacijski koeficijenti mogu donijeti relacije koje nisu fizikalno korektne, no koje mogu dobro odgovarati za analizirani skup, ali za neki drugačiji skup ta relacija ne mora biti korektna. U ovim slučajevima pokazala se sustavna podcijenjenost hidrauličke vodljivosti uzoraka određene USBR metodom jer je redovito manja, u slučajevima crpilišta Livade i Donji Miholjac oko 2 do 5 puta, od veličine identificirane testiranjem vodonosnika (slika 4.12).

4.1.4.2 Beyerova metoda

Njemački istraživač W. Beyer (1964, 1966) predložio je empirijsku formulu izračuna hidrauličke vodljivosti u kojoj je uključen utjecaj sortiranosti tvorevina preko Hazenova koeficijenta ujednačenosti $U_H=D_{60}/D_{10}$ u obliku:

$$K = 0,0045 \ d_{10}^{2} \log \frac{500}{U_{H}} \ (\text{m/s})$$
(4.18)

gdje je d_{10} Hazenovo efektivno zrno u mm, a C = 0,0045 m⁻¹s⁻¹ koeficijent. Beyerovu formulu može se promatrati i kao korekciju Hazenove formule kojom se proširuje njena valjanost uvođenjem funkcije sortiranosti. Preporuča se ograničenje primjene za promjer zrna 0,06mm> $d_{10}<0,6$ mm i $U_H<20$. Kada je $U_H=3$ tada je Beyerova formula (4.18) identična Hazenovoj formuli (4.2) pri temperaturi od 10°C, a ukupni raspon za $1<U_H<20$ je nešto uži od raspona vrijednosti Hazenova koeficijenta C_H u tablici 4.1 (prema Bowlesu 1984).

U slučaju vodonosnika u kojima je temperatura oko 15°C, kao što je to slučaj ovdje promatranih pokusnih polja, koeficijent C=0,0052.

Zadnjih desetak godina učestalo se koristi Beyerova metoda, a Koch et al. (2011) posebno naglašavaju njenu pouzdanost u procjeni hidrauličke vodljivosti. Ovdje su se također pokazale dobre procjene Beyerovom metodom za niske vrijednosti koeficijenta sortiranosti. Međutim pri višim koeficijentima sortiranosti, pa čak i onima koji ne prelaze gornju granicu ove metode, nastaje veliko podcjenjivanje o čemu će se detaljnije raspraviti u nastavku.

Slika 4.13 Usporedni prikaz srednje hidrauličke vodljivosti vodonosnika s vrijednostima izračuna prema novoj Beyerovoj metodi (jedn. 4.18) uz prikaz ujednačenosti zrna u uzorcima

4.2 Verifikacija obrazaca za uzorke iz dubokih vodonosnika

Sažetak rezultata postupka verifikacije pojedinih obrazaca za izračun hidrauličke vodljivosti ilustriran je slikama 4.14, 4.15, 4.16 i 4.17, a pogrješke, odnosno odstupanje izračunanih iznosa od srednje vrijednosti hidrauličke vodljivosti vodonosnika identificiranog hidrauličkim testom, prikazane su za sve uzorke u tablicama 4.5 i 4.6. Grupirani su prema sortiranosti i pretežitoj veličini zrna, te kakvoći analiziranih uzoraka.

Slika 4.14 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine DM-1 na pokusnom polju u Donjem Miholjcu

Slika 4.15 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira

Slika 4.16 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira

Slika 4.17 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine P-1 na pokusnom polju Ravnik kraj Popovače

Tablica 4.5 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito srednjozrnog pijeska iz bušotine DM-1 i P-1 na pokusnim poljima u Donjem Miholjcu i Livade kraj B. Manastira

o polje	la (m)	t, U=D ₆₀ /D ₁₀	CEN.	HTER	TEI	RZAGHI %	,	(ER	BR	: hidrauličke ikacije
Pokusn	Dubir	Ujednačenos	HA5 %	SLICI %	Daa	Dag	Dah	BEY %	US %	K (m/dan) iz identif
	58	2,308	-29,4	-19,4	11,1	4,3	-2,2	-26,1	-74,9	
	64	1,800	-6,0	10,4	-9,3	-14,0	-18,5	2,9	-74,9	
	65,5	1,875	6,9	25,1	10,0	4,4	-1,0	16,3	-74,9	
oljac	67,5	1,875	6,9	25,1	17,4	11,6	6,1	16,3	-74,9	
lihc	70,5	2,118	20,7	39,2	48,7	40,6	32,9	28,4	-64,2	24
ii N	73	1,875	6,9	25,1	22,7	16,5	10,5	16,3	-71,6	24
Jon	78	2,000	-18,2	-4,9	9,7	4,1	-1,2	-12,0	-74,9	
	82,2	2,071	-18,2	-5,3	7,9	2,1	-3,5	-12,6	-74,9	
	88,8	2,154	-29,4	-18,8	4,4	-0,7	-5,6	-25,2	-78,0	
	PR	ROSJEK	-6,7	8,5	13,6	7,6	1,9	0,5	-73,7	
	20	2	-4,2	-5,5	1,7	-3,5	-8,7	3,0	-72,6	
stir	21	1,806	9,4	8,0	4,0	0,0	-4,1	19,8	-69,0	
ade Iana	24	1,529	24,0	22,4	4,7	1,6	-1,6	39,1	-56,6	22
Liv: M	30	1,49	50,9	48,9	23,0	20,4	17,8	70,4	-51,9	
Beli	33	2,00	24,0	22,4	33,2	27,8	22,4	33,3	-65,1	
	PR	OSJEK	20,8	19,3	13,3	9,3	5,2	33,1	-63,0	

Na slikama je u prvom planu izražena izvrsna bliskost veličine hidraulički identificirane srednje hidrauličke vodljivosti s rezultatima svih primijenjenih metoda osim metode USBR za sve slojeve izgrađene od jednoličnih pijesaka što je posebno izraženo na slikama 4.14 i 4.15 za pokusna polja Donji Miholjac i Livade – Beli Manastir gdje je vodonosnik izgrađen pretežito od srednjozrnih od sitnozrnih pijesaka, a koeficijent ujednačenosti oko ili ispod 2. Posebice su značajni izvrsni rezultati ostvareni s korigiranim metodama Slichtera i Terzaghija, čime se dokumentirano opovrgavaju navodi nekih autora (Cheng & Chen, 2007; Odong, 2008) da primjena ovih metoda rezultira sa znatno podcijenjenim vrijednostima hidrauličke vodljivosti. Naime, podcijenjene vrijednosti bile su posljedica pogrješne formulacije funkcije poroznosti i korištenja pogrešnog efektivnog zrna u Slichterovoj jednadžbi, a kod Terzaghijeve metode uzrok je neispravan izbor referentne veličine promjera zrna.

Zanimljiva je redovita i značajna podcijenjenost iznosa hidrauličke vodljivosti ostvarenih primjenom USBR metode koja se kod nas vrlo često koristi. Na ova dva pokusna polja s vrlo reprezentativnim primjerima, pošto se radi o vrlo jednoličnim srednjozrnim pijescima koji zadovoljavaju sve zahtjeve svih ovdje primijenjenih metoda, primjena metode USBR donosi sve vrijednosti hidrauličke vodljivosti koje su pojedinačno za 52% do 78% niže od verificiranoga iznosa (tablica 4.5). Srednja vrijednost svih uzoraka iz ova dva vodonosnika je preko 60% niža od realne. Potvrđuje se dakle da je primjena ove metode u prezentiranju propusnosti vodonosnika vrlo prijeporna kako to pri istraživanjima u istočnoj Posavini bilježi Urumović (1977), a potvrđuju i brojna recentna istraživanja (Cheng & Chen, 2007; Odong, 2008).

Pokusno polje	Dubina, d (m)	Ujednačenost U=D ₆₀ /D ₁₀	HAZEN	SLICHTER	Daa	TERZAGH	[Dah	BEYER	USBR	K (m/dan) iz hidrauličke identifikacije
	72.2	2.0	33	35	38	30		28	84	
	74.7	2,0	-55	-55	-38	-39	-40	-28	-04	
	74,7	1,7	25	-1	-11	-14	-17	25	-70	
	70,2	2,8	-23	-23	27	19	12	-23	-/0	
	11,2	2,7	-59	-60	-33	-35	-3/	-59	-8/	
	79,2	3,9	-55	-54	18	13	8	-57	-84	
	81,7	3,1	-59	-61	-34	-36	-39	-60	-88	
	84,2	2,4	-63	-64	-60	-62	-65	-61	-90	
	86,2	2,2	-33	-34	-14	-18	-22	-29	-77	
¥	87,7	3,4	-59	-60	-23	-25	-28	-61	-87	13
sije	90,2	2,0	-70	-72	-79	-79	-80	-68	-95	
0	92,7	1,9	-53	-53	-50	-52	-53	-49	-90	
pin	95,7	1,9	-33	-34	-30	-33	-37	-27	-84	
Če	96,7	2,0	-22	-21	3	-3	-8	-16	-80	
	100,2	2,0	-33	-34	-25	-28	-32	-28	-82	
	103,2	2,4	-33	-34	-13	-17	-22	-30	-81	
	106,2	2,3	40	42	103	74	45	47	-56	
	110,2	2,7	-17	-17	27	9	-8	-16	-72	
	112,2	5,8	-79	-80	-61	-64	-66	-82	-92	
	115,2	3,0	29	32	155	114	76	29	-44	
ŀ	122,2	2,1	-47	-48	-31	-34	-37	-44	-85	
	PRO	OSJEK	-35	-36	-8	-16	-23	-33	-81	

Tablica 4.6 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnih pretežito sitnozrnih pijesaka iz bušotine OČP-1 i P-1na pokusnim poljima u Čepinu i Ravnik kraj Popovače

	32,75	5,200	-75	-75	-93	-93	-94	-78	-72	
ч	33,85	2,598	-33	-33	-81	-83	-85	-31	-72	
vači	37,45	21,250	-99	-99	-99	-99	-99	-100	-99	
ode	39,55	3,860	-75	-76	-95	-95	-96	-76	-88	10
- P(40,65	2,859	-28	-28	-81	-83	-85	-27	-54	10
nik	43,85	35,000	-100	-100	-99	-99	-99	-100	-99	
avı	49,05	8,750	-84	-84	-92	-93	-94	-87	-54	
Ч	52,05	28,667	-99	-99	-99	-99	-99	-100	-99	
	PRO	OSJEK	-74,1	-74,2	-92,5	-93,3	-94,1	-74,9	-79,6	

Druga dva pokusna polja, crpilišta Čepin i Ravnik, karakteriziraju vodonosnici izgrađeni pretežito od sitnozrnastih pijesaka s učestalim proslojcima praha. U takvim je uvjetima dosta teško prikupiti reprezentativne uzorke što može dovesti do prijeporne primjene svih obrazaca. Za lokaciju Čepin ostvareni su ipak relativno približne vrijednosti K metodama Hazena, Slichtera i Beyera s podcijenjenim iznosom od oko -30%, dok je rezultat od *K* primjenom USBR metode više nego dvostruko lošiji (tablica 4.6). Zanimljivo je da su prosječne vrijednosti *K* ostvarene primjenom Terzagijeve metode, kod koje s koristi veličina prosječnog zrna, najbliže verificiranom iznosu. Njihovo odstupanje je samo od -8% do -23%. S obzirom da kod ovih crpilišta manju pogrješku generira primjena aritmetičkoga postupka određivanja referentnog srednjega zrna, može se zaključiti da su pogrješke u velikoj mjeri uzrokovane pojavom vrlo tankih proslojaka praha na koje upozoravaju i autori odnosnih istraživanja. Time se može pojasniti i pogrješke ostalih primijenjenih metoda kod kojih se koristi efektivno zrno D_{10} (Hazenova i Beyerova).

, and the second se	Iznosi	Iznosi srednje pogrješke izražene u postotku verificirane veličine hidrauličke vodljivosti									
Metode	Metode X H H TERZAGHI (uz srednji promjer zrna) H H K H K H K H K H K H K H K H K H K					USBR	K (m/dan) iz hidrauličke identifikacije				
			Duu	Dug	Duii						
Crpilište Donji Miholjac	-6,7%	8,5%	13,6%	7,6%	1,9%	0,5%	-73,7%	24			
Crpilište Livade B.Man.	ın. 20,8% 19,3% 13,3% 9,3% 5,2% 33,1% -63,0%							22			
Crpilište Čepin	Čepin -35,2% -35,6% -8,4% -15,6% -22,5% -32,7% -80,6%										
Crpilište Ravnik	-74,1	-74,2	-92,5	-93,3	-94,1	-74,9	-79,6	10			

Tablica 4.7 Prosječne pogrješke za pojedina pokusna polja. Napomena: žutom bojom označena su vrlo precizna rješenja (odstupanje manje od 10 %), a ružičastom bojom neprihvatljive pogrješke (odstupanja preko 60 %)

Poseban je primjer pokusno polje crpilišta Ravnik. Ovdje u zahvaćenom vodonosniku prevladavaju sitnozrnasti pijesci često interkalirani vrlo tankim proslojcima praha. Rezultat je mala referentna hidraulička vodljivost, 10 m/dan, karakteristična za sitnozrnaste pijeske, i izrazito skokovit slijed vrijednosti hidrauličke vodljivosti određene klasičnim metodama temeljenim na granulometrijskom sastavu i divergentan slijedu koeficijenta ujednačenosti (slika 4.17). Ovdje sve prikazane metode generiraju neprimjerene vrijednosti hidrauličke vodljivosti (tablice 4.6 i 4.7), pa rješenje valja tražiti primjenom Kozeny-Carmanove jednadžbe.

Na koncu valja rekapitulirati vjerodostojnost pojedinih obrazaca kako je to prikazano u tablici 4.7:

- Obrazac USBRa, u obliku kakav se pojavljuje u literaturi, nije primjeren za izračun hidrauličke vodljivosti za tvorevine za kakve se preporuča (sitno i srednjozrni jednolični pijesci). Izračun generira sustavnu pogrješku, redovito podcjenjivanje, pa se može pretpostaviti izvodivost primjerene korekcije, no za to bi bilo nužno raspolagati s izvornim izvodima i eksperimentalnim podacima.
- Sve ostale metode daju vrlo zanimljive, često i izvrsne rezultate, pa ih se preporuča za paralelnu uporabu.
- Za istaknuti je da se pri primjeni Terzaghijeve metode bolji rezultati ostvaruju primjenom harmonijske sredine veličine zrna ako rezultati precjenjuju stvarnu veličinu K što se događa kod jednoličnih krupnozrnih pijesaka, a u slučaju pojave prahovitih proslojaka preporučljiva je primjena aritmetičke sredine koja generira nešto veće zrno.

5 ODNOSI PROPUSNOSTI, SPECIFIČNE POVRŠINE I GRANULOMETRIJSKOG SASTAVA

Učinak granulometrijskog sastava na propusnost nekoherentnih taložina odvija se slijedom jednostavnog učinka poroznosti kao nositelja djelovanja pogonske sile i specifične površine kao čimbenika otpora (jedn. 3.9). Ti se odnosi za jednolične sitno i srednjozrne pijeske vrlo uspješno izražavaju jedinstvenim koeficijentima i Hazenovim efektivnim zrnom. Nasuprot tome, odnos univerzalne valjanosti mora slijediti teorijski egzaktno povezanu pojavu gibanja tekućine s mjerljivim obilježjima šupljina kroz koja se ona giba. Upravo je to ostvareno Kozeny-Carmanovom jednadžbom koja proizlazi iz modela Hagen-Poiseuilleova zakona prilagođenom za strujanje kroz porozni medij.

5.1 Model propusnosti u funkciji specifične površine i hidrauličkog promjera

Funkcionalni odnos specifične površine i propusnosti poroznog medija može se uz određene pretpostavke objasniti primjenom Hagen-Poiseuilleova zakona na pojavu strujanja tekućine kroz šupljine poroznog medija. Pritom su hidraulički polumjer i specifična površina parametarske poveznice strujanja kroz snop cjevčica i nepravilni porozni medij. Naime, klasični pojam hidrauličkoga polumjera koji proizlazi iz Hagen-Poisseuilleva zakona strujanja tekućine kroz cijevi može se promatrati kao parametar geometrije prostora gibanja koji fizikalno predočava odnos obujma tekućine u vodiču, V_t koji je proporcionalan pogonskoj sili i omočenog oplošja, A_o koje je proporcionalno vučnom otporu. Za kružne cijevi polumjera r i dužine l, tako definirani hidraulički radijus, R_H , opisan je odnosom:

$$R_{H} = \frac{V_{t}}{A_{o}} = \frac{r^{2}\pi l}{2r\pi l} = \frac{r}{2} = \frac{D}{4}$$
(5.1)

Ovakva definicija hidrauličkog polumjera kao odnosa obujma tekućine i omočene površine obrnuto je proporcionalna definiciji specifične površine saturiranog poroznog medija poroznosti *n*, u kojemu se strujanje odvija kroz mrežu međusobno povezanih kanala. U skladu s tim i jedn. (3.31) može se hidraulički radijus izraziti specifičnom površinom:

$$R_{H} = \frac{1}{a_{p}} = \frac{n}{a_{T}} = \frac{n}{(1-n)a_{k}}$$
(5.2)

gdje je a_p specifična površina definirana u odnosu na obujam šupljina, a_T u odnosu na ukupni obujam poroznoga medija, odnosno *REV* kao *referentni elementarni obujam*, a a_k u odnosu na obujam krutine unutar referentnog obujma poroznoga medija.

Primjena Hagen-Poisseuillova zakona na strujanje kroz porozni medij može se, u prvom koraku, shematizirati strujanjem kroz snop od N paralelnih cjevčica jednakoga promjera δ koje predočavaju strujanje duž paralelepipeda sa stranicom *ab* okomitom na os cjevčica i dužinom *L* paralelnom cjevčicama (sl. 5.1).

Slika 5.1 Model kapilarnih cjevčica (prema Bear, 1984)

Ukupni protok Q_s kroz takav snop cjevčica podijeljen s ulaznom jediničnom površinom *ab* predočava specifični protok *q* kroz paralelepiped, a prema Hagen-Poisseuillovu zakonu ekvivalentan je odnosu:

$$q = \frac{Q_s}{ab} = -N \frac{\pi \delta^4}{128} \frac{\rho g}{\mu} \frac{\partial \varphi}{\partial s}$$
(5.3)

U predočenom paralelepipedu obujam šupljina $N(\pi \delta^2/4)L$ raspoređen je po dužini L pa je prosječna površinska poroznost (*n*) presjeka (ab) paralelepipeda jednaka:

$$n = N \frac{\pi \delta^2}{4} \frac{L}{L} = \frac{N \pi \delta^2}{4}, \qquad (5.4)$$

a specifična izdašnost

$$q = -\frac{n\delta^2}{32}\frac{\rho g}{\mu}\frac{\partial \varphi}{\partial s} = k\frac{\rho g}{\mu}\frac{\partial \varphi}{\partial s}; \qquad \qquad k = \frac{n\delta^2}{32}$$
(5.5)

što je analogno Darcyjevu zakonu, s tim da je propusnost k u funkciji dvaju geometrijskih čimbenika koji predočavaju gustoću šupljina, n i promjer pojedine šupljine, δ . Ovakav model zanemaruje zavojitost i različitost promjera pojedinih cjevčica pa pojedini autori predlažu postupak osrednjenja promjera cjevčica i uključenja činbenika zavojitosti. No ti i takvi komentari ne osporavaju funkcionalnu ulogu poroznosti i promjera šupljina nego se odnose na numerički koeficijent 1/32. Bear (1972) upozorava da takav model predočava propusnost samo u jednome smjeru što je jedna trećina kapilarnih cjevčica pa bi propusnost mogla biti manja do tri puta:

$$k = \frac{n\delta^2}{96} \tag{5.6}$$

Ako se promjer cjevčice δ zamjeni s hidrauličkim radiusom $R_H = \delta/4$ dobije se:

$$k = \frac{nR_H^2}{6} \tag{5.7}$$

a uvrštavajući specifičnu površinu (5.2) dobije se:

$$k = \frac{nR_{H}^{2}}{6} = \frac{n}{6a_{p}^{2}} = \frac{n^{3}}{6a_{T}^{2}} = \frac{n^{3}}{6a_{k}^{2}(1-n)^{2}}$$
(5.8)

tj. oblik sličan poznatom Kozenyjevom (1927) izvodu propusnosti u kojemu je samo konstanta različita. Ako se uzme da je bezdimenzijska konstanta C=1/6, tada su jedn. 5.8 i 3.9 identične.

Slično rješenje iznosi Dagan (1989) teorijskim izvodom Darcyjeva zakona promatrajući strujanje unutar granica poroznoga tijela u pornom mjerilu. Primjenom takvoga opisa Darcyjeva zakona iznosi rješenje za propusnost ispucale stijene kao krutine odnosom:

$$k = \frac{2}{9} \frac{n^3}{a_k^2 (1-n)^2}$$
(5.9)

5.2 Kozeny-Carmanova jednadžba

Velika je i neprijeporna prednost Kozeny-Carmanove jednadžbe što teorijski korektno izražava odnose propusnosti i geometrijskih karakteristika poroznog medija kao vodiča. Ipak, KC jednadžba se prije, a i sada rijetko koristi za prognoze propusnosti što se može objasniti i nekim poteškoćama njene primjene. To se vjerojatno u prvom redu odnosi na eksplicitno izražavanje efektivne poroznosti i specifične površine, a također zamornost kao i osjetljivost postupka određivanje efektivnog promjera zrna. To danas ne bi trebala biti poteškoća, a kako postoji realna potreba identifikacije numeričkog izražavanja specifične površine kao vrlo važnoga čimbenika u procesu slabljenja onečišćivala podzemnih voda, za primjenu Kozeny-Carmanove metoda postoji realna potreba.

Osnovno obilježje Kozeny-Carmanove jednadžbe je uvođenje specifične površine u funkciji propusnosti. Elemente takvoga pristup zapaženi su u neovisnim radovima Blakea (1922) i Fair et Hatcha (1933), no autorsko prvenstvo se opravdano pripisuje Josefu Kozenyu (1927) koji je teorijski egzaktno, slijedeći Hagen-Poiseuillov zakon, rješavanjem Navier-Stokes-ovih jednadžbi toka kroz presjek snopa cjevčica jednake duljine i različitog ali nepromjenjivog presjeka došao do jednadžbe:

$$q = -I \frac{\rho g}{\mu} c_0 \frac{n^3}{a_p^2}$$
(5.10)

koja je opisana ovdje korištenim oznakama. Kozeny (1927) je za čimbenik c_0 dao vrijednosti ovisno o obliku cjevčica: 0,5 (kružnu), 0,562 (kvadratni), 0,597 (trokutasti i 0,66 (tanki prorez).

Philip C. Carman (1937, 1939, 1956) je verificirajući Kozenyjevu jednadžbu (5.10) uveo pojam hidrauličkog polumjera poroznog medija R_H , a specifičnu površinu izrazio po jedinici mase krutine koja se ne mijenja s promjenom poroznosti, pa jednadžba propusnosti ima oblik:

$$k = C \frac{n^3}{\rho_k^2 a_m^2 (1-n)^2}$$
(5.11)

Carman (1939) također razmatra strujanje vode kroz porozni medij oko krutih čestica nepravilnoga oblika uvodeći kutnu devijaciju za 45% od osnovnog pravca uključujući tako

učinak zavojitosti. Najbolje eksperimentalne rezultate postigao je s čimbenikom C=0,2, pa se u literaturi Kozeny-Carmanova jednadžba najčešće izražava u obliku

$$k = \frac{n^3}{5a_k^2(1-n)^2}$$
(5.12)

u kojemu je specifična površina izražena u odnosu na obujam krutine, a vrlo je bliska jedn. 5.8.

Ako se specifična površina izražava granulometrijskim parametrima tada se za specifičnu površinu krutine u jedn. 5.12 uvrštava jedn. 3.32 ($a_k = 6/D$), pa se propusnost izražava odnosom

$$k = \frac{D_m^2}{180} \frac{n^3}{\left(1 - n\right)^2}$$
(5.13)

gdje D_m predstavlja neko referentno srednje zrno. To je izraz koji se u literaturi najčešće navodi kao Kozeny-Carmanova jednadžba. Primjenom Daganove jednadžbe (jedn. 5.9) dobije se odnos:

$$k = \frac{D_m^2}{162} \frac{n^3}{(1-n)^2}$$
(5.14)

koji se rijetko koristi.

Pri primjeni Kozeny-Carmanove jednadžbe dva su glavna pitanja:

(1) izbor referentnog srednjeg zrna i

(2) primjerene efektivne poroznosti poroznog medija.

U literaturi se pojavljuje primjena dvaju osnovnih pristupa. Jedan je teorijski korektniji, a odnosi se na korištenja srednjeg zrna D_m (Bear, 1972; Dagan, 1989; Carier, 2003) kakav se preporuča za izračun specifične površine na temelju podataka sveukupnog granulometrijskog sastava (jedn. 3.35, 3.36 i 3.37 do 3.39). Drugi (Boreli, 1984; Vuković&Soro, 1992; Carlson 2007) se poziva na literaturne navode o eksperimentima i

preporuča korištenje efektivnog zrna D_{10} do D_{17} s granulometrijske krivulje što nije u skladu s bilo kojom analizom specifične površine, pa prema tome i hidrauličkog promjera.

Pri istraživanju hidrauličke vodljivosti, *K*, Kozeny-Carmanova jednadžba (5.13) proširuje se i glasi

$$K = \frac{\rho g}{\mu} \frac{D_m^2}{180} \frac{n^3}{(1-n)^2}$$
(5.15)

Ako se veličina zrna D_m uvrštava u mm, a hidraulička vodljivost izražava u m/s i odnosi se na vodonosnik u kojemu je temperatura vode T=10°C pri kojoj kinematička viskoznost iznosi $v = \mu / \rho = 1,307 * 10^{-6}$ dobije se odnos:

$$K = 0.042 \frac{n^3}{\left(1 - n\right)^2} D_m^2 \tau$$
(5.16)

gdje je $\tau = 0.70 + 0.03T$ bezdimenzijski Hazenov čimbenik korekcije za temperaturu prema jednadžbi 4.2. Ovakvom korekcijom jednostavno se uključi utjecaj realne temperature vode u vodonosniku s tim da je do temperature od 30°C pogrješka manja od 2% (slika 4.1).

U ovoj raspravi korišteni su podaci o vodonosnicima s dubina od oko 30 do 100 m u kojima voda ima temperaturu od oko 13-16°C, pa je kao prosječan iznos izabrano 15°C.

Polazeći od konceptualnih postavki Kozeny-Carmanove metode, njena primjena ne bi trebala ovisiti o veličini, obliku i ujednačenosti zrna krutine praktično sve dok molekularne sile sitnih, posebice glinenih čestica ne naruše dominantni utjecaj gravitacijskih sila. Za uspješnu primjenu bitno je poznavanje stvarnog granulometrijskog sastava u mjeri koja je nužna za određivanje realne veličine srednjega zrna i poroznosti. U praksi, poteškoće mogu nastati pri tehnici uzorkovanja bilo povezano s jezgrovanjem ili izborom i veličinom uzorka podvrgnutoga granulometrijskoj analizi. Poteškoća druge naravi može biti povezana s heterogenošću vodonosnika na laboratorijskom mjerilu kao što je slučaj s tankom uslojenošću što otežava prikupljanje uzoraka.

Posebno pitanje postavlja se u svezi s načinom izračuna srednjeg zrna. Primijenjene su metode određivanja srednjeg zrna u prosijevu: aritmetička (jedn. 3.37), geometrijska (3.38) i

harmonijska (3.39) koju je primjenjivao Kozeny. Karakteristično je da D_a .> D_g > D_h , međutim te razlike ne daju veliku razliku u iznosu srednjeg zrna, ako se utjecaj pojedinih prosijeva zbraja aritmetički kako se to preporuča u literaturi.

Ovdje je iskušana primjena potpune geometrijske sredine u kojoj je srednja vrijednost jednaka antilogaritmu zbroja učinka logaritama veličine srednjih promjera pojedinih prosijeva (jedn. 3.40). Ovakvim postupkom se bolje imitira prirodna distribucija veličine sadržanih zrna jer se ujednači utjecaj pojedinih prosijeva i zatomi učinak zrna ekstremnih veličina. Time je ostvaren široki spektar srednjega zrna, a uključen je i postupak koji ranije nije primjenjivan u hidrogeološkoj literaturi. Međutim, može se usporediti s postupkom određivanja geometrijske sredine Shirazi-Boersme (1984) koji uzimaju geometrijsku sredinu triju agregata (pijesak, prah i glina) koji su predstavljeni aritmetičkom sredinom raspona veličine njihovih čestica (jedn. 3.10 i 3.12), dok su ovdje su uključeni svi prosjevi, čija je srednja veličina zrna također određena geometrijskim postupkom (jedn. 3.38).

Drugo pitanje odnosi se na veličinu efektivne poroznosti koja je ovdje promatrana kao onaj dio poroznosti preko koje se odvija strujanje pa njena veličina za dani efektivni srednji promjer zrna rezultira s najvećom točnošću izračunane hidrauličke vodljivosti pomoću Kozeny-Carmanove metode. Polazni raspored poroznosti bili su literaturni podaci koji obično sadrže podatke o specifičnom davanju i ocjeditoj poroznosti (slika 3.5). Oni su pokazivali relativno dobre rezultate samo za jednolične srednjozrne pijeske, pa je proveden postupak identifikacije efektivne poroznosti za široki raspon istraživanoga granulometrijskog sastava kako je to prikazano na slici 3.7. Rezultati identifikacije efektivne poroznosti prikazane su dijagramom za cijeli raspon granulometrijskog sastava od gline do krupnoga šljunka s tim da se krivulja ne odnosi na pretežiti sastav uzorka nego na veličinu efektivnoga srednjeg zrna izračunanog jedn. 3.40, pa uzorci šljunka često imaju efektivno srednje zrno veličine pijeska kako je to razvidno u tablici 3.10.

Ovdje su analizirani rezultati istraživanja za tri različita slučaja nepovezanih taložina. To su:

- jednolični srednjozrni pijesci homogenih uzoraka,
- jednolični sitno do srednjozrni pijesci s učestalim interkalacijama prahovitih slojeva i

 šljunčani vodonosnici u kojima je vrlo teško ostvariti vjerodostojne uzorke taložina.

5.2.1 Verifikacija Kozeny-Carmanove jednadžbe za pješčane vodonosnike

U ovoj raspravi je uz verifikaciju primjene Kozeny-Carmanove metode analizirana primjenjivost karakterističnih veličina zrna s granulometrijske krivulje za referentnu veličinu zrna u različitim uvjetima. Prvo je načinjena usporedba rezultata izračuna hidrauličke vodljivosti koristeći tri metode određivanja srednje vrijednosti promjera zrna pojedinih prosijeva (aritmetička, geometrijska i harmonijska sredina) i dvije metode srednje vrijednosti veličine zrna u uzorku zbrajanjem masenih udjela pojedinih prosijeva aritmetičkim i geometrijskim postupkom. Time su ostvareni rezultati s četiri različite veličine srednjega zrna. Potom je proveden postupak izračuna hidrauličke vodljivosti koristeći graničnu veličinu zrna za tri karakteristična postotka težinskog sadržaja uzorka: D_{30} , D_{40} i D_{50} , kao područja unutar kojega se očekuje stvarna veličina efektivnoga srednjeg zrna. Time se za sve pješčane vodonosnike dobilo 7 različitih veličina hidrauličke vodljivosti za svaki uzorak.

Pri prvim izračunima hidrauličke vodljivosti korišteni su literaturni podaci o poroznosti uglavnom u obliku specifičnoga davanja (specific yield). Takvim podacima većinom se nisu ostvarivali zadovoljavajući rezultati, pa se metodom pokušaja i pogrješaka približavalo vrijednosti efektivne poroznosti i primjerenog efektivnog srednjega promjera zrna.

Glavni arbitar usklađenosti parametara bila je srednja vrijednost hidrauličke vodljivosti vodonosnika identificirana na temelju podataka pokusnih crpljenja. Cijeli postupak izračuna, kontrolnih rezultata i grafike organiziran je u programskom paketu MS EXCEL što je omogućilo operativnu provedbu brojnih i raznovrsnih operacija.

Tablica 5.1 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito srednjozrnog pijeska iz bušotine DM-1 i P-1 na pokusnim poljima u Donjem Miholjcu i Livade kraj B. Manastira Opaska: žutom bojom označena su vrlo precizna rješenja

				Predviđe	na hidraul	ička vodlj	ivost izra	čunana ko	rištenjem				
o polje	otina	zorka (m	pro granulo	omjera pre metrijskoj za	ema krivulji	izraču	inanog sre	ednjeg pro	omjera	$0_{ m ag} D_{ m lng})$	dan) iz uličke ikacije		
okusn	Buš	vina u	D30	D40	D50	Daa	Dag	Dah	Dlng	√(D	K (m/6 hidrau dentif		
d		Duł	Ods	Odstupanje izračunanog iznosa od hidraulički identificirane srednje hidrauličke vodljivosti vodonosnika u %									
		58	-24,9	-10,6	13,1	-17,4	-21,6	-25,6	5,5	-9,0			
		64	-40,8	-32,0	-16,0	-36,0	-39,0	-41,9	-28,3	-33,9			
		65,5	-35,5	-15,8	10,5	-23,9	-27,3	-30,7	-11,5	-19,8			
	-	67,5	-34,0	-13,8	13,2	-16,9	-20,6	-24,1	-1,7	-11,6			
	-P-	70,5	5,3	32,1	77,9	18,9	13,1	7,6	45,5	28,3			
Ŋ		73	-24,9	-10,6	21,6	-10,0	-14,2	-18,3	4,6	-5,3			
olja		78	-29,3	-22,7	2,6	-24,2	-27,7	-31,0	-11,0	-19,8			
lihe		82,2	-35,5	-22,7	2,6	-25,1	-28,6	-32,0	-9,2	-19,5	24		
i N		88,8	-43,6	-31,8	-4,7	-30,5	-33,6	-36,6	-17,9	-26,2	24		
onj		55	-44,9	-33,4	-20,7	-35,3	-38,2	-41,0	-26,1	-32,4			
D		60	-23,3	-16,3	-5,3	-13,0	-17,1	-21,0	-5,0	-11,3			
	B-	64	67,7	101,7	151,9	100,3	91,3	82,6	126,6	108,2			
	Ę	70	12,6	30,5	44,9	20,3	14,7	9,4	38,1	25,9			
	~	80	7,8	35,2	76,6	29,3	23,5	17,8	71,9	45,7			
		85	-19,9	2,4	18,8	-16,8	-20,7	-24,5	-2,2	-11,9			
	Pro	osjek	-17,6	-0,5	25,8	-5,3	-9,7	-14,0	12,0	0,5			
li		20	-39,9	-13,4	9,6	-19,0	-23,2	-27,3	0,2	-12,3			
Bel		21	-33,7	-13,4	-6,1	-17,2	-20,4	-23,6	-3,1	-12,2			
asti	P-1	24	-15,6	-8,1	-0,3	-11,5	-14,1	-16,8	-3,4	-8,9	22		
de Ian		30	8,4	8,4	17,2	13,1	10,7	8,3	23,3	16,8	22		
iva N		33	-1,5	25,8	51,2	31,3	26,0	20,7	66,2	44,7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						16,6	5,6						

Valja naglasiti da su uzorci pijeska prikupljani dosta ravnomjerno po dubini vodonosnika, pa su kod relativno jednoličnih pijesaka srednje vrijednosti izračunanih iznosa vrlo usporedive s hidraulički identificiranom hidrauličkom vodljivosti vodonosnika, koja je kao odnos transmisivnosti i debljine upravo srednja vrijednost. U provedenim analizama promatrano je odstupanje pojedinih izračunanih iznosa od takve srednje hidrauličke vodljivosti (tablica 5.1). Time se izražavao raspored propusnosti vodonosnika po vertikali, a srednja vrijednost hidrauličke vodljivosti svih uzoraka u vodonosniku donosila je informaciju o precijenjenosti ili podcijenjenosti rezultata koju donosi metoda i parametri koji su u njoj korišteni.

Istraživanje je započeto s podacima o vodonosnicima jednoličnih srednjozrnih pijesaka na crpilištima Donji Miholjac i Livade jer su na ovim pokusnim poljima ostvareni

najbolji rezultati prethodno opisanim metodama. Tablica 5.1 brojčano, a slike 5.2. i 5.3. grafički pokazuju vrlo visoku podudarnost testirane i predviđene hidrauličke vodljivosti.

Na crpilištu u Donjem Miholjcu uključeni su i podaci pronađeni za staru bušotinu MNB-4 koji su nešto više granulometrijski raspršeni, ali u cjelini potvrđuju vrijednost KC metode u istraživanju propusnosti vodonosnika po dubini njegovoga zalijeganja.

Slika 5.2 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine DM-1 i MNB-4 na pokusnom polju u Donjem Miholjcu primjenom Kozeny-Carmanove metode

Slika 5.3 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka jednoličnog srednjozrnog pijeska iz bušotine P-1 na pokusnom polju Livade kraj B. Manastira primjenom Kozeny-Carmanove metode

Zapaža se da efektivni srednji promjer određen potpunom geometrijskom sredinom, D_{lng} , rezultira s nešto precijenjenim vrijednostima predviđene hidrauličke vodljivosti. S obzirom na njegovu autentičnost u širokom spektru granulometrijskog sastava od gline do dobro graduiranih šljunaka, ta je pojava ocjenjena kao posljedica određene ispranosti jezgre, što za jednolične pijeske nije neuobičajeno. U takvim okolnostima uključena je nova kategorija srednje vrijednosti kao geometrijske sredine između aritmetičke i geometrijske sredine veličine zrna u uzorku:

$$D_{gsr} = \sqrt{D_{ag} D_{\ln g}} \tag{5.17}$$

uz koju je odstupanje hidrauličke vodljivosti svedeno na ispod 5%. Ovakvo rješenje kasnije se pokazalo posebno prikladnim pri analizama nekih ispranih šljunčanih uzoraka.

