# Digitalizacija potpovršinskih strukturnih karata i izradba geološkog modela na području Savske depresije, okolica Ivanić-Grada

Podbojec, Marija

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:939939

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-10



Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb





#### SVEUČILIŠTE U ZAGREBU

#### RUDARSKO – GEOLOŠKO – NAFTNI FAKULTET

Diplomski studij geologije

# DIGITALIZACIJA POTPOVRŠINSKIH STRUKTURNIH KARATA I IZRADBA GEOLOŠKOG MODELA NA PODRUČJU SAVSKE DEPRESIJE, OKOLICA IVANIĆ-GRADA

Diplomski rad

Marija Podbojec

G152

Zagreb, 2015.

#### Zahvala

Veliku zahvalnost, u prvom redu, dugujem svojoj mentorici dr. sc. Josipi Velić, profesorici emeriti na ukazanom povjerenju i stručnim savjetima te na ustupljenim vrijednim materijalima bez kojih izradba ovog diplomskog rada ne bi bila moguća.

Posebno se zahvaljujem dr. sc. Marku Cvetkoviću, znanstvenom novaku poslijedoktorantu, na stručnoj pomoći, brojnim savjetima, idejama i motivaciji, koji su mi uvelike olakšali uspješnu izradu ovog diplomskog rada.

I would like to thank Schlumberger Company for providing the Petrel software to Faculty without which the subsurface analysis in the Thesis could not have been made.

Najveća zahvala ide mojim roditeljima Željku i Jadranki te mom bratu Tomislavu koji su me podržavali i poticali kroz sve ove godine studiranja.

I na kraju, neizmjerno se zahvaljujem svom dečku Tomislavu Baketariću na bezuvjetnoj podršci i savjetima te na velikom optimizmu i vjeri u moj uspjeh.

Diplomski rad

#### Rudarsko-geološko-naftni fakultet

#### DIGITALIZACIJA POTPOVRŠINSKIH STRUKTURNIH KARATA I IZRADBA GEOLOŠKOG MODELA NA PODRUČJU SAVSKE DEPRESIJE, OKOLICA IVANIĆ-GRADA

#### MARIJA PODBOJEC

Diplomski rad je izrađen:

Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za geologiju i geološko inženjerstvo Pierottijeva 6, 10 002 Zagreb

#### Sažetak

U okviru ovog rada provedeni su postupci digitalizacije i modeliranja strukturno-tektonskih odnosa zapadnog dijela Savske depresije. Područje modeliranja najvećim dijelom zahvaća područje Zagrebačke županije te obuhvaća površinu od 758,765 km<sup>2</sup>. Strukturne karte, konstruirane po plohama šest elektrokarotažnih EK-repera (*Tg*) i EK-markera (*Rs7,Rs5, Z', R\varphi* i  $\alpha'$ ), poslužile su kao temeljni podaci za izradbu ovog rada. Potpovršinske strukturne karte načinjene su prema podacima dobivenim iz geološkog kartiranja i geomorfologije terena, gravimetrijskih i seižmičkih mjerenja te iz bušenja. Strukturne karte su prevedene u digitalni oblik u računalnom programu ArcMap 10.1 te su iste poslužile kao ulazni podaci za kreiranje potpovršinskog modela po plohama svih šest strukturnih horizonata u programu Petrel<sup>TM</sup> 2013. Potpovršinski model prikazuje blokovitu tektonsku građu područja modeliranja te rasjednute strukture koje predstavljaju hrvatska naftnoplinska polja Dugo Selo, Lupoglav, Ježevo, Kloštar, Ivanić i Šumečani. Malo statističko odstupanje modela od ručno načinjenih karata s iznosom vrijednosti prosječnog odstupanja od 0,6512% upućuje na veliku točnost izradbe geološkog modela prema ručno izrađenim strukturnim kartama. Trodimenzionalni prikaz utjecaja rasjeda, geoloških struktura i strukturnih zamki omogućava prostornu percepciju i razumijevanje podzemlja sjeverozapadnog dijela Savske depresije. Takvi geološki modeli mogu poslužiti za stvaranje složenijih modela te za definiranje i utvrđivanje novih potencijalnih ležišta..