Posebno su zanimljivi rezultati hidrauličke vodljivosti izračunane prema veličini zrna težinskih postotaka D_{30} , D_{40} i D_{50} , koji zorno (tablica 2.1, slika 5.2 i 5.3) pokazuju da je u slučaju nešto ispranih srednjozrnih pijesaka D_{40} vrlo dobra aproksimacija veličine efektivnog srednjega zrna.

Tablica 5.2 Pogrješke u rezultatima izračuna hidrauličke vodljivosti svih analiziranih uzoraka jednoličnog pretežito sitnozrnog pijeska iz bušotine OČP-1 i P-1 na pokusnim poljima u Čepinu i Ravnik kraj Popovače Opaska: žutom bojom označena su preciznija rješenja

				Predvi	đena hidrau	ılička vodlj	ivost izrač	unana koris	štenjem		
e		(II)	pr	omjera pre	ma						
sno polje	ina	rka	granulo	metrijskoj.	Krivulji	ızrač	unanog sre	dnjega pro	mjera	$^{\mathrm{a}}\mathrm{D}_{\mathrm{hg}}$	n) iz ičke acije
ou	šoti	ozn		Za						D	/da auli ifik
okus	Bu	ina	D30	D40	Dlng	Ž	K (m hidr denti				
Pc		Dub	Odstup	anje izraču	nanoga izn	osa od hidr	aulički ide	ntificirane	srednje hid	rauličke	- · · .1
			1	5	vod	ljivosti vod	lonosnika	u %	5		
		72,2	-75	-69	-61	-65	-66	-67	-56	-61	
		74,7	-57	-47	-38	-50	-52	-54	-44	-48	
		76,2	-30	-8	28	-20	-25	-29	12	-8	
		77,2	-70	-49	-49	-66	-67	-68	-52	-60	
		79,2	-49	-13	39	-33	-35	-38	11	-15	
		81,7	-67	-49	-23	-54	-56	-57	-32	-45	
		84,2	-84	-79	-74	-80	-81	-82	-74	-78	
		87,7	-53	-40	-25	-48	-50	-53	-36	-44	
-k k		86,2	-62	-34	-18	-49	-50	-52	-20	-37	
– Osije	P-1	90,2	-95	-94	-92	-93	-94	-94	-92	-93	
	OČ	92,7	-89	-86	-83	-86	-86	-87	-83	-85	12
pin	_	95,7	-75	-68	-61	-65	-67	-68	-55	-61	
Če		96,7	-59	-47	-40	-49	-52	-55	-35	-44	
		100,2	-66	-58	-52	-59	-61	-63	-47	-55	
		103,2	-57	-40	-21	-45	-47	-50	-28	-38	
		106,2	36	77	124	52	38	23	102	67	
		110,2	-26	0	31	-24	-35	-45	6	-17	
		112,2	-72	-45	-6	-66	-68	-70	-19	-49	
		115,2	73	156	234	96	65	35	216	128	
		122,2	-71	-62	-55	-65	-67	-68	-54	-61	
	Pr	osjek	-52,4	-32,7	-12,1	-43,4	-47,8	-52,1	-18,9	-35,2	
		32,75	-25	-5	28	-86	-87	-89	-18	-68	
æ		33,85	-42	-32	-18	-68	-71	-74	-27	-54	
nače		37,45	-90	-74	-66	-99	-99	-99	-90	-97	
iton	-	39,55	-67	-53	-41	-92	-93	-94	-64	-84	
– Pitc	ų.	40,65	-16	4	33	-62	-66	-69	-3	-42	10
ıik .		43,85	-81	-49	-35	-99	-99	-99	-81	-96	
lavi		49,05	127	198	279	-78	-81	-83	105	-37	
R		52,05	-84	-52	-35	-99	-99	-99	-80	-95	
	Pr	osjek	-34,8	-7,8	18,1	-85,3	-86,9	-88,4	-32,2	-71,8	

Slika 5.4 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine OČP-1 na pokusnom polju u Čepinu primjenom Kozeny-Carmanove metode

Slika 5.5 Rezultati izračuna hidrauličke vodljivosti analiziranih uzoraka pretežito sitnozrnog pijeska iz bušotine P-1 na pokusnom polju Ravnik kraj Popovače primjenom Kozeny-Carmanove metode

Kod sitnozrnih pijesaka situacija je nešto izmijenjena jer na granulometrijski sastav uzoraka najveći utjecaj imaju prahoviti sadržaji ako se u vodonosnim pijescima relativno gusto pojavljuju vrlo tanki proslojci praha koje je u uzorku ponekad nemoguće odvojiti bez bitne promjene sadržaja. Takvi uzorci imaju srednju vrijednost manju od efektivne veličine srednjega zrna pijeska kroz kojega se odvija horizontalno strujanje. Takvi primjeri su crpilišta Čepin i Ravnik (tablica 5.2, slike 5.4 i 5.5). Kod njih su dobri rezultati ostvareni korištenjem zrna D_{40} ili čak D_{50} . Te veličine zrna su bliske veličini stvarnoga efektivnog srednjega zrna takvih pijesaka.

Sažetak rezultata ostvarenih za vodonosnike izgrađene od srednjega i sitnozrnoga pijeska prikazani su u tablici 5.3.

Tablica 5.3 Prosječne pogrješke izračuna hidrauličke vodljivosti Kozeny-Carmanovom metodom za pojedina pokusna polja. Napomena: žutom bojom označena su vrlo precizna rješenja (odstupanje manje od 20 %), a plavom bojom najtočnija (odstupanja manje od 10 %)

		P	redviđena	ı hidrauli	čka vodlj	ivost izra	ičunana k	corištenje	m	
Ob	piliežia postupka	promjera prema granulometrijskoj. Krivulji za			izračun	anog sre	$ m O_{ag}D_{lng})$	K (m/dan) iz		
	J. J. LL	D30	D40	D50	Daa	Dag	Dah	Dlng	Ŋ٨	hidrauličke identifikacije
		Odstup								
			hic	drauličke	vodljivos	vodljivosti vodonosnika u %				
	Donji Miholjac	-17,6	-0,5	25,8	-5,3	-9,7	-14,0	12,0	0,5	24
lište	Livade	-16,5	-0,1	14,3	-0,7	-4,2	-7,8	16,6	5,6	22
Crpi	Čepin	-52,4	-32,7	-12,1	-43,4	-47,8	-52,1	-18,9	-35,2	12
	Ravnik	-34,8	-7,8	18,1	-85,3	-86,9	-88,4	-32,2	-71,8	10

Iz provedenih analiza može se zaključiti:

- Kozeny-Carmanova metoda koja se temelji na učinku specifične površine oplošja sadržanih zrna daje pouzdane rezultate u izračunu hidrauličke vodljivosti raznovrsnih pijesaka;
- Učinak srednje veličine promjera zrna na specifičnu površinu daje dobre rezultata za sva tri načina izračuna srednje veličine zrna između dva susjedna prosijeva, a najveća preciznost ovdje je ostvarena uz primjenu aritmetičke sredine. Ipak zapaža se redovito podcjenjivanje hidrauličke vodljivosti, dok se korištenjem geometrijske sredine veličine zrna uzorka ostvaruju precijenjene vrijednosti. Najpouzdaniji rezultat ostvaruje se geometrijskom sredinom Dga i Dlng (tablica 5.3);
- Izvrsni rezultati u točnosti izračuna postižu se i primjenom veličine zrna D_{40} , što upućuje da je ova veličina vrlo bliska efektivnoj veličini srednjega zrna u uzorku;

• Kod sitnozrnih pijesaka u kojima su sadržani tanki submilimetarski proslojci praha prihvatljivi rezultati ostvaruju se primjenom veličine zrna D_{40} do D_{50} jer se učinak prahovitih proslojaka u uzorku bitno zatomi pri ovakvom težinskom postotku uzorka. Od izračunanih veličina srednjega zrna najpovoljniji je D_{lng} .

5.2.2 Verifikacija Kozeny-Carmanove jednadžbe za šljunčane vodonosnike

Gledajući teorijski, ne postoji razlog osporavanja primjene Kozeny-Carmanove metode na primjerene uzorke šljunčanih naslaga jer se ova metoda temelji na učinku površine krutine i veličine poroznosti na propusnost. Međutim, u praksi postoji velika poteškoća jer su šljunčani vodonosnici teško dostupni kvalitetnom uzorkovanju. Nadalje, za kalibraciju postupka određivanja hidrauličke vodljivosti izračunom temeljenom na granulometrijskom sastavu vodonosnika nužno je raspolagati s potpunim pokusnim poljem na kojemu se raspolaže s pokusnim crpljenjem primjerenom za izračun lokalne hidrauličke vodljivosti i podacima o većem broju kvalitetnih granulometrijskih analiza. Upravo se takvim podacima raspolagalo se na pokusnom polju Đurđevac.

Slika 5.6 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-1

Slika 5.7 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-2

Slika 5.8 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-3

Slika 5.9 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-4

Slika 5.10 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-5

Slika 5.11 Rezultati K korištenjem KC metode uz različite D za bušotinu SPB-6

Na slikama 5.6. do 5.11 grafički su prikazani rezultati izračuna hidrauličke vodljivosti izračunane Kozeny-Carmanovom metodom za različite postupke izbora srednjega zrna i poroznosti. U početnom postupku identifikacije hidrogeoloških parametra pretpostavljena je približna literaturna vrijednost efektivne poroznosti (n=25) s kojom je analiziran učinak metode izračuna veličine srednjeg zrna prosijeva i uzorka. Započeto je standardnim postupkom određivanja veličine zrna u prosijevu aritmetičkom, geometrijskom i harmonijskom sredinom (jedn. 3.37, 3.38 i 3.39), te njihove aritmetičke sredine u cijelom uzorku (jedn. 3.36). Takvim postupkom su se dobivale vrijednosti hidrauličke vodljivosti koje su bile do dva a negdje i tri reda veličine manje od veličine K određene interpretacijom pokusnoga crpljenja. Puno bolji rezultati ostvarivani su primjenom veličine zrna za neke postotke očitane iz granulometrijskog dijagrama. Međutim to nije prihvaćeno kao funkcionalno rješenje jer nije bilo jedinstveno za širi raspon oblika krivulje.

Konačno rješenje ostvareno je primjenom punog geometrijskoga postupka osrednjenja koji se već u ranijoj fazi istraživanja pokazao vrlo prikladnim pri primjeni Kozeny-Carmanove metode za uzorke prahovito-glinovitih tvorevina. U postupku je korištena geometrijska sredina promjera zrna u prosijevu (jedn. 3.38) i antilogaritam zbroja logaritma veličine srednjeg promjera u prosijevu ponderiranom udjelom mase prosijeva u masi uzorka (jedn. 3.40). Ovakvom veličinom srednjeg zrna ostvareni su vrlo prihvatljivi rezultati izračuna hidrauličke vodljivosti (slike 5.7 do 5.11). Takvi rezultati bili su prikladni za kalibraciju
krivulje efektivne poroznosti u funkciji efektivnog promjera zrna $(n_e=f(D_{lng}),-$ slika 3.7) metodom pokušaja.

Veličina efektivnog zrna redovito je ulazila u područje krupno do srednjozrnoga pijeska pokazujući da pijesak u šljunku upravlja veličinom specifične površine i propusnosti, a također presudno utječe na veličinu efektivne poroznosti primjerene za dobro graduirane agregate s visokim koeficijentom ujednačenosti, $U_H = D_{60}/D_{10} > 10$ (tablica 3.10, slika 3.7).

U ovoj skupini bušotina izuzetak je bušotina SPB-2, koja je udaljena od središnjeg dijela istraživanog polja, a u njenom litološkom profilu razvijen je nešto sitniji granulometrijski sastav, pa je njena srednja hidraulička vodljivost za cijeli red veličine (sl. 5.7, tablica 5.4) niža od srednje vrijednosti ostalih 5 bušotina smještenih u blizini testiranoga zdenca ZĐ-2 (slika 2.11).

Učinak postupka izračuna srednje veličine zrna u uzorku ilustriran je slikama 5.6 do 5.11, a numerički izražen odnosom izračunane i testirane hidrauličke vodljivosti u tablici 5.5). U prvom stupcu je prikazana praktična izjednačenost lokalne hidrauličke vodljivosti identificirane dugotrajnim pokusnim crpljenjem i izračunanog prosjeka KC metodom u kojemu su sve veličine računane geometrijskim postupkom od srednje veličine zrna u prosijevu, preko zbrajanja učinaka pojedinih prosijeva u uzorku do srednje vrijednosti svih istraživačkih bušotina, osim SPB-2. Zanimljiv je i podatak da korištenje veličina zrna D_{40} rezultira vrijednostima koje su reda veličine testirane hidrauličke vodljivosti, što je bitno točnije od rezultata kakvi se dobiju primjenom veličine zrna D_{10} , kako je to u literaturi rašireno prema preporukama Vuković & Soro (1992) i Kasenow (1997).

	Metoda izračuna efektivne veličine zrna u uzorku										
Bušotina	KC(Dlng)		KC(Daa)		KC(Dah)		KC(D40)		Hidraulički		
	Metoda izračuna srednje vrijednosti predviđene hidrauličke vodljivosti K (m/s) za bušotinu										
	Geome-	Aritme-	Geome-	Aritme-	Geome-	Aritme-	Geome-	Aritme-	(m/s)		
	trijska	tička	trijska	tička	trijska	tička	trijska	tička			
SPB-1	2,53E-03	3,51E-03	9,00E-06	1,14E-05	7,18E-06	9,05E-06	1,09E-03	2,50E-03			
SPB-2	1,54E-04	4,03E-04	6,64E-07	8,49E-07	5,52E-07	7,09E-07	5,23E-05	1,76E-04			
SPB-3	1,57E-03	2,46E-03	2,73E-06	4,09E-06	2,23E-06	3,32E-06	6,38E-04	1,59E-03			
SPB-4	1,29E-03	2,19E-03	1,77E-06	2,12E-06	1,47E-06	1,77E-06	5,19E-04	1,14E-03	1,75E-03		
SPB-5	2,98E-03	4,11E-03	6,84E-06	1,01E-05	5,59E-06	8,09E-06	1,59E-03	4,47E-03			
SPB-6	1,20E-03	1,43E-03	2,68E-06	2,87E-06	2,22E-06	2,37E-06	7,13E-04	8,83E-04			
SPB-10	2,12E-03	3,01E-03	2,69E-06	2,17E-06	2,28E-06	1,82E-06	1,13E-03	1,09E-03			
Prosjek bez SPB-2	1,84E-03	2,79E-03	3,59E-06	5,46E-06	2,96E-06	4,40E-06	8,79E-04	1,95E-03			

Tablica 5.4 Prosječne hidrauličke vodljivosti za pojedine bušotine sa slika 5.6 do 5.11

Tablica 5.5 Odnos između izračunane i testirane hidrauličke vodljivosti za pojedine metode izračuna efektivnog zrna i prosječne hidrauličke vodljivosti za profil pojedinih bušotina i pokusno polje. Napomena: U prosječnu vrijednost hidrauličke vodljivosti cijelog polja nije uključen podatak za bušotinu SPB-2 koja je označena žutom bojom

	Odnos predviđene i testirane hidrauličke vodljivosti za pojedine metoda izračuna efektivne										
	veličine zrna u uzorku										
ina	KC _{Dl}	M_{ng}/K_t	KC	D_{aa}/K_t	KC	$_{\mathrm{ah}}/K_t$	$\mathrm{KC}_{\mathrm{D40}}/K_t$				
išot	Metoda izračuna srednje vrijednosti predviđene hidrauličke vodljivosti za bušotinu i pokusno										
Bu	polje										
	Geome-	Aritme-	Geome-	Aritme-	Geome-	Aritme-	Geome-	Aritme-			
	trijska	tička	trijska	tička	trijska	tička	trijska	tička			
SPB-1	1,45	2,01	0,0051	0,0065	0,0041	0,0052	0,62	1,43			
SPB-2	0,09	0,23	0,0004	0,0005	0,0003	0,0004	0,03	0,10			
SPB-3	0,90	1,41	0,0016	0,0023	0,0013	0,0019	0,36	0,91			
SPB-4	0,74	1,25	0,0010	0,0012	0,0008	0,0010	0,30	0,65			
SPB-5	1,70	2,35	0,0039	0,0058	0,0032	0,0046	0,91	2,55			
SPB-6	0,69	0,82	0,0015	0,0016	0,0013	0,0014	0,41	0,50			
SPB-10	1,21	1,72	0,0015	0,0012	0,0013	0,0010	0,65	0,62			
Prosjek (bez SPB- 2)	1,11	1,59	0,0024	0,0031	0,0020	0,0025	0,54	1,11			

Velike pogrješke donosi i korištenje aritmetičkoga zbroja udjela pojedinih srednjih zrna prosjeva u srednjem zrnu uzorka i to neovisno o metodi izračuna srednjega zrna u prosijevu, D_a, D_{ga} i. D_{ha}. Takvim postupcima dobije se vrijednost hidrauličke vodljivosti koja je 2 do 3 reda veličine manja od stvarne. Takve okolnosti vjerojatno su razlog rijetke uporabe KC metode i postavljanje ograničenja povezanih s granulometrijskim sastavom i sortiranošću, primjerice na pijeske velikoga zrna (Kasenow, 1997).

5.2.3 Verifikacija univerzalnosti Kozeny-Carmanove jednadžbe za nekoherentne naslage

Teorijska valjanost Kozeny-Carmanove jednadžbe proizlazi iz razmatranja djelovanja sila u poroznom mediju pri strujanju podzemnih voda (jedn. 3.1 do 3.9), te Hagen-Poisseuillova modela strujanja (jedn. 5.3. do 5.13). Njena je praktična valjanost potvrđena je primjenom na istraživanim pokusnim poljima (slike 5.2 do 5.12) u širokom rasponu granulometrijskog sastava od sitnozrnih pijesaka do šljunaka, i u vrlo širokom spektru graduiranosti zrna od koeficijenta ujednačenosti $U_H < 2$ do $U_H > 100$. Prema tome, za ovu metodu nema ograničenja povezanog sa sortiranošću sadržanih zrna, a nema razloga ni za ograničenja u odnosu na veličinu zrna uz uvjet održanja hidrauličkog kontinuuma. Ovdje je verifikacija provedena grafičkom korelacijom hidraulički testirane i izračunanih hidrauličkih vodljivosti 5 pokusnih polja izabranih po relativno strogim kriterijima prikladnosti po vjerodostojnosti uzoraka. Nakon toga je prikazana korelacija primjene na 6 lokaliteta koji su u početnoj fazi isključeni zbog nepouzdanosti analiziranih uzoraka.

Slika 5.12 Grafička korelacija između testirane Kt i predviđene vrijednosti hidrauličke vodljivosti primjenom Kozeny-Carmanove metode za krupnoklastične tvorevine od sitnozrnih pijesaka do šljunaka srednje veličine. Vrijednosti 0,8 Kt i 1,2 Kt izabrane su kao granice tolerancije za izvrsnu točnost predviđene K

Na slici 5.12 prikazano je da su hidrauličke vodljivosti određene Kozeny-Carmanovom metodom u granicama $\pm 20\%$ za sva pokusna polja, pa prema tome zadovoljavaju stroge kriterije za rezultate laboratorijskih ispitivanja i pokusnih crpljenja. Pritom je osnovni uvjet kvalitetno jezgrovanje, a metodički je uvjet način izračuna srednjeg zrna i efektivne poroznosti. Pokazalo se da srednje zrno određeno preko srednje geometrijske veličine zrna u prosijevu i logaritamskog osrednjenja udjela pojedinih prosijeva u srednjem zrnu uzorka predstavlja hidraulički efektivno srednje zrno za sve analizirane granulometrijske sastave. Takva veličina srednjeg zrna mjerodavna je i za efektivnu poroznost (slika 3.7, tablica 3.12). Tako da analizirani šljunci srednje krupnih valutica imaju efektivnu poroznost primjerenu za dobro graduirane pijeske. Prema tome prezentirana krivulja efektivne poroznosti (slika 3.7) vrijedi za veličinu efektivnoga srednjeg zrna, a ne za pretežito ili medijansko zrno kako je to uobičajeno u literaturi.

Sve što je prezentirano preko hidrauličke vodljivosti u stvari se odnosi na propusnost poroznog medija je prema tome valjano i za specifičnu površinu.

Slika 5.13 Grafička korelacija između testirane hidrauličke vodljivosti pješčanih vodonosnika i najboljih rezultata izračunanih primjenom svih korištenih metoda. Oznake: $K(Sl-D_{sr})$ Slichterova metoda korištenjem srednjeg zrna, $K(T-D_{sr})$ Terzaghijeva metoda korištenjem srednjeg zrna

Grafički kalibracijski postupak prezentiran za KC metodu može se proširiti i na ostale korištene metode izračuna hidrauličke vodljivosti prema granulometrijskom sastavu s tim da se ograniči samo za pijeske (slika 5.13) kako to njihovi kriteriji zahtijevaju. Ilustrativna je bliskost valjanosti rezultata svih prikazanih metoda, osim USBR-a za koju slikovito izraženo odstupanje od realnih vrijednosti. Valja istaknuti da je u ovom prikazu za metode Slichtera i Terzaghija korišteno srednje zrno, kako to oni izvorno preporučuju, a ne Hazenovo efektivno zrno D_{10} , kako se to primjenjuje u recentnoj literaturi.

Završna verifikacija analiziranih metoda izračuna hidrauličke vodljivosti nekoherentnih tvorevina na temelju granulometrijskog sastava provedena je na primjerima granulometrijskih analiza sa šest lokaliteta u istočnoj Slavoniji i Srijemu na kojima je izgrađeno pokusno polje u sklopu vodoopskrbnih istraživanja. To su lokaliteti pješčanih vodonosnika u Starim Jankovcima, Mikanovcima, Semeljcima, Ivankovu, Nijemcima i Lipovcu:

Slika 5.14 Grafička korelacija rezultata izračuna hidrauličke vodljivosti KC metodom i metodama efektivnog zrna za uzorke iz pješčanih vodonosnika u istočnoj Slavoniji i Srijemu sa lokaliteta s ograničenom valjanošću uzoraka

Na ovim lokalitetima su granulometrijske krivulje uzoraka pijeska pokazivale anomalije koje su upućivale na nekvalitetno jezgrovanje bušotine, pa nisu prikladni za temeljne kalibracije pojedinih metoda. Međutim takvi su uzorci bili zanimljivi kao primjer posljedica takvog jezgrovanja na identifikaciju hidrogeoloških svojstava vodonosnih naslaga. Provedenim izračunima ovdje su se izdvojile tri skupine rezultata.

- Jedna se odnosi na metode efektivnog zrna D_{10} (Hazen i Beyer) koje rezultiraju nasumičnim rasapom podataka (slika 5.14) vjerojatno oko neke regionalne srednje vrijednosti.
- Druga skupina podataka predstavljena je rezultatima hidrauličke vodljivosti određene USBR metodom koji su izvan realnoga sustava i demonstriraju

sustavnu pogrješku u formulaciji odnosa veličine zrna D_{20} i hidrauličke vodljivosti (slika 5.14).

• Treća skupina podataka su vrijednosti hidrauličke vodljivosti određene u funkciji srednjeg zrna i efektivne poroznosti (slika 5.15). One su također rasute u dijagramu ali sustavno oko neke srednje vrijednosti koja je paralelna s odnosom $K=K_t$. Pritom je os oko koje su rasuti rezultati KC metode podudarna s glavnom osi, a os oko koje su rasuti rezultati Slichterove i Terzaghijeve metode pomaknuta je što pokazuje razliku u primijenjenoj funkciji poroznosti.

Slika 5.15 Grafička korelacija rezultata izračuna hidrauličke vodljivosti pješčanih vodonosnika u istočnoj Slavoniji i Srijemu sa lokaliteta s ograničenom valjanošću uzoraka metodama srednjeg zrna

Može se dakle zaključiti da se i srednja vrijednost hidrauličke vodljivosti regionalnoga karaktera mogu relativno solidno identificirati i prema uzorcima iz nevjerodostojnih jezgri ali iz brojnih bušotina. Međutim, kako su istraživanja granulometrijskog sastava i hidrogeoloških parametara vodonosnika tema izrazito lokalnog, pa i laboratorijskog mjerila, korisnost

cjelokupnih istraživanja u velikoj mjeri ovisi o vjerodostojnosti jezgre istraživačkih bušotina i ispravnosti uzorkovanja.

6 PROPUSNOST I SPECIFIČNA POVRŠINA POLUPROPUSNIH TVOREVINA

Sitnoklastične tvorevine kao što su prah i glina u hidrogeološkim se klasifikacijama nazivaju polupropusnim jer je specifični protok kroz njih vrlo malen pa zbog toga nisu prikladni za koncentrirano pridobivanje i drenažu podzemnih voda. Međutim, to je tek prva aproksimacija kakva se koristi u općim kvalifikacijama. Njihova svojstva su puno zamršenija što je prvenstveno uzrokovano vrlo malim dimenzijama šupljina između krutih čestica, utjecajem njihovog mineralnog sastava i mogućim diskontinuitetima. U takvim okolnostima otežana je identifikacija numeričkih vrijednosti hidrogeoloških parametara ovih tvorevina.

Osnovno svojstvo polupropusnih tvorevina je vrlo mali promjer krutih čestica i s time je veličina šupljina vrlo mala te je izražena pojava kohezije. Njihova granična veličina prema zrnima sitnog pijeska nije jednoznačno klasificirana. Prema općenito uvaženim klasifikacijama granica između sitnog pijeska i krupnog praha je u rasponu od 0,02 mm (ISSS) do 0,063 mm prema Wentworthovoj skali, a u svim ostalim klasifikacijama to je 0,05 mm. U tako malim šupljinama izražena je pojava mjehurića zraka koja generira nastanak kapilarnih sila, a one mogu snažno upravljati gibanjem pogotovo pri malim hidrauličkim gradijentima. Daljnjim smanjenjem obujma postaje relativno značajan i utjecaj molekularnih sila.

S veličinom čestica povezan je i njihov oblik koji je kod krupnijeg praha vrlo blizak sferičnom kao i kod sitnoga pijeska, no kod glinovitih čestica rašireni su izduženi i spljošteni oblici kod kojih postaje važnija njihova debljina nego veličina. To je pogotovo važno za veličinu specifične površine i propusnosti.

Za korelaciju utjecaja fizikalnih obilježja na propusnost sitnoklastičnih tvorevina posebna je poteškoća nemogućnost pouzdanog terenskog testiranja propusnosti, pa se njegovo određivanje prvenstveno provodi u laboratoriju na "neporemećenim" uzorcima. Pri tome se pojavljuju pitanja povezana s postupcima uzorkovanja i provedbe laboratorijskih testiranja koji imaju snažan utjecaj na vjerodostojnost rezultata.

Točnost rezultata laboratorijskih testiranja propusnosti nije propisana standardima za opremu, propisan je samo postupak provedbe testiranja, a temeljem toga ne može se odrediti njihova realna preciznost. Upute povezane s provedbom testiranja upućuju na pozornost pri provedbi postupaka i na ostvarenje uvjeta pri provedbi testiranja. U tom smislu naglašava se važnost potpune saturiranosti uzoraka, primjeren gradijent između lateralnih piezometara, trajanje pojedinih postupaka povezano s ostvarenjem ustaljenog stanja i dostatne količine procijeđene vode, homogenosti uzorka i sl. U literaturi se realna preciznost ilustrira odstupanjem vrijednosti *K* testiranog na tri primjerka istoga uzorka od njihove srednje vrijednosti (Chapuis et al., 2003).

U ovom radu cilj nije provjeravanje točnosti pojedine laboratorijske analize nego je pozornost usmjerena na primjerenost pojedinih metoda identifikacije propusnosti i specifične površine. Za ilustraciju realnoga dometa točnosti pojedinih metoda korišteni su literaturni podaci i raspoložive laboratorijske analize uzoraka sa zanimljivih lokaliteta u sjevernoj Hrvatskoj.

U literaturnim prikazima postoji suglasje kako ostvariva preciznost prvenstveno ovisi o postupcima pri uzorkovanju, testiranju i unutarnjoj varijabilnosti tvorevina. Opširnu i argumentiranu raspravu o preciznosti određivanja propusnosti i specifične površine predstavili su Robert P. Chapuis i Michel Aubertin (2003) na temelju istraživačkog programa unapređenja pouzdanosti određivanja propusnosti. Projekt je sponzoriran od Natural Sciences and Engineering Council of Canada, a provedena je na École Polytechnique de Montréal, Département des génies civil, géologique et mines. Posebnu pozornost posvetili su procjeni hidrauličke vodljivosti primjenom Kozeny-Carmanove jednadžbe. U sklopu studije koristili su oko 300 laboratorijskih rezultata, dijelom iz literature, a dijelom iz osobnih istraživanja. Realnost procjena kontrolirana je laboratorijskim testiranjima i na tom tragu oni definiraju pojam izvrsne preciznosti laboratorijskoga testa ovisno o vrsti analiziranih tvorevina. Najveća točnost izvrsne preciznosti ostvariva je za pijesak i šljunak kada su pokusi provedeni u idealnim uvjetima ako je K-vrijednost unutar ±20%, za 3 primjerka iz istoga uzorka.

Velika je osjetljivost iznosa specifične površine i propusnosti već i pri maloj varijaciji veličine čestica i šupljina mikronskog mjerila. U slučaju prahovitih neplastičnih tvorevina tri korektna testa na tri primjerka istoga uzorka može dati vrijednost hidrauličke vodljivosti između ¹/₂ i dvostrukog iznosa njihove srednje vrijednosti. U slučaju vrlo homogeniziranih glina ujednačene poroznosti i Attebergovih granica može se ostvariti relativno visoka

ujednačenost rezultata testa, međutim kada su svojstva glina promjenjivija tada izmjerene vrijednosti K ostvarene uredno provedenim eksperimentom mogu biti između 1/3 i 3 puta različite od njihove srednje vrijednosti (Chapuis et Aubertin, 2003).

Navedena ograničenja realne točnosti laboratorijskih testiranja propusnosti 1/3 do 3 K (izmjerenoga u laboratoriju) za gline, $\frac{1}{2}$ do 2 K za prah i $\pm 20\%$ K testiranoga za pijesak i šljunak može se, sa znanstvenoga kao i s inženjerskog gledišta, korektno promatrati i kao vrlo strogo vrednovanje metoda predviđanja hidrauličke vodljivosti na temelju granulometrijskog sastava i Attebergovih granica. U tom okviru se u ovom poglavlju raspravlja o funkcionalnoj povezanosti veličine zrna i Attebergovih granica s poroznošću, specifičnom površinom i propusnošću sitnoklastičnih tvorevina.

Identifikacija hidrauličke vodljivosti provedena je na tri međusobno neovisna postupka. Temeljem efektivnog srednjega zrna, specifične površine određene korelacijom s Attebergovim granicama, te koristeći korelacijske odnose sukcijskih svojstava tla. Korelacijski odnosi provjeravaju se na:

- lokalnom mjerilu u obliku srednjih vrijednosti većeg broja mjerenja za pojedine bušotine, zatim
- regionalnom mjerilu između lokaliteta izgrađenih od kopnenih i močvarnih prapora, a
- verifikacija se provodi na laboratorijskom mjerilu prema mjerenjima hidrauličke vodljivosti, granulometrijskog sastava i granice tečenja pojedinih uzoraka iz raznovrsnih prahovito-glinovitih naslaga duž trase kanala Dunav-Sava.

Velika većina rezultata hidrauličke vodljivosti određene korištenjem efektivnog srednjeg zrna nalazi se unutar granica postavljenih za laboratorijsko određivanje hidrauličke vodljivosti, a drugim postupcima povećava se disperzija rezultata.

6.1 Primjena Kozeny-Carmanove jednadžbe za izračun propusnosti polupropusnih tvorevina

O primjerenosti korištenja Kozeny-Carmanove jednadžbe pri izračunu propusnosti i hidrauličke vodljivosti u literaturi postoje vrlo različita stajališta. Općenito se ona u hidrogeološkoj literaturi promatra kao model strujanja u nekoherentnim tvorevinama (primjerice, prema Kasenow, (1997), Kresic, (1997) preporuča se za krupne pijeske). Nasuprot tome, u tloznanstvenoj literaturi (Hallel, 1980; Marshall et al., 1999, Yong end Mulligan, 2004), održava se interes za primjenu ovoga modela upravo za prahovito-glinovite tvorevine. Pritom se primarno primjenjuju oblici u kojima se izražava učinak nekih od oblika specifične površine koja se određuje laboratorijski, a ne povezuje se s veličinom čestica. Glavni prigovor u tloznanstvenim raspravama odnosi se na okolnost da Kozeny-Carmanova jednadžba, pri izražavanju propusnosti u funkciji osnovnih fizikalnih svojstava koherentnih tvorevina, a priori pretpostavlja kontinuitet koji je u glinenim tlima često narušen pukotinama, što je karakteristično za pripovršinske naslage. Također se ističe utjecaj razlike u svojstvima čestica praha i gline. Zbog toga Chapuis i Aubertin (2003) preporučaju primjenu veličine referentnih čestica samo za prahovite tvorevine, dok u slučaju sadržaja glinovitih čestica preporučuju provedbu laboratorijske analize vanjske specifične površine koja bi se koristila u Kozeny-Carmanovoj jednadžbi. Univerzalnost njene primjene i vjerodostojnosti ostvarenih rezultata oni predočavaju grafički jedinstvenim dijagramom odnosa predviđene i mjerene hidrauličke vodljivosti za raznovrsne tvorevine od $K=1*10^{-11}$ m/s do $K=1*10^{-2}$ m/s (slika 6.1). Pritom su koristili podatke svojih istraživanja za čisti bentonit i bentonitne mješavine, rudarsku šljaku te pojedina zemljišta, a iz literaturnih izvora za prirodne gline Champlaina u Quebecu (Tavenas et al., 1983), za kaolinit (Al Tabara and Wood, 1987), te za pijesak i šljunak (Mavis and Wilsey, 1937 i NAVFAC, 1974).

Slika 6.1 Odnos mjerene hidrauličke vodljivosti i predviđene primjenom Kozeny-Carmanove jednadžbe za raznovrsne tvorevine od bentonita i kaolinita do pijeska i šljunka (iz Chapuis & Aubertin, 2003)

Primjena Kozeny-Carmanove jednadžbe pri proučavanju propusnosti polupropusnih koherentnih tvorevina u literaturi se povezuje s više pitanja. U prvom redu ističe se pitanje određivanja specifične površine oplošja čestica ako se ona ne može izraziti nekom referentnom veličinom sadržanih čestica na način primjeren za nekoherentne tvorevine (pijesak i šljunak), zatim pitanje efektivne poroznost te pitanje koeficijenta oblika koji obuhvaća učinak oblika i zavojitosti šupljina. To su vjerojatno i razlozi zbog kojih se u hidrogeološkoj praksi ova metoda vrlo rijetko koristi.

Središnje je pitanje referentna veličina sadržanih čestica koja u Kozeny-Carmanovoj jednadžbi predočava učinak specifične površine oplošja čestica i dominantan je čimbenik vrijednosti propusnosti. U hidrogeološkoj literaturi obično se koristi oblik jedn. 5.13, tj. izražavanje propusnosti u funkciji specifične površine krutine (jedn. 3.26). U tloznanstvenoj literaturi koriste se razni oblici koji se prvenstveno razlikuju prema obliku izražavanja specifične površine. Njih se može u skladu s jedn. 3.27 do 3.30, te 5.11 do 5.13 predočiti jednakošću:

$$k = C \frac{n}{a_p^2} = C \frac{n^3}{a_T} = C \frac{n^3}{\rho_k^2 a_m^2 (1-n)^2} = C \frac{n^3}{a_k^2 (1-n)^2} = C \frac{n^3}{(1-n)^2} \frac{D_m^2}{36}$$
(6.1)

Razlike u formulacijama pojavljuju se i pri izražavanju bezdimenzijskog koeficijenta C. Ilustrativan primjer iznose Yong and Mulligan (2004) koji a_T u jedn. 6.1 promatraju kao specifičnu površinu ovlaženoga oplošja, a bezdimenzijski koeficijent C kao odnos čimbenika oblika i zavojitosti, $C=C_s/\tau^2$. Pritom, za čimbenik oblika, preporučuju vrijednost $C_s=0,4$, a za zavojitost $\tau=\sqrt{2}$, što odgovara kutnoj devijaciji od 45°, pa bezdimenzijski koeficijent iznosi $C=C_s/\tau^2=0,2$. Dakle, upravo rješenje jedn. 5.12, koje preporučuje Carman (1937) potkrepljujući ga eksperimentalnim rezultatima (Carman, 1939), a koje su kasnije potvrdili brojni eksperimenti.

Pri istraživanjima primarno lokalnog prosjeka i regionalnog mjerila veličina efektivne poroznosti može se usvojiti na temelju literaturnih navoda ili dijagrama poput onoga na slici 3.5, pa se glavna poteškoća svodi se na izbor referentne veličine čestica kao glavnog čimbenika specifične površine.

U dosadašnjoj literaturi pozornost je usmjerena na način izračuna srednje veličine zrna tj., sadržaja između dvaju prosijeva i tu se primjenjuje aritmetička, geometrijska i harmonijska srednja vrijednost (jedn. 3.37 do 3.39), dok se zbroj njihovih udjela u formiranju prosječnoga zrna u uzorku provodi aritmetički (jedn. 3.35 i 3.36) iako još Arkin et al. (1956) zapažaju da se ekstremnim vrijednostima aritmetička sredina može jako iskriviti. U prirodi distribucija zrna ima obilježja logaritamskog slijeda koji se slikovito predočava polulogaritamskom dijagramom, pa je tim tragom ovdje istražena primjena logaritamskog zbroja u izračunu geometrijske sredine veličine zrna. Postupak je ekvivalentan onome koji Shirazi i Boersma (1984) koriste u kreaciji ortogonalnog trokomponentnog dijagrama (slika 3.4, jedn 3.10 i 3.12) s tim da se ovdje srednja veličina zrna ne odnosi na cjelokupni agregat gline, praha i pijeska, nego na pojedine prosjeve, pa je u jednadžbi srednje geometrijske veličine zrna cjelokupnoga agregata uzorka, D_{lng} :

$$D_{\ln g} = EXP[0,01\sum P_i \ln D_i]$$
(6.2)

gdje je P_i postotak pojedinih prosijeva ili segmenata na granulometrijskoj krivulji, a D_i geometrijska srednja veličina zrna u prosjevu ili segmentu. Ako se raspolaže s podacima o masama uzorka i pojedinih prosijeva tada se direktno koristi jed. 3.40.

Pri interpretaciji granulometrijskih analiza prahovito-glinovitih tvorevina dodatni problem je vrjednovanje učinka najsitnijih čestica. Naime, pri numeričkim analizama granulometrijskih krivulja i podataka o težini prosijeva realno ne postoji podatak o veličini najmanje čestice. Stvarni uzorak uvijek ima neku najmanju izmjerenu veličinu zrna koja u svakoj analizi može biti različita, pa nastaje pitanje određivanja vrijednosti ekvivalentne veličine D_{eq} za čestice manje od najmanje izmjerene veličine čestica za odnosni uzorak.

Ovdje su za takve slučajeve korištena dva postupka koji donose bliske rezultate. Jedan je postupak kojega Chapuis & Légaré (1992) predlažu za izračun ekvivalentne veličinu čestice, D_{eq} , preostaloga sadržaja odnosom:

$$D_{eq}^{2} = \frac{1}{D_{\min}} \int_{0}^{\min} y^{2} dy = \frac{D_{\min}^{2}}{3}$$
(6.3)

gdje je D_{min} najmanja registrirana veličina.

U drugom slučaju se određuje veličina kraja krivulje D_0 , na temelju nagiba krivulje između tri zadnja prosijeva pa se dobije:

$$D_0 = EXP\left[-\frac{P_n}{P_{n-2} - P_n} \ln\left(\frac{D_{n-2}}{D_n}\right) - \ln\left(D_n\right)\right]$$
(6.4)

a ekvivalentna srednja veličina čestica u ostatku uzorka

$$D_{eq} = EXP\left\{\left[-\frac{P_n}{P_{n-2} - P_n}\ln\left(\frac{D_{n-2}}{D_n}\right) - \ln\left(\frac{D_n}{D_{n-2}}\right)\right]/2\right\}$$
(6.5)

gdje je P_n postotak težine zadnjeg, a P_{n-2} prosijeva prije predzadnjeg prosijeva, D_n veličina otvora zadnjeg, a D_{n-2} sita prije predzadnjeg.

Za postupak kalibracije i verifikacije Kozeny-Carmanove jednadžbe, kao i drugih metoda identifikacije hidrauličke vodljivosti i specifične površine prahovito-glinovitih tvorevina korišteni su podaci s triju istraživanih lokaliteta na kojima je različit raspored podataka, a i svojstva naslaga su drugačije raspoređena.

Na Iločkom prapornom ravnjaku istraživani su kopneni prapori bušotinama oko 30 m dubine iz kojih su uzimani uzorci za laboratorijske analize granulometrije, hidrauličke vodljivosti i Attebergovih granica s izrazito različitih dubina. Uz to, ovdje su na uzorcima iz triju bušotina načinjen različit broj analiza hidrauličke vodljivosti i to na jednoj 4 analize na drugoj 2 analize, a na trećoj samo 1 (slika 6.2, bušotina IVB-3) i ta jedna analiza ima najveći K.

Močvarni prapori istraživani su po trasi Našičke obilaznice bušotinama dubine samo oko 5 m. Na 5 bušotina načinjene su analize hidrauličke vodljivosti na po 2 uzorka no, osim jednoga, svi su uzorci na različitim dubinama od dubine uzoraka za granulometrijske analize i Attebergove granice (slike 6.3 i 6.4). Tako su i ovi podaci za uspoređivanje prikladniji preko srednjih vrijednosti nego neposredno.

Slika 6.2 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnog zrna s rezultatima laboratorijskog testiranja na primjeru kopnenih prapora na lokaciji iločke ciglane

Slika 6.3 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnog zrna s rezultatima laboratorijskog testiranja na primjeru močvarnih prapora na lokaciji našičke obilaznice – sjeverozapadni dio

Slika 6.4 Usporedni prikaz rezultata izračuna hidrauličke vodljivosti različitim postupcima izračuna veličine efektivnoga zrna s rezultatima laboratorijskog testiranja na primjeru močvarnih prapora na lokaciji našičke obilaznice – sjeverozapadni dio

Na trećem istraživanom području, trasi kanala Dunav-Sava od Save do Rokovaca, izveden je golemi broj geomehaničkih bušotina dubine od nekoliko do nekoliko desetaka metara. Probušene su vrlo raznolike kvartarne naslage i na uzorcima je provedeno osamdesetak analiza hidrauličke vodljivosti. Na svim tim uzorcima načinjene su i granulometrijske analize te su određene Attebergove granice. Zato su podatci ovoga trećeg lokaliteta korišteni za verifikaciju predloženih postupaka praktično u laboratorijskom mjerilu.

Za preliminarni kalibracijski postupak korištene su pojedinačne (slike 6.2, 6.3 i 6.4) i prosječne vrijednosti (tablica 6.1 i slika 6.5) testirane i izračunane hidrauličke vodljivosti za bušotine sa glinokopa ciglane u Iloku i duž trase našičke obilaznice. Obzirom da se radi o dva lokaliteta na kojima su lokalno relativno ujednačena svojstva naslaga, a regionalno kao

lokaliteti kontrastnih su svojstava u odnosu na sadržaj glinovitih frakcija, može se reći da su uspoređivani podaci za pojedine bušotine lokalnog mjerila.

Sve usvojene srednje vrijednosti hidrauličke vodljivosti za pojedine bušotine računane su geometrijski, kao antilogaritam srednje vrijednosti logaritma veličine testirane ili izračunane vrijednosti hidrauličke vodljivosti $(\exp(\Sigma \ln(k_i))/n)$, dakle ekvivalentno najprikladnijem postupku određivanja efektivnog srednjeg promjera zrna u uzorku.

Tablica 6.1 Geometrijske srednje vrijednosti hidrauličke vodljivosti za analizirane bušotine izračunanih KC jednadžbom uz različite postupke određivanja veličine srednjeg zrna i njihov odnos prema srednjoj testiranoj vrijednosti. Napomena: Prosjek je izračunan bez podatka za bušotinu IVB-3 za koju postoji samo jedna analiza koja daje K najveći od svih nalaza a koja je označena žutom bojom

	Oznaka bušotine	Srednja testirana Kt (m/s)	Broj test. uzoraka	Geometrijska sredina u uzorku				Aritmetička sredina u uzorku					
Područje				KC _(Dlna)	$KC_{(Dina)}/K_{t}$	KC _(Dlng)	$KC_{\rm (Dlng)}/K_{\rm t}$	KC _(Daa)	$\mathbf{KC}_{(\mathrm{Da})}/\mathbf{K}^{\mathrm{t}}$	KC _(Dag)	$KC_{(Dga)}/K_t$	KC _(Dah)	$KC_{(Dha)}/K_t$
Ilok	IB3	9,62E-09	4	7,71E-09	0,80	6,87E-09	0,71	1,32E-09	0,14	1,17E-09	0,12	1,03E-09	0,11
	IIIB3	1,19E-08	2	6,46E-09	0,54	5,55E-09	0,47	1,35E-09	0,11	1,19E-09	0,10	1,05E-09	0,09
	IVB3	3,33E-08	1	4,58E-09	0,14	4,06E-09	0,12	7,36E-10	0,02	6,58E-10	0,02	5,86E-10	0,02
	ST-2	6,40E-10	2	6,79E-10	1,06	6,25E-10	0,98	5,72E-11	0,09	5,61E-11	0,09	5,50E-11	0,09
ička obilaznica	ST-4	1,32E-09	2	7,47E-10	0,57	6,89E-10	0,52	6,96E-11	0,05	6,81E-11	0,05	6,65E-11	0,05
	ST-6	4,49E-10	2	8,28E-10	1,84	7,63E-10	1,70	7,83E-11	0,17	7,64E-11	0,17	7,45E-11	0,17
	ST-7	2,85E-10	2	5,36E-10	1,88	4,97E-10	1,74	4,90E-11	0,17	4,80E-11	0,17	4,69E-11	0,16
Naš	ST-8	6,74E-10	2	5,60E-10	0,83	5,18E-10	0,77	5,09E-11	0,08	4,98E-11	0,07	4,86E-11	0,07
Prosječan odnos				0,89		0,83		0,18		0,17		0,16	

Prikladnost postupka određivanja referentnog srednjeg promjera zrna u Kozeny-Carmanovoj jednadžbi ilustriran je odnosom izračunane hidrauličke vodljivosti i veličine izmjerene permeametrom u laboratoriju (K_t). Hidraulička vodljivost izračunana je za pet različitih postupaka određivanja promjera zrna na primjerima istraživačkih polja iločke ciglane i našičke obilaznice. Rezultati su prikazani grafički (slike 6.2 do 6.5), te tablično (tablica 6.1 i 6.2). Pritom je za navedene hidrauličke vodljivosti, KC, indeksom označen postupak određivanja efektivnog srednjeg promjera zrna:

$$\begin{cases} D_{\ln a} = \exp\left[0,01\sum P_i \ln(D_a)\right] \\ D_{\ln g} = \exp\left[0,01\sum P_i \ln(D_g)\right] \end{cases}$$
(6.6)

$$\begin{cases} D_{ah} = 0.01 \sum P_i D_{i,a} \\ D_{ag} = 0.01 \sum P_i D_{i,g} \\ D_{ah} = 0.01 \sum P_i D_{i,h} \end{cases}$$
(6.7)

 P_i je postotak odnosnoga "prosijeva" u ukupnoj masi uzorka, $D_{i,a}$, $D_{i,g}$ i $D_{i,h}$ su srednji promjeri "prosijeva" (jedn. 3.37, 3.38 i 3.39), a $D_{g\text{-}graf}$ (prikazan u tablici 6.2) je očitan iz $d_g\text{-}\sigma_g$ dijagrama (slika 3.4) ili izračunan prema jedn 3.10. Time je pokriven maksimalni raspon mogućih veličina srednjeg zrna.

U prvom planu prikazanih rezultata je velika je razlika između učinka načina zbrajanja utjecaja pojedinih prosijeva na prosječno zrno cijeloga uzorka (jedn 6.6). i učinka izbora načina određivanja srednjeg promjera zrna za pojedine prosjeve (jedn 6.7). To pokazuje da je bitan postupak integracije učinka cijelog granulometrijskog sastava, a ne samo metode određivanja srednje vrijednosti u prosijevu.

Ilustracija ovoga prikazana je rezultatima izračuna hidrauličke vodljivosti kopnenih prapora glinokopa iločke ciglane i močvarnih prapora duž trase našičke obilaznice u tablici 6.1 i slikama 6.2 do 6.5. Iako se radi o tvorevinama među kojima je razlika u veličini propusnosti deseterostruka, ne zapaža se razlika u preciznosti izračuna hidrauličke vodljivosti povezane sa svojstvima odnosnih naslaga. Bitna razlika u točnosti nastaje postupkom integracije učinka veličine zrna pojedinih "prosijeva". Geometrijskom integracijom (jedn.6.6) pojavljuje se odnos izračunane i mjerene hidrauličke vodljivosti za pojedine bušotine od 0,5 do 1,9 što zadovoljava čak i kriterije prahovitih naslaga, a prosječna razlika svih analiziranih uzoraka je manja od 20%.

Slika 6.5 Grafička korelacija izračuna hidrauličke vodljivosti određene Kozeny-Carmanovom metodom (KC) uz različit izračun efektivne srednje veličine zrna u uzorku i korelacijskom metodom ($K_{(COR)}$) na temelju sadržaja agregata praha i gline te korelacijskih odnosa propusnosti i tlaka ulaska zraka. Indeks Dg-graf odnosi se na veličinu srednjeg zrna očitanog iz krivulje na slici 3.4 i prema jedn. 3.10

Aritmetičkom integracijom učinka veličine zrna pojedinih "prosijeva" (jedn.6.7) dobije se prosječno zrno prema kojemu je hidraulička vodljivost određena KC jednadžbom desetak i više puta manja od one određene permeametrom (slike 6.2 do 6.5, tablica 6.1). Kako se upravo takav postupak prikazuje u literaturi, vjerojatno je upravo to presudan razlog komentarima kojima se ograničava valjanost Kozeny-Carmanove jednadžbe.

Za istaknuti je ponovno da je relativno mala razlika u rezultatima prema metodi određivanja veličine srednjega zrna u "prosijevu". Međutim, kako je logaritamska integracija učinka veličine zrna u uzorku na propusnost najbliža stvarnoj funkciji, onda je logično to dosljedno uvažavati i za pojedine prosjeve, pa i za osrednjenje propusnosti po debljini sloja, odnosno bušotine.

6.2 Korelacijski odnosi hidrauličke vodljivosti i sadržaja praha i gline

Korelacijski odnosi propusnosti i sadržaja osnovnih agregata tla vrlo su raširena tema u tloznanstvenim istraživanjima. Ti odnosi su u pravilu usmjereni na istraživanja hidrauličke vodljivosti "skoro saturiranog" tla, tj. tla pri podtlaku od 10 cm, zbog njene prikladnosti za procjenu nesaturirane vodljivosti (Jarvis et al. 2002) . Takve statističke analize i rezultirajuće pedotransfer funkcije pretežito se odnose na razrahljena tla kod kojih je standardna gustoća 1300 kg/m³.

S hidrogeološkog gledišta interesantni su rezultati korelacije saturirane hidrauličke vodljivosti koju su prikazali Campbel & Campbel, (1982) prema sumarnom sadržaju gline i praha u sitnoklastičnim tvorevinama, a posebice prema njihovu pojedinačnom sadržaju (Campell, 1985) u obliku:

$$K = C \exp\left[-3.7m_p - 6.9m_g\right]$$

$$6.8$$

U njemu su sadržaj praha m_p i gline m_g izraženi u dijelovima od ukupne mase uzorka, a najbolja korelacija svih uzoraka tla gustoće ρ =1300 kg/m³, kakva se kao standardna uzima u tloznanstvenim istraživanjima, ostvarena je uz konstantu $C=3.92*10^{-5}$ (m/s).

Učinak gustoće konsolidiranih naslaga uključuje se uvodeći sukcijska svojstva koherentnih tvorevina koristeći okolnost da je saturirana hidraulička vodljivost *K* približno obrnuto proporcionalna s kvadratom tlaka ulaska zraka ψ_e . Ta okolnost može se izraziti odnosom:

$$K\psi_e^2 = konst.$$
 6.9

koji se uzima kao osnovni parametar mjerila promjenjivosti pri proučavanje varijacija hidrauličkih svojstava tla (Warrick et al., 1977, Russo and Bresler, 1980). Učinak gustoće (ρ_e) proizvoljne tvorevine na odnos tlaka ulaska zraka promatranog (ψ_e) i standardnoga ($\psi_{I,3}$).tla može se izraziti empirijskim izrazom

$$\frac{\psi_e}{\psi_{1,3}} = \left(\frac{\rho_e}{1,3}\right)^{0.67\beta} \tag{6.10}$$

kojega predlaže Campbell (1985) korigirajući odnose u korelaciji podataka koje su objavili Hall et al. (1977), te Russo & Bresler (1980). U tom odnosu eksponent $\beta = ln\psi/lnS_e$ predstavlja kotangens kuta koji zatvara bilogaritamski ocrt krivulje zasićenja S_e s ordinatom potencijala ψ , a odgovara recipročnoj vrijednosti Brooks-Coreyevog (1966) koeficijenta krivulje zasićenja.

Izjednačavanjem jednadžbi 6.8 i 6.9, te uvrštavanjem jedn. 6.10 za $\psi_{I,3} = \psi_e$ jednadžba (6.8) za tlo bilo koje gustoće ρ_e dobije oblik:

$$K = C \left(\frac{1,3}{\rho_e}\right)^{1,34\beta} \exp\left[-3,7m_p - 6,9m_g\right]$$
6.11

Izražavanje koeficijenta β pomoću granulometrijskih parametara Campell (1985) pronalazi analizirajući hod podataka krivulje vlažnosti i potencijala ulaska zraka i analogna slijeda statističkih parametara granulometrijskog sastava d_g - σ_g promatranih tvorevina (jedn. 3.10 do 3.13) i predlaže izražavanje sukcijska svojstva promatranog tla odnosima:

$$\psi_{1,3} = -\frac{0,5}{\sqrt{d_s}} \tag{6.12}$$

$$\beta = -2\psi_{1,3} + 0, 2\sigma_g = \frac{1}{\sqrt{d_g}} + 0, 2\sigma_g \tag{6.13}$$

koji su uključeni u skupinu pedotransfer funkcija prikladnih za modeliranje retencije vode i hidrauličku vodljivost tala širom USA (Rawls, 2004).

Ovdje provedene korelacije pokazale su da konstanta $C=3,92*10^{-5}$ (*m/s*) kalibrirana za standardno tlo relativne gustoće $\rho=1,3$ dovodi do sustavnog odstupanja za veliku većinu analiziranih uzoraka neovisno o njihovoj dubini. Ovdje provedenom kalibracijom je utvrđeno da koeficijent C=1,6*10⁻⁵ najbolje odgovara za istraživane vodozadržne naslage pa je korištena jednadžba 6.11 u obliku:

$$K_{COR} = 1.6 * 10^{-5} \left(\frac{1.3}{\rho_e}\right)^{1.34 \left(\frac{1}{\sqrt{d_g}} + 0.2\sigma_g\right)} \exp\left[-3.7m_p - 6.9m_g\right]$$
6.14

a ostvareni rezultati bili su vrlo usporedivi s rezultatima optimalne primjene Kozeny-Carmanove jednadžbe (slika 6.15).

Slika 6.6 Položaj uzoraka kopnenih prapora u Iloku i močvarnih prapora sa našičke obilaznice u ortogonalnom teksturnom dijagramu srednjeg promjera d_g i standardne devijacije σ_g (prama Shirazi & Boersma, 1984)

Tablica 6.2 Geometrijske srednje vrijednosti hidrauličke vodljivosti za analizirane bušotine izračunanih KC jednadžbom uz geometrijsko srednje zrno svih frakcija (D_{lng}) i geometrijsko srednje zrno sa d_g - σ_g dijagrama (slika 6.5), te izračunanih korelacijskom jednadžbom K_{COR} – jedn. 6.14. Napomena: Prosjek je izračunan bez podatka za bušotinu IVB-3 za koju postoji samo jedna analiza koja daje K najveći od svih nalaza a koja je označena žutom bojom

Područje	Oznaka bušotine	Srednja testirana K _t (m/s)	Broj test. uzoraka	KC _(Dlng)	$\mathrm{KC}_{\mathrm{(Dlng)}}/\mathrm{K}_{\mathrm{t}}$	KC _(Dg-graf)	$K_{\rm (Dg-grad)}/K_t$	K _(COR)	$K_{(coR)}/K_t$
	IB3	9,62E-09	4	6,87E-09	0,71	3,22E-08	3,35	1,07E-08	1,11
Ilok	IIIB3	1,19E-08	2	5,55E-09	0,47	2,86E-08	2,40	1,03E-08	0,87
	IVB3	3,33E-08	1	4,06E-09	0,12	2,38E-08	0,71	7,76E-09	0,23
Našička obilaznica	ST-2	6,40E-10	2	6,25E-10	0,98	2,08E-09	3,25	7,32E-10	1,14
	ST-4	1,32E-09	2	6,89E-10	0,52	2,10E-09	1,59	7,91E-10	0,60
	ST-6	4,49E-10	2	7,63E-10	1,70	3,26E-09	7,26	1,19E-09	2,65
	ST-7	2,85E-10	2	4,97E-10	1,74	1,55E-09	5,44	5,17E-10	1,81
	ST-8	6,74E-10	2	5,18E-10	0,77	1,69E-09	2,51	5,53E-10	0,82
Prosječan odnos				0,83		2,29		1,05	

Korelacijska metoda primijenjena je za sve uzorke s istraživačkih polja prapornih naslaga iločke ciglane i močvarnih prapora našičke terase, za ukupno 8 bušotina za koje postoje podaci o laboratorijskom određivanju hidrauličke vodljivosti. Srednje hidrauličke vodljivosti određene za sve bušotine grupirale su se u dvije skupine ovisno o vrsti prapora (slika 6.5) i sve su bliske odnosnim rezultatima ostvarenim Kozeny-Carmanovom metodom, te zadovoljavaju kriterij $1/3K_i > K < 3K_t$. Izuzetak je samo bušotina IV-3 na kojoj postoji samo jedan podatak o permeametarskom testu, a njena precijenjena hidraulička vodljivost pojavljuje se i pri primjeni Kozeny-Carmanove metode, pa je za očekivati da je pogrješka u laboratorijskom određivanju K. Zanimljivo je da srednji odnos predviđene hidrauličke vodljivosti određene korelacijskom metodom prema testiranoj K iznosi 1,05 (tablica 6.2) što ovu metodu postavlja u sam vrh pouzdanosti identifikacije hidrauličke vodljivosti glinovitoprahovitih naslaga.

Također valja istaknuti da se ovom metodom, koja je razvijena potpuno različitim postupkom od Kozeny-Carmanove metode, ostvaruju vrlo dobri rezultati, pa ove metode mogu biti međusobna kontrola i vodilja u provjeri ispravnosti laboratorijskih testiranja.

Značajno je također da je primjena jedn. 6.14 ostvariva uz poznavanje približnog udjela praha i gline u promatranom uzorku, koje se može prepoznati već iz standardnih klasifikacija. U takvim se uvjetima preko ortogonalnog teksturnog dijagrama (slika 6.6) mogu očitati svi parametri za izračun hidrauličke vodljivosti (Urumović, 2003). Nedostaje tek relativna gustoća koja se u neporemećenom tlu obično kreće oko 2,0.

Grafički (slika 6.5) i tablični (tablica 6.2) prikazi mogu se ukratko opisati odnosom:

$$K_{Dg} \rangle K_{COR} \approx K_{\Sigma \ln Da} = K_{\Sigma \ln Dg} \approx K_{test} \rangle \rangle K_{da} \approx K_{dg} \approx K_{dh}$$
(6.15)

koji je identičan za istraživačko polje iločke ciglane kao i za istraživačko polje našičke terase.

6.3 Korelacijski odnosi specifične površine i Attebergovih granica

Dobro je poznato da porast plastičnosti glinenih tvorevina prati opadanje njihove propusnosti. Funkcionalna korelacija između ovih dvaju svojstava nije poznata. Međutim, postoji jasna funkcionalna sveza između propusnosti, odnosno hidrauličke vodljivosti i specifične površine te brojne, često dosta uspješne korelacije između specifične površine i pojedinih Attebergovih granica, poglavito granice tečenja. Pritom je moguć i određeni nesklad na relaciji između propusnosti i specifične površine koji nastaje zbog njene višeznačnosti kod glinenih tala prvenstveno izazvanog unutarnjom površinom minerala glina, jer u otporima strujanju vode sudjeluje samo vanjska specifična površina.

Slika 6.7 Korelacije recipročnih vrijednosti specifične površine i granice tečenja iz literaturnih podataka (prema Chapuis & Aubertin (2003)

U literaturi su rašireni prikazi korelacije pojedinih oblika specifične površine i Attebergovih granica. Amy B. Cerato (2001) je u svojem magistarskom radu osim vlastitih istraživanja prikazala i 12 korelacijskih funkcija iz literature od kojih se 3 odnose na vanjsku specifičnu površinu. Neke od podataka u tim radovima su Chapuis & Aubertin (2003) prikazali dijagramom (slika 6.7) te pravocrtnim korelacijskim odnosom ($R^2=0,84$) recipročnih vrijednosti masene specifične površine a_m (m^2/g) i granice tečenja *LL* (%) prikazanog jednadžbom 6.17.

Ovdje su podaci o granicama tečenja uzoraka iz istraživačkih bušotina na iločkom glinokopu (kopneni prapori) i našičke obilaznice (močvarni prapori) primijenjeni za izračun masene specifične površine koja je uvrštena u Kozeny-Carmanovu jednadžbu oblika:

$$K = \frac{\rho g}{\mu} \frac{n^3}{5\rho_k^2 a_m^2 (1-n)^2} = 0.21 \frac{n^3}{a_m^2 (1-n)^2}.$$
6.16

Podaci o izmjerenim granicama tečenja su korišteni za izračun masene specifične površine primjenom literaturne preporuke o njihovim odnosima ostvarenim statističkim korelacijama laboratorijskih podataka o veličini granice tečenja i masene specifične površine istoga uzorka.

Kako su veličine specifične površine uzoraka korištene u tim korelacijama identificirane laboratorijski, bilo je zanimljivo ostvariti usporedbu prikladnosti mnoštva takvih podataka za izračun hidrauličke vodljivosti i te rezultate usporediti s rezultatima prikazanih postupaka identifikacije na temelju granulometrijskog sastava.

Slika 6.8 Grafička korelacija testirane i izračunane hidrauličke vodljivosti određene Kozeny-Carmanovom jednadžbom korištenjem specifične površine iz korelacije s granicom tečenja

Iskušan je veći broj predloženih relacija, a najbolji rezultati ostvareni su preko slijedećih 5 relacija raznih autora za raznovrsna tla i raznolik raspon granice tečenja:

$$\frac{1}{a_m} = 1,3513 \frac{1}{LL} - 0,0089 \qquad \begin{array}{c} (\text{Chapuis \& Aubertin,} & \text{Prema literaturnim} \\ 2003) & \text{podacima (slika 6.7)} \end{array} \qquad 6.17$$

$$a_m = \frac{LL - 19}{0,21} \qquad (\text{Gill \& Reavs, 1957}) & \text{Tla s } a_m \text{ od } 17\% - 78\% \qquad 6.18$$

$$a_m = \frac{LL - 0,93}{0,67} \qquad (\text{Ferrar \& Coleman,} \\ 1967) & \text{Britanska glinovita tla} \qquad 6.19$$

$$a_m = \frac{LL - 19,805}{0,14} \qquad (\text{Smith et al., 1985}) & \text{Izraelske gline} \qquad 6.20$$

$$a_m = \frac{LL - 19}{0,21} \qquad (\text{Zaki, 1971}) & \text{Tla s } a_m \text{ od } 50\% - 125\% \qquad 6.21$$

Na grafičkom prikazu rezultata (slika 6.8) u prvom planu je ostvarenje veće preciznosti za uzorke prahovitih kopnenih prapora nego glinovitih močvarnih prapora. U cjelini, od prikazanih 5 metoda, dvije donose neprihvatljivo velika odstupanja, tj. desetak puta veću hidrauličku vodljivost od testirane, tj. laboratorijski određene. Od ostalih triju jedna (Smith et al, 1985. za izraelske gline-jedn. 6.20) je u rangu točnosti bliska najboljim metodama temeljenim na granulometrijskom sastavu (slika 6.9), no i ostale dvije (Gill et Reavs, 1957; Zaki, 1971) pokazuju zanimljive rezultate.

Slika 6.9 Usporedba najuspješnijih rezultata izračuna hidrauličke vodljivosti na temelju korelirane specifične površine ($K_{LL-Gill}$, $K_{LL-Smith}$ i $K_{LL-Zaki}$) s rezultatima izračuna prema granulometrijskom sastavu (KC_{Dlng} i K_{COR})

Valja naglasiti da se s izdvojene tri metode izračuna specifične površine preko statističke korelacije s granicom tečenja ostvaruju bolji rezultati od metoda izračuna hidrauličke vodljivosti korištenjem aritmetičke srednje veličine zrna u uzorcima kako se to u literaturi preporuča. Razlika je i u tome što se pomoću aritmetičke sredine veličine zrna dobiju izrazito podcijenjene vrijednosti *K*, a prikazanim postupcima korištenja granice tečenja dobiju se primjerene ili nešto podcijenjene vrijednosti masene specifične površine što ima za posljedicu suprotan učinak na vrijednost hidrauličke vodljivosti.

Iz prikazane rasprave može se zaključiti da provedeni postupci određivanja hidrauličke vodljivosti na temelju granulometrijskog sastava sitnoklastičnih tvorevina mogu identificirati i vrijednosti specifične površine koja je u stvari osnovni geometrijski parametar Kozeny-Carmanove jednadžbe.

6.4 Verifikacija rezultata

U verifikacijskom postupku korišteni su podaci trećeg istraživanoga područja, kanala Dunav-Sava. Po trasi ovoga kanala izveden je veliki broj geomehaničkih bušotina iz kojih je prikupljen veliki broj uzoraka na kojima su provedene brojne laboratorijske analize uključujući granulometrijske analize, Attebergove granice i permeability test. Istraživanja su provedena po pojedinim sekcijama duž trase kanala. Na dionici od Save do Rokovaca su dvije sekcije za koje se raspolagalo s primjerenim laboratorijskim analizama. U sekciji A raspolagalo se s 28 uzoraka, a u sekciji B 52 uzorka (slika 6.14) s kompletnim analizama, dakle ukupno 80 kompleta analiza koje su sadržavale podatke granulometrijskog sastava, testiranja hidrauličke vodljivosti i Attebergovih granica istoga uzorka. To je predstavljalo pouzdano mnoštvo referentnih podataka za verifikaciju svih provedenih interpretacija praktično na laboratorijskom mjerilu jer se svi međusobno uspoređivani podaci odnose se na isti uzorak.

Prije prezentacije rezultata valja istaknuti nekoliko obilježja provedenih istraživanja. Nepovoljno je to što se radi o kampanjskoj provedbi pri kojoj hitnost provedbe često uzrokuje pogreške laboratorijskog pokusa. Drugo je nedostatak provjere u smislu da je za pouzdanu vrijednost hidrauličke vodljivosti potrebna srednja vrijednost analize triju primjeraka istoga uzorka (Chapuis et Aubertin, 2003), a ovdje se raspolagalo samo s jednim, što je značajno ograničenje za usporedbu podataka na razini laboratorijskog mjerila. Uz to standardno trajanje pokusa iznosilo je 24 sata, a neko od pokusa bili su i kraći, dok se u literaturi preporuča nekoliko dana trajanja pokusa za glinovite uzorke.

Nasuprot tome povoljne su okolnosti da se radi o vrlo velikom broju uzoraka raznovrsnih prahovito-glinovitih tvorevina koji su analizirani u uglednom laboratoriju Instituta građevinarstva Hrvatske iz Zagreba, što jamči profesionalnost provedbe istraživanja. Zbog toga se u cjelini se može reći da veliki broj pokusa provedenih u profesionalno uglednom laboratoriju daje pouzdano statističko mnoštvo, a raznolikost probušenih slojeva dostatnu veličinu, raspored gustoće i oblik oblaka podataka za verifikaciju proučavanih metoda određivanja hidrauličke vodljivosti pomoću onih metoda koje su u prethodnom postupku pokazale najbolje rezultate.

Postupak grafičke korelacije izmjerene K i predviđene na temelju izračuna KC metodom (jedn. 6.16) koristeći masenu specifičnu površinu određenu na temelju veličine granice tečenja izražava jasnu podudarnost slijeda podataka do $K_t=5*10^{-10}$, što odgovara uzorcima s manjim sadržajem gline (slika 6.10). Kod uzoraka s višim sadržajem glinovitih čestica vjerojatno prevladava utjecaj njihovog mineralnog sastava.

Slika 6.10 Grafička korelacija testirane i izračunane hidrauličke vodljivosti određene Kozeny-Carmanovom jednadžbom korištenjem specifične površine iz korelacije s granicom tečenja svih analiza iz bušotina po trasi kanala Dunav-Sava pomoću triju najuspješnijih korelacija (Gill & Reavs, 1957; Smith et al.1985; Zaki Gazalli, 1971) Oznake: K(DlngC)n – prema jedn 6.3, K(DlngL)n – prema jedn 6.5

Glavna pozornost posvećena je primjeni efektivnog srednjeg zrna u KC jednadžbi (jedn. 5.16 i 6.16). U prethodnom postupku jasno se pokazalo da logaritamski raspored veličine zrna upravlja veličinom hidrauličke vodljivosti. Ostalo je pitanje načina određivanja

zadnjeg sadržaja s nemjerljivim najmanjim zrnom. Za to su naročito bili prikladni podaci iz bušotina sa trase kanala Dunav-Sava zbog većega broja uzoraka gline. Pokazalo se da primjena Chapuisove metode (jedn. 6.3) donosi manje rasipanje podataka od logaritamske ekstrapolacije (jedn. 6.5, slika 6.11) pa je Chapuisova metoda kasnije uključena u sve izračune efektivnog srednjeg zrna.

Posebno važno pitanje u primjeni KC metode, a vjerojatno i nekih drugih metoda u kojima se pojavljuje funkcija poroznosti, je identifikacija efektivne poroznosti. Ovdje je efektivna poroznost povezana s efektivnim srednjim zrnom jer su to dvije komplementarne veličine u Kozeny-Carmanovoj jednadžbi s različitom jakošću utjecaja na veličinu hidrauličke vodljivosti. Upravo je verifikacija rezultata na temelju podataka iz bušotina po trasi kanala Dunav-Sava bila posebno dragocjena u završnoj identifikaciji slijeda krivulje poroznosti prikazane na slici 3.7. Važnost njene primjene ilustrirana je na slici 6.12 na kojoj je izražena deformacija slijeda korelacijskog odnosa testirane i predviđene K čak i u slučaju kada se koristi jedinstvena poroznost jednaka srednjoj vrijednosti efektivne poroznosti svih glinovito-prahovitih uzoraka.

Slika 6.11 Grafička korelacija testirane i izračunane hidrauličke vodljivosti u ovisnosti o načinu određivanja veličine zrna u zadnjem "prosijevu". Oznake: K(DlngC)n – prema jedn 6.3, K(DlngL)n – prema jedn 6.5

Slika 6.12 Grafička korelacija testirane i izračunane hidrauličke vodljivosti uz primjenu jedinstvene srednje veličine efektivne poroznosti $K(D_{lng}C)$ i efektivne poroznosti $K(D_{lng}C)$ n u funkciji veličine efektivnog zrna prema krivulji na slici 3.7

Korelacijska metoda (jedn. 6.14) spada među približne ali vrlo dragocjene metode identifikacije hidrauličke vodljivosti. U prethodnom prikazu pokazalo se da je njena preciznost u lokalnom i regionalnom mjerilu izuzetno dobra (slike 6.5 i 6.9, tablica 6.2). U laboratorijskom mjerilu (slika 6.13), kada se koreliraju pojedinačni laboratorijski podatci mjerene i predviđene hidrauličke vodljivosti istoga uzorka, logično je očekivati veće rasipanje podataka. Ono je dijelom uzrokovano širokim pojasom agregata praha i gline, no dijelom i greškama u laboratorijskom testiranju K, koje se osrednjenjem na lokalnom i regionalnom mjerilu snažno zatomljuju. Ipak, jednoznačan raspored podataka potvrđuje visoku korelativnost uz široku disperziju rezultata.

Slika 6.13 Grafička korelacija testirane i izračunane hidrauličke vodljivosti primjenom korelacijske metode uspoređujući pojedinačne laboratorijske podatke mjerene i predviđene K za istog uzorka

Posebnu vrijednost ima okolnost da je verifikacija na laboratorijskom mjerilu provedena na brojnim uzorcima širokog spektra litoloških svojstava polupropusnih naslaga (slika 6.15). Položaj podataka u d_g- σ_g konturnom dijagramu i klasifikacija segmenata u dijagramu (sl. 6.14) pruža mogućnost da se kvalitetna profesionalna terenska klasifikacija prenese u parametarsku klasifikaciju sitnozrnih tvorevina korištenjem ovdje verificiranih metoda.

Verifikaciju primijenjene korelacijske metode može se potvrditi usporedbom s obradom istih uzoraka KC metodom prikazanom na slici 6.15. Razvidno je da rezultati korelacijske metode prožimaju i uokviruju rezultate KC metode. To može biti dodatno objašnjenje zašto one u lokalnom i regionalnom mjerilu svojim prosjekom postaju skoro identične (slika 6.5 i 6.9).

Slika 6.14 Položaj 28 uzoraka po trasi kanala Dunav – Sava serije AT, ATP, AO i AOP, te 52 uzorka po trasi kanala Dunav–Sava serije BT, BTP, BO u statističkom d_g - σ_g konturnom dijagramu

Slika 6.15 Korelacijska usporedba rezultata Korelacijske i Kozeny-Carmanove metode izračuna hidrauličke vodljivosti istih uzoraka

Slika 6.16 Verifikacija raspona valjanosti Kozeny-Carmanove metode izračuna hidrauličke vodljivosti

Sve provedene analize u stvari potvrđuju da teorijska korektnost Kozeny-Carmanove jednadžbe dovodi do njene univerzalne valjanosti u području poroznog kontinuuma i valjanosti Darcyjeva zakona. Prema tome ne postoji ograničenja primjene KC jednadžbe povezane s granulometrijskim sastavom kako se to navodi u brojnoj literaturi od Todd-a (1959) te Freeze-a & Cherry-a (1979) do Chapuis & Aubertin-a (2003) te Yang-a & Mulligan (2004), nego postoji ograničenje aritmetičkoga postupka izračuna srednjega zrna koje se u njoj koristi. Naime, aritmetičko srednje zrno približava se stvarnom efektivnom zrnu samo za jednolične pijeske $U_H>2$. Realno efektivno zrno uzorka predstavljeno je algoritmom zbroja udjela logaritama geometrijske sredine veličine zrna pojedinih prosijeva. Ovdje je prikazano (slika 6.16) da njegova primjena omogućuje pomicanje donje granice valjanosti šest redova veličine, a gornja do veličine ograničene izvodivosti dobivanja vjerodostojnoga uzorka u kojem najveća valutica upravlja s obujmom i masom primjerenog uzorka.
7 ZAKLJUČCI

Pozornost istraživanja za temu ovog rada prvenstveno je usmjerena na odnos granulometrijskog sastava taložina i pojedinih oblika poroznosti i specifične površine, te verifikacije najraširenijih i najznačajnijih metoda izračuna propusnosti, odnosno hidrauličke vodljivosti. Formalno su te metode podijeljene na one koje se temelje na veličini Hazenova ili nekog drugog zrna s granulometrijske krivulje i izrazito su eksperimentalnoga karaktera i na one koje su povezane s veličinom srednjeg zrna i snažno su povezane s teorijskim razmatranjem.