Ključne riječi: naftnoplinsko polje Ivanić, Savska depresija, potpovršinske strukturne karte, digitalizacija, potpovršinski model

Diplomski rad sadrži: 53 stranice, 39 slika, 1 tablicu, 9 priloga i 49 referenci Jezik izvornika: hrvatski

Diplomski rad pohranjen: Knjižnica Rudarsko-geološko-naftnog fakulteta

Pierottijeva 6, Zagreb

Voditelj: Dr. sc. Josipa Velić, profesorica emerita, odlukom dekana odobreno mentorstvo rada

Pomoć pri izradi: Dr. sc. Marko Cvetković, znanstveni novak poslijedoktorand RGNF

Ocjenjivači: Dr. sc. Josipa Velić, profesorica emerita

Dr. sc. Tomislav Malvić, izvanredni profesor na RGNF i znanstveni savjetnik u INA

- Dr. sc. Dario Perković, docent RGNF
- Dr. sc. Marko Cvetković, znanstveni novak poslijedoktorand RGNF

Datum obrane: 13. srpnja 2015., Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu

Faculty of Mining, Geology, and Petroleum Engineering

#### DIGITALIZATION OF SUBSURFACE STRUCTURAL MAPS AND CREATION OF GEOLOGICAL MODEL OF PART OF SAVA DEPRESSION, SURROUNDING OF IVANIĆ-GRAD

#### MARIJA PODBOJEC

 Thesis completed in:
 University of Zagreb

 Faculty of Mining, Geology, and Petroleum Engineering

 Department of Geology and Geological Engineering

 Pierottijeva 6, 10 002 Zagreb

#### Abstract

The aim of the Thesis was accurate digitalization and geomodelling of structural relationships of subsurface at western part of Sava Depression. Area of modelling encompasses 758.765 square kilometers and is located in central Croatia (Zagreb County). Subsurface structural maps, hand interpolated along six planes of E-logs top (*Rs7, Rs5, Z', R\varphi* and one pre-Neogene top (*Tg*) were digitalized. Gravimetry, seismic and well data were used for creation of structural maps in 1980. It considered the geomorphology and data obtained by geological mapping of the area. Structural maps were transferred into digital format in a computer program ArcMap 10.1 and were used as input data for creation of a subsurface model along six planes of horizons in the program Petrel<sup>TM</sup> 2013. Subsurface model shows the radial tectonic structure of the modelling area and impact of the faults on structures which represents oil and gas fields Dugo Selo, Lupoglav, Ježevo, Kloštar, Ivanić and Šumečani. Small statistical error between subsurface model and handmade maps of 0.6512% indicates accuracy of geomodel. Three-dimensional displays impact of faults on the terrain, geological structures and structural traps enable spatial perception and understanding of geological structures of the western part of the Sava depression. These subsurface models can be used for creation of complex models and for defining and identifying new potential deposits of certain structures and the future development of hydrocarbon reservoirs.

Keywords: oil and gas field Ivanić, Sava depression, subsurface structrural maps, digitalization, subsurface model

Thesis contains: 53 pages, 39 figures, 1 table, 9 enclosures and 49 references Original in: Croatian Thesis depositet in: Library of Faculty of Mining, Geology, and Petroleum Engineering Pierottijeva 6, Zagreb

Supervisor: PhD Josipa Velić, Professor Emerita, mentorship of Master's thesis approved by the Dean of the Faculty Technical support and assistance: Dr. sc. Marko Cvetković, Senior research assistant RGNF Reviewers: PhD Josipa Velić, Professor Emerita

PhD Tomislav Malvić, Associate Professor at RGNF and Expert at INA d.d.

PhD Dario Perković, Assistant Professor at RGNF

PhD Marko Cvetković, Senior research assistant at RGNF

Date of defense: 13th of July, 2015. Faculty of Mining, Geology and Petroleum Engineering