U prvoj skupini su dominantne metode Hazena i Beyera u kojima je hidraulička vodljivost izražena umnoškom kvadrata veličine promjera zrna D_{10} i njihovog koeficijenta proporcionalnosti kojim se izražava utjecaj svih ostalih svojstava poroznoga medija. To je izrazito eksperimentalna relacija koja je valjana samo za vrlo jednolične pijeske i za njih pogrješka ne bi trebala biti veća od ±10%. Hazen tom odnosu dodaje jednostavan bezdimenzijski koeficijent kojim se izražava učinak promjene temperature na viskoznost vode, a njegovom primjenom do temperature vode od 30°C pogrješka naraste samo do 2%, pa je u tom smislu njegova primjena prikladna za sve uvjete i sve metode. Beyerov obrazac uključuje bezdimenzijski koeficijent učinka nesortiranosti zrna, međutim njegov učinak na širinu valjanosti nije razvidan, a točnost obrasca je podjednaka Hazenovu obrascu.

Funkcionalno sličnu relaciju izražava obrazac koji se naziva USBR, samo što se koristi promjer nešto većega zrna, D_{20} . Međutim, njena primjena rezultira hidrauličkom vodljivošću koja ima desetak puta veće odstupanje od mjerene vrijednosti nego Hazenov obrazac. To je redovito podcijenjenost realne vrijednosti oko 5 do 10 puta, pa je za pretpostaviti postojanje neke sustavne pogrješke koja dovodi do takvoga velikog odstupanja.

U ovu skupinu su uključene i dvije metode, Slichterove i Terzaghijeva, kod kojih se zadnjih tridesetak godina učestalo koristi Hazenovo efektivno zrno D_{10} iako su izvorno autori koristili neko srednje zrno koje su nazivali efektivnim. Najveću pogrješku pri primjeni ovih metoda, u obliku podcijenjenosti hidrauličke vodljivosti gotovo reda veličine, donosi ta zamjena veličine zrna. Obje metode su eksperimentalne, a uključuju i učinak poroznosti.

Nakon primjene veličine srednjeg zrna, kako je to u originalnoj verziji, Terzaghijeva metoda se po točnosti za jednolične pijeske izjednači s Hazenovom, a kod Slichterove metode samo se bitno reducira sustavno podcjenjivanje. Ovdje je još utvrđeno da je preostala netočnost uzrokovana veličinom funkcije poroznosti i predložena je njena promjena kojom se odstupanje hidrauličke vodljivosti izračunane Slichterovom metodom od mjerene vrijednosti izjednači s rezultatima najboljih eksperimentalnih metoda.

Za drugu skupinu karakteristična je teorijska izvedba formulacije i na tome temeljena primjena srednjeg zrna koje predstavlja učinak svih zrna sadržanih u uzorku. Teorijska razrada odnosa hidrauličke vodljivosti u funkciji geometrijskih svojstava poroznog medija predstavljena je Kozeny-Carmanovom jednadžbom koja je višestruko potvrđena eksperimentima, no izgleda da su u tim eksperimentima uglavnom korišteni uzorci relativno jednoličnih pijesaka kakvi se koriste u procesima filtriranja vode.

Pri teorijskom izvodu KC jednadžbe nije promatrana raspodjela zrna između kojih se odvija strujanje tekućine nego šuplji prostor koji je sadržavao tekućinu preko koje je prenošeno djelovanje pogonskih sila i djelovanja zidova šupljeg prostora koji se opiru gibanju tekućine, a njihova gustoća može se predočiti specifičnom površinom. Prema tome, promatrajući teorijski, ne postoji ograničenja primjene KC jednadžbe povezane s granulometrijskim sastavom kako se to navodi u brojnoj literaturi, nego postoji ograničenje postupka izračuna parametara koji se u njoj koriste. Ti su parametri poroznost i veličina srednjega zrna. Njihova veličina je za jednolične pijeske lako odrediva i relativno je podjednaka pri korištenju raznih metoda izračuna. U takvim je slučajevima i valjanost KC jednadžbe lako ostvariva. Kod dobro graduiranih i naročito sitnih tvorevina srednja veličina zrna određena uobičajenim postupkom aritmetičkog zbroja udjela veličine zrna pojedinih prosijeva rezultira s prevelikom specifičnom površinom, odnosno premalom hidrauličkom vodljivosti i to neovisno o tome da li se srednje zrno u samim prosjevima računa aritmetički, geometrijski ili harmonijski. To je vjerojatno bilo razlogom da su neki autori za sitnozrnasta tla preporučali laboratorijsko određivanje specifične površine i uvrštavanje u KC jednadžbu.

Glavni problem uzrokovan je aritmetičkim zbrajanjem udjela srednjih veličina pojedinih prosijeva. Provedenim interpretacijama podataka o granulometrijskom sastavu raznovrsnih tvorevina od gline preko jednoličnih pijesaka do dobro graduiranih šljunaka pokazano je da se realna veličina efektivnog srednjega zrna univerzalne valjanosti ostvaruje jedino integracijom udjela logaritma srednje veličine zrna pojedinih prosijeva, ili kratkih segmenata s logaritamske krivulje. Uvrštavanjem takvog srednjeg zrna bitno se poboljšaju rezultati primjene KC jednadžbe.

Međutim, otvoreno ostaje pitanje efektivne poroznosti jer vrijednosti prema literaturnim podacima nisu primjereni veličini efektivnog srednjeg zrna. Obično se prikazuju podaci koji se odnose na veličinu zrna pretežitog sadržaja u uzorku i u pravilu se ne prikazuje efektivna poroznost nego ocjedita poroznost i specifično davanje (specific yield). Polazeći od takvih literaturnih podataka konstruirana je nova krivulja efektivne poroznosti u funkciji efektivnog srednjeg zrna. Primjena takvoga para veličina efektivne poroznosti i efektivnog srednjega zrna u KC jednadžbi omogućilo je njenu primjenu s točnošću reda veličine kakav se zahtjeva za rezultate laboratorijskih testiranja i to bez ograničenja za veličinu i sortiranost sadržanih čestica, zrna i valutica. Time se valjanost Kozeny –Carmanove metode proširuje do granica valjanosti Darcyjeva zakona, a istovremeno se otkrivaju relacije pouzdanog određivanja veličine specifične površine na temelju granulometrijskog sastava koherentnih i nekoherentnih naslaga

Veličina efektivne poroznosti kalibrirana je u rasponu veličine efektivnog srednjeg zrna od 1,5 – 20 µm i 0,09 do 2,7 mm, tj. ključnim dijelovima za konstrukciju krivulje $n_e=f(D_{ea})$. Upravo se taj raspon njihovih veličina najčešće koristi u raznovrsnim hidrogeološkim i tloznanstvenim istraživanjima. Efektivno srednje zrno, $D_{ea}=D_{lng}$, izračunano integracijom udjela logaritma srednje veličine zrna pojedinih prosijeva ili kratkih segmenata s logaritamske krivulje, u matematičkom smislu predstavlja potpuno geometrijsko srednje zrno. Njegova veličina u fizikalnom smislu predočava temeljni geometrijski parametar iz kojega proizlaze glavni hidrogeološki parametri laboratorijskog mjerila koji se mogu egzaktno odrediti: efektivna poroznost (preko dijagrama $n_e=f(D_{ea})$), a izračunom specifična površina i propusnost poluvezanih i nevezanih stijena.

Drugačiji način geometrijskog srednjega zrna ostvaruje se integracijom udjela logaritma veličine srednjega zrna triju agregata: gline, praha i pijeska. Tako se dobije geometrijsko srednje zrno veće od stvarnoga i njegovom primjenom u KC jednadžbi dobiju se precijenjene vrijednosti hidrauličke vodljivosti, a dobile bi se i podcijenjene vrijednosti specifične površine. Međutim, njegovom primjenom u kombinaciji s korelacijskim odnosima sukcijskih svojstava prahovito-glinovitih tvorevina i primjenom Shirazi-Boersminog ortogonalnog trokomponentnog dijagrama otkrivena je korelacijska metoda za pouzdan izračun hidrauličke vodljivosti u hidrogeološkim istraživanjima. Ta je korelacijska metoda posebno zanimljiva za izračun hidrogeoloških parametara na temelju uobičajenih AC klasifikacija što može biti vrlo zanimljivo u istraživanjima prethodnoga karaktera.

Povezanost granulometrijskih obilježja sa specifičnom površinom prahovito-glinovitih tvorevina i njihova korelacija s Attebergovim granicama raširena je tema tloznanstvenih istraživanja. Od velikog broja statističkih jednadžbi utvrđenih korelacijom izdvojene su tri prema kojima je određena masena specifična površina prikladna za izračun hidrauličke vodljivosti KC jednadžbom za pretežito prahovite tvorevine. U slučajevima kada prevlada sadržaj gline gubi se uspješna korelacija Attebergovih granica sa specifičnom površinom što upućuje da postaje dominantan utjecaj mineralnog sastava.

Za uspješnost ovog istraživanja ključan je bio izuzetno pedantan pregled literaturnih navoda vezanih uz temu. Ono što je iznjedrilo većinu ideja i začelo ozbiljno promišljanje o procesima jest otvorenost prema drugim strukama i znanstvenim disciplinama. Polidisciplinarnost obilježava cijelu temu ovog istraživanja, od hidraulike, geologije, hidrogeologije i pedologije, pa sve do mineralogije glina. Dobro poznavanje temeljnih znanosti, fizike, kemije i matematike, ipak je bilo uvjet za promišljanje o opisivanim procesima.

Isto tako, i u ovom završnom poglavlju valja naglasiti važnost pouzdanosti podataka koji su doveli do svih spoznaja. Od izvornih literaturnih navoda (matematičkih obrazaca), do rezultata laboratorijskih analiza te provedbe i analiza pokusnih crpljenja. Ipak, za uspješnost praktičnog postupka presudna je vjerodostojnost uzorka, dakle kvaliteta jezgrovanja, njeno snimanje, uzorkovanje i analiza nabušene jezgre. Svaki segment je izuzetno bitan. Kako je učinkovitost istraživanja ovisna o osmišljenosti rasporeda i izvedbi bušotina jer su izvođenje bušotine i uzorkovanje oni procesi koji produciraju materijal istraživanja nužno je da se obavljaju u skladu s pravilima struke te zahtjeva istraživača.

1.

8 LITERATURA

- Al-Tabbuaa and Wood, D.M. (1987): Some measurements of the permeability of kaolin, Géotechnique, 37 (4) 499-503.
- Arkin, H. and Colton, R.R. (1956): Statistical metods. Barnes&Noble, Inc., 226 p. New York
- Aubertin, M., Mbobimpa, M, Bussière, B. and Chapuis, R. P. (2003): Development of the model to predict the water retention curve using basic geotechnical properties. EPM-RT-2003-01. Département of Civil Géological and Mining Engineering, École Polytechnique de Montréal. 1-55
- Bache, B.W., Forst, C.A. and Inkson, R.H.E. (1981): Moisture release characteristics and porosity of twelve Scottish series and their variability. J. Soil Science 32 505-520.
- Bačani, A. (1997): Značajke hidrauličkih granica vodonosnih slojeva na vododjelnici savsko i dravskog porječja u istočnoj Slavoniji. Disertacija, 156 str., RGN fakultet Sveučilišta u Zagrebu.
- Bear, J. (1988): Dinamics of Fluids in Porous Media. Dover Pub. P 163, pp 764.
- Brunauer, S., Emmett, P. H. And Teller, E. (1938): Adsorption of gases in multimolecular layers, J.Am. Chem. Soc. 60, 309-319.
- Beyer, W. (1964): Zur Bestimmung der Wasserdurchlässigkeit vonKiesenund Sanden aus der Kornverteilungaskurve, Wasserwirtschaft-Wasser-technik, 14. Jahrgang. Heft 6.
- Beyer, W. (1966): Hydrogeologische Untersuchungen bei der Ablagerung von Wasserschadstoffen: Zeitschrift fuer Angewandte Geologie, v.12 N 11, p 599-606.
- Beyer, W. (1966): Zur Analize der grundwaserfliessbewegung Wissenschaftliche: Zeitschrift der Technichen Universitat Dresden 16(4).
- Blake, F. C. (1922): The resistance of packing to fluid flow, Trans. Amer. Inst. Chem. Eng. 14, 515-421.
- Blank, E. (1930): Handbuch der Bodenlehre, Springer Verlag, Bd. 6
- Bloemen, G.W. (1980): Calculation of hydraulic conductivities of soils from texture an organic matter content. Zeitschr. Pflanzenernaerung Bodenkunde 143, 581-605.

Bouwer, H. (1978): Grounwater Hydrology. McGraw-Hill p.22. pp.479

- Boreli, M. (1984): Izvođenje Darcyjeva zakona shematizacijom porozne sredine sustavom kapilarnih cjevčica. Veza između koeficijenta filtracije i s krunoćom i poroznošću materijala. U "Hidraulika" Naučna knjiga Beograd, p. 252, pp. 249-252.
- Bowles, J.E.(1984): Physical and Geotechnical Properties of Soils. 2.Ed. McGraw-Hill p. 252. pp.578
- Brkić, Ž. (1995): Zalihe podzemnih voda crpilišta Ravnik-Kutina. Magistarski rad. Prirodnoslovni fakultet, Zagreb
- Brkić, Ž. (1999): Napajanje aluvijalnih vodonosnika sjeverne Hrvatske kroz slabije propusne krovinske naslage, disertacija, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, Zagreb
- Brooks R.H. and Corey, A.T. (1966): Properties of porous media affecting fluid flow. J. Irrig. Drainage Div. ASCE Proc. 72(IR2) 61-88
- Brunauer, S., Emmett, P.H. and Teller, E. (1938): Adsorption of gases in multimolekular layers. J. Am. Chem. Soc. 60, 309-319.
- Campbell, G.S. (1985): Soil physics with basic. Transport model for soil-plant system. Elsevier Sci. Publ., Amsterdam
- Campbell, G.S. and Campbell, M.D. (1982): Irrigation scheduling using soil moisture measurement: theory and practice. Qadvances in irrigation 1, 25-42.
- Carier, W.D. (2003): Goodbye, Hazen; Hello, Kozeny-Carman, J. Geotechnical and Geoenviromental Eng., Vol. 129No 11, 1054-1056.
- Carlson D. A. (2001) Depandence of Hydraulic Conductivities and Anisotropies on Geologic Properties within the Near-Surface Aquifer in Milwaukee, Wisconsin: Doctoral Dissertation, Milwaukee, Wiskonsin, University of Wisconsin-Milwaukee, 768p.
- Carlson D. (2007) Estimate of Vertical Anisotropy of Hydraulic Conductivity for Northern Louisiana Aquifers from Grain-Size Data. GCAGS Transactions, Corpus Christi,V 57, 32-42
- Carman, P.C. (1937): Fluid flow through Granular Beds. Trans. Inst. Chem. Eng., London 15,150-156.
- Carman, P.C. (1938): Determination of the specific surface of powders. J. Soc. Chem. Indust. 57, 225-234.
- Carman, P.C. (1939): Permeability of saturated sand,, soil and clay. Journal of Agricultural Science, 29, 263-273.

- Carman, P.C.(1956): Flow of Gases through Porous Media. Butterworths Scientific Publ., London.
- Cerato, A.B. (2001): Influence of specific surface area on geotechnical characteristics of ine graded soils. Thesis. Department of Civil and Environmental Engineering University of Massachusetts
- Chapuis, R. P. (1992): Full-scale hydraulic performance of soil-bentonite and compacted clay liners. Canadian Geotechnical Journal, 39 (2)
- Chapuis, R. P. and Aubertin, M. (2003): Predicting the coefficient of permeability of soils using the Kozeny-Carman equation. Département des génies civil, géologique et des mines. École Polytechnique de Montréal. 1-31
- Chapuis, R.P. and Légaré P.P.(1992): A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of aggregates and mineral filters onasphalt mixture performance ASTM STP 1147, 177-186.
- Cheng, C. &Chen, X. (2007): Evaluation of methods for determination of hydraulic properties on an aquifer-aquitard system hydrologically connected to river. Hydrogeol. J. 15:669-678
- Dagan (1989): Flow and transport in porous formations. Springer-Verlag, Berlin Heidelberg, pp. 465
- Davis, S. (1969): Porosity and permeability of natural materijals. In: Flow Through Porous Media, ed. R.J.De Wiest. Academic Press, New York, pp. 54-89.
- Davis S, and De Wiest, R.J.M.(1966): Hydrogeology, John Wiley, New York
- De Bruyn, C.M.A., Colins, L.F. and Williams, A.A.B. (1957): The specific surface, water affinity and potential expansiveness of clay. Clay Mineralogy Billetin, 3, 120-128.
- Domenico, P.A. and Schwartz, F.W.(1997): Physical and chemical hydriogeology. "nd edition, John Wiley & Sons, New York.
- Eckis, R. P. (1934): South Coastal Basin investigation, geology and ground-water storage capacity of valley fill, California Div. Water Resources Bill. 45 Sacramento California
- Fair, G.M. & Hatch, L.P.(1933): Fundamental Factors Governing Stream-Line Flow of Water through Sands. J. Amer. Water Works Assn, vol 25, No 11, 1551-1565.
- Farrar, D.M. and Coleman, J.D. (1967): The corelation of surface area with other properties of nenteen British clay soil. Journal of soil Science, 18, 118-124.
- Fetter, C.W. (1994): Applied Hydrogeology. Macmillan, New York, p. 691

- Freeze, R.A. and Cherry, J.A. (1979): Groundwater. Prentice-Hall International, Inc, London. pp. 603
- Gill, W.R. and Reaves, C.A. (1951): Relationship of Atteberg limits and cation exchange capacity of some physical properties of soil. Soil Science Society of America Proceedings, Vol. 21pp. 109-116.
- Greenland, D.J. and Quirk, J.P.(1964): Determination of the total specific surface area of soil by adsorption cetyl pyridium bromide. Journal of Soil Science, Vol. 15, 178-191.
- Hall, D.G.M., Reeve, A.J., Thomasson, A.J. and Wright, V.F. (1977): Water retention, porosity and density of field soils. Soil Surveyn Technical Monograph 9, Rothamsted Experimental Stationa, Harpenden, England.
- Hammel, J.E., Sumner, M.E. and Burema, J. (1983): Atteberg limits as indices of external surface areas of soil. Soil Science Society of America Journal, Vol. 47, 1054-1056.
- Hazen, A. (1892): Some Physical Properties of Sands and Gravels, with special reference to their use in filtration. 24th Annual Rep., Massachusetts State Board of Health, pub. Doc. No 34,539-556.
- Hazen, A. (1893): Some Physical Properties of Sands and Gravels, Mass.State Board of Health, 24th Ann. Rept.for 1892.
- Hazen, A. (1901): The filtration of Public Water Supplies. John Wiley and Sons, New York.
- Hazen, A. (1911): Discussion of "Dams on sand foundations" by A.C. Koenig. Trans. Am. Soc. Civ. Eng. 73, 199-203.
- Hantush, M.S. (1964):Hydraulic of Wells. In Advance in Hydroscience, Vol.1, 281-442
- Hernitz, A. (1980): Dubinski strukturno-tektonski odnosi u području istočne Slavonije. Disertacija, 230 str., RGN fakultet Sveučilišta u Zagrebu.
- Hillel, D. (1980): Fundamental of soil Physics, Academic Pres, New York
- Holtz, R.D. and Kovacs, W.D. (1981): An introduction to Geotechnical Engineering. Prentice Hall, New Jersey.
- Hölting, B.(1984): Hydrogeologie. Ferdinand Enke Verlag, Stuttgart pp 370
- Irani, R.R. and Callis, C.F. (1963): Particle size: measurement, interpretation and application. Jokn Wiey& Son, NewYork
- Istomina, V. S. (1957): Filtracijska svojstva tla (na Ruskom), Moskva
- Jarvis, N.J., Zavattaro, L., Rajkai, K., Reynolds, W.D., Olsen, P.A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P.B., & Jacques, D. (2002): Indirect estimation of

near-saturated hydraulic conductiviti from readily available soil information. Geoderma, 108 (1-2), 1-17.

- Johnson, A.I. (1967): Specific yield compilation of specific yields for various materials. U.S. Geological Survey Water Supply Paper, 1662-D. 72 p.
- Johnson, A.I. and Sniegocki, R.T. (1967): Comparison of laboratory and field analyses of aquifer and well characteristics at an artificial recharge well site. Artificial recharge and management of aquifer Symposium of Haifa, 1967. Internat. Assoc. Sci. Hydology Pub. 72, p 182-192
- Justin, J. D., Hinds, J. and Creager, W.P. (1944): Engineering for Dams, New York
- Kasenow, M. (1997): Applied Ground-Water Hydrology and Well Hidraulics. Water Resources Publications, LLC Highlads Ranch, Colorado, p. 552.
- Kashef, A.A.I. (1987): Groundwater Engineering. McGraw-Hill, New York.
- Keranth, K.R. (2008): Ground water assessment, development and management. Tata Mc Grow-Hill Pub. Comp., New Delhi, p. 721
- King, F.H. (1899): Principles and Conditionas of the Movement of Ground Water, U.S. Geol. Surv. 19th Ann. Rept., pt. 2, pp. 59-294.
- Koch, K., Kemna, Irving, J. & Holling, K (2011): Impact of changes in grain size and pore space on the hydraulic conductivity nad spectral induced polarization response of sand. Hydrol. Earth Syst. Sci.., 15, 1785-1794.
- Kovács, (1981): Seepage hydraulics, Elsevier Science Publishers, Amserdam
- Kozeny, J. (1927): Ueber kapillare Leitung das Wassers in Boden, Wien, Akad. Wiss.136(2a) 271.
- Kuzukami, H., Ozaki, E. and Nakaya, M. (1971): Relationships between specific surface and Liquid limit. Transactions of Japanese Society of Irrigation, Drainage and Reclamation Engineering, 37, 61-67.
- Lambe, T.W.and Witman, R.V.(1969): Soil mechanics, pp. 553, Wiley, New York
- Lange, o.K. (1958): Osnovi gidogeologii (na ruskom) Moskovskii Gosunarstvenii Univesitet, Moskow
- Laue J. & Buchheister J. (2004): Condition indicators for liquefaction susceptibility with focus on silty soils. International conference on Cyclic Behaviour of Soils and liquefaction Phenomena, Th. Triantafyllidis, A.A. Balkema Publ,Bochum.

- Lee, W.T. (1904): Underground waters of Gila Vally, Arizona, U.S. Geol. Surv. Water-Supply and Irrigation Paper 104, 8-71.
- Locat, J., Lefebvre, G. And Ballivy, G.(1984): Mineralogy, chemistry and physical properties interrelationships of some sensitive clay from Eastern Canada. Canadian Geotechnical Journal, 21, 530-540.
- Lörincz, J., Tarnai, T., Trang, Q.P., Imre, E., Talata, I., Telekes, G., Scheuermann, A., Semar, O. and Witt, K.J. (2008): The characterization of the grains and pores, aplications. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, India, 976-983.
- Masch, F.D.& Denny, K.J.(1966): Grain-size distribution and its effect on the permeability of unconsolidated sands. Water Recources Res., 2 665-677.
- Marshall, T.J., Holmes, J.W. and Rose, C.W.(1999): Soil Physics, Third Ed. Cambridge, University Press
- Mavis, F.T. and Wilsey, E.F. (1937): A study of the permeability of sand. Engneering Bulletin. No.7 Iowa State University: 1-29;
- Mbonimpa, M., Aubertin, M., Chapuis, R.P. and Bussière, B. (2002): Practocal pedotransfer functions for estimating the hydraulic conductivity. Geotechnical and Geological Engineering, 20, 235-259.
- Miklin, Ž. (1996): Inženjerskogeološki istražni radovi za kanal "Dunav-Sava". Institut za geol. istr., Zagreb
- Miletić, P., Urumović, K. (1975): O geološkom okviru hidrogeoloških značajki savske doline u Hrvatskoj. Zbornik radova RGN fakulteta, 101-105, Zagreb.
- Morris, D.A. and Johnson, A.I. (1967): Summary of hydroligic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of U.S. Geological Survey, 1948-60. U.S. Geological Survey Water Supply Paper 1839-D. p. 42
- Narasimhan, T.N. (1998): Hydraulic characterization of aquifers, reservoar rocks and soils: A history of ideas. Water Resources Research, Vol. 34, 1. 33-46
- NAVFAC DM7 (1974): Design Maual Soil Mechanics, Foundation and Eart Structures, U.S. Government Printing Office, Washington, D.C.,
- Odong, J. (2008): Evaluation of Empirical Formulae for Determination of Hodraulic Conductivity based on Grein-Size Analysis. Jour. Amer, Science, 4(1), ISSN1545-1003.

- Pršić, M. (2007): Višenamjenski kanal Dunav-Sava knjiga B: Geotehnički istražni radovi, B6 Terenski i laboratorijski istražni radovi od km 0+000 do km 20+000 (rezultati ispitivanja). Institut Građevinarsva Hrvatske, Zavod za geotehniku, Zagreb
- Rawls, W.S. (2004): Pedotransfer functions for The United States. Developments in Soil Science, Elsevier B.V., V. 30, 437-447
- Raghunath, H.M. (1987): Ground Water. JohnWiley&Sons. pp 563, New York.
- Russo, D. and Bresler, E. (1980) Scaling soil hydraulic properties of heterogeneous field. Sopil Sci. Soc. Am. J. 44, 681-684.
- Sesar, S., Miklin, Ž. i Mulabdić, M. (1996): Kanal "Dunav-Sava" Geotehnički istražni radovi. Laboratorijski istražni radovi. Institut Građevinarsva Hrvatske, Zavod za geotehniku, Zagreb
- Shirazi, M. A. and Boersma, L. (1984): A unifying quantitative analysis of soil texture, Soil Sci. Soc. Am. J. Vol. 48, 142-147.
- Slichter, C.S. (1899): Theoretical investigation of the motion of ground waters, U.S. Geol. Surv. 19th Ann. Rept., 1897-98, pt. II, pp.295 381.
- Slichter, C.S. (1902): The motions of Underground waters, U.S. Geol. Surv. Water-Supply and Irrigation Paper 67, 13-106.
- Slichter, C.S. (1905): Field Measurement of Rate of Movement of Undergraund Waters, U.S. Geol. Surv. Water-Supply and Irrigation Paper 140.
- Smith, C.W., Hadas, A., Dan, J. And Koyumdjisky, H. (1985): Shrinkage and Atteberg limits relation to other properties of primciple soil types in Israel. Geoderma, 35, pp. 47-65
- Sperry, J.M. and Peirce, J.J. (1995): A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size and porosity. Ground Water, 33 892-898.
- Sridharan, A., Rao, S M. And Murphy N. S. (1984): Liquid limit of montmorillonite soil. Geotechnical testing Journal, 9(3) 156-159.
- Sridharan, A., Rao, S M. And Murphy N. S. (1988): Liquid limit of kaolinitic soil. Géotechnique, 38 (2) 191-198.
- Sullivan, R.R & Hartel, K.I., (1942): The Permeability method for determining specific surface of fibers and powders.Advances in Coloid Science, Vol. 1, pp. 38-80, Interscience, New York.
- Taylor, D.W. (1948): Fundamentals of Soil Mechanics. Wiley, New York.

- Terzaghi, C. (1925): Principles of Soil Mechanics, Eng. News-Record, vol. 95, p.31.
- Todd, D. K. (1959): Goundwater hydology, John Wiley & Sons, New York
- Todd, D. K. (1964): Goundwater in Ven te Chow: Handbook of hydology, McGraw Hill Book Company, 13-1 do 13-55
- Tolman, C.F.(1937): Ground Water, McGraw-Hill Book Company, pp.593, New York.
- Thomsen, K. O. and Mastrolonardo, R. M. (2003): A field procedure for total porositi of saturated Soils. In Practical hendbook of soil, vadose zone and ground water contamination. CRC Press, 725-729
- Tavenas, F., Jean, P., Leblond, P and Leroieil, S. (1983b): The permeability of natural soft clays, PartI: Methods of laboratoty measurement. Canadian Geotechnical Journal, 20 (4) 629-644.
- Urumović, K. (1977.): Hidrogeološke značajke istočne Posavine u SR Hrvatskoj. Magistarski rad, Sveučilište u Zagrebu, Centar za postdiplomski studij, Zagreb.
- Urumović, K. (1977.): Hidrogeološke značajke istočne Posavine u SR Hrvatskoj. Magistarski rad, Sveučilište u Zagrebu, Centar za postdiplomski studij, Zagreb.
- Urumović, K. (1982): Hidrogeološke značajke istočnog dijela dravske potoline. Disertacija, Univerzitet u Beogradu.
- Urumović, K., Hernitz, Z, Šimun, J. (1978): O kvartarnim naslagama istočne Posavine (SR Hrvatska). Geol. vjesnik, 30/1, 297-304,Zagreb.
- Urumović, K., Hlevnjak, B., Duić, Ž. i Prelogović, E. (2006): Crpilište Skela Ilok. Elaborat o zaštitnim zonama izvorišta. Fond stručnih dokumenata Rudarsko-geološko-naftnoga fakulteta, Zagrteb
- Urumović, K., Hlevnjak, B. i Duić, Ž. (2007): Elaborat o provedenim hidrogeološkim istraživanjima na trasi državne ceste D2 dionica zaobilaznice Našica. Fond stručnih dokumenata Hydroexpert, Zagrteb
- Urumović, K., Hlevnjak, B. i Duić, Ž. (2008): Crpilište Livade. Elaborat o zaštitnim zonama izvorišta. Fond stručnih dokumenata Rudarsko-geološko-naftnoga fakulteta, Zagrteb
- Urumović, K., Hlevnjak, B. i Duić, Ž. (2010): Crpilište Čepin. Elaborat o zaštitnim zonama izvorišta. Fond stručnih dokumenata Rudarsko-geološko-naftnoga fakulteta, Zagrteb
- Urumović, K., Madžarac, A., Dujmović-Vitezić, J., Trelec, D., Tišljar, J., Sokač, A., Dujmić, D. i Dulić, I. (1979): Hidrogeološka studija za rješavanje vodoopskrbe Belog

Manastira, 1978/79. Fond stručnih dokumenata Rudarsko-geološko-naftnog fakulteta Sveučilišta u Zagrebu.

- Urumović, K., Mihelčić, D. (2000): Podzemne vode savskog vodonosnika. Okrugli stol: "Hidrologija i vodni resursi Save u novim uvjetima", 6.8. travnja 2000. Zbornik radova, str. 795 – 808.
- Urumović, K., Miletić, P., Blašković, V. i Turić, G. (1973): Vodoopskrba Popovače i Volodera; Hidrogeološki uvjeti. Fond stručnih dokumenata Rudarsko-geološko-naftnoga fakulteta, Zagrteb
- Urumović, K., Tadić, Z., Hlevnjak, B., Petrović, M. (1994): Groundwater budget of quaternary deposits in Drava valley in Croatia. XVIIth Conference of the Danube Countries on Hydrological Forecasting and Hydrological Bases of Water Management. 5-9 September, 1994. Proceedings, 499-504, Budapest.
- Vlahović, M i Jovanović, D. (1983): Elaborat o rezervama i kvaliteti opekarske sirovine na ležištu PGRO Razvitak Ilok. Fond dok. Inst. za građ. SAP Vojvodine, Subotica.
- Vomocil, J. A. (1965): Porosity; In Methods of soil analysis (ed. C.A. Black). American Society of Agronomy, Madison, Wisconsin, 1, 299-314
- Vuković M i Soro, A. (1991): Određivanje koeficijenta filtracije preko podataka o granulometrijskom sastavu. Institut za vodoprivredu Jaroslav Černi, Beograd.
- Vuković M & Soro, A. (1992): Determination of hydraulic conductivity of porous media from grain size composition, Water Resources Publications, Littleton, Colorado.
- Warrick, A.W., Mullen, G.J. and Nielsen, D.R.(1977): Scaling field-measured soil hydraulic properties using media concept. Water Resour. Res. 13, 355-362
- Zaki, G. (1971): Neobjavljeni sadržaj u McGill Univesity, peuzeto iz Cerato, 2001.
- Ziems, J. (1969): Beitrag zur kontakterosion nichtbindiger erdstoffe. Disertation, Institut für Fluß- und Seebau, TU Dresden.
- Yong, R.N.and Warkentin, P.B.(1975): Soil properties and behaviour. Elsevier Scientific Publishing Co. New York pp 449
- Yong, R.N.(2003): Influence of microstructural features on water, ion diffusion and transport in nclay soils. Appl. Clay Science, 23, 3*13.
- Yong, R.N. and Mulligan, N. (2004): Natural attenuation of Contaminants in soils. Lewis Publishers CRC Press, Boca Ration pp. 319

9 PRILOZI

9.1 Prilog 1 – Zemljovid područja istraživanja

9.2 Prilog 2 - Dokumentacija

1 PJEŠČANI VODONOSNICI

1.1 CRPILIŠTE LIVADE - BELI MANASTIR – Bušotina P-1 (pješčani vodonosnik)

1.1.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja

	Položaj uzorl	ka	Postotak prolaza očitanog s granulometrijske krivulje (%)										
	Interval	Dubina	0	10	20	30	40	50	60	70	80	90	100
2	20 - 20,3	20,1	0,06	0,145	0,18	0,2	0,24	0,27	0,29	0,34	0,37	0,46	0,9
snik	21,3 - 21,4	21,3	0,07	0,155	0,19	0,21	0,24	0,25	0,28	0,32	0,36	0,42	0,7
ouo	23,8 - 23,9	23,8	0,08	0,165	0,22	0,23	0,24	0,25	0,26	0,28	0,31	0,36	0,5
Vod	30 - 30,2	30,1	0,1	0,182	0,23	0,25	0,25	0,26	0,275	0,3	0,33	0,4	0,6
F	32,7 - 32,8	32,7	0,08	0,165	0,2	0,23	0,26	0,285	0,33	0,38	0,42	0,52	1,7
	63 - 63,2	63,1	0,04	0,1	0,12	0,135	0,15	0,17	0,19	0,23	0,25	0,28	0,7

1.1.2 Sortiranost i srednja veličina zrna

	nt sti		Srednja veli	čina zrna u uzorku, D	(mm)						
n) n	ent lost D ₁₀		aritmetička		geometrijska						
bina ka (ciji čen ‱I		Srednja veličina zrna u prosjevu								
Out	efi ⊨D _e	aritmetička	geometrijska	harmonijska	geometrijska						
I	Kc U≞U	Veličina	Veličina	Veličina	Veličina						
	n	D _{aa} (mm)	D _{ag} (mm)	D _{ah} (mm)	D _{lng} (mm)						
20,1	2,00	0,232	0,226	0,220	0,258						
21,3	1,81	0,235	0,230	0,225	0,254						
23,8	1,58	0,235	0,232	0,228	0,246						
30,1	1,51	0,255	0,253	0,250	0,267						
32,7	2,00	0,266	0,260	0,255	0,299						

1.1.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀

Dubina uzorka	Koeficijent	Hidraulička vod	lljivost, K (m/s) prema i	netodama	
(m)	$U=D_{60}/D_{10}$	Hazen-a	Beyer-a	USBR-a	K test
20	2,00	2,44E-04	2,62E-04	6,97E-05	
21	1,81	2,79E-04	3,05E-04	7,90E-05	
24	1,58	3,16E-04	3,54E-04	1,11E-04	2,55E-04
30	1,51	3,84E-04	4,34E-04	1,23E-04	
33	2,00	3,16E-04	3,39E-04	8,89E-05	
Srednja	Aritmetička	3,08E-04	3,39E-04	9,41E-05	
vrijednost	Geometrijska	3,04E-04	3,34E-04	9,21E-05	

		00		1 1			00	
Dubina uzorka		Hidraulička	vodljivost pre K (m/s)	ma Slichteru	Hidrau Te	lička vodljivos erzaghiju K (m	t prema /s)	K test
(m)	$U = D_{60}/D_{10}$	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
20	2,00	2,58E-04	2,32E-04	3,20E-04	2,59E-04	2,32E-04	3,21E-04	
21	1,81	2,64E-04	2,44E-04	3,09E-04	2,65E-04	2,44E-04	3,10E-04	
24	1,58	2,80E-04	2,64E-04	3,06E-04	2,81E-04	2,65E-04	3,07E-04	2,55E-04
30	1,51	3,54E-04	3,39E-04	3,86E-04	3,56E-04	3,41E-04	3,89E-04	
33	2,00	4,08E-04	3,75E-04	5,16E-04	4,10E-04	3,77E-04	5,19E-04	
Srednja	Aritmet- ička	3,13E-04	2,91E-04	3,68E-04	3,14E-04	2,92E-04	3,69E-04	
vrijednost	Geomet- rijska	3,08E-04	2,86E-04	3,60E-04	3,09E-04	2,87E-04	3,61E-04	

1.1.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna

1.1.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnig srednjeg zrna

Dubina uzorka (m)	$U = D_{60}/D_{10}$	Hidrauli prer granu	čka vodljivos na veličini zri lometrijske ki	t K (m/s) na iz rivulje	Hidrauličk	a vodljivost k veliči	K (m/s) prema ini zrna	osrednjenoj	K test
		KC(D30)	KC(D40)	KC(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)	
20	2,00	1,53E-04	2,20E-04	2,79E-04	2,06E-04	1,85E-04	2,55E-04	2,17E-04	
21	1,81	1,69E-04	2,20E-04	2,39E-04	2,11E-04	1,95E-04	2,47E-04	2,19E-04	
24	1,58	2,15E-04	2,34E-04	2,54E-04	2,25E-04	2,12E-04	2,46E-04	2,28E-04	2,55E-04
30	1,51	2,76E-04	2,76E-04	2,99E-04	2,88E-04	2,76E-04	3,14E-04	2,94E-04	
33	2,00	2,51E-04	3,20E-04	3,85E-04	3,34E-04	3,07E-04	4,23E-04	3,61E-04	
Srednja	Arit- maritčka	2,13E-04	2,54E-04	2,91E-04	2,53E-04	2,35E-04	2,97E-04	2,64E-04	
vrijednost	Geomet- rijska	2,07E-04	2,51E-04	2,87E-04	2,48E-04	2,30E-04	2,90E-04	2,58E-04	

1.1.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti

Dubina	Za metoc	le efektivn D ₁₀ i D ₂₀ , 9	ioga zrna %	Za hidrau	ličku vodljiv Slichteru, %	vost prema	Za hidrau	Za hidrauličku vodljivost prer Terzaghiju, %		
uzorka (m)	Hazen	Beyer	USBR	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	$Tz.K_{Dah}$	Tz.K _{Dlng}	
20	-4,2	3,0	-72,6	1,5	-8,9	25,6	1,7	-8,7	25,9	
21	9,4	19,8	-69,0	3,8	-4,2	21,4	4,0	-4,1	21,7	
24	24,0	39,1	-56,6	10,1	3,6	20,2	10,5	3,9	20,7	
30	50,9	70,4	-51,9	39,2	33,3	51,8	39,9	34,0	52,6	
33	24,0	33,3	-65,1	60,2	47,2	102,8	61,2	48,1	103,9	
Aritmetička sredina	20,8	33,1	-63,0	23,0	14,2	44,4	23,5	14,6	44,9	
Geometrijska sredina	19,5	31,3	-63,8	20,9	12,1	41,4	21,4	12,5	41,9	

1.1.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna

Dubina	Za ve granuloi	eličine zrna p netrijskoj kr	orema ivulji, %	Za osrednjene veličina zrna, %					
uzorka (m)	KC(D30)	KC(D40)	KC(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)		
20	-39,9	-13,4	9,6	-19,0	-27,3	0,2	-14,7		
21	-33,7	-13,4	-6,1	-17,2	-23,6	-3,1	-14,0		
24	-15,6	-8,1	-0,3	-11,5	-16,8	-3,4	-10,3		
30	8,4	8,4	17,2	13,1	8,3	23,3	15,5		
33	-1,5	25,8	51,2	31,3	20,7	66,2	41,6		
Aritmetička sredina	-16,5	-0,1	14,3	-0,7	-7,8	16,6	3,6		
Geometrijska sredina	-18,5	-1,2	12,7	-2,5	-9,6	14,0	1,5		

1.2 CRPILIŠTE DONJI MIHOLJAC – Bušotine DP-1 i MNB-4 (pješčani vodonosnik)

1.2.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja

Položa	ij uzorka			Posto	tak prolaz	a očitano	og s granu	lometrijsk	e krivul	je (%)		
Bušotina	Dubina (m)	0	10	20	30	40	50	60	70	80	90	100
	58	0,05	0,13	0,18	0,22	0,24	0,27	0,30	0,33	0,38	0,47	0,80
	64	0,05	0,15	0,18	0,21	0,23	0,25	0,27	0,29	0,32	0,42	0,75
	66	0,05	0,16	0,18	0,21	0,24	0,28	0,30	0,33	0,39	0,46	0,70
	68	0,05	0,16	0,18	0,21	0,24	0,28	0,30	0,32	0,39	0,46	0,70
DP-1	71	0,05	0,17	0,21	0,25	0,28	0,33	0,36	0,39	0,43	0,49	0,75
	73	0,05	0,16	0,19	0,22	0,24	0,28	0,30	0,33	0,38	0,45	0,70
	78	0,05	0,14	0,18	0,22	0,23	0,27	0,28	0,31	0,37	0,43	0,70
	82	0,05	0,14	0,18	0,21	0,23	0,27	0,29	0,32	0,37	0,46	0,90
	89	0,05	0,13	0,17	0,20	0,22	0,26	0,28	0,31	0,37	0,43	0,70
	55	0,05	0,15	0,18	0,20	0,22	0,24	0,25	0,26	0,30	0,37	0,65
	60	0,05	0,17	0,20	0,23	0,24	0,25	0,27	0,28	0,32	0,38	0,55
MND 4	64	0,1	0,22	0,27	0,31	0,34	0,38	0,41	0,44	0,50	0,60	1,20
WIND-4	70	0,05	0,18	0,23	0,26	0,28	0,30	0,32	0,34	0,38	0,46	0,80
-	80	0,05	0,16	0,20	0,25	0,28	0,32	0,36	0,42	0,50	0,65	0,14
	85	0,05	0,15	0,19	0,23	0,26	0,28	0,30	0,31	0,35	0,42	0,65

		. =		Srednja veličina	zrna u uzorku, D (mn	ı)
a	n) n	ent lost		aritmetička		geometrijska
otir	a (j	ciji čen ‰/I		Srednja velič	čina zrna u prosjevu	
ušc	Out	efi =D _e	aritmetička	geometrijska	harmonijska	geometrijska
В	zn	U⊒ U	Veličina	Veličina	Veličina	Veličina
		n	D _{aa} (mm)	D _{ag} (mm)	D _{ah} (mm)	D _{lng} (mm)
	58	2,31	0,231	0,225	0,219	0,261
	64	1,80	0,218	0,213	0,208	0,231
	66	1,88	0,228	0,223	0,218	0,246
-	68	1,88	0,236	0,230	0,225	0,256
-P-	71	2,12	0,266	0,259	0,253	0,294
Ц	73	1,88	0,241	0,235	0,230	0,260
	78	2,00	0,228	0,222	0,217	0,247
	82	2,07	0,226	0,221	0,216	0,249
	89	2,15	0,222	0,217	0,212	0,241
	55	1,70	0,217	0,212	0,207	0,232
	60	1,64	0,240	0,234	0,228	0,250
\mathbf{B}_{-1}	64	1,86	0,339	0,331	0,323	0,360
BN	70	1,83	0,269	0,263	0,256	0,288
	80	2,29	0,274	0,268	0,261	0,316
	85	2,03	0,234	0,229	0,223	0,254

1.2.2 Sortiranost i srednja veličina zrna

1.2.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀

	Dubina	Koeficijent	Hidraulička voo	dljivost, K (m/s) prer	na metodama	
Bušotina DP-1 MNB-4	uzorka (m)	ujednačenosti U=D ₆₀ /D ₁₀	Hazen-a	Beyer-a	USBR-a	K test
	58	2,31	1,96E-04	2,05E-04	6,97E-05	
DP-1	64	1,80	2,61E-04	2,86E-04	6,97E-05	
	66	1,88	2,97E-04	3,23E-04	6,97E-05	
	68	1,88	2,97E-04	3,23E-04	6,97E-05	
DP-1	71	2,12	3,35E-04	3,57E-04	9,94E-05	
	73	1,88	2,97E-04	3,23E-04	7,90E-05	
	78	2,00	2,27E-04	2,44E-04	6,97E-05	
	82	2,07	2,27E-04	2,43E-04	6,97E-05	2,78E-04
	89	2,15	1,96E-04	2,08E-04	6,11E-05	
	55	1,70	2,51E-04	2,77E-04	6,54E-05	
	60	1,64	3,16E-04	3,52E-04	8,89E-05	
MND 4	64	1,86	5,61E-04	6,11E-04	1,77E-04	
WIND-4	70	1,83	3,55E-04	3,88E-04	1,16E-04	
	80	2,29	2,86E-04	3,00E-04	8,89E-05	
-	85	2,03	2,44E-04	2,61E-04	7,90E-05	
Snadmir	inducet	Aritmetička	2,90E-04	3,13E-04	8,49E-05	
Srednja	tvrijednost	Geometrijska	2,80E-04	3,02E-04	8,15E-05	

sotina	Dubina uzorka		Hidraulička	vodljivost pre K (m/s)	ma Slichteru	Hidrau Te	lička vodljivos erzaghiju K (m	t prema /s)	K test
Buš	(m)	$U = D_{60}/D_{10}$	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
	58	2,31	2,41E-04	2,26E-04	3,47E-04	2,42E-04	2,27E-04	3,48E-04	
	64	1,80	2,07E-04	1,91E-04	2,45E-04	2,07E-04	1,91E-04	2,45E-04	
	66	1,88	2,42E-04	2,25E-04	3,00E-04	2,43E-04	2,26E-04	3,01E-04	
	68	1,88	2,66E-04	2,47E-04	3,33E-04	2,67E-04	2,48E-04	3,34E-04	
DP-1	71	2,12	3,67E-04	3,40E-04	4,84E-04	3,69E-04	3,42E-04	4,86E-04	
I	73	1,88	2,89E-04	2,67E-04	3,53E-04	2,91E-04	2,68E-04	3,55E-04	
	78	2,00	2,44E-04	2,26E-04	3,02E-04	2,45E-04	2,27E-04	3,03E-04	
	82	2,07	2,34E-04	2,18E-04	3,06E-04	2,35E-04	2,18E-04	3,07E-04	2,78E-04
	89	2,15	2,27E-04	2,10E-04	2,81E-04	2,28E-04	2,11E-04	2,81E-04	
	55	1,70	2,08E-04	1,94E-04	2,52E-04	2,09E-04	1,94E-04	2,53E-04	
	60	1,64	2,87E-04	2,63E-04	3,24E-04	2,88E-04	2,64E-04	3,25E-04	
B-4	64	1,86	6,77E-04	6,17E-04	7,66E-04	6,81E-04	6,21E-04	7,71E-04	
BN	70	1,83	3,95E-04	3,62E-04	4,66E-04	3,97E-04	3,64E-04	4,69E-04	
	80	2,29	4,06E-04	3,77E-04	5,73E-04	4,09E-04	3,79E-04	5,76E-04	
	85	2,03	2,63E-04	2,44E-04	3,30E-04	2,64E-04	2,45E-04	3,31E-04	
S	rednja	Aritmet- ička	3,04E-04	2,80E-04	3,77E-04	3,05E-04	2,82E-04	3,79E-04	
vri	jednost	Geomet- rijska	2,87E-04	2,66E-04	3,58E-04	2,89E-04	2,67E-04	3,60E-04	

1.2.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna

ušotina	Dubina uzorka	$U = D_{60}/D_{10}$	Hidrauli prer granu	čka vodljivost na veličini zri lometrijske ki	t K (m/s) na iz rivulje	Hidrauličk	a vodljivost H veliči	K (m/s) prema ini zrna	osrednjenoj	K test
Bı	(m)	00 10	KC(D30)	KC(D40)	KC _(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)	
	58	2,31	2,09E-04	2,48E-04	3,14E-04	1,95E-04	1,83E-04	2,81E-04	2,26E-04	
	64	1,80	1,65E-04	1,89E-04	2,33E-04	1,64E-04	1,52E-04	1,95E-04	1,72E-04	
	66	1,88	1,79E-04	2,34E-04	3,07E-04	1,95E-04	1,81E-04	2,41E-04	2,09E-04	
_	68	1,88	1,83E-04	2,40E-04	3,14E-04	2,14E-04	1,99E-04	2,68E-04	2,31E-04	
-P]	71	2,12	2,92E-04	3,67E-04	4,94E-04	3,00E-04	2,78E-04	3,95E-04	3,32E-04	
Ι	73	1,88	2,09E-04	2,48E-04	3,38E-04	2,34E-04	2,16E-04	2,86E-04	2,48E-04	
	78	2,00	1,97E-04	2,15E-04	2,85E-04	1,96E-04	1,81E-04	2,43E-04	2,10E-04	
	82	2,07	1,79E-04	2,15E-04	2,85E-04	1,88E-04	1,75E-04	2,45E-04	2,07E-04	2,78E-04
	89	2,15	1,57E-04	1,90E-04	2,65E-04	1,82E-04	1,68E-04	2,24E-04	1,94E-04	
	55	1,70	1,53E-04	1,85E-04	2,20E-04	1,66E-04	1,54E-04	2,01E-04	1,76E-04	
	60	1,64	2,13E-04	2,32E-04	2,63E-04	2,31E-04	2,12E-04	2,61E-04	2,35E-04	
B-4	64	1,86	4,66E-04	5,60E-04	7,00E-04	5,57E-04	5,07E-04	6,29E-04	5,65E-04	
BN	70	1,83	3,13E-04	3,63E-04	4,03E-04	3,22E-04	2,95E-04	3,80E-04	3,35E-04	
	80	2,29	2,99E-04	3,76E-04	4,91E-04	3,33E-04	3,09E-04	4,70E-04	3,81E-04	
	85	2,03	2,23E-04	2,84E-04	3,30E-04	2,12E-04	1,97E-04	2,66E-04	2,29E-04	
s	rednja	arit- maritčka	2,29E-04	2,76E-04	3,49E-04	2,46E-04	2,27E-04	3,06E-04	2,63E-04	
vri	jednost	geomet- rijska	2,18E-04	2,63E-04	3,33E-04	2,32E-04	2,15E-04	2,89E-04	2,49E-04	

1.2.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna

1.2.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti

Bušotina	Dubina	Za met zrna	ode efekti D ₁₀ i D ₂₀	vnoga , %	Za hidr pren	auličku vo na Slichter	dljivost u, %	Za hid prer	Za hidrauličku vodljivost prema Terzaghiju, %		
	uzorka (m)	Hazen	Beyer	USBR	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
	58	-29,4	-26,1	-74,9	-13,3	-18,8	24,8	-12,9	-18,4	25,4	
	64	-6,0	2,9	-74,9	-25,6	-31,2	-11,8	-25,6	-31,1	-11,7	
	66	6,9	16,3	-74,9	-12,7	-18,9	7,8	-12,4	-18,6	8,2	
_	68	6,9	16,3	-74,9	-4,3	-11,0	19,7	-3,9	-10,6	20,2	
-P	71	20,7	28,4	-64,2	32,0	22,4	74,1	32,8	23,1	75,1	
П	73	6,9	16,3	-71,6	4,1	-3,9	27,2	4,6	-3,4	27,8	
	78	-18,2	-12,0	-74,9	-12,2	-18,7	8,7	-11,8	-18,4	9,1	
	82	-18,2	-12,6	-74,9	-15,8	-21,6	10,0	-15,5	-21,4	10,4	
	89	-29,4	-25,2	-78,0	-18,2	-24,3	1,0	-18,0	-24,1	1,3	
	55	-9,8	-0,2	-76,5	-25,0	-30,3	-9,3	-24,8	-30,1	-9,1	
	60	13,7	26,6	-68,0	3,2	-5,3	16,5	3,7	-4,9	17,0	
B-4	64	102,1	120,0	-36,2	143,9	122,2	175,8	145,3	123,5	177,4	
BN	70	27,9	39,7	-58,1	42,0	30,2	67,7	42,8	31,0	68,7	
	80	2,9	7,9	-68,0	46,3	35,7	106,2	47,2	36,5	107,4	
85		-12,2	-5,9	-71,6	-5,2	-12,3	18,6	-4,8	-11,9	19,2	
Aritmetička sredina		4,3	12,8	-69,4	9,3	1,0	35,8	9,8	1,4	36,4	
Geomet	rijska sredina	0,7	8,7	-70,7	3,5	-4,3	29,0	3,9	-3,9	29,5	

1.2.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna

Bušotina	Dubina	Za v granulo	eličine zrna p metrijskoj kri	rema vulji, %	Za	a osrednjene v	veličina zrna,	%
	uzorka (m)	KC(D30)	KC(D40)	KC(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)
	58	-24,9	-10,6	13,1	-29,9	-34,3	1,0	-18,5
	64	-40,8	-32,0	-16,0	-40,9	-45,3	-29,9	-38,1
	66	-35,5	-15,8	10,5	-29,9	-34,9	-13,4	-24,9
_	68	-34,0	-13,8	13,2	-22,9	-28,3	-3,6	-16,8
-HC	71	5,3	32,1	77,9	8,0	0,1	42,4	19,4
Ι	73	-24,9	-10,6	21,6	-15,8	-22,2	2,9	-10,6
	78	-29,3	-22,7	2,6	-29,5	-34,7	-12,7	-24,5
	82	-35,5	-22,7	2,6	-32,4	-37,1	-11,7	-25,5
	89	-43,6	-31,8	-4,7	-34,6	-39,5	-19,3	-30,1
	55	-44,9	-33,4	-20,7	-40,2	-44,4	-27,7	-36,6
	60	-23,3	-16,3	-5,3	-16,8	-23,6	-6,0	-15,3
B-4	64	67,7	101,7	151,9	100,3	82,6	126,6	103,4
BN	70	12,6	30,5	44,9	16,0	6,3	36,9	20,7
	80	7,8	35,2	76,6	20,0	11,3	69,1	37,2
	85	-19,9	2,4	18,8	-23,6	-29,2	-4,3	-17,7
Aritmetička sredina		-17,6	-0,5	25,8	-11,5	-18,2	10,0	-5,2
Geometrijska sredina		-21,5	-5,5	19,7	-16,5	-22,7	4,2	-10,3

1.3 CRPILIŠTE ČEPIN – Bušotina OČP-1 (pješčani vodonosnik)

	Položaj u	zorka	Postotak prolaza očitanog s granulometrijske krivulje										
	Interval	Dubina	0	10	20	30	40	50	60	70	80	90	100
	6,5 - 7	6,7	0,04	0,075	0,085	0,11	0,125	0,14	0,16	0,18	0,19	0,48	1,6
_	14 - 14,5	14,2	0,04	0,09	0,11	0,125	0,14	0,16	0,18	0,19	0,25	0,35	0,48
vinî	16,5 - 17	16,7	0,05	0,15	0,24	0,3	0,38	0,42	0,45	0,5	0,54	0,7	1
Kro	17,5 - 18	17,7	0,04	0,09	0,15	0,2	0,26	0,3	0,38	0,42	0,49	0,56	0,9
, ,	35 - 35,5	35,2	0,06	0,15	0,2	0,24	0,26	0,3	0,35	0,4	0,45	0,52	0,9
	41 - 41,5	41,2	0,04	0,08	0,11	0,13	0,155	0,18	0,22	0,28	0,35	0,44	0,8
	72 - 72,5	72,2	0,05	0,085	0,11	0,12	0,135	0,15	0,18	0,21	0,25	0,31	0,53
	74,5 - 75	74,2	0,05	0,11	0,135	0,15	0,17	0,18	0,19	0,2	0,22	0,26	0,42
	76 - 76,5	76,2	0,04	0,095	0,135	0,17	0,19	0,23	0,27	0,32	0,38	0,45	0,6
	77 - 77,5	77,2	0,04	0,07	0,1	0,13	0,15	0,17	0,2	0,2	0,29	0,38	0,55
	79 - 79,5	79,2	0,04	0,075	0,11	0,145	0,19	0,24	0,29	0,35	0,41	0,51	0,8
	81,5 - 82	81,7	0,04	0,075	0,095	0,125	0,155	0,19	0,22	0,27	0,32	0,4	0,7
	84 - 84,5	84,2	0,03	0,07	0,09	0,11	0,125	0,14	0,16	0,18	0,195	0,27	0,7
	86,0-86,5	86,2	0,042	0,093	0,13	0,15	0,17	0,19	0,2	0,22	0,24	0,28	0,6
<u>i</u> k	87,5-88,0	87,7	0,04	0,07	0,1	0,13	0,17	0,19	0,24	0,29	0,36	0,45	0,7
ISOU	90 - 90,5	90,2	0,03	0,06	0,07	0,08	0,09	0,1	0,12	0,135	0,15	0,18	0,48
opc	92,5 - 93	92,7	0,04	0,074	0,09	0,1	0,11	0,125	0,14	0,15	0,17	0,19	0,45
\sim	95,5 - 96	95,7	0,04	0,09	0,11	0,12	0,16	0,15	0,165	0,19	0,23	0,29	1
	96,5 - 97	96,7	0,04	0,1	0,12	0,14	0,14	0,17	0,19	0,22	0,26	0,37	0,8
	100-100,5	100,2	0,04	0,09	0,115	0,135	0,15	0,16	0,18	0,2	0,24	0,33	0,8
	103-103,5	103,2	0,04	0,09	0,12	0,14	0,165	0,19	0,22	0,25	0,29	0,34	0,6
	106-106,5	106,2	0,03	0,13	0,17	0,21	0,24	0,27	0,3	0,34	0,4	0,5	1
	110-110,5	110,2	0,025	0,1	0,14	0,18	0,21	0,24	0,27	0,3	0,35	0,43	0,8
	112-112,5	112,2	0,025	0,05	0,07	0,115	0,16	0,21	0,29	0,37	0,47	0,61	1,5
	115-115,5	115,2	0,03	0,125	0,19	0,23	0,28	0,32	0,37	0,46	0,58	0,8	1,6
	122-122,5	122,2	0,04	0,08	0,11	0,13	0,15	0,16	0,17	0,19	0,22	0,33	1
	139,5-140	139,7	0,02	0,08	0,13	0,16	0,19	0,24	0,27	0,32	0,42	0,6	1,7
lina	142,5-143	142,7	0,04	0,1	0,13	0,15	0,16	0,18	0,2	0,25	0,34	0,5	1
Poc	145,5-146	145,7	0,04	0,08	0,11	0,13	0,15	0,17	0,19	0,20	0,28	0,40	0,60
	149-149,5	149,2	0,04	0,10	0,15	0,19	0,25	0,30	0,35	0,42	0,46	0,55	0,90

1.3.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja

			Srednja veličin	na zrna u uzorku, D (m	m)
ਜ ਜਿ	ost 010		aritmetička		geometrijska
a (1	cije čen		Srednja ve	ličina zrna u prosjevu	u <u> </u>
Dut Defi		aritmetička	geometrijska	harmonijska	geometrijska
I I	Kc U⊒	Veličina	Veličina	Veličina	Veličina
	1	D _{aa} (mm)	D _{ag} (mm)	D _{ah} (mm)	D _{lng} (mm)
72,2	2,00	0,143	0,141	0,139	0,160
74,2	1,73	0,161	0,158	0,155	0,171
76,2	2,84	0,182	0,177	0,171	0,216
77,2	2,71	0,140	0,137	0,135	0,165
79,2	3,92	0,167	0,163	0,160	0,215
81,7	3,14	0,147	0,144	0,142	0,179
84,2	2,39	0,121	0,117	0,114	0,139
86,2	2,22	0,159	0,155	0,151	0,175
87,7	3,43	0,150	0,148	0,145	0,188
90,2	2,03	0,094	0,092	0,091	0,105
92,7	1,87	0,114	0,112	0,111	0,124
95,7	1,89	0,143	0,140	0,136	0,161
96,7	2,01	0,156	0,152	0,147	0,176
100,2	2,00	0,148	0,144	0,141	0,167
103,2	2,44	0,159	0,155	0,151	0,182
106,2	2,31	0,219	0,202	0,185	0,253
110,2	2,70	0,182	0,169	0,155	0,216
112,2	5,80	0,127	0,123	0,119	0,195
115,2	2,96	0,245	0,225	0,204	0,311
122,2	2,13	0,141	0,138	0,135	0,163

1.3.2 Sortiranost i srednja veličina zrna

1.3.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀

Dubina uzorka	Koeficijent ujednačenosti	Hidraulička vod	ljivost, K (m/s) prema	metodama	
(m)	ujednačenosti U=D ₆₀ /D ₁₀	Hazen-a	Beyer-a	USBR-a	K test
72,2	2,00	9,40E-05	1,01E-04	2,25E-05	
74,2	1,73	1,40E-04	1,55E-04	3,36E-05	
76,2	2,84	1,05E-04	1,05E-04	3,30E-05	
77,2	2,71	5,68E-05	5,77E-05	1,80E-05	
79,2	3,92	6,35E-05	6,00E-05	2,25E-05	
81,7	3,14	5,68E-05	5,61E-05	1,64E-05	
84,2	2,39	5,21E-05	5,42E-05	1,42E-05	
86,2	2,22	9,40E-05	9,91E-05	3,18E-05	
87,7	3,43	5,68E-05	5,51E-05	1,80E-05	
90,2	2,03	4,04E-05	4,33E-05	7,43E-06	1 40E 04
92,7	1,87	6,53E-05	7,10E-05	1,42E-05	1,40E-04
95,7	1,89	9,40E-05	1,02E-04	2,25E-05	
96,7	2,01	1,09E-04	1,17E-04	2,74E-05	
100,2	2,00	9,40E-05	1,01E-04	2,49E-05	
103,2	2,44	9,40E-05	9,73E-05	2,64E-05	
106,2	2,31	1,96E-04	2,05E-04	6,11E-05	
110,2	2,70	1,16E-04	1,18E-04	3,91E-05	
112,2	5,80	2,90E-05	2,52E-05	1,08E-05	
115,2	2,96	1,81E-04	1,81E-04	7,90E-05	
122,2	2,13	7,42E-05	7,89E-05	2,11E-05	
Srednja	Aritmetička	9,33E-05	9,69E-05	2,82E-05	
vrijednost	Geometrijska	8,46E-05	8,69E-05	2,49E-05	

Dubina uzorka		Hidraulička vodljivost prema Slichteru K (m/s)			Hidrau Te	lička vodljivos erzaghiju K (m	t prema /s)	K test
(m)	$U=D_{60}/D_{10}$	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
72,2	2,00	6,47E-05	6,18E-05	8,12E-05	6,26E-05	5,98E-05	7,86E-05	
74,2	1,73	9,17E-05	8,50E-05	1,03E-04	8,98E-05	8,33E-05	1,01E-04	
76,2	2,84	1,43E-04	1,26E-04	2,01E-04	1,42E-04	1,26E-04	2,00E-04	
77,2	2,71	6,34E-05	5,95E-05	8,89E-05	6,16E-05	5,77E-05	8,63E-05	
79,2	3,92	1,20E-04	1,10E-04	1,98E-04	1,20E-04	1,10E-04	1,98E-04	
81,7	3,14	8,32E-05	7,73E-05	1,23E-04	8,22E-05	7,65E-05	1,22E-04	
84,2	2,39	3,74E-05	3,34E-05	4,95E-05	3,50E-05	3,12E-05	4,62E-05	
86,2	2,22	9,49E-05	8,60E-05	1,16E-04	9,36E-05	8,48E-05	1,15E-04	
87,7	3,43	9,21E-05	8,58E-05	1,44E-04	9,14E-05	8,52E-05	1,43E-04	
90,2	2,03	1,34E-05	1,25E-05	1,66E-05	1,07E-05	9,98E-06	1,33E-05	1 40E 04
92,7	1,87	2,76E-05	2,61E-05	3,25E-05	2,47E-05	2,33E-05	2,90E-05	1,40E-04
95,7	1,89	6,53E-05	5,88E-05	8,28E-05	6,32E-05	5,69E-05	8,01E-05	
96,7	2,01	9,18E-05	8,17E-05	1,17E-04	9,05E-05	8,06E-05	1,16E-04	
100,2	2,00	7,55E-05	6,84E-05	9,65E-05	7,38E-05	6,69E-05	9,43E-05	
103,2	2,44	9,97E-05	9,01E-05	1,31E-04	9,87E-05	8,93E-05	1,29E-04	
106,2	2,31	2,64E-04	2,13E-04	3,50E-04	2,65E-04	2,14E-04	3,52E-04	
110,2	2,70	1,36E-04	9,82E-05	1,90E-04	1,35E-04	9,75E-05	1,89E-04	
112,2	5,80	6,18E-05	5,44E-05	1,47E-04	6,11E-05	5,38E-05	1,46E-04	
115,2	2,96	3,37E-04	2,32E-04	5,42E-04	3,39E-04	2,34E-04	5,45E-04	
122,2	2,13	6,43E-05	5,89E-05	8,51E-05	6,23E-05	5,71E-05	8,25E-05	
Srednja	Aritmet- ička	1,06E-04	8,98E-05	1,52E-04	1,05E-04	8,88E-05	1,50E-04	
vrijednost	Geomet- rijska	8,88E-05	7,85E-05	1,23E-04	8,69E-05	7,67E-05	1,21E-04	

1.3.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna

Dubina uzorka (m)	$U = D_{60}/D_{10}$	Hidrauli prer granu	čka vodljivos na veličini zri lometrijske ki	t K (m/s) na iz rivulje	Hidrauličk	osrednjenoj	K test		
. ,	00 10	KC(D30)	KC _(D40)	KC _(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)	
72,2	2,00	3,46E-05	4,38E-05	5,41E-05	4,89E-05	4,67E-05	6,13E-05	5,41E-05	
74,2	1,73	6,08E-05	7,35E-05	8,75E-05	7,01E-05	6,50E-05	7,90E-05	7,31E-05	
76,2	2,84	9,78E-05	1,29E-04	1,79E-04	1,12E-04	9,91E-05	1,57E-04	1,29E-04	
77,2	2,71	4,17E-05	7,13E-05	7,13E-05	4,80E-05	4,50E-05	6,74E-05	5,60E-05	
79,2	3,92	7,12E-05	1,22E-04	1,95E-04	9,43E-05	8,64E-05	1,56E-04	1,19E-04	
81,7	3,14	4,67E-05	7,18E-05	1,08E-04	6,44E-05	5,99E-05	9,55E-05	7,70E-05	
84,2	2,39	2,29E-05	3,00E-05	3,70E-05	2,76E-05	2,46E-05	3,64E-05	3,08E-05	
86,2	2,22	6,56E-05	8,42E-05	1,05E-04	7,32E-05	6,63E-05	8,96E-05	7,91E-05	
87,7	3,43	5,38E-05	9,19E-05	1,15E-04	7,18E-05	6,69E-05	1,13E-04	8,83E-05	
90,2	2,03	6,78E-06	8,58E-06	1,06E-05	9,38E-06	8,72E-06	1,16E-05	1,03E-05	1.40E.04
92,7	1,87	1,53E-05	1,96E-05	2,40E-05	1,99E-05	1,88E-05	2,34E-05	2,13E-05	1,40E-04
95,7	1,89	3,46E-05	4,45E-05	5,41E-05	4,93E-05	4,44E-05	6,25E-05	5,41E-05	
96,7	2,01	5,71E-05	7,46E-05	8,42E-05	7,08E-05	6,31E-05	9,04E-05	7,78E-05	
100,2	2,00	4,80E-05	5,92E-05	6,74E-05	5,76E-05	5,22E-05	7,36E-05	6,36E-05	
103,2	2,44	6,01E-05	8,34E-05	1,11E-04	7,74E-05	7,00E-05	1,01E-04	8,65E-05	
106,2	2,31	1,90E-04	2,48E-04	3,14E-04	2,13E-04	1,73E-04	2,83E-04	2,34E-04	
110,2	2,70	1,03E-04	1,40E-04	1,83E-04	1,06E-04	7,65E-05	1,48E-04	1,16E-04	
112,2	5,80	3,95E-05	7,65E-05	1,32E-04	4,78E-05	4,21E-05	1,14E-04	7,15E-05	
115,2	2,96	2,42E-04	3,58E-04	4,68E-04	2,75E-04	1,89E-04	4,42E-04	3,19E-04	
122,2	2,13	4,12E-05	5,33E-05	6,23E-05	4,86E-05	4,46E-05	6,43E-05	5,48E-05	
Srednja	Arit- maritčka	6,98E-05	9,87E-05	1,29E-04	8,29E-05	7,02E-05	1,19E-04	9,50E-05	
vrijednost	Geomet- rijska	5,58E-05	7,84E-05	1,00E-04	6,84E-05	6,04E-05	9,50E-05	7,82E-05	

1.3.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna

1.3.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti

Dubina	Za metoc	le efektivn D ₁₀ i D ₂₀ , 9	ioga zrna %	Za hidrau	ličku vodljiv Slichteru, %	vost prema	Za hidrauličku vodljivost prema Terzaghiju, %		
uzorka (m)	Hazen	Beyer	USBR	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	$Tz.K_{Dah}$	Tz.K _{Dlng}
72,2	-32,9	-27,9	-84,0	-53,8	-55,8	-42,0	-55,3	-57,3	-43,8
74,2	0,3	10,6	-76,0	-34,5	-39,3	-26,2	-35,8	-40,5	-27,7
76,2	-25,2	-24,7	-76,4	2,0	-9,9	43,2	1,6	-10,2	42,7
77,2	-59,4	-58,8	-87,1	-54,7	-57,5	-36,5	-56,0	-58,8	-38,3
79,2	-54,6	-57,2	-84,0	-14,2	-21,4	41,8	-14,5	-21,7	41,3
81,7	-59,4	-59,9	-88,3	-40,6	-44,8	-11,8	-41,3	-45,4	-12,8
84,2	-62,8	-61,3	-89,9	-73,3	-76,1	-64,7	-75,0	-77,7	-67,0
86,2	-32,9	-29,2	-77,3	-32,2	-38,6	-17,1	-33,1	-39,4	-18,2
87,7	-59,4	-60,6	-87,1	-34,2	-38,7	3,1	-34,7	-39,1	2,4
90,2	-71,2	-69,1	-94,7	-90,4	-91,1	-88,1	-92,3	-92,9	-90,5
92,7	-53,4	-49,3	-89,9	-80,3	-81,4	-76,8	-82,3	-83,3	-79,3
95,7	-32,9	-27,1	-84,0	-53,4	-58,0	-40,9	-54,9	-59,4	-42,8
96,7	-22,0	-16,3	-80,4	-34,4	-41,6	-16,3	-35,3	-42,4	-17,4

100,2	-32,9	-27,9	-82,2	-46,0	-51,1	-31,1	-47,3	-52,2	-32,6
103,2	-32,9	-30,5	-81,1	-28,8	-35,6	-6,6	-29,5	-36,2	-7,5
106,2	40,0	46,6	-56,3	88,3	52,3	150,1	89,2	53,0	151,3
110,2	-17,1	-15,8	-72,1	-3,1	-29,9	35,7	-3,8	-30,4	34,8
112,2	-79,3	-82,0	-92,3	-55,8	-61,1	5,2	-56,3	-61,6	4,0
115,2	29,5	29,3	-43,6	140,8	65,9	287,4	142,1	66,8	289,6
122,2	-47,0	-43,6	-84,9	-54,1	-57,9	-39,2	-55,5	-59,2	-41,1
Aritmetička sredina	-33,4	-30,8	-79,8	-24,3	-35,8	8,3	-25,1	-36,6	7,2
Geometrijska sredina	-39,6	-38,0	-82,2	-36,6	-44,0	-11,8	-37,9	-45,2	-13,8

1.3.7 Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom jednadžbom od hidraulički testirane srednje vrijednosti za različite veličine srednjeg zrna

Dubina	Za v granulo	eličine zrna p metrijskoj kri	rema vulji, %	Z	a osrednjene v	veličina zrna,	%
uzorka (m)	KC _(D30)	KC(D40)	KC _(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)
72,2	-75,3	-68,7	-61,4	-65,1	-66,7	-56,2	-61,8
74,2	-56,6	-47,5	-37,5	-49,9	-53,6	-43,6	-48,8
76,2	-30,1	-8,1	27,9	-19,9	-29,2	12,5	-10,8
77,2	-70,2	-49,1	-49,1	-65,7	-67,8	-51,9	-60,7
79,2	-49,2	-12,7	39,2	-32,6	-38,3	11,3	-17,1
81,7	-66,6	-48,7	-22,9	-54,0	-57,2	-31,8	-46,0
84,2	-83,7	-78,6	-73,5	-80,3	-82,4	-74,0	-78,6
86,2	-53,2	-39,8	-24,9	-47,7	-52,6	-36,0	-44,9
87,7	-61,6	-34,3	-18,0	-48,7	-52,2	-19,6	-38,0
90,2	-95,2	-93,9	-92,4	-93,3	-93,8	-91,7	-92,8
92,7	-89,1	-86,0	-82,9	-85,8	-86,6	-83,3	-85,0
95,7	-75,3	-68,2	-61,4	-64,8	-68,3	-55,3	-62,4
96,7	-59,2	-46,7	-39,8	-49,4	-55,0	-35,4	-46,1
100,2	-65,7	-57,7	-51,9	-58,8	-62,7	-47,4	-55,7
103,2	-57,1	-40,4	-21,0	-44,7	-50,0	-27,5	-39,8
106,2	35,7	77,3	124,4	52,3	23,2	102,3	57,9
110,2	-26,4	0,2	30,9	-24,5	-45,3	5,8	-23,9
112,2	-71,8	-45,4	-5,9	-65,8	-69,9	-18,6	-50,5
115,2	72,7	156,0	234,4	96,3	35,2	215,8	106,7
122,2	-70,6	-61,9	-55,5	-65,3	-68,2	-54,0	-61,8
Aritmetička sredina	-50,2	-29,5	-7,8	-40,8	-49,9	-15,1	-35,1
Geometrijska sredina	-60,1	-44,0	-28,5	-51,2	-56,9	-32,1	-45,9

1.4 CRPILIŠTE RAVNIK - POPOVAČA Bušotina P-1 (pješčani vodonosnik)

	Dubina			Post	totak prolaza	a očitanog	s granulor	netrijske k	rivulje			
	uzorka (m)	0	10	20	30	40	50	60	70	80	90	100
	1,55	0,002	0,0058	0,01	0,014	0,018	0,022	0,028	0,034	0,042	0,052	0,16
	9,35	0,0034	0,0135	0,026	0,042	0,063	0,087	0,125	0,157	0,085	0,22	0,4
	26,85	0,0034	0,008	0,0134	0,017	0,022	0,028	0,0364	0,04	0,0465	0,072	0,19
	33	0,0050	0,050	0,130	0,17	0,19	0,22	0,26	0,31	0,35	0,45	0,9
	34	0,0080	0,082	0,130	0,16	0,17	0,19	0,21	0,23	0,28	0,39	0,7
iik	37	0,0013	0,008	0,030	0,08	0,13	0,15	0,17	0,20	0,22	0,24	0,6
JOSE	40	0,0050	0,050	0,090	0,13	0,16	0,18	0,19	0,21	0,23	0,25	0,5
юрс	41	0,0080	0,085	0,160	0,18	0,20	0,22	0,24	0,29	0,35	0,43	0,5
V	44	0,0013	0,006	0,026	0,10	0,16	0,18	0,21	0,24	0,30	0,40	0,6
	49	0,0050	0,040	0,160	0,24	0,28	0,31	0,35	0,40	0,45	0,55	1,1
	52	0,0013	0,008	0,026	0,09	0,16	0,18	0,22	0,25	0,32	0,40	0,5
	56,55	0,0004	0,001	0,004	0,01	0,01	0,02	0,03	0,05	0,07	0,12	0,3
	66,15	0,0014	0,0075	0,028	0,078	0,15	0,180	0,22	0,26	0,34	0,42	0,7
	67,85	0,0004	0,0009	0,0018	0,00375	0,0065	0,012	0,019	0,034	0,06	0,106	0,3
	74,05	0,0036	0,013	0,065	0,15	0,19	0,230	0,28	0,325	0,4	0,45	0,55
	76,05	0,0014	0,01	0,036	0,086	0,15	0,190	0,24	0,305	0,395	0,5	2
	77,05	0,0014	0,0052	0,017	0,065	0,1	0,160	0,24	0,31	0,4	0,49	1,2
	81,25	0,005	0,034	0,13	0,18	0,22	0,260	0,3	0,34	0,4	0,45	0,55