### SADRŽAJ

| 1.UVOD                                                                 | 1  |
|------------------------------------------------------------------------|----|
| 2. POVIJEST ISTRAŽIVANJA I OTKRIVANJA                                  | 3  |
| NAFTNOPLINSKIH POLJA                                                   | 3  |
| 3. GEOLOŠKE ZNAČAJKE MODELIRANOG PODRUČJA                              | 6  |
| 3.1. Stratigrafski odnosi                                              | 7  |
| 3.2. Neogensko-kvartarni taložni megaciklusi                           | 11 |
| 3.3. Postanak hrvatskog dijela Panonskog bazenskog sustava             | 13 |
| 3.4. Strukturno – tektonski odnosi modeliranog područja                | 15 |
| 3.5. Naftnogeološke značajke                                           |    |
| 4. METODOLOGIJA RADA                                                   | 21 |
| 4.1. Računalni program ArcMap                                          | 21 |
| 4.2. Digitalizacija podataka                                           |    |
| 4.3. Računalni program Petrel <sup>TM</sup>                            | 24 |
| 4.4. Sistematiziranje ulaznih podataka i izradba potpovršinskog modela | 24 |
| 5. REZULTATI                                                           |    |
| 5.1. Strukturni okvir                                                  |    |
| 5.2. Potpovršinski model (3D karte)                                    | 35 |
| 5.3. Izračun statističkog odstupanja na mreži od 590 točaka            |    |
| između modeliranih i polaznih karata                                   | 45 |
| 6. ZAKLJUČAK                                                           |    |
| 7. LITERATURA                                                          | 49 |

# Popis slika

| Slika 1-1. Područje modeliranja označeno crveno2                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slika 3-1. Depresije hrvatskog dijela Panonskog bazena (PRELOGOVIĆ et al., 1998.;<br>LUČIĆ et al., 2001.; VELIĆ et al., 2011)                                |
| Slika 3-2. Pregledna paleogeološka karta podloge neogensko – kvartarnih naslaga zapadnog dijela Savske depresije (VELIĆ, 1980)                               |
| <b>Slika 3-3.</b> Kronostratigrafske jedinice i litostratigrafske jedinice s određenim formacijama između pojedinih EK-repera i markera (VELIĆ et al., 2011) |
| Slika 3-4. Formacije u Savskoj depresiji (SAFTIĆ et al., 2003)11                                                                                             |
| Slika 3-5. Debljine neogenskih i kvartarnih stijena u hrvatskom dijelu Panonskog bazena<br>(SAFTIĆ et al., 2003)                                             |
| <b>Slika 3-6.</b> Vremenska skala i glavni tektonski i taložni događaji u hrvatskom dijelu PBS- a<br>(MALVIĆ i VELIĆ, 2011)                                  |
| Slika 3-7. Poprečni profil kroz Savsku depresiju pravca JZ – SI (PRELOGOVIĆ et al.,<br>1998)                                                                 |
| Slika 3-8. Pregledna tektonska karta s najvažnijim definiranim rasjedima16                                                                                   |
| Slika 3-9. Prikaz naftnoplinskih polja te polja s geotermalnom vodom na modeliranom području                                                                 |
| Slika 4-1. Sučelje računalnog programa ArcMap 10.1                                                                                                           |
| Slika 4-2. Digitalizirani dio potpovršinske strukturne karte po plohi EK-markera Rs7 23                                                                      |
| <i>Slika 4-3.</i> Sučelje računalnog programa Petrel <sup>TM</sup> 2013                                                                                      |
| Slika 4-4. Karta stratoizohipsi po EK-markeru Rs7                                                                                                            |
| Slika 4-5. Pregrupirani poligoni                                                                                                                             |
| <i>Slika 4-6.</i> 107 grupacija sistematiziranih poligona odnosno rasjeda26                                                                                  |
| <i>Slika 4-7. Definirana geometrija modeliranog područja27</i>                                                                                               |
| Slika 4-8. Alat Okvir rasjednih ploha (engl. Fault framework modelling) s razvrstanim                                                                        |
| rasjedima                                                                                                                                                    |