1.4.1 Veličina zrna za odgovarajuće postotke težine uzorka očitana s kontinuiranih granulometrijskih krivulja

1.4.2 Sortiranost i srednja veličina zrna

			Srednja veliči	na zrna u uzorku, D (m	m)
ы в	ent lost		aritmetička		geometrijska
oins () a ()	cij čen ^{50/} I		Srednja ve	ličina zrna u prosjevu	
ork Out	befi =D,	aritmetička	geometrijska	harmonijska	geometrijska
I	U∃ec U	Veličina	Veličina	Veličina	Veličina
	n	D _{aa} (mm)	D _{ag} (mm)	D _{ah} (mm)	D _{lng} (mm)
33	5,2	0,075	0,070	0,065	0,178
34	2,6	0,118	0,112	0,107	0,179
37	21,3	0,024	0,022	0,020	0,083
40	3,9	0,064	0,060	0,056	0,136
41	2,9	0,118	0,112	0,106	0,188
44	35,0	0,023	0,021	0,019	0,098
49	8,8	0,075	0,070	0,065	0,228
52	28,7	0,026	0,024	0,022	0,101

Dubina uzorka	Koeficijent	Hidraulička vod	Hidraulička vodljivost, K (m/s) prema metodama							
(m)	ujednačenosti U=D ₆₀ /D ₁₀	Hazen-a	Beyer-a	USBR-a	K test					
33	5,2	2,90E-05	2,58E-05	3,30E-05						
34	2,6	7,80E-05	7,99E-05	3,30E-05						
37	21,3	7,42E-07	4,56E-07	1,13E-06						
40	3,9	2,90E-05	2,75E-05	1,42E-05	1.16E-04					
41	2,9	8,38E-05	8,43E-05	5,32E-05	1,102-04					
44	35,0	4,18E-07	2,16E-07	8,14E-07						
49	8,8	1,86E-05	1,46E-05	5,32E-05						
52	28,7	6,53E-07	3,63E-07	8,14E-07						
Srednja	Aritmetička	3,00E-05	2,91E-05	2,37E-05						
vrijednost	Geometrijska	8,21E-06	6,30E-06	8,70E-06						

1.4.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀

1.4.4 Veličina hidrauličke vodljivosti uzoraka predviđenih korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna

Dubina uzorka		Hidraulička	vodljivost pre K (m/s)	ma Slichteru	Hidraul Te	lička vodljivos erzaghiju K (m	t prema /s)	K test
(m)	$U = D_{60}/D_{10}$	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
33	5,2	2,16E-05	1,66E-05	1,22E-04	2,13E-05	1,64E-05	1,21E-04	
34	2,6	4,84E-05	3,93E-05	1,11E-04	4,73E-05	3,84E-05	1,08E-04	
37	21,3	1,34E-06	9,51E-07	1,66E-05	1,23E-06	8,77E-07	1,53E-05	
40	3,9	1,22E-05	9,31E-06	5,55E-05	1,17E-05	8,93E-06	5,33E-05	1 16E 04
41	2,9	5,70E-05	4,60E-05	1,44E-04	5,66E-05	4,56E-05	1,43E-04	1,10E-04
44	35,0	1,64E-06	1,16E-06	2,95E-05	1,58E-06	1,11E-06	2,84E-05	
49	8,8	3,14E-05	2,36E-05	2,91E-04	3,16E-05	2,37E-05	2,93E-04	
52	28,7	2,11E-06	1,51E-06	3,13E-05	2,03E-06	1,45E-06	3,02E-05	
Srednja	Aritmet- ička	2,20E-05	1,95E-05	1,00E-04	2,17E-05	1,71E-05	9,91E-05	
vrijednost	Geomet- rijska	1,01E-05	8,74E-06	6,85E-05	9,78E-06	7,36E-06	6,65E-05	

Dubina uzorka (m)	U= D ₆₀ /D ₁₀	Hidrauli prer granu	čka vodljivost na veličini zrr lometrijske kr	t K (m/s) na iz tivulje	Hidrauličk	osrednjenoj	K test		
		KC(D30)	KC(D40)	KC(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)	
33	5,2	8,64E-05	1,10E-04	1,49E-04	1,67E-05	1,28E-05	9,48E-05	3,49E-05	
34	2,6	6,74E-05	7,88E-05	9,51E-05	3,70E-05	3,00E-05	8,44E-05	5,03E-05	
37	21,3	1,13E-05	2,98E-05	3,97E-05	9,79E-07	6,96E-07	1,22E-05	2,92E-06	
40	3,9	3,81E-05	5,48E-05	6,90E-05	9,17E-06	6,99E-06	4,17E-05	1,71E-05	1 16E 04
41	2,9	9,75E-05	1,21E-04	1,54E-04	4,45E-05	3,59E-05	1,13E-04	6,34E-05	1,10E-04
44	35,0	2,22E-05	5,92E-05	7,49E-05	1,23E-06	8,70E-07	2,22E-05	4,41E-06	
49	8,8	2,64E-04	3,46E-04	4,40E-04	2,57E-05	1,92E-05	2,38E-04	6,75E-05	
52	28,7	1,87E-05	5,56E-05	7,49E-05	1,59E-06	1,13E-06	2,36E-05	5,18E-06	
Srednja	Arit- maritčka	7,57E-05	1,07E-04	1,37E-04	1,71E-05	1,35E-05	7,86E-05	3,07E-05	
vrijednost	Geomet- rijska	4,77E-05	8,16E-05	1,05E-04	7,70E-06	5,80E-06	5,24E-05	1,74E-05	

1.4.5 Veličina hidrauličke vodljivosti uzoraka predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna

1.4.6 Odstupanje izračunane hidrauličke vodljivosti uzoraka od hidraulički testirane srednje vrijednosti

Dubina	Za metoo I	le efektivr D ₁₀ i D ₂₀ , 9	oga zrna %	Za hidrau	ličku vodljiv Slichteru, %	ost prema	Za hidrauličku vodljivost prema Terzaghiju, %			
uzorka (m)	Hazen	Beyer	USBR	Sl.K _{Daa}	Sl.K _{Dah}	Sl.K _{Dlng}	Tz.K _{Daa}	Tz.K _{Dah}	Tz.K _{Dlng}	
33	-75,0	-77,8	-71,6	-81,4	-85,7	5,5	-81,6	-85,9	4,3	
34	-32,8	-31,1	-71,6	-58,2	-66,1	-4,7	-59,2	-66,9	-6,8	
37	-99,4	-99,6	-99,0	-98,8	-99,2	-85,7	-98,9	-99,2	-86,8	
40	-75,0	-76,3	-87,8	-89,5	-92,0	-52,2	-89,9	-92,3	-54,1	
41	-27,8	-27,4	-54,2	-50,8	-60,4	24,3	-51,2	-60,7	23,5	
44	-99,6	-99,8	-99,3	-98,6	-99,0	-74,6	-98,6	-99,0	-75,5	
49	-84,0	-87,4	-54,2	-72,9	-79,7	151,3	-72,7	-79,6	152,7	
52	-99,4	-99,7	-99,3	-98,2	-98,7	-73,0	-98,2	-98,7	-74,0	
Aritmetička sredina	-74,1	-74,9	-79,6	-81,1	-85,1	-13,6	-81,3	-85,3	-14,6	
Geometrijska sredina	-92,9	-94,6	-92,5	-91,3	-93,5	-40,9	-91,6	-93,7	-42,6	

1.4.7	Odstupanje hidrauličke vodljivosti uzoraka izračunane Kozeny-Carmanovom
	jednadžbom od hidraulički testirane srednje vrijednosti za rezličite veličine
	srednjeg zrna

Dubina	Za v granulo	eličine zrna p metrijskoj kri	rema vulji, %	Za osrednjene veličina zrna, %					
uzorka (m)	KC(D30)	KC(D40)	KC(D50)	KC _(Daa)	KC _(Dah)	KC _(Dlng)	KC _(Dgsr)		
33	-25,5	-4,9	28,2	-85,6	-88,9	-18,3	-69,9		
34	-41,9	-32,0	-18,0	-68,1	-74,1	-27,2	-56,6		
37	-90,3	-74,3	-65,8	-99,2	-99,4	-89,5	-97,5		
40	-67,2	-52,7	-40,5	-92,1	-94,0	-64,1	-85,3		
41	-15,9	4,4	32,9	-61,6	-69,1	-3,0	-45,3		
44	-80,9	-49,0	-35,4	-98,9	-99,2	-80,9	-96,2		
49	127,2	198,3	279,0	-77,9	-83,4	105,0	-41,8		
52	-83,9	-52,1	-35,4	-98,6	-99,0	-79,7	-95,5		
Aritmetička sredina	-34,8	-7,8	18,1	-85,3	-88,4	-32,2	-73,5		
Geometrijska sredina	-58,9	-29,7	-9,5	-93,4	-95,0	-54,8	-85,0		

1.5

1.6	Crpilišta porječja	Vuke i Bosuta -	– (pješčani	vodonosnik,	primjeri za	verifikaciju)
-----	--------------------	-----------------	-------------	-------------	-------------	---------------

	Veličina	Dhi→	7,50	4,80	2,67	1,71	1,20	0,75	0,48	0,34	0,24	0,171	0,120	0,075	0,048
na	srednjeg zrna u	Dgi→	7,75	4,90	2,83	1,73	1,22	0,77	0,49	0,35	0,24	0,173	0,122	0,077	0,049
ŝotij	prosjevu	Dai→	8,00	5,00	3,00	1,75	1,25	0,80	0,50	0,35	0,25	0,175	0,125	0,080	0,050
Buš	Granica prosjeva	10	6	4	2	1,5	1	0,6	0,4	0,3	0,2	0,15	0,1	0,06	0,04
	Dubina uzorka					Τe	žinski po	stotak pro	olaza kroz	z sito, %					
	28	100,0	100,0	100,0	100,0	100,0	100,0	98,0	88,0	54,0	18,0	8,0	0,0	0,0	0,0
	31	100,0	100,0	100,0	100,0	100,0	100,0	100,0	98,0	91,0	78,0	57,0	0,0	0,0	0,0
kov	34	100,0	100,0	100,0	100,0	100,0	98,5	94,0	82,5	66,0	32,0	16,0	0,0	0,0	0,0
Jan	45	100,0	100,0	100,0	100,0	100,0	100,0	100,0	90,0	79,5	58,0	34,0	0,0	0,0	0,0
St.	38	100,0	100,0	100,0	100,0	100,0	100,0	99,0	68,0	44,0	22,0	11,5	3,5	0,0	0,0
V-7	78	100,0	100,0	100,0	100,0	100,0	100,0	94,0	80,0	66,0	47,0	28,5	8,0	0,0	0,0
-	81	100,0	100,0	100,0	96,0	84,0	77,0	57,0	44,0	32,0	17,0	10,0	5,0	0,0	0,0
	82	100,0	100,0	100,0	100,0	100,0	98,0	88,5	62,0	40,0	17,0	7,5	3,0	0,0	0,0
	49	100,0	100,0	100,0	100,0	100,0	100,0	100,0	95,0	91,0	82,5	63,0	17,0	5,0	0,0
	50	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	92,0	42,0	11,5	2,0	0,0
	52	100,0	100,0	100,0	100,0	100,0	100,0	94,0	87,0	80,0	68,0	27,0	7,5	1,0	0,0
	54	100,0	100,0	100,0	100,0	100,0	93,0	73,0	57,0	45,0	31,5	22,0	11,0	2,0	0,0
.5	54	100,0	100,0	100,0	100,0	100,0	100,0	81,0	63,5	51,0	34,0	21,0	7,0	0,0	0,0
eme	56	100,0	100,0	96,0	86,0	80,0	70,0	55,5	41,0	30,0	17,0	9,0	3,0	0,0	0,0
Nij	57	100,0	100,0	100,0	100,0	100,0	100,0	88,0	66,0	40,5	22,0	13,0	5,0	0,0	0,0
-8,	59	100,0	100,0	100,0	100,0	100,0	100,0	92,5	78,0	55,0	32,0	23,5	13,0	3,0	0,0
	61	100,0	100,0	100,0	100,0	94,0	86,5	74,0	56,0	36,0	19,0	12,0	5,0	1,0	0,0
	71	100,0	100,0	100,0	100,0	100,0	99,0	94,0	87,0	76,5	59,0	37,0	9,0	1,0	0,0
	74	100,0	100,0	100,0	100,0	100,0	99,0	89,0	80,0	66,0	40,0	23,5	9,0	1,5	0,0
	75	100,0	100,0	100,0	100,0	100,0	100,0	100,0	96,0	91,5	82,0	62,5	30,0	5,0	0,0
	82	100,0	100,0	100,0	100,0	94,0	82,0	63,5	46,5	34,0	21,0	13,0	6,0	0,0	0,0

1 / 1				•1• • 4 •	1 ** * **	TTI 'D
161	(ranulomotrucki cactav	uzaraka nuaska iz husa	htina na istrazivanin	n ernilietime i	i nadruciu nariacia	νπίζαι κασμέσ
1.0.1		UZVI AKA DIIUSKA IZ DUSU	JUMA HA 15U AZIVANI	и стризчина ч	. הסטוות המשבח המשוות המשו	v uni i Dusula
	J. J.	r i i r j i i i i i i i i i i i i i i i			I I I I I I I I I I I I I I I I I I I	

	20	100.0	96.0	91.5	81.0	76.0	67.0	54.0	41.5	33.0	24.0	17.5	8.5	1.0	0.0
0	60	100,0	100,0	96,0	84,0	69,0	11.0	2,0	0,0	0,0	0.0	0,0	0,0	0,0	0,0
ovaq	76	100,0	100,0	100,0	97,0	93,0	84,0	69,0	53,5	42,0	26,5	16,0	5,0	2,0	0,0
Lipo	89	100,0	100,0	100,0	99,5	99,0	98,0	96,0	94,0	93,0	88,0	70,0	17,0	3,0	0,0
-9,]	97	100,0	100,0	100,0	99,0	98,0	95,0	92,5	80,0	65,0	43,0	26,0	10,0	2,0	0,0
>	99	100,0	100,0	100,0	100,0	100,0	100,0	98,0	95,0	90,0	77,0	60,0	26,0	6,0	0,0
	105	100,0	100,0	100,0	98,0	94,0	87,5	69,0	47,0	33,0	19,0	13,0	7,5	2,5	0,0
	30	100,0	100,0	100,0	100,0	100,0	100,0	99,0	85,0	70,0	48,0	31,0	10,0	0,0	0,0
OVC	34	100,0	100,0	100,0	100,0	100,0	100,0	98,0	75,0	61,0	41,0	27,0	8,0	2,0	0,0
ank	70	100,0	100,0	100,0	100,0	100,0	100,0	100,0	97,0	94,0	84,0	64,0	7,0	0,0	0,0
$0 \mathrm{Iv}$	74	100,0	100,0	100,0	100,0	100,0	100,0	97,0	94,0	91,0	72,5	36,0	13,0	3,0	0,0
V-1	75	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,0	98,0	93,0	66,5	21,0	0,0	0,0
F	78	100,0	100,0	100,0	100,0	100,0	100,0	98,0	96,0	92,0	68,0	28,0	8,0	0,0	0,0
	33	100,0	100,0	100,0	100,0	99,0	98,5	97,5	94,0	79,0	47,0	23,0	5,0	2,0	0,0
.9	35	100,0	100,0	100,0	100,0	100,0	100,0	100,0	97,0	87,0	61,0	31,0	7,0	2,0	0,0
JOVOL	38	100,0	100,0	100,0	100,0	100,0	100,0	100,0	85,0	66,0	27,0	10,0	3,0	0,0	0,0
ikaı	53	100,0	100,0	100,0	100,0	100,0	100,0	97,0	75,0	50,0	17,0	6,0	2,0	0,0	0,0
, M	82	100,0	100,0	100,0	100,0	100,0	100,0	97,5	94,0	83,0	54,0	31,0	7,5	0,0	0,0
-11	84	100,0	100,0	100,0	100,0	100,0	98,0	96,0	87,0	73,0	43,0	24,0	6,5	3,0	0,0
>	86	100,0	100,0	100,0	100,0	98,0	95,5	84,0	58,0	40,0	21,5	11,0	4,0	1,0	0,0
	88	100,0	100,0	100,0	100,0	100,0	99,0	96,5	90,0	68,0	38,0	17,0	5,0	2,0	0,0
	21	100,0	100,0	100,0	100,0	100,0	100,0	97,0	83,0	42,0	16,0	8,0	4,0	1,0	0,0
<u>.5</u>	25	100,0	100,0	100,0	100,0	100,0	100,0	100,0	77,0	55,0	23,0	12,0	6,5	2,5	0,0
mel	71	100,0	100,0	100,0	100,0	100,0	100,0	100,0	98,0	83,0	51,0	28,0	9,0	3,0	0,0
Sei	73	100,0	100,0	100,0	100,0	100,0	100,0	100,0	88,0	70,0	40,0	19,0	7,5	3,5	0,0
.18,	75	100,0	100,0	100,0	100,0	100,0	100,0	94,0	78,0	65,0	47,0	33,0	14,0	3,5	0,0
->	80	100,0	100,0	100,0	100,0	100,0	100,0	100,0	71,0	53,0	28,0	16,5	8,0	2,0	0,0
	93	100,0	100,0	100,0	100,0	100,0	100,0	100,0	93,0	83,0	57,0	30,0	11,0	3,0	0,0
	31	100,0	100,0	100,0	100,0	100,0	100,0	98,0	95,0	90,0	66,0	30,0	8,0	1,0	0,0
------	----	-------	-------	-------	-------	-------	-------	-------	-------	------	------	------	------	-----	-----
	35	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	83,0	59,0	41,0	17,0	4,0	0,0
tna	41	100,0	100,0	100,0	100,0	100,0	100,0	100,0	71,0	52,0	27,0	13,0	3,0	0,0	0,0
Kori	42	100,0	100,0	100,0	100,0	100,0	100,0	100,0	79,0	64,0	45,0	30,0	10,0	2,0	0,0
9, H	62	100,0	100,0	100,0	100,0	100,0	100,0	100,0	73,0	56,0	33,0	17,0	4,0	1,0	0,0
V-1	63	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,0	97,0	91,0	19,0	2,0	0,0
	86	100,0	100,0	100,0	100,0	100,0	100,0	100,0	96,0	78,0	53,0	35,0	8,0	1,0	0,0
	91	100,0	100,0	100,0	100,0	100,0	100,0	100,0	80,0	62,5	41,0	25,0	6,0	1,0	0,0

otina	ina			Veliči	ne zrna				V	eličina sr	ednjeg zr	ma
Bušc	Dub	D ₁₀	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	$U = D_{60}/D_{10}$	Daa	Dag	Dah	Dlng
	28	0,16	0,21	0,25	0,275	0,29	0,32	2,0	0,260	0,256	0,251	0,276
	31	0,09	0,112	0,126	0,133	0,143	0,155	1,7	0,153	0,151	0,148	0,159
ovci	34	0,127	0,164	0,197	0,23	0,26	0,235	1,9	0,231	0,227	0,223	0,257
Jank	45	0,09	0,122	0,143	0,163	0,182	0,22	2,4	0,183	0,180	0,177	0,198
, St.	38	0,14	0,19	0,235	0,28	0,33	0,37	2,6	0,258	0,253	0,249	0,293
V-7	78	0,118	0,13	0,153	0,18	0,23	0,265	2,2	0,192	0,188	0,184	0,221
r	81	0,15	0,22	0,28	0,37	0,47	0,65	4,3	0,330	0,320	0,315	0,489
	82	0,17	0,215	0,26	0,3	9,34	0,39	2,3	0,286	0,281	0,276	0,332
	49	0,079	0,111	0,123	134	0,14	0,148	1,9	0,127	0,125	0,122	0,140
	50	0,096	0,123	0,138	0,149	0,156	0,162	1,7	0,139	0,136	0,134	0,145
	52	0,112	0,14	0,154	0,16	0,165	0,18	1,6	0,172	0,169	0,166	0,195
	54	0,1	0,14	0,195	0,265	0,34	0,43	4,3	0,224	0,219	0,215	0,315
	54	0,116	0,148	0,18	0,23	0,28	0,375	3,2	0,229	0,224	0,220	0,288
emc	56	0,157	0,23	0,31	0,38	0,53	0,67	4,3	0,361	0,353	0,346	0,570
Nij	57	0,138	0,19	0,25	0,29	0,33	0,375	2,7	0,261	0,256	0,251	0,310
-8,	59	0,092	0,135	0,19	0,24	0,28	0,32	3,5	0,195	0,191	0,187	0,245
>	61	0,143	0,21	0,27	0,32	0,37	0,43	3,0	0,284	0,278	0,273	0,381
	71	0,13	0,124	0,14	0,155	0,175	0,21	1,6	0,169	0,166	0,163	0,197
	74	0,105	0,139	0,17	0,2	0,235	0,275	2,6	0,196	0,192	0,189	0,239
	75	0,07	0,09	0,1	0,115	0,128	0,146	2,1	0,119	0,116	0,113	0,132
	82	0,133	0,195	0,27	0,34	0,43	0,55	4,1	0,299	0,293	0,286	0,420
	20	0,108	0,168	0,26	0,38	0,53	0,75	6,9	0,295	0,288	0,281	0,574
ు	60	0,99	1,2	1,25	1,3	1,35	1,4	1,4	1,333	1,302	1,273	1,421
ova	76	0,125	0,17	0,22	0,28	0,37	0,47	3,8	0,263	0,258	0,253	0,379
Lip	89	0,085	0,106	0,12	0,127	0,13	0,14	1,6	0,126	0,123	0,121	0,140
.6-	97	0,1	0,137	0,16	0,19	0,23	0,275	2,8	0,190	0,186	0,182	0,237
>	99	0,074	0,09	0,105	0,118	0,13	0,15	2,0	0,123	0,120	0,117	0,140
	105	0,125	0,2	0,28	0,36	0,42	0,5	4,0	0,276	0,270	0,265	0,399
<u> </u>	30	0,1	0,125	0,148	0,175	0,21	0,26	2,6	0,182	0,178	0,174	0,209
OVC	34	0,112	0,135	0,163	0,198	0,24	0,29	2,6	0,194	0,190	0,186	0,233
ank	70	0,105	0,11	0,117	0,124	0,132	0,144	1,4	0,140	0,138	0,135	0,147
), Iv	74	0,092	0,118	0,14	0,157	0,17	0,18	2,0	0,149	0,146	0,144	0,167
-10	75	0,09	0,099	0,108	0,118	0,13	0,142	1,6	0,125	0,122	0,119	0,129
>	78	0,106	0,132	0,155	0,17	0,188	0,195	1,8	0,166	0,163	0,160	0,178
	33	0,12	0,147	0,165	0,185	0,21	0,235	2,0	0,186	0,182	0,179	0,209
	35	0,11	0,132	0,149	0,165	0,185	0,2	1,8	0,165	0,162	0,159	0,181
DVC	38	0,15	0,183	0,21	0,23	0,26	0,27		0,232	0,228	0,224	0,252
kane	53	0,17	0,215	0,24	0,27	0,3	0,34	2,0	0,270	0,265	0,260	0,295
Mil	82	0,11	0,13	0,15	0,17	0,19	0,22	2,0	0,175	0,172	0,168	0,193
1,	84	0,118	0,143	0,165	0,195	0,225	0,26	2,2	0,187	0,184	0,180	0,220
1	86	0,146	0,195	0,25	0,3	0,36	0,42	2,9	0,271	0,266	0,261	0,337
	88	0,128	0,159	0,18	0,215	0,24	0,28	2,2	0,203	0,199	0,196	0,231

1.6.2 Sortiranost i srednja veličina zrna

	21	0,167	0,22	0,26	0,29	0,34	0,38	2,3	0,258	0,253	0,249	0,290
jci	25	0,135	0,19	0,225	0,26	0,28	0,33	2,4	0,225	0,221	0,217	0,264
nel	71	0,105	0,138	0,155	0,175	0,2	0,23	2,2	0,169	0,165	0,162	0,188
Seı	73	0,117	0,152	0,17	0,2	0,235	0,27	2,3	0,190	0,186	0,183	0,220
18,	75	0,09	0,115	0,142	0,17	0,22	0,275	3,1	0,172	0,168	0,165	0,215
·V	80	0,115	0,165	0,21	0,24	0,24	0,33	2,9	0,218	0,214	0,210	0,261
	93	0,098	0,126	0,15	0,175	0,19	0,21	2,1	0,163	0,160	0,157	0,185

1.6.3 Veličina hidrauličke vodljivosti uzoraka predviđenih metodama efektivnog zrna D₁₀ i D₂₀ i korigiranim metodama Slichtera i Terzaghija za različite postupke izračuna veličine srednjeg zrna

tina	ina	Sli	chterova meto	oda	Ter	zaghijeva met	toda			LIGER	
Bušo	Dub	K(Sl _{Daa})	K(Sl _{Dag})	K(Sl _{Dah})	K(T _{Daa})	K(T _{Dag})	K(T _{Dah})	Hazen	Beyer	USBR	Ktest
	28	2,91E-04	2,82E-04	2,73E-04	2,90E-04	2,81E-04	2,72E-04	2,97E-04	3,19E-04	9,94E-05	
	31	1,01E-04	9,78E-05	9,42E-05	1,01E-04	9,74E-05	9,39E-05	9,40E-05	1,04E-04	2,34E-05	
OV	34	2,31E-04	2,23E-04	2,15E-04	2,30E-04	2,22E-04	2,14E-04	1,87E-04	2,04E-04	5,63E-05	
Jank	45	1,45E-04	1,40E-04	1,35E-04	1,45E-04	1,40E-04	1,35E-04	9,40E-05	9,73E-05	2,85E-05	
', St.	38	2,87E-04	2,77E-04	2,66E-04	2,86E-04	2,76E-04	2,66E-04	2,27E-04	2,32E-04	7,90E-05	1,77E-04
C-V	78	1,59E-04	1,52E-04	1,46E-04	1,58E-04	1,52E-04	1,46E-04	1,62E-04	1,70E-04	3,30E-05	
	81	4,69E-04	4,41E-04	4,28E-04	4,68E-04	4,40E-04	4,26E-04	2,61E-04	2,41E-04	1,11E-04	
	82	3,54E-04	3,41E-04	3,28E-04	3,52E-04	3,39E-04	3,27E-04	3,35E-04	3,51E-04	1,05E-04	
Р	rosjek	2,70E-04	2,59E-04	2,50E-04	2,69E-04	2,58E-04	2,49E-04	2,23E-04	2,32E-04	7,24E-05	
	49	7,00E-05	6,71E-05	6,43E-05	6,97E-05	6,68E-05	6,41E-05	7,24E-05	7,87E-05	2,29E-05	
	50	8,30E-05	8,00E-05	7,71E-05	8,27E-05	7,98E-05	7,69E-05	1,07E-04	1,18E-04	2,90E-05	
	52	1,28E-04	1,23E-04	1,19E-04	1,27E-04	1,23E-04	1,18E-04	1,46E-04	1,63E-04	3,91E-05	
	54	2,17E-04	2,08E-04	1,99E-04	2,16E-04	2,07E-04	1,98E-04	1,16E-04	1,07E-04	3,91E-05	
	54	2,26E-04	2,17E-04	2,08E-04	2,26E-04	2,16E-04	2,08E-04	1,56E-04	1,53E-04	4,45E-05	
mci	56	5,60E-04	5,38E-04	5,16E-04	5,58E-04	5,36E-04	5,15E-04	2,86E-04	2,65E-04	1,23E-04	
Nije	57	2,93E-04	2,81E-04	2,71E-04	2,92E-04	2,80E-04	2,70E-04	2,21E-04	2,24E-04	7,90E-05	2.005.04
V-8,	59	1,63E-04	1,57E-04	1,50E-04	1,63E-04	1,56E-04	1,49E-04	9,82E-05	9,50E-05	3,60E-05	2,09E-04
ŕ	61	3,47E-04	3,34E-04	3,21E-04	3,46E-04	3,33E-04	3,20E-04	2,37E-04	2,36E-04	9,94E-05	
	71	1,23E-04	1,19E-04	1,14E-04	1,23E-04	1,18E-04	1,14E-04	1,96E-04	2,19E-04	2,96E-05	
	74	1,66E-04	1,60E-04	1,53E-04	1,66E-04	1,59E-04	1,53E-04	1,28E-04	1,31E-04	3,85E-05	
	75	6,07E-05	5,79E-05	5,53E-05	6,05E-05	5,77E-05	5,51E-05	5,68E-05	6,06E-05	1,42E-05	
	82	3,85E-04	3,69E-04	3,53E-04	3,84E-04	3,68E-04	3,52E-04	2,05E-04	1,92E-04	8,38E-05	
Р	rosjek	2,54E-04	2,44E-04	2,34E-04	2,54E-04	2,43E-04	2,34E-04	1,64E-04	1,62E-04	5,76E-05	
	20	3,74E-04	3,58E-04	3,42E-04	3,73E-04	3,56E-04	3,40E-04	1,35E-04	1,13E-04	5,95E-05	
	60	7,66E-03	7,31E-03	6,98E-03	7,63E-03	7,29E-03	6,95E-03	1,14E-02	1,30E-02	5,48E-03	
vac	76	2,98E-04	2,86E-04	2,75E-04	2,97E-04	2,85E-04	2,74E-04	1,81E-04	1,73E-04	6,11E-05	
Lipc	89	6,86E-05	6,57E-05	6,29E-05	6,84E-05	6,55E-05	6,27E-05	8,38E-05	9,33E-05	2,06E-05	1 (45 04
V-9,	97	1,55E-04	1,49E-04	1,43E-04	1,54E-04	1,48E-04	1,42E-04	1,16E-04	1,18E-04	3,72E-05	1,04E-04
	99	6,51E-05	6,22E-05	5,94E-05	6,48E-05	6,19E-05	5,92E-05	6,35E-05	6,81E-05	1,42E-05	
	105	3,29E-04	3,15E-04	3,02E-04	3,28E-04	3,14E-04	3,01E-04	1,81E-04	1,70E-04	8,89E-05	
Р	rosjek	1,54E-04	1,48E-04	1,42E-04	1,54E-04	1,47E-04	1,41E-04	1,11E-04	1,12E-04	4,02E-05	

	30	1,42E-04	1,37E-04	1,31E-04	1,42E-04	1,36E-04	1,31E-04	1,16E-04	1,19E-04	3,01E-05	
OVC	34	1,62E-04	1,56E-04	1,50E-04	1,62E-04	1,55E-04	1,49E-04	1,46E-04	1,49E-04	3,60E-05	
anko	70	8,49E-05	8,16E-05	7,84E-05	8,46E-05	8,13E-05	7,81E-05	1,28E-04	1,47E-04	2,25E-05	
0, Iv	74	9,60E-05	9,24E-05	8,88E-05	9,57E-05	9,21E-05	8,85E-05	9,82E-05	1,06E-04	2,64E-05	1,09E-04
V-1	75	6,69E-05	6,39E-05	6,11E-05	6,66E-05	6,37E-05	6,09E-05	9,40E-05	1,05E-04	1,76E-05	
	78	1,19E-04	1,14E-04	1,10E-04	1,18E-04	1,14E-04	1,10E-04	1,30E-04	1,42E-04	3,42E-05	
Р	rosjek	1,12E-04	1,07E-04	1,03E-04	1,11E-04	1,07E-04	1,03E-04	1,19E-04	1,28E-04	2,78E-05	
	33	1,49E-04	1,43E-04	1,38E-04	1,48E-04	1,43E-04	1,38E-04	1,67E-04	1,80E-04	4,38E-05	
	35	1,18E-04	1,14E-04	1,10E-04	1,18E-04	1,13E-04	1,09E-04	1,40E-04	1,53E-04	3,42E-05	
vci	38	2,32E-04	2,24E-04	2,16E-04	2,31E-04	2,23E-04	2,15E-04	2,61E-04	2,86E-04	7,24E-05	
ƙano	53	3,13E-04	3,02E-04	2,92E-04	3,12E-04	3,01E-04	2,91E-04	3,35E-04	3,60E-04	1,05E-04	
Mil	82	1,32E-04	1,27E-04	1,22E-04	1,32E-04	1,27E-04	1,22E-04	1,40E-04	1,51E-04	3,30E-05	1,09E-04
-11,	84	1,51E-04	1,45E-04	1,40E-04	1,50E-04	1,45E-04	1,40E-04	1,62E-04	1,71E-04	4,11E-05	
	86	3,17E-04	3,06E-04	2,94E-04	3,16E-04	3,05E-04	2,93E-04	2,47E-04	2,48E-04	8,38E-05	
	88	1,77E-04	1,71E-04	1,65E-04	1,77E-04	1,70E-04	1,64E-04	1,90E-04	2,01E-04	5,24E-05	
P	rosjek	2,03E-04	1,96E-04	1,89E-04	2,02E-04	1,95E-04	1,88E-04	2,26E-04	2,45E-04	6,38E-05	
	21	2,86E-04	2,76E-04	2,67E-04	2,85E-04	2,75E-04	2,66E-04	3,24E-04	3,40E-04	1,11E-04	
	25	2,19E-04	2,11E-04	2,03E-04	2,18E-04	2,10E-04	2,02E-04	2,11E-04	2,19E-04	7,90E-05	
neljc	71	1,22E-04	1,18E-04	1,13E-04	1,22E-04	1,17E-04	1,13E-04	1,28E-04	1,35E-04	3,78E-05	
Sen	73	1,55E-04	1,49E-04	1,44E-04	1,54E-04	1,49E-04	1,43E-04	1,59E-04	1,66E-04	4,73E-05	1.925.04
-18,	75	1,27E-04	1,22E-04	1,17E-04	1,27E-04	1,22E-04	1,17E-04	9,40E-05	9,32E-05	2,49E-05	1,82E-04
	80	2,05E-04	1,97E-04	1,90E-04	2,05E-04	1,97E-04	1,89E-04	1,53E-04	1,54E-04	5,71E-05	1
	93	1,15E-04	1,10E-04	1,06E-04	1,14E-04	1,10E-04	1,06E-04	1,11E-04	1,18E-04	3,07E-05	
P	rosjek	1,81E-04	1,74E-04	1,68E-04	1,81E-04	1,74E-04	1,67E-04	1,61E-04	1,67E-04	4,94E-05	

otina	vina		Koz	zeny-Carmanova	metoda	
Bušc	Dub	K(KC _{Daa})	K(KC _{Dag})	K(KC _{Dah})	K(KC _{Dlng})	Ktest
	28	2,29E-04	2,21E-04	2,14E-04	2,58E-04	
	31	7,96E-05	7,68E-05	7,40E-05	8,56E-05	
0	34	1,81E-04	1,75E-04	1,69E-04	2,24E-04	
Jank	45	1,14E-04	1,10E-04	1,06E-04	1,33E-04	
, St.	38	2,25E-04	2,17E-04	2,09E-04	2,91E-04	1,77E-04
V-7	78	1,25E-04	1,20E-04	1,15E-04	1,65E-04	
	81	3,69E-04	3,47E-04	3,36E-04	8,09E-04	
	82	2,78E-04	2,67E-04	2,58E-04	3,73E-04	
Р	rosjek	2,12E-04	2,03E-04	1,96E-04	3,15E-04	
	49	5,49E-05	5,27E-05	5,05E-05	6,63E-05	
	50	6,52E-05	6,28E-05	6,06E-05	7,12E-05	1
	52	1,00E-04	9,67E-05	9,33E-05	1,29E-04	1
	54	1,70E-04	1,63E-04	1,56E-04	3,36E-04]
	54	1,78E-04	1,71E-04	1,64E-04	2,81E-04	
mci	56	4,40E-04	4,22E-04	4,06E-04	1,10E-03	
Nije	57	2,30E-04	2,21E-04	2,12E-04	3,25E-04	2.005.04
V-8,	59	1,28E-04	1,23E-04	1,18E-04	2,03E-04	2,09E-04
r	61	2,73E-04	2,62E-04	2,52E-04	4,91E-04	
	71	9,70E-05	9,32E-05	8,95E-05	1,31E-04	
	74	1,30E-04	1,25E-04	1,20E-04	1,93E-04	
	75	4,76E-05	4,55E-05	4,34E-05	5,90E-05	
	82	3,02E-04	2,90E-04	2,78E-04	5,97E-04	
Р	rosjek	2,00E-04	1,92E-04	1,84E-04	3,77E-04	
	20	2,94E-04	2,81E-04	2,68E-04	1,12E-03	
	60	6,01E-03	5,74E-03	5,48E-03	6,83E-03	
ovac	76	2,34E-04	2,25E-04	2,16E-04	4,86E-04	
Lipo	89	5,39E-05	5,16E-05	4,94E-05	6,63E-05	1.64E.04
V-9,	97	1,22E-04	1,17E-04	1,12E-04	1,90E-04	1,0412-04
	99	5,11E-05	4,88E-05	4,66E-05	6,63E-05]
	105	2,58E-04	2,47E-04	2,37E-04	5,39E-04]
Р	rosjek	1,21E-04	1,16E-04	1,11E-04	2,15E-04	
	30	1,12E-04	1,07E-04	1,03E-04	1,48E-04	
040	34	1,27E-04	1,22E-04	1,18E-04	1,84E-04	
/ank	70	6,67E-05	6,41E-05	6,15E-05	7,31E-05	
0, Iv	74	7,54E-05	7,25E-05	6,98E-05	9,44E-05	1,09E-04
V-1	75	5,25E-05	5,02E-05	4,80E-05	5,63E-05	
	78	9,32E-05	8,99E-05	8,66E-05	1,07E-04	
Р	rosjek	8,78E-05	8,44E-05	8,11E-05	1,10E-04	

1.6.4 Veličina predviđene hidrauličke vodljivosti uzoraka određene Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna

	33	1,17E-04	1,13E-04	1,09E-04	1,48E-04	
	35	9,26E-05	8,93E-05	8,61E-05	1,11E-04	
vci	38	1,82E-04	1,76E-04	1,70E-04	2,15E-04	
kanc	53	2,46E-04	2,37E-04	2,29E-04	2,95E-04	
Mi	82	1,04E-04	9,99E-05	9,61E-05	1,26E-04	1,09E-04
-11,	84	1,19E-04	1,14E-04	1,10E-04	1,64E-04	
	86	2,49E-04	2,40E-04	2,31E-04	3,84E-04	
	88	1,39E-04	1,34E-04	1,30E-04	1,81E-04	
Р	rosjek	1,59E-04	1,54E-04	1,48E-04	1,92E-04	
	21	2,25E-04	2,17E-04	2,10E-04	2,85E-04	
·. 	25	1,72E-04	1,66E-04	1,59E-04	2,36E-04	
neljc	71	9,62E-05	9,26E-05	8,91E-05	1,20E-04	
Sen	73	1,22E-04	1,17E-04	1,13E-04	1,64E-04	1 925 04
-18,	75	1,00E-04	9,58E-05	9,18E-05	1,56E-04	1,02E-04
-	80	1,61E-04	1,55E-04	1,49E-04	2,31E-04	
	93	9,01E-05	8,67E-05	8,34E-05	1,16E-04	
Р	rosjek	1,42E-04	1,37E-04	1,32E-04	1,97E-04	

2 ŠLJUNČANI VODONOSNICI

2.1 Crpilište Đurđevac

100

100

100

100

100

100

100

100

100

100

39,5

34,3

50,1

56,4

60,4

SPB-2

100

100

100

100

100

97

100

100

99

100

91

100

95

91

96

96

100

99

98

99

82

100

84

77

88

70

98

69

63

71

67

97

68

60

61

62

96

66

57

49

58

75

58

48

32

47,0

29,5

46,0

37,0

20,0

43.0

25,0

41,0

34,0

18,0

33,0

17,0

27,0

25,0

15,0

30,0

15,0

24,0

23,0

13,0

23,0

12,0

18,0

17,0

10,0

19,0

9,0

14,5

14,0

8,0

15.0

7.0

12,0

12,0

6,0

8,0

4,0

6,5

6,5

4,0

Đurđevac 0,00081 Dih 0,0477 0,0278 0,0158 0,01079 0,00760 0,00404 60,00 42,86 30,00 21,59 12,67 6,33 2,81 1,19 0,567 0,315 0,149 0,088 0,00191 Veličina Dig 0,00081 srednjeg zrna u 61,24 43,30 30.62 21,79 13,44 6,72 3.08 1.30 0,601 0,326 0,163 0.089 0,0512 0.0284 0,0166 0,01084 0,00779 0,00431 0.00205 Bušotina prosjevu 0,00081 Dia 62,50 43,75 31,25 22,00 14,25 7,13 3,38 1,43 0,638 0,338 0,178 0,091 0,0550 0,0290 0,0175 0,01090 0,00800 0,00460 0,00220 Granica 75.00 50 37.5 25 19 9.5 4,75 2 0.85 0,425 0,250 0.106 0,075 0.0350 0.0230 0.0120 0.00980 0.00620 0.00300 0.00140 0.00081 prosjeva Težinski postotak prolaza kroz sito, % Dubina uzorka 72 34 26,1100 100 100 98 95 50 38 28 14 6,0 5.0 4,0 4.0 3,0 2.0 2.0 1,0 0.0 0.0 87 77 57 48 36,7 100 100 97 95 36 17,0 16,0 10,0 7,0 5,0 5.0 4,0 2,0 0,0 100 65 1.0 2,0 SPB-1 49,3 100 100 100 100 99 87 70 52 41 31 19 10.0 9.0 8.0 6.0 5,0 4.0 3.0 1.0 0.0 52,6 100 100 97 87 80 71 56 45 34 17,0 7.0 5.0 2,0 0,0 100 96 18,0 10,0 9,0 6,0 0,0 54,3 100 100 100 100 97 90 81 70 57 46 33 18,0 17,0 10,0 9,5 8,0 7,0 6,0 3,0 1,0 0,0 73 55 35 7,0 3,5 62,1 100 100 100 97 96 44 40 20 8,0 4,0 2,5 2,0 1.5 1.0 0,0 0,0 100 100 99 98 89 69 52 48 41 36 25,0 22.0 17.0 12,5 10,0 8,5 6,5 4,5 0.0 22,4 100 3,0

2.1.1 Granulometrijski sastav uzoraka šljunka iz bušotina SPB-1, SPB-2, SPB-3, SPB-4, SPB-5 i SPB-6, na novom crpilištu

5,0

3.0

3,0

4,0

3,0

0.0

0,0

0,0

0,0

0

	24,4	100,0	100,0	100,0	99,5	99,0	92,0	68,5	44,0	36,0	29,0	21,0	12,0	10,0	7,5	6,0	5,0	4,0	3,5	1,5	0,5	0,0
	27,4	100,0	100,0	100,0	98,0	97,0	89,5	63,0	50,0	44,0	38,0	30,0	18,0	20,0	14,0	12,0	10,0	7,5	6,0	4,0	2,0	0,0
3-3	31,3	100,0	100,0	100,0	97,0	94,0	95,0	68,5	51,0	45,0	38,0	32,0	23,0	16,0	9,0	7,5	6,0	5,0	4,0	1,5	0,5	0,0
SPI	41,5	100,0	100,0	100,0	99,0	97,0	91,0	77,0	61,0	57,0	50,0	46,0	37,5	35,0	26,5	23,0	18,0	15,0	12,0	7,0	4,0	0,0
	48,2	100,0	100,0	98,0	97,0	87,0	68,0	54,0	44,0	38,5	33,0	22,0	11,0	9,0	6,5	6,0	5,0	4,0	4,0	2,0	1,0	0,0
	55,3	100,0	100,0	97,0	96,5	96,0	85,0	76,0	65,0	60,0	54,0	46,0	32,5	29,0	21,0	18,0	13,0	10,5	8,0	5,0	3,0	0,0
	23,4	100,0	100,0	100,0	100,0	96,0	86,0	63,0	46,5	38,0	32,0	24,0	13,0	11,0	7,0	6,5	5,0	4,0	3,5	2,5	2,0	0,0
	29,4	100,0	100,0	100,0	100,0	96,0	86,0	58,0	44,0	39,0	33,0	21,0	10,0	8,0	7,5	5,5	5,0	4,5	4,0	3,0	2,5	0,0
+	32,5	100,0	100,0	100,0	100,0	99,0	93,0	79,5	65,5	60,0	54,0	48,0	37,0	35,0	25,0	24,0	18,0	15,0	12,0	6,5	4,0	0,0
PB-7	39,3	100,0	100,0	100,0	100,0	97,0	87,0	64,0	47,0	40,0	32,0	24,0	15,5	14,0	9,5	8,0	6,5	5,5	4,5	4,0	2,0	0,0
S	48,3	100,0	100,0	100,0	100,0	97,0	92,0	81,5	80,0	72,0	62,0	48,0	31,0	27,0	17,5	16,0	12,0	9,5	8,0	5,5	3,0	0,0
	57,7	100,0	100,0	100,0	100,0	98,0	89,0	74,0	59,5	49,0	42,0	35,0	24,0	21,5	16,0	14,0	11,0	9,5	8,0	5,0	4,0	
	62,5	100,0	100,0	100,0	100,0	95,0	82,5	65,5	54,0	48,0	42,0	35,0	20,0	17,0	10,0	9,0	6,5	5,5	4,5	3,5	2,0	
	19,4	100,0	100,0	100,0	100,0	93,0	77,0	53,5	33,5	28,0	23,0	16,0	7,0	6,0	4,5	4,0	3,0	2,5	2,0	1,5	0,5	0,0
	23,3	100,0	100,0	100,0	100,0	96,0	90,0	69,5	52,0	47,0	42,0	25,0	23,0	20,5	14,5	13,0	9,5	8,0	6,0	4,0	1,0	0,0
	32,2	100,0	100,0	100,0	100,0	96,0	82,5	53,0	32,0	23,0	16,0	11,0	6,5	5,0	4,5	3,5	3,0	2,0	1,5	1,0	0,0	0,0
PB-	36,3	100,0	100,0	100,0	100,0	97,0	87,0	69,0	57,0	53,0	47,0	33,0	19,0	17,0	12,0	11,0	8,0	7,5	6,0	4,0	2,0	0,0
S	47,4	100,0	100,0	100,0	100,0	95,0	78,0	59,0	43,0	37,0	31,0	18,0	8,5	7,0	4,5	4,0	3,0	2,0	1,5	1,0	0,0	0,0
	53,3	100,0	100,0	100,0	100,0	97,0	91,0	70,0	53,0	47,0	39,0	32,0	22,0	20,0	14,0	12,0	9,0	7,0	6,0	4,0	1,5	0,0
	57,3	100,0	100,0	100,0	100,0	99,0	91,0	75,0	59,0	51,0	44,0	36,0	25,0	22,0	12,0	11,0	8,0	5,5	4,0	1,5	0,0	
	18,2	100,0	100,0	100,0	100,0	100,0	94,0	74,0	55,0	48,5	40,0	32,0	22,0	18,5	12,0	10,5	8,0	6,5	5,0	2,5	2,0	0,0
	22,6	100,0	100,0	100,0	100,0	97,5	89,5	67,0	49,0	40,0	32,0	23,0	14,5	12,0	8,0	7,0	5,0	4,5	3,5	2,0	1,5	0,0
	27,4	100,0	100,0	100,0	100,0	100,0	95,0	75,0	58,5	45,0	35,5	29,0	17,5	15,0	10,5	9,0	6,5	6,0	5,0	3,0	1,5	0,0
3-6	32,5	100,0	100,0	100,0	100,0	100,0	96,0	87,0	71,5	60,0	51,0	40,5	27,0	24,0	16,0	14,0	10,5	8,0	7,0	4,5	2,0	0,0
SPI	40,3	100,0	100,0	100,0	100,0	100,0	100,0	100,0	98,0	95,0	91,5	88,0	61,0	57,5	25,0	22,5	18,5	16,0	13,0	8,5	6,0	0,0
	50,3	100,0	100,0	100,0	100,0	100,0	95,0	78,0	59,0	48,0	36,0	26,0	17,0	15,0	12,0	10,0	7,5	6,0	5,0	3,0	2,0	0,0
	59,3	100,0	100,0	100,0	100,0	99,0	93,5	81,0	65,0	53,0	42,0	33,0	22,5	20,0	17,0	15,0	11,5	9,0	7,0	5,0	3,0	
	61,1	100,0	100,0	100,0	100,0	100,0	98,0	87,0	73,0	55,0	43,0	33,0	21,0	18,0	13,0	11,5	8,0	7,0	5,5	4,0	2,0	

	Veličina	Dih	41,31	21,22	10,67	5,33	2,67	1,33	0,67	0,375	0,200	0,104	0,0681	0,0511	0,0382	0,0188	0,00968	0,00586	0,00392	0,00199	0,00082
ıa	srednjeg zrna u	Dig	43,47	22,45	11,31	5,66	2,83	1,41	0,71	0,387	0,212	0,109	0,0688	0,0516	0,0386	0,0209	0,01003	0,00603	0,00398	0,00217	0,00082
šotir	prosijevu	Dia	45,75	23,75	12,00	6,00	3,00	1,50	0,75	0,400	0,225	0,115	0,0695	0,0522	0,0391	0,0232	0,01040	0,00620	0,00404	0,00238	0,00082
Bu	Granica prosijeva	60	31,5	16	8	4	2	1	0,5	0,3	0,15	0,07962	0,05945	0,04486	0,03326	0,01312	0,00767	0,00474	0,00334	0,00141	
	Dubina uzorka										Težinsk	i postotak	prolaza kr	oz sito, %							
•	24	100,0	89,7	71,7	53,9	38,3	31,2	23,5	15,6	10,5	8,2	6,2	5,4	4,4	3,6	1,6	1,0	0,6	0,4	0,0	0,0
SPB-9	33	100,0	100,0	89,3	65,3	50,4	42,1	32,3	22,1	12,0	8,8	6,7	5,8	5,2	4,1	2,2	1,4	0,9	0,6	0,2	0,0
01	50	100,0	100,0	90,8	68,8	52,1	42,2	34,2	23,5	12,5	8,4	6,2	5,6	4,9	3,7	2,0	1,3	0,8	0,6	0,2	0,0
3	23	100,0	100,0	84,0	64,2	45,5	35,4	28,4	19,2	13,2	10,4	8,2	7,1	6,1	4,9	2,4	1,5	0,8	0,5	0,1	0,0
SPB-8	34	100,0	97,7	83,3	54,3	33,3	24,2	17,7	12,5	8,7	6,6	5,2	4,6	3,5	2,9	1,3	0,7	0,5	0,3	0,0	0,0
01	53	100,0	82,4	52,0	33,1	22,6	18,5	15,2	9,4	5,5	4,0	3,1	2,7	2,3	1,8	0,9	0,5	0,3	0,2	0,1	0,0

2.1.2 Granulometrijski sastav uzoraka šljunka iz bušotina SPB-8 i SPB-9, na novom crpilištu Đurđevac

2.1.3 Granulometrijski sastav uzoraka šljunka iz bušotine SPB-10 na novom crpilištu Đurđevac

	Veličina	Dih	21,59	23,27	20,00	12,00	5,71	2,67	1,33	0,67	0,38	0,1814	0,0910	0,0420	0,0171	0,00884	0,00420	0,00181	0,00075
ла	srednjeg zrna u	Dig	21,79	23,87	21,21	12,25	6,32	2,83	1,41	0,71	0,39	0,1975	0,0954	0,0458	0,0190	0,00917	0,00458	0,00197	0,00075
otiı	prosjevu	Dia	22,00	24,50	22,50	12,50	7,00	3,00	1,50	0,75	0,40	0,2150	0,1000	0,0500	0,0210	0,00950	0,00500	0,00215	0,00075
Buš	Granica prosjeva	25,00	19,00	30,00	15,00	10,00	4,00	2,00	1,00	0,50	0,30	0,1300	0,0700	0,0300	0,0120	0,00700	0,00300	0,00130	0,00075
	Dubina uzorka								Te	žinski p	ostotak	prolaza kr	oz sito, %						
0	Dubina uzorka 24,2	100,0	100,0	100,0	92,5	78,0	53,0	45,0	Te 40,0	žinski p 34,0	ostotak 20,0	prolaza kr 16,0	oz sito, % 13,5	8,0	4,5	3,5	2,0	0,8	0,0
PB-10	Dubina uzorka 24,2 47,5	100,0 100,0	100,0 100,0	100,0 100,0	92,5 92,5	78,0 87,0	53,0 72,0	45,0 64,0	Te 40,0 55,0	žinski p 34,0 47,0	00000000000000000000000000000000000000	prolaza kr 16,0 30,5	oz sito, % 13,5 26,0	8,0 17,0	4,5 10,0	3,5 5,5	2,0 3,0	0,8 2,0	0,0 0,0

otine	KC(Dlng	g) (m/s)	KC(Daa) (m/s)	KC(Da	h) (m/s)	KC(D40)) (m/s)	Testirana
Bušc	Geometrijske sredine	Aritmtičke sredine	Geometrijske sredine	Aritmtičke sredine	Geometrijske sredine	Aritmtičke sredine	Geometrijske sredine	Aritmtičke sredine	Kt(m/s)
SPB-1	2,53E-03	3,51E-03	9,00E-06	1,14E-05	7,18E-06	9,05E-06	1,09E-03	2,50E-03	
SPB-2	1,54E-04	4,03E-04	6,64E-07	8,49E-07	5,52E-07	7,09E-07	5,23E-05	1,76E-04	
SPB-3	1,57E-03	2,46E-03	2,73E-06	4,09E-06	2,23E-06	3,32E-06	6,38E-04	1,59E-03	
SPB-4	1,29E-03	2,19E-03	1,77E-06	2,12E-06	1,47E-06	1,77E-06	5,19E-04	1,14E-03	1 75E 02
SPB-5	2,98E-03	4,11E-03	6,84E-06	1,01E-05	5,59E-06	8,09E-06	1,59E-03	4,47E-03	1,75E-05
SPB-6	1,20E-03	1,43E-03	2,68E-06	2,87E-06	2,22E-06	2,37E-06	7,13E-04	8,83E-04	
SPB-10	2,12E-03	3,01E-03	2,69E-06	2,17E-06	2,28E-06	1,82E-06	1,13E-03	1,09E-03	
Prosjek	1,84E-03	2,79E-03	3,59E-06	5,46E-06	2,96E-06	4,40E-06	8,79E-04	1,95E-03	

2.1.4 Veličine lokalne hidrauličke vodljivosti na lokaciji pojedinih bušotina i regionalne vrijednosti za cijelo novo crpilište Đurđevac predviđenih Kozeny-Carmanovom metodom uz korištenje različitih veličina efektivnog srednjeg zrna

3 ISTRAŽIVAČKA PODRUČJA KOHERENTNIH TVOREVINA- Ilok, Našice i kanal Dunav-Sava

3.1 Istraživačko polje ciglana Ilok

		Dih	4,80	2,67	1,33	0,75	0,30	0,133	0,075	0,040	0,0240	0,0133	0,0075	0,0030	0,00171	0,00110
tina	Promjer zrna u prosjevu	Dig	4,90	2,83	1,41	0,77	0,35	0,141	0,077	0,042	0,0245	0,0141	0,0077	0,0035	0,00173	0,00114
ušo	prosjevu	Dia	5,00	3,00	1,50	0,80	0,40	0,150	0,080	0,045	0,0250	0,0150	0,0080	0,0040	0,00175	0,00118
В	Promjer prosjeva	6	4	2	1	0,6	0,2	0,1	0,06	0,03	0,02	0,01	0,006	0,002	0,0015	Σ%
	2	100	100	100	99,5	99	99	97	89	67	51	29	18	7	5,5	100
IB3	10,0-10,25	100	100	99	98,5	98	96,5	95	87	65	47	27	17,5	7	5,5	100
шэ	20	100	100	100	100	100	99	98,5	92	68	52	31	20,5	8,5	7,5	100
	30	100	99,5	98	96	94	92	88,5	83	71,5	62	45	33	15	11,5	100
	3	100	100	100	100	99,5	99	98	92	70	54	32	21,5	8	6	100
IIIB3	12,0-12,25	100	100	100	100	99,5	99	98	90	65	50	30	20	8	7	100
	17,4-17,65	100	100	100	100	100	100	99	90	66	50	30	19	8	6	100
	7	100	100	100	100	98	94	90	84	64	50	32	23	11	7	101
IVB3	18	100	100	100	100	98	94	90	84	66	54	36,5	26	12	6	102
	26	100	100	100	100	100	98	95	89	76	61	40	29	14	10	102

3.1.1 Granulometrijski sastav kopnenih prapora u Iloku izražen postotkom prolaza

tina		Uc agre	ljel sgata	ardna icija ine ica		Oblic	i srednje v	eličine (m	ım)		ica 1ja	Ma	asena spec kore	ifična površ lacijskim oc	ina, a _m (m ² Inosima pr	/g) određe ema	na
Bušo	Dubina	prah	glina	σ,stand devija velič česti	Dg –graf (mm)	Daa	Dag	Dah	Dlng	n _e	gran tečei LI	Chapuis &Aubrt .(2003)	Gill& Reaves (1951)	Farrar& Coleman (1967)	Smith et al (1985)	Zaki (1971)	Locat et al. 1984)
	2,0	0,77	0,07	5	0,038	0,0081	0,0076	0,0071	0,0167	0,080							
1.D.2	10,0-10,25	0,76	0,07	5	0,038	0,0083	0,0079	0,0074	0,0187	0,084	30,5	28	55	44	76	88	23
1.65	20,0	0,77	0,09	5,0	0,030	0,0072	0,0068	0,0063	0,0151	0,075							
	30,0	0,70	0,11	6,5	0,034	0,0051	0,0048	0,0045	0,0143	0,073							
	3,0	0,80	0,08	4,5	0,032	0,0074	0,0069	0,0065	0,0148	0,074	35,4	34	78	51	111	108	29
III.B3	12,0-12,25	0,78	0,08	5	0,036	0,0075	0,0070	0,0066	0,0152	0,075							
	17,4-17,65	0,79	0,07	5	0,036	0,0077	0,0073	0,0068	0,0158	0,077	32,5	31	64	47	91	96	26
	7,0	0,70	0,11	6,5	0,037	0,0065	0,0061	0,0058	0,0164	0,080	29	60	46	84	92	24	
IV.B3	18,0	0,69	0,12	6,5	0,036	0,0058	0,0055	0,0052	0,0140	0,075							
	26,0	0,73	0,14	5,5	0,026	0,0050	0,0047	0,0045	0,0106	0,067							

3.1.2 Karakteristične veličine granulometrijskoga sastava kopnenih prapora u Iloku i masena specifična površina iz korelacije s granicom tečenja

ina	na	Laborat. test	Vrijednosti	određene KC 1	netodom za raz zrna	ličite veličine	srednjeg	Korelaacijska metoda	KC metod	a korištenje	m specifične granicom teč	povrpine od enja prema:	dređene kor	alacijom s
Bušot	dubi	K (test)	K (Daa)	K(Dag)	K (Dah)	K(Dlng)	K(Dg- graf)	K(COR)	Chapuis &Aubrt .(2003)	Gill& Reaves (1951)	Farrar& Coleman (1967)	Smith et al (1985)	Zaki (1971)	Locat et al. 1984)
	2		1,90E-09	1,68E-09	1,47E-09	8,02E-09	4,17E-08	1,33E-08						
	3,0-3,25	3,06E-08												
	5,7-5,95	1,95E-08												
IB3	10,0-10,25		2,35E-09	2,08E-09	1,83E-09	1,18E-08	4,87E-08	1,38E-08	1,86E-07	4,95E- 08	7,62E-08	2,54E- 08	1,92E- 08	2,77E- 07
	13,1-13,35	2,05E-09												
	17,0-17,25	7,00E-09												
	20		1,22E-09	1,08E-09	9,49E-10	5,35E-09	2,12E-08	7,81E-09						
	30		5,63E-10	4,99E-10	4,39E-10	4,40E-09	2,50E-08	9,09E-09						
	3		1,22E-09	1,08E-09	9,41E-10	4,93E-09	2,31E-08	8,91E-09	8,50E-08	1,63E- 08	3,75E-08	8,00E- 09	8,57E- 09	1,16E- 07
IIIB3	4,2-4,45	2,03E-08												
IIID5	12,0-12,25	7,00E-09	1,32E-09	1,17E-09	1,02E-09	5,41E-09	3,05E-08	1,10E-08						
	17,4-17,65		1,52E-09	1,35E-09	1,19E-09	6,42E-09	3,32E-08	1,13E-08	1,20E-07	2,72E- 08	5,07E-08	1,37E- 08	1,22E- 08	1,71E- 07
	7		1,20E-09	1,08E-09	9,57E-10	7,76E-09	3,96E-08	1,04E-08	1,47E-07	3,59E- 08	6,10E-08	1,82E- 08	1,50E- 08	2,14E- 07
IVB3	14,0-14,25	3,33E-08												
	18		7,99E-10	7,15E-10	6,36E-10	4,64E-09	3,05E-08	9,67E-09						
	26		4,15E-10	3,71E-10	3,30E-10	1,85E-09	1,12E-08	4,65E-09						

3.1.3 Hidraulička vodljivost, K (m/s) uzoraka kopnenih prapora u Iloku i pregled vrijednosti određenih pojedinim metodama

3.2 Istraživačko polje Našičke obilaznice

2.0	4		V •1	NT V.	• •	4 41	1
		(Franillometriiski sastav	moevarnih r	nranora II Nasican	ng izrgzer	nostotkom	nrolaza
J .	• •	Granulometrijski sastav	moevarmin p	napora u masican	na izrazvi	i postotkom	protaza

	Promier	Dih	2,81	1,18	0,56	0,31	0,148	0,087	0,043	0,0240	0,0154	0,0101	0,0070	0,0040	0,00176	0,00072
tina	zrna u	Dig	3,08	1,30	0,59	0,32	0,162	0,088	0,047	0,0245	0,0158	0,0103	0,0071	0,0042	0,00194	0,00072
ušot	prosjevu	Dia	3,38	1,42	0,63	0,34	0,178	0,090	0,052	0,0250	0,0163	0,0105	0,0073	0,0045	0,00213	0,00072
В	Promjer prosjeva	4,75	2,00	0,841	0,420	0,250	0,105	0,074	0,030	0,0200	0,0125	0,0085	0,0060	0,0030	0,0013	
	1,3-1,5	100	100	100	100	99,5	99,0	98,5	77,0	66,5	52,0	47,0	43,0	34,5	30,0	0,0
ST-2	3,0-3,2	100	100	100	100	99,5	99,0	98,5	71,0	56,0	39,0	32,0	28,0	20,0	17,0	0,0
	4,0-4,2	100	100	100	100	99,5	99,0	98,5	73,0	65,0	51,0	45,0	40,5	34,0	30,0	0,0
	0,5-0,7	100	100	100	100	99,5	99,0	99,0	78,0	67,0	51,5	42,0	38,0	29,0	25,0	0,0
ST-4	1,3-1,5	100	100	100	100	99,5	99,0	99,0	77,0	66,0	49,0	40,0	34,0	25,5	21,0	0,0
	3,2-3,4	100	100	100	99,5	99,0	98,5	98,5	76,0	64,0	50,0	41,0	36,0	27,0	22,0	0,0
	1,5-1,7	100	100	99,5	98,5	98,0	96,0	95,0	77,0	68,0	51,5	41,5	35,5	26,0	21,0	0,0
ST-6	2,5-2,7	100	100	100	100	99,0	97,0	97,0	72,0	57,5	39,0	30,5	26,5	19,0	15,0	0,0
	4,0-4,2	100	100	100	100	100,0	99,0	99,0	82,0	73,5	58,5	50,0	45,5	38,0	31,0	0,0
	1,2-1,4	100	100	100	100	98,0	97,5	96,0	79,0	70,0	56,0	47,0	40,5	31,0	25,0	0,0
ST7	2,2-2,4	100	100	100	100	100	99,0	98,0	78,0	63,5	48,5	41,0	35,0	28,0	23,5	0,0
	4,4-4,6	100	100	99,0	98,0	97,0	96,5	96,0	78,5	68,0	56,0	49,0	43,5	35,5	29,0	0,0
579	2,0-2,4	100	100	100	100	99,5	99,0	98,5	80,0	65,0	52,0	44,5	39,0	32,0	26,0	0,0
518	4,0-4,2	100	100	99,5	99,5	99,0	98,0	97,0	76,0	64,5	51,0	45,0	39,0	31,0	25,0	0,0

otina	Dubing	Uc agre	ljel egata	dardn ijacija čine tica		Oblici	i srednje v	eličine (m	m)		nica snja L		Masena	specifična	površina, a	$m (m^2/g)$	
Bušc	Duoma	prah	glina	σ,stan a devi veli česi	Dg –graf (mm)	Daa	Dag	Dah	Dlng	n _e	grai teče L	Chapuis	Gill	Ferrar	Smith	Zaki	Locat
ST-2	1,3-1,5	0,63	0,32	6,5	0,012	0,0021	0,0021	0,0020	0,0066	0,053	54,18	62	168	79	246	183	53
	3,0-3,2	0,75	0,18	5	0,021	0,0033	0,0033	0,0032	0,0111	0,063	44,05	46	119	64	173	142	40
	4,0-4,2	0,60	0,32	7	0,0125	0,0021	0,0021	0,0021	0,0070	0,054	60,85	75	199	89	293	209	61
ST-4	0,5-0,7	0,70	0,27	5,5	0,014	0,0024	0,0024	0,0023	0,0075	0,056	51,47	58	155	75	226	172	49
	1,3-1,5	0,74	0,23	4,5	0,015	0,0027	0,0027	0,0027	0,0085	0,059	47,94	52	138	70	201	158	45
	3,2-3,4	0,73	0,24	4	0,0135	0,0026	0,0026	0,0026	0,0084	0,059	48,33	52	140	71	204	159	45
ST-6	1,5-1,7	0,69	0,23	6	0,017	0,0027	0,0027	0,0026	0,0087	0,060	48,32	52	140	71	204	159	45
	2,5-2,7	0,65	0,16	7,5	0,030	0,0036	0,0035	0,0035	0,0117	0,068	41,26	42	106	60	153	131	37
	4,0-4,2	0,63	0,34	6	0,010	0,0020	0,0019	0,0019	0,0057	0,050	54,05	62	167	79	245	182	53
ST-7	1,2-1,4	0,67	0,28	6,5	0,014	0,0023	0,0023	0,0023	0,0072	0,056	57,23	68	182	84	267	195	57
	2,2-2,4	0,71	0,26	4,5	0,013	0,0025	0,0025	0,0025	0,0081	0,058	46,28	49	130	68	189	151	43
	4,4-4,6	0,62	0,32	6,5	0,012	0,0021	0,0021	0,0020	0,0068	0,053	49,97	55	147	73	215	166	47
ST-8	2,0-2,3	0,68	0,29	5,5	0,012	0,0023	0,0023	0,0022	0,0072	0,055	53,13	60	163	78	238	179	51
	4,0-4,2	0,69	0,27	6	0,015	0,0024	0,0023	0,0023	0,0077	0,057	51,3	57	154	75	225	171	49

3.2.2 Karakteristične veličine granulometrijskoga sastava močvarnih prapora u Našicama i masena specifična površina iz korelacije s granicom tečenja

tina	ina	Laborat. test	Vrijednosti	određene KC r	netodom za ra zrna	zličite veličin	ne srednjeg	Korelaacijska metoda	KC metod	a korištenjen g	n specifične ranicom teč	površine od enja prema:	ređene koral	acijom s
Bušo	Dubi	K (test)	K (Daa)	K(Dag)	K (Dah)	K(Dlng)	K(Dg-graf)	K(COR)	Chapuis &Aubertin (2003)	Gill& Reaves (1951)	Farrar& Coleman (1967)	Smith et al (1985)	Zaki (1971)	Locat et al. 1984)
	1,0-1,3	2,34E-10												
0	1,3-1,5		3,39E-11	3,34E-11	3,28E-11	3,48E-10	1,14E-09	3,54E-10	8,97E-09	1,24E-09	5,52E-09	5,78E-10	1,04E-09	1,25E-08
ST-3	3,0-3,2		1,50E-10	1,46E-10	1,42E-10	1,68E-09	6,00E-09	2,66E-09	2,84E-08	4,20E-09	1,44E-08	1,99E-09	2,96E-09	3,73E-08
•1	4,0-4,2		3,68E-11	3,63E-11	3,57E-11	4,17E-10	1,31E-09	4,16E-10	6,54E-09	9,30E-10	4,62E-09	4,30E-10	8,43E-10	9,91E-09
	4,2-4,5	1,75E-09												
	0,5-0,7		5,39E-11	5,29E-11	5,18E-11	5,33E-10	1,84E-09	6,48E-10	1,25E-08	1,73E-09	7,27E-09	8,09E-10	1,40E-09	1,70E-08
4	1,3-1,5		8,22E-11	8,03E-11	7,84E-11	7,92E-10	2,49E-09	9,82E-10	1,81E-08	2,56E-09	9,89E-09	1,21E-09	1,96E-09	2,41E-08
ST-	2,0-2,3	1,77E-09												
	3,2-3,4		7,61E-11	7,43E-11	7,24E-11	7,74E-10	2,02E-09	7,77E-10	1,77E-08	2,50E-09	9,73E-09	1,17E-09	1,92E-09	2,36E-08
	4,0-4,3	9,86E-10												
	1,0-1,3	3,11E-10												
<u>\</u>	1,5-1,7		8,49E-11	8,28E-11	8,07E-11	8,87E-10	3,37E-09	1,33E-09	1,87E-08	2,63E-09	1,03E-08	1,24E-09	2,02E-09	2,49E-08
ST-(2,5-2,7		2,22E-10	2,16E-10	2,09E-10	2,37E-09	1,56E-08	6,40E-09	4,32E-08	6,77E-09	2,10E-08	3,24E-09	4,43E-09	5,68E-08
•1	3,0-3,3	6,47E-10												
	4,0-4,2		2,55E-11	2,50E-11	2,45E-11	2,11E-10	6,61E-10	1,96E-10	7,54E-09	1,04E-09	4,63E-09	4,86E-10	8,76E-10	1,05E-08
	1,2-1,4		5,11E-11	5,00E-11	4,87E-11	4,85E-10	1,84E-09	6,01E-10	8,96E-09	1,25E-09	5,86E-09	5,79E-10	1,09E-09	1,29E-08
2	2,2-2,4		6,67E-11	6,54E-11	6,40E-11	6,88E-10	1,77E-09	6,24E-10	1,90E-08	2,74E-09	1,01E-08	1,29E-09	2,02E-09	2,51E-08
ST-2	2,7-3,0	5,50E-10												
•1	4,0-4,3	1,48E-10												
	4,4-4,6		3,45E-11	3,38E-11	3,30E-11	3,67E-10	1,14E-09	3,68E-10	1,15E-08	1,60E-09	6,51E-09	7,51E-10	1,27E-09	1,55E-08
	1,0-1,3	8,78E-10												
8	2,0-2,3		4,67E-11	4,57E-11	4,47E-11	4,55E-10	1,28E-09	4,07E-10	1,07E-08	1,48E-09	6,45E-09	6,90E-10	1,23E-09	1,48E-08
LS	3,0-3,3	5,18E-10												
	4,0-4,2		5,18E-11	5,42E-11	5,29E-11	5,90E-10	2,24E-09	7,51E-10	1,33E-08	1,85E-09	7,74E-09	8,64E-10	1,49E-09	1,81E-08

3.2.3 Hidraulička vodljivost, K (m/s) uzoraka močvarnih prapora u Našicama i pregled vrijednosti određenih pojedinim metodama

4 ISTRAŽIVAČKO POLJE TRASE KANALA DUNAV-SAVA

	D	ih	1,33333	0,66667	0,28571	0,13333	0,075	0,048	0,02667	0,01333	0,0075	0,00514	0,0036	0,00181	7,51E-04
zrna u u (mm)	D	ig	1,41421	0,70711	0,31623	0,14142	0,07746	0,04899	0,02828	0,01414	0,00775	0,0052	0,00367	0,00197	7,51E-04
(11111)	D	Dia	1,5	0,75	0,35	0,15	0,08	0,05	0,03	0,015	0,008	0,00525	0,00375	0,00215	7,51E-04
Broj	Dubina	Promjer prosjeva	1	0,5	0,2	0,1	0,06	0,04	0,02	0,01	0,006	0,0045	0,003	0,0013	
950230	3,80	100	100	100	100	94	79	65	46	35	30	26,5	21,5	18,5	
950231	8,50	100	100	100	100	100	96	90	78	60,5	50	43	38	30,5	
950002	8,60	100	100	100	100	100	99	96,5	86,5	71	63	59	53	44,5	
950008	8,50	100	100	100	100	100	99,5	98	93	82,5	75	71,5	66,5	57,5	
950238	8,50	100	100	100	100	100	99,5	94	86	70	62	57,5	51	44,5	
950545	3,00	100	100	100	99,5	98,5	95	92	80	61	48	40	33	23	
950546	7,00	100	100	100	100	99,5	96	90,5	79,5	61	50	46	39	30,5	
950558	3,20	100	100	100	100	99,5	99	96,5	92	82	71	64,5	56	39,5	
950556	3,60	100	100	100	100	99,5	91,5	86	76	66,5	59,5	57	50,5	39	
950341	7,00	100	100	100	99,5	99	99	96	91	82,5	74,5	69,5	65	54	
950340	3,00	100	100	100	100	100	95,5	92	83,5	64,5	50	43	35,5	25	
950244	3,50	100	100	100	100	100	97	85,5	59	45	39,5	37	31	28,5	
950245	8,50	100	100	100	100	97	93	85	59,5	45	39,5	37	33,5	29	
950277	3,50	100	100	100	99	92,5	70	66	55	45	38,5	34	31,5	26	
950220	3,60	100	100	100	100	82,5	70	62,5	48	35	26,5	23	18	11	
950221	7,70	100	100	100	100	98	92	86	74,5	62	52	47,5	41,5	35,5	
950013	3,80	100	100	100	100	100	88	68	32	19	14,5	13	10	8,5	
950014	8,50	100	100	100	100	99	99	88	74	56	46,5	41	37	28,5	
950031	3,80	100	100	100	98	96	90	83	70	52	42	38	33	24	
950032	10,0	100	100	100	100	99,5	98,5	91	68	46	35	31	27	21,5	
950023	3,80	100	100	100	100	100	66,5	52,5	33,5	22	17	15	14	12	
950024	8,50	100	100	100	100	100	97,5	92	73	53,5	43,5	40	35	23	
950565	7,00	100	100	100	100	99,5	94	89,5	80	59	43	34,5	30	20	
962217	5,40	100	100	100	100	100	99,5	98,5	92	83	76	71,5	67	54	
	zrna u 1 (mm) Broj 950230 950231 950002 950008 950238 950545 950545 950546 950546 950546 950546 950546 950241 950241 950220 950221 950013 950024 950031 950031 950024 950023 950024 950024	Image Image zrna u D 1 (mm) D Broj Dubina 950230 3,80 950231 8,50 950002 8,60 950008 8,50 950238 8,50 950545 3,00 950546 7,00 950545 3,60 950546 3,60 950547 3,60 950340 3,00 950244 3,50 950245 8,50 950245 8,50 950244 3,50 950245 8,50 950245 8,50 950245 3,60 950245 3,60 950245 3,80 950245 3,80 950014 8,50 950031 3,80 950032 10,0 950023 3,80 950024 8,50 9500565 7,00 9505655	Dih Zrna u Dig 1 (mm) Dig Broj Dubina Promjer prosjeva 950230 3,80 100 950231 8,50 100 950002 8,60 100 950038 8,50 100 950238 8,50 100 950545 3,00 100 950556 3,60 100 950546 7,00 100 950546 7,00 100 950546 3,60 100 950547 3,60 100 950548 3,20 100 950549 3,60 100 950340 3,00 100 950244 3,50 100 950277 3,50 100 950213 3,80 100 950214 8,50 100 950013 3,80 100 950023 3,80 100 950024 8,50	Dih 1,33333 Dig 1,41421 Dia 1,5 Broj Dubina Promjer prosjeva 1 950230 3,80 100 100 950231 8,50 100 100 950002 8,60 100 100 950238 8,50 100 100 950545 3,00 100 100 950546 7,00 100 100 950546 7,00 100 100 950341 7,00 100 100 950244 3,50 100 100 950257 3,50 100 100 950244 3,50 100 100 950277 3,50 100 100 950213 3,60 100 100 950220 3,60 100 100 950213 3,80 100 100 950014 8,50 100 100 95	Dih 1,33333 0,66667 Dig 1,41421 0,70711 Dis 1,5 0,75 Broj Dubina Promjer prosjeva 1 0,5 950230 3,80 100 100 100 950231 8,50 100 100 100 950002 8,60 100 100 100 950038 8,50 100 100 100 950545 3,00 100 100 100 950546 7,00 100 100 100 950545 3,60 100 100 100 950546 7,00 100 100 100 950546 3,60 100 100 100 950546 3,60 100 100 100 950340 3,60 100 100 100 950244 3,50 100 100 100 950213 3,60 100 100 <	Dih 1,33333 0,66667 0,28571 Dig 1,41421 0,70711 0,31623 Dia 1,5 0,75 0,35 Broj Dubina Promjer prosjeva 1 0,5 0,2 950230 3,80 100 100 100 100 950231 8,50 100 100 100 100 950022 8,60 100 100 100 100 950038 8,50 100 100 100 100 950545 3,00 100 100 100 100 950546 7,00 100 100 100 100 950545 3,60 100 100 100 100 950546 7,00 100 100 100 100 950546 3,60 100 100 100 100 950547 3,60 100 100 100 100 950244 3,50	Dih 1,33333 0,66667 0,28571 0,13333 Imm) Dig 1,41421 0,70711 0,31623 0,14142 Imm) Dis 1,5 0,75 0,35 0,15 Broj Dubma Promjer prosjeva 1 0,5 0,2 0,1 950230 3,80 100 100 100 100 94 950231 8,50 100 100 100 100 100 950028 8,60 100 100 100 100 100 950238 8,50 100 100 100 100 100 950545 3,00 100 100 100 99,5 98,5 950546 7,00 100 100 100 99,5 99,5 950546 3,00 100 100 100 99,5 99 950340 3,00 100 100 100 100 100 950245 8,50<	Dih 1,33333 0,66667 0,28571 0,13333 0,075 Imm) Dig 1,41421 0,70711 0,31623 0,14142 0,07746 Dia 1,5 0,75 0,35 0,15 0,08 Broj Dubina Pronjer projeva 1 0,5 0,2 0,1 0,06 950230 3,80 100 100 100 100 94 79 950231 8,50 100 100 100 100 100 94 99 950023 8,60 100 100 100 100 94 99 950023 8,60 100 100 100 100 94 99 950038 8,50 100 100 100 100 99,5 96 950546 7,00 100 100 100 100 99,5 91,5 950545 3,60 100 100 100 100 90,5 99	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	mm (nm) \overrightarrow{Pram} 1,33330,666670,285710,133330,0750,04890,026670,013330,00750,0052 \overrightarrow{Pram} 1.44210,77110,316230,11420,077460,048990,028280,01410,007750,0052Broi \overrightarrow{Pram} 1.50,750,350,150,060,040,020,0110,0080,0052Broi \overrightarrow{Pram} 1.50,750,220,10,060,040,020,010,0060,0052950213.8010010010094796546353026.5950238.601001001001001009996,586,557163.459950088.5010010010010010099,594867062.557.5950343.0010010010099,5959486.57164.564.59505453.0010010010099,599.59486.570.665.555	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dh 1,3333 0,6667 0,28571 0,13333 0,075 0,048 0,02677 0,0133 0,0075 0,0014 0,00367 0,0037 0,00377 0,00377 0,00377 0,0037 0,00377 0,0037 0,00377 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0037 0,0