| <b>Slika 4-9.</b> Rasjedi modeliranog područja28                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Slika 4-10.</b> Prikaz nepotpunih kontakata i nedefiniranih međuodnosa vrlo zakrivljenih<br>rasjednih ploha                                       |
| <b>Slika 4-11.</b> Opcija Izmjena odnosa (engl. Edit relationships) s odnosima rasjednih ploha<br>                                                   |
| Slika 4-12. Nekorigirane plohe rasjeda                                                                                                               |
| <b>Slika 4-13.</b> Primjer javljenih pogrešaka                                                                                                       |
| <b>Slika 4-14.</b> Izgled alata Izradba modela horizonata (engl. Horizon modeling) s ulaznin<br>podacima                                             |
| <b>Slika 5-1.</b> Strukturni okvir s četiri najvažnija rasjeda                                                                                       |
| <b>Slika 5-2.</b> Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-repera<br>Tg35                                                  |
| Slika 5-3. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera<br>Rs7                                                         |
| <b>Slika 5-4.</b> Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera<br>Rs5                                                  |
| <b>Slika 5-5.</b> Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera<br>Z'                                                   |
| <b>Slika 5-6.</b> Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera<br>Rø37                                                 |
| <b>Slika 5-7.</b> Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markerα<br>α'                                                   |
| Slika 5-8. Položaj struktura naftnoplinskih polja po plohi EK-markera Rs5                                                                            |
| <b>Slika 5-9.</b> Brckovljani – Štakorovec - strukturni nos po plohi EK- markera Rs7<br>antiklinala Brckovljani – Štakorovac po plohi EK-markera Rs5 |
| <b>Slika 5-10.</b> Prikaz strukture Dugo Selo po plohama EK-repera i markera: a) Tg, b) Rs7, c)<br>Rs5, d) Z', e) Rφ i f) α'40                       |
| <b>Slika 5-11.</b> Lupoglav, Kloštar, Ivanić i Šumečani po plohi EK-markera Rs7                                                                      |
| <b>Slika 5-12.</b> Antiklinala Šumečani po plohi EK-markera Z'42                                                                                     |
| <b>Slika 5-13.</b> Struktura Ježevo po plohama EK-markera Rs7 i EK-markera Rs5                                                                       |

| Slika 5-14. Razvoj strukture Ivanić po plohama EK-repera i markera: a) T          | 'g, b) Rs7, c) |
|-----------------------------------------------------------------------------------|----------------|
| $Rs5, d) Z', e) R\varphi i f) \alpha' \dots$                                      |                |
| <b>Slika 5-15</b> . Trodimenzionalna zona prekenozojskog paleoreljefa prikazana j | po plohi EK-   |
| repera Tg                                                                         |                |

# Popis tablica

| Tablica 5-1. Srednje vrijednosti postotka odstupanja modela od ručno izrađenih |
|--------------------------------------------------------------------------------|
| strukturnih karata                                                             |

### Popis priloga

PRILOG I Strukturna karta po plohi EK-repera Tg

PRILOG II Strukturna karta po plohi EK-markera Rs7

PRILOG III Strukturna karta po plohi EK-markera Rs5

PRILOG IV Strukturna karta po plohi EK-markera Z'

PRILOG V Strukturna karta po plohi EK-markera Rø

PRILOG VI Strukturna karta po plohi EK-markera  $\alpha'$ 

PRILOG VII Profil A-A'

PRILOG VIII Profil B-B'

PRILOG IX Profil C-C'

#### 1.UVOD

U ovom radu opisani su postupci digitalizacije i modeliranja podzemne građe u sjevernom predjelu zapadnog dijela Savske depresije. Za navedene postupke su se koristili računalni programi ArcMap 10.1 i Petrel<sup>TM</sup> 2013. Provedena digitalizacija i kreiranje trodimenzionalnog potpovršinskog modela napravljeno je na temelju šest potpovršinskih strukturnih karata po plohama elektrokarotažnih (EK) repera i markera. Svaka od tih strukturnih karata je konstruirana po plohi određenog EK-repera (*Tg*) *i* EK-markera (*Rs7*, *Rs5*, *Z'*, *R\varphi i*  $\alpha'$ ). Ove karte dio su vrijedne arhive podataka koje je izradila prof. dr.sc. Josipa Velić u okviru svoje doktorske disertacije (VELIĆ, 1980). Svrha načinjenog potpovršinskog modela po plohama svih šest EK-repera i markera je jasno prikazivanje i percipiranje trodimenzionalnih odnosa rasjednih ploha i geoloških struktura na modeliranom području koji mogu pomoći u daljnjoj izradi preciznijih i složenijih modela te u planiranju i usmjeravanju budućih istraživanja.