4.1.1 Granulometrijski sastav uzoraka koherentnih naslaga duž trase kanala Dunav-Sava izražen postotkom prolaza

BT-14-1	962052	1,50	100	100	100	99,5	99	79,5	65	38,5	27,5	22,5	20	16,5	11,5	
BT-14-3	962053	7,70	100	100	100	100	99	91	84,5	73,5	61	54,5	51	46	39,5	
BTP-16-2	962064	1,50	100	100	100	100	99,5	89,5	79	47	31	22	18,5	14	11	
BT-4-3	962034	6,10	100	100	100	100	99,5	96	92,5	83	71	64	60	55,5	47	
BT-15-1	962120	1,50	100	100	100	99	98,5	96	93	80	58	47,5	43	37,5	30,5	
BO-34-1	962198	3,50	100	100	100	99	93,5	87	82,5	64,5	45	35	31	28	20,5	
BO-34-2	962220	5,80	100	100	100	100	92	83,5	77,5	64	51	41	35,5	25,5	19	
BO-34-3	962199	7,30	100	100	100	99	96	94	87	72	52	40,5	36	28	17,5	
BO-34-4	962201	17,2	100	100	100	100	99,5	94,5	83	58	40	32	28	23,5	21,5	
BO-35-3	962206	16,8	100	100	100	100	96	84,5	74,5	54,5	41	34,5	32	28,5	22	
BO-21-1	962188	1,50	100	100	100	99	97	89,5	78	58	43,5	35	32,5	30	25	
BO-21-5	962196	17,7	100	100	100	100	94	86	78	56,5	40,5	32	28,5	24	20	
BO-36-1	962210	2,50	100	100	100	100	100	86,5	75	56	38	30	26	21	16	
BO-36-2	962212	5,30	100	100	100	100	100	97	95	81,5	70	60	55	51	41,5	
BO-37-3	962184	5,20	100	100	100	100	100	96	94	84,5	75,5	67	62	54	46	
BO-26-1	962173	1,40	100	100	100	100	100	99	96	82	55,5	40	33,5	27,5	21,5	
BT-5-1	962073	1,50	100	100	100	100	100	95,5	90	67	47	38	33	28	22	
BT-6-1	962080	1,60	100	100	100	100	100	94,5	92	61	46	36,5	32,5	27,5	21,8	
BO-27-1	962165	1,30	100	100	100	98	94	87,5	78	59	40	31	27,5	22	17	
BO-27-3	962168	5,00	100	100	100	100	100	99,5	96,5	84	60	42,5	37	31	22	
BO-28-2	962157	1,40	100	100	99	98	97	78,5	65	47,5	35	26,5	22	18	14	
BT-8-1	962087	1,50	100	100	100	100	100	97	94	78	62	54	47,5	42	32	
BT-9-1	962044	1,50	100	100	100	100	100	90	85	73,5	56,5	42	35	29,5	21,5	
BT-9-3	962046	5,00	100	100	100	100	94	70	56,5	38,5	28,5	22	18	15	12	
BTP-10-1	962103	1,50	100	100	100	99	94	83	74	49,5	34,5	28	23	18,5	16	
BO-29-2	962155	1,40	100	100	100	100	95	88,5	81	69	53,5	42	36	30	21	
BTP-11-1	962093	1,80	100	100	100	100	95	84	74	54,5	39	30,5	27,5	22	18	
BO-32-1	962134	1,30	100	100	100	100	94	75	62	42	28	23	20	17,5	14	
BO-33-1	962146	1,40	100	100	100	100	99	78	55,5	31	25	20,5	19	16,5	14	
BTP-12-1	962099	1,70	100	100	99	98	97	92,5	88	71	50	38	33	25	18	
BO-30-1	962127	1,40	100	100	100	100	94	87	77	65,5	56	50	47,5	45	40	
BO-31-1	962143	1,20	100	100	100	100	99	95	88,5	73,5	58	50	44,5	39	32	
BTP-13-2	962111/1	1,65	100	100	100	95	83,5	70	60	49	40	33	29,5	25	19,5	

laka ırka	Ō	oina	Udjel aş	gregata	dardna ija vel. tica		Oblic	vi srednje v	veličine (n	ım)		nica enja L		Masena	specifična	površina, a	$m (m^2/g)$	
Ozn uzo	Bı	Duł	prah	glina	σ ,stan devijac č.es	Dg –graf (mm)	Daa	Dag	Dah	Dlng	n _e	graı tečć L	Chapuis	Gill	Ferrar	Smith	Zaki	Locat
AT-2-4	950230	3,80	0,59	0,20	9,3	0,0300	0,0033	0,0032	0,0032	0,0136	0,066	33,3	32	68	48	96	99	27
AT-2-5	950231	8,50	0,62	0,34	6,2	0,0105	0,0020	0,0020	0,0020	0,0051	0,049	54,9	64	171	81	251	186	54
AT-3-5	950002	8,60	0,50	0,49	5,5	0,0055	0,0015	0,0015	0,0014	0,0031	0,041	62,1	78	205	91	302	214	63
AT-4-6	950008	8,50	0,38	0,62	5,1	0,0037	0,0012	0,0012	0,0012	0,0020	0,037	77,3	117	278	114	411	275	82
AT-5-6	950238	8,50	0,52	0,48	5,0	0,0052	0,0015	0,0015	0,0015	0,0032	0,042	61,9	77	204	91	301	214	62
ATP-6-5	950545	3,00	0,67	0,28	6,0	0,0130	0,0024	0,0023	0,0023	0,0057	0,050	54,0	62	167	79	244	182	53
ATP-6-6	950546	7,00	0,62	0,34	6,0	0,0100	0,0020	0,0020	0,0019	0,0050	0,050	57,2	68	182	84	267	195	57
ATP-8-4	950558	3,20	0,50	0,49	5,5	0,0052	0,0015	0,0015	0,0015	0,0027	0,040	89,7	162	337	132	499	325	97
ATP-8-5	950556	3,60	0,44	0,45	9,0	0,0082	0,0016	0,0016	0,0016	0,0041	0,044	93,7	181	356	138	528	341	102
ATP-10-5	950341	7,00	0,38	0,60	6,0	0,0040	0,0012	0,0012	0,0012	0,0022	0,039	83,2	136	306	123	453	299	89
ATP-10-6	950340	3,00	0,64	0,31	6,1	0,0120	0,0022	0,0022	0,0022	0,0051	0,049	51,0	57	152	75	223	170	49
ATP-11-5	950244	3,50	0,66	0,31	5,5	0,0115	0,0023	0,0023	0,0022	0,0074	0,055	48,7	53	141	71	206	161	46
ATP-11-6	950245	8,50	0,51	0,42	8,0	0,0090	0,0022	0,0022	0,0022	0,0075	0,055	67,0	89	229	99	337	234	69
ATP-13-6	950277	3,50	0,42	0,29	14,2	0,0310	0,0024	0,0024	0,0024	0,0105	0,063	55,3	64	173	81	254	187	54
AO-14-5	950220	3,60	0,55	0,15	10,0	0,0470	0,0044	0,0043	0,0042	0,0172	0,076	32,4	30	64	47	90	96	26
AO-14-6	950221	7,70	0,53	0,39	7,5	0,0095	0,0018	0,0018	0,0018	0,0050	0,049	58,2	70	187	85	274	199	58
AO-15-5	950013	3,80	0,81	0,09	4,3	0,0280	0,0061	0,0061	0,0060	0,0199	0,085	31,2	29	58	45	81	91	24
AO-15-6	950014	8,50	0,66	0,33	5,3	0,0100	0,0021	0,0021	0,0021	0,0057	0,050	50,9	57	152	75	222	170	49
AO-17-7	950031	3,80	0,62	0,29	7,3	0,0140	0,0024	0,0024	0,0024	0,0073	0,054	47,4	51	135	69	197	156	44
AO-17-8	950032	10,00	0,74	0,24	4,8	0,0140	0,0027	0,0027	0,0027	0,0076	0,056	46,5	50	131	68	191	152	43
AO-18-5	950023	3,80	0,54	0,13	9,5	0,0550	0,0049	0,0049	0,0048	0,0215	0,085	32,7	31	65	47	92	97	26
AO-18-6	950024	8,50	0,67	0,30	5,5	0,0115	0,0024	0,0024	0,0023	0,0062	0,051	49,3	54	144	72	211	163	47
AOP-19-5	950565	7,00	0,69	0,25	6,0	0,0150	0,0026	0,0026	0,0025	0,0064	0,052	46,8	50	132	68	193	153	44
BO-17-1	962217	5,40	0,38	0,62	5,0	0,0038	0,0012	0,0012	0,0012	0,0021	0,038	84,7	142	313	125	464	305	91
BT-14-1	962052	1,50	0,66	0,14	7,7	0,0330	0,0046	0,0045	0,0044	0,0170	0,078	31,1	29	58	45	81	90	24

4.1.2 Karakteristične veličine granulometrijskoga sastava uzoraka koherentnih naslaga duž trase kanala Dunav-Sava i i masena specifična površina iz korelacije s granicom tečenja

BT-14-3	962053	7,70	0,49	0,43	8,0	0,0081	0,0017	0,0017	0,0016	0,0046	0,045	59,0	71	190	87	280	202	59
BTP-16-2	962064	1,50	0,77	0,12	5,3	0,0275	0,0046	0,0046	0,0045	0,0142	0,072	35,3	34	78	51	111	107	29
BT-4-3	962034	6,10	0,45	0,52	6,5	0,0056	0,0014	0,0014	0,0014	0,0031	0,041	87,7	154	327	130	485	317	95
BT-15-1	962120	1,50	0,62	0,34	6,3	0,0105	0,0020	0,0020	0,0020	0,0052	0,049	51,0	57	152	75	223	170	49
BO-34-1	962198	3,50	0,62	0,24	8,0	0,0200	0,0028	0,0028	0,0027	0,0091	0,060	47,1	51	134	69	195	154	44
BO-34-2	962220	5,80	0,61	0,22	8,8	0,0260	0,0029	0,0028	0,0028	0,0091	0,060	35,4	34	78	51	111	108	29
BO-34-3	962199	7,30	0,71	0,24	5,5	0,0150	0,0029	0,0028	0,0028	0,0076	0,056	42,3	43	111	62	161	135	38
BO-34-4	962201	17,20	0,73	0,22	5,0	0,0150	0,0029	0,0028	0,0028	0,0094	0,060	42,8	44	113	62	164	137	39
BO-35-3	962206	16,80	0,59	0,26	8,9	0,0080	0,0027	0,0027	0,0027	0,0101	0,062	48,7	53	141	71	206	161	46
BO-21-1	962188	1,50	0,62	0,28	7,5	0,0150	0,0025	0,0025	0,0025	0,0090	0,060	48,5	53	140	71	205	160	46
BO-21-5	962196	17,70	0,63	0,22	8,0	0,0240	0,0030	0,0030	0,0029	0,0106	0,063	40,5	41	102	59	148	128	36
BO-36-1	962210	2,50	0,67	0,18	7,1	0,0250	0,0035	0,0034	0,0034	0,0114	0,063	40,2	40	101	59	146	127	35
BO-36-2	962212	5,30	0,50	0,46	7,0	0,0071	0,0016	0,0015	0,0015	0,0035	0,042	58,6	71	189	86	277	200	58
BO-37-3	962184	5,20	0,46	0,50	6,5	0,0058	0,0014	0,0014	0,0014	0,0030	0,040	66,9	89	228	98	336	234	69
BO-26-1	962173	1,40	0,74	0,25	4,5	0,0135	0,0026	0,0026	0,0025	0,0061	0,051	46,6	50	131	68	191	152	43
BT-5-1	962073	1,50	0,71	0,25	5,7	0,0155	0,0026	0,0026	0,0026	0,0075	0,055	40,3	41	101	59	146	127	35
BT-6-1	962080	1,60	0,68	0,25	6,2	0,0150	0,0027	0,0027	0,0026	0,0079	0,058	43,2	45	115	63	167	139	39
BO-27-1	962165	1,30	0,68	0,20	6,6	0,0210	0,0033	0,0032	0,0032	0,0111	0,063	33,8	32	70	49	100	101	27
BO-27-3	962168	5,00	0,72	0,27	4,7	0,0115	0,0025	0,0024	0,0024	0,0056	0,050	44,7	47	122	65	178	145	41
BO-28-2	962157	1,40	0,64	0,16	8,0	0,0320	0,0039	0,0039	0,0038	0,0150	0,074	37,3	37	87	54	125	115	32
BT-8-1	962087	1,50	0,63	0,34	5,2	0,0090	0,0019	0,0019	0,0019	0,0046	0,047	68,2	92	234	100	346	239	70
BT-9-1	962044	1,50	0,64	0,26	7,0	0,0170	0,0026	0,0025	0,0025	0,0070	0,054	52,4	59	159	77	233	176	51
BT-9-3	962046	5,00	0,57	0,14	9,0	0,0460	0,0046	0,0046	0,0045	0,0199	0,084	33,8	32	70	49	100	101	27
BTP-10-1	962103	1,50	0,65	0,17	7,7	0,0290	0,0036	0,0036	0,0035	0,0134	0,072	43,6	45	117	64	170	140	40
BO-29-2	962155	1,40	0,63	0,25	8,0	0,0220	0,0026	0,0026	0,0026	0,0077	0,057	52,8	60	161	77	236	177	51
BTP-11-1	962093	1,80	0,63	0,20	8,0	0,0260	0,0032	0,0032	0,0032	0,0116	0,065	41,0	42	105	60	151	130	36
BO-32-1	962134	1,30	0,60	0,15	8,8	0,0400	0,0041	0,0041	0,0040	0,0171	0,079	32,2	30	63	47	89	95	25
BO-33-1	962146	1,40	0,62	0,15	8,5	0,0380	0,0043	0,0043	0,0042	0,0190	0,081	31,5	29	60	46	84	92	24
BTP-12-1	962099	1,70	0,71	0,22	6,0	0,0180	0,0029	0,0029	0,0029	0,0081	0,058	42,3	43	111	62	161	135	38
BO-30-1	962127	1,40	0,45	0,42	10,5	0,0115	0,0017	0,0017	0,0017	0,0057	0,050	64,2	82	215	94	317	223	65
BO-31-1	962143	1,20	0,60	0,35	6,8	0,0110	0,0020	0,0019	0,0019	0,0053	0,050	49,5	54	145	72	212	164	47
BTP-13-2	962111/1	1,65	0,48	0,22	11,8	0,0390	0,0031	0,0030	0,0030	0,0146	0,074	40,6	41	103	59	149	128	36

ıka ka	įč	ina	Laborat. test	Vrijed	nosti određen	ne KC metodo srednjeg zrr	m za različite a	e veličine	Korelac. metoda	KC	metoda kor koralaci	ištenjem spe jom s granic	cifične povr om tečenja j	pine određ prema:	tene
Ozné uzor	Brc	Dubi	Kt (test)	K (Daa)	K (Dag)	K (Dah)	K (Dlng)	K (Dg-graf)	K _{COR}	Chapuis &Aubrt .(2003)	Gill& Reaves (1951)	Farrar& Coleman (1967)	Smith et al (1985)	Zaki (1971)	Locat et al. 1984)
AT-2-4	950230	3,80	5,00E-10	1,7E-10	1,7E-10	1,6E-10	2,90E-09	1,4E-08	2,71E-09	6,9E-08	1,5E-08	3,0E-08	7,4E-09	7,0E-09	9,8E-08
AT-2-5	950231	8,50	1,70E-10	2,5E-11	2,5E-11	2,4E-11	1,60E-10	6,8E-10	1,84E-10	6,7E-09	9,3E-10	4,2E-09	4,3E-10	7,9E-10	9,5E-09
AT-3-5	950002	8,60	1,10E-10	7,7E-12	7,6E-12	7,5E-12	3,40E-11	1,1E-10	1,14E-11	2,6E-09	3,7E-10	1,9E-09	1,7E-10	3,4E-10	4,0E-09
AT-4-6	950008	8,50	8,40E-11	3,6E-12	3,6E-12	3,6E-12	1,10E-11	3,6E-11	5,15E-12	8,4E-10	1,5E-10	8,8E-10	6,8E-11	1,5E-10	1,7E-09
AT-5-6	950238	8,50	2,50E-10	8,5E-12	8,4E-12	8,3E-12	4,00E-11	1,0E-10	1,28E-11	2,8E-09	4,1E-10	2,0E-09	1,9E-10	3,7E-10	4,4E-09
ATP-6-5	950545	3,00	1,80E-10	3,7E-11	3,6E-11	3,5E-11	2,20E-10	1,1E-09	4,63E-10	7,6E-09	1,0E-09	4,6E-09	4,9E-10	8,8E-10	1,1E-08
ATP-6-6	950546	7,00	1,40E-10	2,6E-11	2,6E-11	2,5E-11	1,60E-10	6,6E-10	1,63E-10	6,3E-09	8,8E-10	4,1E-09	4,1E-10	7,7E-10	9,1E-09
ATP-8-4	950558	3,20	1,80E-10	7,6E-12	7,4E-12	7,2E-12	2,50E-11	9,0E-11	1,23E-10	5,5E-10	1,3E-10	8,3E-10	5,9E-11	1,4E-10	1,5E-09
ATP-8-5	950556	3,60	5,20E-10	1,2E-11	1,2E-11	1,1E-11	7,40E-11	3,0E-10	5,44E-11	6,0E-10	1,5E-10	1,0E-09	7,0E-11	1,7E-10	1,9E-09
ATP-10-5	950341	7,00	3,70E-11	4,7E-12	4,6E-12	4,5E-12	1,50E-11	4,9E-11	1,07E-11	7,3E-10	1,4E-10	8,9E-10	6,6E-11	1,5E-10	1,7E-09
ATP-10-6	950340	3,00	1,10E-10	3,1E-11	3,0E-11	2,9E-11	1,60E-10	8,9E-10	3,13E-10	8,5E-09	1,2E-09	4,9E-09	5,5E-10	9,5E-10	1,1E-08
ATP-11-5	950244	3,50	1,10E-10	4,6E-11	4,5E-11	4,5E-11	4,90E-10	1,2E-09	2,77E-10	1,4E-08	2,0E-09	7,7E-09	9,2E-10	1,5E-09	1,9E-08
ATP-11-6	950245	8,50	2,10E-10	4,4E-11	4,4E-11	4,3E-11	5,00E-10	7,2E-10	7,93E-11	5,0E-09	7,5E-10	4,0E-09	3,4E-10	7,1E-10	8,3E-09
ATP-13-6	950277	3,50	4,20E-09	8,1E-11	8,0E-11	7,8E-11	1,50E-09	1,3E-08	2,47E-09	1,4E-08	2,0E-09	9,1E-09	9,3E-10	1,7E-09	2,0E-08
AO-14-5	950220	3,60	1,80E-09	4,7E-10	4,6E-10	4,4E-10	7,30E-09	5,4E-08	7,46E-09	1,2E-07	2,7E-08	4,9E-08	1,3E-08	1,2E-08	1,7E-07
AO-14-6	950221	7,70	4,10E-10	2,0E-11	2,0E-11	2,0E-11	1,50E-10	5,6E-10	1,14E-10	5,6E-09	7,8E-10	3,7E-09	3,6E-10	6,9E-10	8,2E-09
AO-15-5	950013	3,80	1,30E-09	1,3E-09	1,3E-09	1,2E-09	1,40E-08	2,7E-08	4,57E-09	1,8E-07	4,6E-08	7,5E-08	2,3E-08	1,9E-08	2,7E-07
AO-15-6	950014	8,50	1,60E-10	3,0E-11	2,9E-11	2,8E-11	2,10E-10	6,6E-10	1,23E-10	9,1E-09	1,3E-09	5,2E-09	5,9E-10	1,0E-09	1,2E-08
AO-17-7	950031	3,80	8,50E-10	4,9E-11	4,8E-11	4,6E-11	4,50E-10	1,6E-09	5,04E-10	1,4E-08	2,0E-09	7,7E-09	9,5E-10	1,5E-09	1,9E-08
AO-17-8	950032	10,00	4,00E-10	6,9E-11	6,8E-11	6,6E-11	5,50E-10	1,8E-09	6,20E-10	1,7E-08	2,4E-09	8,9E-09	1,1E-09	1,8E-09	2,2E-08
AO-18-5	950023	3,80	2,20E-09	8,5E-10	8,3E-10	8,1E-10	1,60E-08	1,1E-07	2,01E-08	1,6E-07	3,6E-08	6,9E-08	1,8E-08	1,6E-08	2,3E-07
AO-18-6	950024	8,50	5,00E-10	4,1E-11	3,9E-11	3,8E-11	2,70E-10	9,3E-10	2,86E-10	1,1E-08	1,5E-09	5,9E-09	7,0E-10	1,2E-09	1,4E-08
AOP-19-5	950565	7,00	1,90E-10	5,2E-11	5,0E-11	4,8E-11	3,00E-10	1,7E-09	7,16E-10	1,3E-08	1,9E-09	7,0E-09	8,8E-10	1,4E-09	1,7E-08
BO-17-1	962217	5,40	1,60E-11	4,2E-12	4,2E-12	4,1E-12	1,20E-11	4,1E-11	6,81E-12	6,2E-10	1,3E-10	8,0E-10	5,8E-11	1,3E-10	1,5E-09
BT-14-1	962052	1,50	6,50E-09	5,6E-10	5,4E-10	5,2E-10	7,70E-09	2,9E-08	6,65E-09	1,4E-07	3,5E-08	5,8E-08	1,8E-08	1,4E-08	2,1E-07

4.1.3 Testirana hidraulička vodljivost, K(m/s), uzoraka i pregled vrijednosti predviđenih pojedinim metodama

BT-14-3	962053	7,70	3,50E-11	1,3E-11	1,3E-11	1,3E-11	1,00E-10	3,1E-10	5,93E-11	4,1E-09	5,8E-10	2,8E-09	2,7E-10	5,1E-10	6,1E-09
BTP-16-2	962064	1,50	9,40E-10	4,5E-10	4,3E-10	4,2E-10	4,20E-09	1,6E-08	5,49E-09	7,9E-08	1,5E-08	3,5E-08	7,4E-09	7,9E-09	1,1E-07
BT-4-3	962034	6,10	3,40E-10	7,2E-12	7,1E-12	7,0E-12	3,50E-11	1,1E-10	1,82E-11	6,7E-10	1,5E-10	9,4E-10	6,7E-11	1,6E-10	1,8E-09
BT-15-1	962120	1,50	3,20E-10	2,5E-11	2,5E-11	2,4E-11	1,70E-10	6,8E-10	1,69E-10	8,5E-09	1,2E-09	4,9E-09	5,5E-10	9,5E-10	1,1E-08
BO-34-1	962198	3,50	1,60E-09	9,1E-11	8,9E-11	8,6E-11	9,70E-10	4,7E-09	1,52E-09	2,0E-08	2,9E-09	1,1E-08	1,4E-09	2,2E-09	2,7E-08
BO-34-2	962220	5,80	9,90E-11	9,6E-11	9,3E-11	9,1E-11	9,70E-10	7,9E-09	2,79E-09	4,4E-08	8,4E-09	1,9E-08	4,1E-09	4,4E-09	6,0E-08
BO-34-3	962199	7,30	5,80E-11	7,8E-11	7,6E-11	7,3E-11	5,50E-10	2,1E-09	7,99E-10	2,2E-08	3,4E-09	1,1E-08	1,6E-09	2,3E-09	2,9E-08
BO-34-4	962201	17,20	5,40E-10	9,6E-11	9,5E-11	9,3E-11	1,00E-09	2,6E-09	8,75E-10	2,6E-08	4,0E-09	1,3E-08	1,9E-09	2,7E-09	3,5E-08
BO-35-3	962206	16,80	4,10E-10	9,7E-11	9,5E-11	9,3E-11	1,30E-09	8,3E-10	4,16E-11	2,0E-08	2,8E-09	1,1E-08	1,3E-09	2,2E-09	2,7E-08
BO-21-1	962188	1,50	8,10E-10	7,4E-11	7,2E-11	7,1E-11	9,40E-10	2,6E-09	5,39E-10	1,8E-08	2,6E-09	1,0E-08	1,2E-09	2,0E-09	2,5E-08
BO-21-5	962196	17,70	2,20E-09	1,2E-10	1,2E-10	1,2E-10	1,50E-09	7,8E-09	1,95E-09	3,6E-08	5,7E-09	1,7E-08	2,7E-09	3,7E-09	4,7E-08
BO-36-1	962210	2,50	1,10E-08	1,6E-10	1,6E-10	1,5E-10	1,80E-09	8,5E-09	2,37E-09	3,7E-08	5,9E-09	1,7E-08	2,8E-09	3,7E-09	4,8E-08
BO-36-2	962212	5,30	9,10E-11	9,3E-12	9,2E-12	9,0E-12	4,70E-11	1,9E-10	2,42E-11	3,4E-09	4,8E-10	2,3E-09	2,2E-10	4,2E-10	5,0E-09
BO-37-3	962184	5,20	8,00E-12	6,7E-12	6,6E-12	6,6E-12	2,90E-11	6,0E-10	1,24E-11	1,9E-09	2,8E-10	1,5E-09	1,3E-10	2,7E-10	3,1E-09
BO-26-1	962173	1,40	4,30E-11	4,7E-11	4,6E-11	4,5E-11	2,60E-10	1,7E-09	5,46E-10	1,2E-08	1,8E-09	6,7E-09	8,4E-10	1,3E-09	1,7E-08
BT-5-1	962073	1,50	2,10E-10	6,2E-11	6,1E-11	5,9E-11	5,00E-10	2,0E-09	7,62E-10	2,4E-08	3,8E-09	1,1E-08	1,8E-09	2,4E-09	3,1E-08
BT-6-1	962080	1,60	1,90E-09	7,6E-11	7,4E-11	7,3E-11	6,60E-10	4,6E-09	9,90E-10	2,3E-08	3,5E-09	1,2E-08	1,7E-09	2,4E-09	3,0E-08
BO-27-1	962165	1,30	7,20E-10	1,5E-10	1,4E-10	1,4E-10	1,70E-09	1,8E-09	1,46E-09	5,8E-08	1,2E-08	2,5E-08	6,0E-09	5,8E-09	8,1E-08
BO-27-3	962168	5,00	1,10E-10	4,0E-11	3,9E-11	3,8E-11	2,10E-10	6,8E-09	3,34E-10	1,3E-08	1,9E-09	6,8E-09	9,2E-10	1,4E-09	1,7E-08
BO-28-2	962157	1,40	4,90E-09	3,5E-10	3,4E-10	3,3E-10	5,10E-09	1,8E-09	6,56E-09	7,4E-08	1,3E-08	3,4E-08	6,4E-09	7,5E-09	9,9E-08
BT-8-1	962087	1,50	2,50E-10	2,0E-11	1,9E-11	1,9E-11	1,20E-10	1,6E-09	1,24E-10	2,9E-09	4,4E-10	2,4E-09	2,0E-10	4,2E-10	4,9E-09
BT-9-1	962044	1,50	1,80E-10	5,6E-11	5,5E-11	5,3E-11	4,10E-10	1,8E-08	1,15E-09	1,1E-08	1,5E-09	6,3E-09	6,8E-10	1,2E-09	1,4E-08
BT-9-3	962046	5,00	1,30E-09	7,2E-10	7,0E-10	6,9E-10	1,30E-08	2,8E-08	1,15E-08	1,4E-07	3,0E-08	6,2E-08	1,5E-08	1,4E-08	2,0E-07
BTP-10-1	962103	1,50	7,20E-09	2,7E-10	2,7E-10	2,6E-10	3,70E-09	1,0E-08	5,50E-09	4,4E-08	6,6E-09	2,2E-08	3,2E-09	4,6E-09	5,8E-08
BO-29-2	962155	1,40	6,80E-11	6,9E-11	6,7E-11	6,5E-11	6,00E-10	6,7E-09	1,28E-09	1,2E-08	1,7E-09	7,3E-09	7,9E-10	1,4E-09	1,7E-08
BTP-11-1	962093	1,80	2,90E-09	1,6E-10	1,5E-10	1,5E-10	2,00E-09	2,4E-08	3,83E-09	3,8E-08	6,0E-09	1,8E-08	2,9E-09	3,9E-09	5,0E-08
BO-32-1	962134	1,30	5,20E-09	4,7E-10	4,6E-10	4,5E-10	8,10E-09	4,0E-08	7,34E-09	1,3E-07	3,1E-08	5,6E-08	1,6E-08	1,4E-08	1,9E-07
BO-33-1	962146	1,40	5,20E-09	5,6E-10	5,4E-10	5,3E-10	1,10E-08	9,7E-09	8,69E-09	1,5E-07	3,7E-08	6,3E-08	1,9E-08	1,6E-08	2,2E-07
BTP-12-1	962099	1,70	1,60E-09	9,1E-11	8,8E-11	8,6E-11	7,00E-10	1,4E-09	1,29E-09	2,5E-08	3,8E-09	1,2E-08	1,8E-09	2,5E-09	3,2E-08
BO-30-1	962127	1,40	3,70E-11	1,9E-11	1,9E-11	1,9E-11	2,20E-10	8,0E-10	1,42E-10	4,3E-09	6,3E-10	3,3E-09	2,9E-10	5,9E-10	6,8E-09
BO-31-1	962143	1,20	4,00E-10	2,5E-11	2,5E-11	2,4E-11	1,90E-10	1,0E-08	2,01E-10	9,8E-09	1,4E-09	5,5E-09	6,5E-10	1,1E-09	1,3E-08
BTP-13-2	962111/1	1,65	1,00E-09	2,1E-10	2,1E-10	2,0E-10	4,80E-09	3,6E-08	6,27E-09	5,9E-08	9,4E-09	2,8E-08	4,5E-09	6,0E-09	7,8E-08

ŽIVOTOPIS

Kosta Urumović rođen je 8. studenog 1977. godine u Zagrebu. Osnovnu i srednju školu pohađao je u Zagrebu gdje je 1996. godine upisao studij geologije na Rudarsko-geološkonaftnom fakultetu Sveučilišta u Zagrebu. Pod mentorstvom dr.sc. Darka Mayera 2006. godine branio je diplomski rad naslova "Izrada zona sanitarne zaštite na crplištu Prosine". Iste godine upisao je poslijediplomski doktorski studij geološkog inženjerstva na Rudarsko-geološkonaftnom fakultetu Sveučilišta u Zagrebu. Nakon diplome zaposlio se u CROSCO, Integrated Drilling & Well Services Co., Ltd., Sektor Geoservisa, gdje je radio tri godine. Trenutno je zaposlen na mjestu asistenta na Zavodu za hidrogeologiju i inženjersku geologiju pri Hrvatskom geološkom institutu.

Znanstveni i stručni interesi vezani su mu uz: primjenjenu hidrogeologiju, izvedbu hidrogeoloških objekata, hidrogeološka svojstva poroznih tvorevina, proučavanje odnosa hidrogeoloških svojstava i geomehaničkih svojstava klastičnih tvorevina i izučavanje tala i njhove uloge u vodnom ciklusu.

Aktivno sudjeluje u realizaciji znanstvenog projekta Izrada Osnovne hidrogeološke karte Republike Hrvatske. Član je Hrvatskog geološkog društva (HGD) i Međunarodnog društva hidrogeologa (IAH), te trenutno obnaša funkciju tajnika Znanstvenog vijeća Hrvatskog geološkog instituta.

ZNANSTVENI RADOVI

Izvorni znanstveni i pregledni radovi u CC časopisima

 Brkić, Željka; Urumović, Kosta; Briški, Maja: Post audit analysis of a groundwater level prediction model in developed semiconfined aquifer system. // Water resources management. 27 (2013), 9; 3349-3363 (članak, znanstveni)

Znanstveni radovi u drugim časopisima

- Brkić, Željka; Larva, Ozren; Urumović, Kosta: The quantitative status of groundwater in alluvial aquifers in norther Croatia. // Geologia Croatica : journal of the Croatian Geological Survey and the Croatian Geological Society. 63 (2010), 3; 283-298 (članak, znanstveni).
- Duić, Željko; Urumović, Kosta: Utjecaj strukture Legradskog praga na hidrogeološke značajke u području Koprivnice. // Rudarsko-geološko-naftni zbornik. 19 (2007) ; 1-10 (članak, znanstveni).

Sažeci u zbornicima skupova

- Brkić, Željka; Urumović, Kosta; Briški, Maja: Crpilište Ravnik stanje i perspektive // 4. Hrvatski geološki kongres s međunarodnim sudjelovanjem. Knjiga sažetaka. / Horvat, Marija (ur.). Zagreb : Hrvatski geološki institut, 2010. 186-187 (poster,domaća recenzija,sažetak,znanstveni).
- Brkić, Željka; Urumović, Kosta; Briški, Maja; Pekaš, Želimir; Larva, Ozren : Hidrogeološke karakteristike vodonosnika na budućem crpilištu regionalnog vodovoda kod Đurđevca. // 4. Hrvatski geološki kongres s međunarodnim sudjelovanjem. Knjiga sažetaka. / Horvat, Marija (ur.). Zagreb : Hrvatski geološki institut, 2010. 188-189 (predavanje,domaća recenzija,sažetak,znanstveni).
- Marković, Tamara; Brkić, Željka; Larva, Ozren; Pekaš, Željko; Urumović, Kosta; Briški, Maja. Kakvoća podzemne vode na području Dravskog bazena. // Knjiga sažetaka / Horvat Marija (ur.). Zagreb : Hrvatski geološki institut, 2010. 213-214 (poster,domaća recenzija,sažetak,znanstveni).

4. Terzić, Josip; Frangen, Tihomir; Brajković, Zdravko; Urumović, Kosta: Pokusno crpljenje i kretanje razina podzemne vode u eksploatacijskim zdencima na krškom izvoru rijeke Čikole. // 4. Hrvatski geološki kongres - Knjiga sažetaka / Horvat, Marija (ur.).Zagreb: Hrvatski geološki institut, 2010. 235-236 (poster,domaća recenzija,sažetak,znanstveni).

KONTAKT PODACI:

HRVATSKI GEOLOŠKI INSTITUT

CROATIAN GEOLOGICAL SURVEY

ZAVOD ZA HIDROGEOLOGIJU I INŽENJERSKU GEOLOGIJU

Sachsova 2, P.O. box 268, HR-10001 Zagreb, Croatia

Tel: +3851 6160 810, Fax: +3851 6144 713, Mob: +38591 6144 708

e-mail: kosta.urumovic@hgi-cgs.hr

web: www.hgi-cgs.hr