Područje modeliranja nalazi se u sjevernom predjelu zapadnog dijela Savske depresije te obuhvaća površinu od 758,765 km<sup>2</sup>. Svojim najvećim dijelom zahvaća područje Zagrebačke županije te manjim dijelom sjeverozapadni predio županije Grada Zagreba i jugozapadni dio Bjelovarsko – bilogorske županije. Na ovom prostoru nalaze se gradovi Sv. Ivan Zelina, Dugo Selo i Ivanić-Grad te neke od najvažnijih općina Brckovljani, Lupoglav i Kloštar Ivanić.

Područje je smješteno između obronaka Medvednice na sjeverozapadu i jugoistočnog oboda Moslavačke gore. Ovim pretežito ravničarskim krajem protječu manje rijeke: Kašina, Zelina, Lonja i Črnec. Opisano područje modeliranja prikazano je na *Slici 1-1*.



Slika 1-1. Područje modeliranja označeno crveno

# 2. POVIJEST ISTRAŽIVANJA I OTKRIVANJA NAFTNOPLINSKIH POLJA

Hrvatska raspolaže prirodnim resursima pa tako i naftom i plinom. Upravo zbog svojeg naftnogeološkog potencijala, oduvijek je postojao veliki ekonomski interes za pronalaskom tih sirovina. Gledajući kroz povijest, naša domovina ima dugu tradiciju istraživanja, pridobivanja i prerade ugljikovodika. Već u 19. stoljeću, ulaganja od strane Austro – Ugarske monarhije koristila su se u svrhu prvih geoloških "kartiranja". Kratak osvrt na povijest istraživanja u nastavku teksta odnosi se na ograničeno područje modeliranja u zapadnom dijelu Savske depresije.

Prema VELIĆ (2007) godine 1898. u Kloštar Ivaniću je napravljena bušotina do 500 metara dubine potaknuto čestim pojavama plina u zdencima, no nalaza nafte nije bilo. Bušenje se nastavilo 1905. i 1906. g. do 905 m dubine pa je bušotina dobila status najdublje bušotine u hrvatskim krajevima do Prvog svjetskog rata. Pojave nafte pronađene su samo u glinovitom intervalu između 6. i 12. metra, a idući dalje u dubinu, pronađen je jedino plin. Iz te bušotine zbila se i erupcija plina, no podaci o njenoj sanaciji nisu poznati. Četrdesetak godina poslije, upravo na toj lokaciji počela se pridobivati nafta iz nešto dubljih intervala zahvaljujući novim naftno-geološkim znanjima i spoznajama te sofisticiranijoj tehnologiji. BOBULA (1958) navodi da je prva elektrokarotaža proizvođača Schlumberger bila obavljena 1948. godine u bušotini Kr-1 u Šumečanima – prvom novom polju otkrivenom nakon rata. Prema BEBEK (1958) struktura Dugo Selo predstavlja malu brahiantiklinalu pružanja istok – zapad. Navlačenje južnog krila na sjeverno uzrokovali su tangencijalni pritisci u Savskoj depresiji. PLETIKAPIĆ i ŠIMON (1964) izdvojili su Ivanićku zonu. Nadalje, isti autor (PLETIKAPIĆ, 1969) piše o dvama regionalnim, izoliranim rezervoarima – Iva i Okoli pješčenjacima unutar formacije Ivanić-Grad – na rubu Moslavačke gore. Svoje zaključke temelji na geološkoj karti podloge, strukturnim i litofacijesnim kartama. Osim nalaska strukturnih, otkriva i litološke zamke. Dokazuje povezanost kolektorskih stijena naftnih i plinskih polja Kloštar, Ivanić-Grad, Žutica šuma i Okoli, kao i postojanje slojne migracije ugljikovodika. Daljnju litostratigrafsku razradu naslaga na poljima Šumečani, Bunjani, Dugo Selo, Žutica šuma i Ježevo dali su autori: DOMBOVIĆ (1964); VONČINA (1964a, 1964b); ŠILOBOD i KOŠČEC (1965); KOŠČEC (1969) i RADIĆ (1969). HANICH (1967) je napravio prvu fotogeološku interpretaciju ravničarskog terena pa između ostalog i Ivanićke zone s jasno definiranim Lonjskim rasjedom. Također je ustvrdio da na potezu sjeverno od Sesveta i Dugog Sela postoji antiklinala pravca pružanja zapad – istok. ZAGORAC et al. (1968) te ZAGORAC (1975) tumače kako se veliki broj zatvorenih rezidualnih gravimetrijskih anomalija poklapa s naftnoplinonosnim strukturama (Glavničica, Kloštar–sjever, Šumečani, Bunjani). U svom radu ŠIMON (1969a) prikazuje litostratigrafsku razradbu polja Ježevo, a zatim i Kloštar Ivanić (ŠIMON, 1969b), Šumečani (ŠIMON, 1969c), Ivanić-Grad (ŠIMON, 1969d) i Ivanićku zonu (ŠIMON, 1969e). RUKAVINA (1969) izrađuje strukturnu kartu Ivanićke zone s legendom. PLETIKAPIĆ (1969) objašnjava, kako je gotovo prije tadašnjih 20-ak godina, traženje ležišta ugljikovodika prvenstveno bilo usmjereno na: geološka kartiranja antiklinalnih zamki, istraživanja pozitivnih gravimetrijskih anomalija te na otkrivanje tjemena antiklinala geološkim i seizmičkim mjerenjima.

Za otkrivanje potencijalnih struktura za akumulaciju ugljikovodika, kao preteča svih istraživanja, koristila su se geološka istraživanja, odnosno geološko kartiranje. Napretkom tehnologije, u uporabu dolaze i geofizička istraživanja; počevši s gravimetrijom, preko magnetskih i magnetnotelurnih mjerenja pa sve do seizmičkih istraživanja i karotažnih mjerenja. Primjenom sofisticirane tehnologije geofizička istraživanja se pospješuju i lakše izvode. Tijekom 60-ih, 70-ih te 80-ih godina koristila su se 2D seizmička istraživanja koja nisu davala potpuno precizne podatke. Daljnjim razvojem, nova 3D seizmička mjerenja dala su točnije i pouzdanije rezultate zbog veće dubine zahvata te bolje horizontalne i vertikalne rezolucije. Potrebno je pripomenuti i raznovrsna karotažna mjerenja - geofizička mjerenja u bušotinama, koja daju brojne vrijedne podatke o litološkoj građi, sastavu stijena i sustavu pukotina, nagibu planarnih elemenata i dr. Moguća je i uspostava korelacije između bušotinskih podataka i seizmičkih mjerenja.

U hrvatskom dijelu Panonskog bazena sustava KRANJEC (1972) je podijelio naftnoplinska polja prema tektogenezi i smještaju unutar depresije. Hrvatsku litostratigrafsku nomenklaturu je definirao ŠIMON (1973). ŠIMON (1973; 1980) prikazuje litostratigrafsku razradbu prema depresijama. PAVELIĆ (2001) je proučavao paleografiju Paratethys–a tijekom donjeg i srednjeg miocena. U razumijevanju tri taložna megaciklusa korišteni su radovi VELIĆ et al. (2002) i SAFTIĆ et al. (2003). Radovi MALVIĆ i VELIĆ (2011) te sveučilišni udžbenik "Geologija ležišta nafte i plina" (VELIĆ, 2007) uvelike su korišteni prilikom objašnjavanja stratigrafskih, strukturno-tektonskih te naftnogeoloških

značajki Panonskog bazenskog sustava. U internoj skripti SAFTIĆ i MALVIĆ (2008) obrađene su značajke elektokarotažnih markera i repera te kronostratigrafskih, litostratigrafskih i biostratigrafskih jedinica. Iz prijašnjih ručno izrađenih karata, nove karte po plohama EK-repera Tg te markera Rs7 i Rs5 su izradili ŠPELIĆ et al. (2014) na temelju novokreirane mreže podataka. Isto tako usporedili su razlike između starih te novo izrađenih ("digitaliziranih") karata.

# 3. GEOLOŠKE ZNAČAJKE MODELIRANOG PODRUČJA

Hrvatski dio Panonskog bazena nalazi se na jugozapadu velike tektonske jedinice -Panonskog bazenskog sustava (PBS). PBS zauzima prostor između Europske ploče na sjeveru, Mezijske ploče na istoku, Jadranske mikroploče na jugu te Alpskog masiva na zapadu. Pripada skupini zalučnih bazena (*engl. back-arc basins*), a njegovo formiranje započelo je u otnangu subdukcijom i konvergencijom Apulijske ploče pod Dinaride. Savska depresija je smještena uz jugozapadni rub Panonskog bazenskog sustava. Ondje se nalazi ukupno 20 polja, od kojih je 17 i danas aktivno. Na *Slici 3-1.* prikazane su depresije hrvatskog dijela PBS - a.



Slika 3-1. Depresije hrvatskog dijela Panonskog bazena (PRELOGOVIĆ et al., 1998.; LUČIĆ et al., 2001.; VELIĆ et al., 2011)

#### 3.1. Stratigrafski odnosi

Panonski bazen je izgrađen od dvaju kompleksa stijena. Prema VELIĆ (2007) predneogensku podlogu čini magmatsko – metamorfni kompleks te manji udio sedimenata paleozojske i mezozojske te paleogene starosti, dok sedimentnu ispunu bazena karakteriziraju stijene neogena i kvartara različitog litološkog sastava.

Prikaz i rasprostranjenost stijena na modeliranom području dana je na preglednoj paleogeološkoj karti podloge neogensko-kvartarnih naslaga zapadnog dijela Savske depresije iz VELIĆ (1980). Prema CVETKOVIĆ (2006) i PETRINEC (2013) dio kristalinske mase u podlozi čine stijene mezozojske starosti. Prema litološkom sastavu to su: lapori, vapnenci, dolomiti, konglomerati i pješčenjaci. Rubnim, sjeveroistočnim dijelom modeliranog područja zahvaćeni su istočni i jugoistočni obronci Medvednice. ŠIKIĆ et al. (1979) utvrđuju da su u metamorfnom kompleksu Medvednice definirani ortometamorfiti i parametamorfiti paleozojske starosti. Kao najznačajnije metamorfne stijene se spominju zeleni škriljavci. U sjevernom predjelu područja modeliranja, pored mezozojskih stijena, manjim su dijelom zastupljene i stijene paleozojske starosti. U tu skupinu stijena ubrajaju se mramorizirani vapnenci, glineni, zeleni i amfibolitni škriljavci te gnajsevi. Obronci sjeverozapadnog dijela Moslavačke gore nalaze se na krajnjem jugoistočnom dijelu modeliranog područja. Utvđeno je da se radi o magmatskim stijenama: granitima i granodioritima. TAJDER (1970) zaključuje kako su graniti i granodioriti Moslavačke gore vjerojatno dio veće mase, štoka ili batolita. Paleogeološka karta podloge neogensko-kvartarnih naslaga zapadnog dijela Savske depresije je prikazana na *Slici 3-2*.



Slika 3-2. Pregledna paleogeološka karta podloge neogensko – kvartarnih naslaga zapadnog dijela Savske depresije (VELIĆ, 1980)

Prije samog osvrta na formacije u Savskoj depresiji, potrebno je objasniti značenje elektrokarotažnih (EK) markera i repera. Prema SAFTIĆ i MALVIĆ (2008) markerni slojevi, često zvani i ključnim slojevima, odlikuju se malom debljinom i velikom lateralnom rasprostranjenošću te imaju lako prepoznatljiva svojstva čime ih se vrlo lako izdvaja od stijena u krovini i podini. EK-markeri se prepoznaju kao identični motivi na krivuljama specifične otpornosti u sklopu elektrokarotažnih dijagrama, odnosno prema ponavljanju nizova otklona jednakih vrijednosti otpornosti (VRBANAC, 2002). Također, isti autor tvrdi da su motivi EK-markera odraz promjena prosječnog granulometrijskog sastava čestica i načina njihova pakiranja, što dalje utječe na vrijednost šupljikavosti i propusnosti naslaga taloženih u jednakim uvjetima i u isto vrijeme. To znači da EKmarkeri imaju značaj sinkronih ploha - kronohorizonata. Prema VRBANAC (2002) EKreperi označavaju erozijsko – tektonsku diskordanciju. EK-reper Tg (Temeljno gorje) nalazi se na dodiru metamorfnih i magmatskih stijena paleozojske starosti sa stijenama neogenske starosti ili starijim sedimentnim (mezozojskim), dok EK-reper Pt, P.T. ili PTc (Podloga "tercijara") označava kontakt između mezozojskih sedimenata i stijena neogenske starosti. Pregled krostratigrafskih i litostratigrafskih jedinica te definiranih formacijama između pojedinih EK-repera i markera prikazan je na Slici 3-3.



Slika 3-3. Kronostratigrafske jedinice i litostratigrafske jedinice s određenim formacijama između pojedinih EK-repera i markera (VELIĆ et al., 2011)

Unutar Savske depresije razlučeno je šest formacija. Njihov opis s litostratigrafskog, kronostratigrafskog i biostratigrafskog aspekta prikazan je u nastavku teksta.

Prva i najstarija formacija Prečec je ograničena tektonsko – erozijskom diskordancijom *Tg* (*Temeljno gorje*) u podini i eletrokarotažnim (EK) markerom *Rs7* u krovini. Odlikuje se heterogenim litološkim sastavom, a kronostratigrafski gledano obuhvaća stariji i srednji miocen. Najzastupljene stijene su: kongolomerati, breče, laporoviti pješčenjaci, pjeskoviti pješčenjaci, vapnenački pješčenjaci, vapnenci te litotamnijski vapnenci.

Litostratigrafska jedinica - formacija Prkos obuhvaća stijene donjeg panona poznate i pod imenom *naslage Croatica*, nazvane tako prema pužu *Radix croatica*. Prema ŠIKIĆ et al. (1979) *naslage Croatica* predstavljaju "bijele lapore" taložene u plitkovodnoj sredini pod

utjecajem jačeg oslađivanja. U starijoj literaturi se spominju i pod nazivom *prevalencijenezijske naslage*. Njihov litološki sastav se postupno mijenja od vapnenih lapora do pješčenjaka arkoznog i subarkoznog tipa. Formacija je omeđena EK-markerima *Rs7* i *Rs5*. Rasprostiranje ove formacije uvelike je manje od prethodno opisane Prečec formacije zbog kraćeg razdoblja taloženja formacije, ali i kao posljedica vertikalne tektonske aktivnosti u centalnom dijelu depresije (VELIĆ, 1980). Dakle, riječ je međuformacijskoj diskordanciji uvjetovanoj regresivnim tendecijama taložina formacije (VELIĆ, 1980). Obje opisane formacije predstavljaju intervale s matičnim stijenama.

Formacija Ivanić-Grad je približni ekvivalent taložinama gornjeg panona odnosno *naslagama Banatica*, određenim prema školjkašu *Congeria banatica*. Ove gornjopanonske naslage karakteriziraju pjeskoviti i glinoviti lapori, koji u dubljim dijelovima sadrže tanke proslojke pješčenjaka i silta. Formacija je omeđena EK- markerima *Rs5* i *Z'*. Izmjene lapora s pješčenjacima predstavljaju moguće kolektorske stijene za ugljikovodike.

Donjopontskim naslagama približno odgovara formacija Kloštar-Ivanić. Interval ove formacije određen je EK-markerima Z' i  $R\varphi$ . Litološki sastav je vrlo sličan kao u prethodno opisanoj formaciji, dakle dominiraju sivi pijesci/pješčenjaci i lapori s brojnim varijetetima. Ovi pješčenjaci smatraju se ležišnim stijenama za ugljikovodike. Donjopontske naslage, tj., *naslage Abichi* dobile su ime prema karakterističnom školjkašu *Paradacna abichi*.

Formacija Široko Polje približni je ekvivalent sedimentima najgornjeg dijela donjeg ponta i gornjeg ponta. Dakle, obuhvaća mali dio *naslaga Abichi* te *naslage Rhomboidea*. *Naslage Rhomboidea* su široko rasprostranjene, a nazvane su prema školjkašu *Congeria rhomboidea*. Konkordantno naliježu na starije naslage, a sastoje se od pješčenjaka i pijesaka te pjeskovitih i glinovitih lapora sa slojevima ugljena. Podinu formacije određuje EK-marker  $R\varphi$ , dok krovinu definira EK-marker  $\alpha'$ .

Posljedna i najmlađa litostratigrafska jedinica je formacija Lonja. Krovinu formacije određuje površina terena, dok je podina definirana prema EK – markeru α'. Obuhvaća taložine pliocena, pleistocena i holocena. Potrebno je naglasiti kako se sedimenti pliocena često nazivaju i *naslagama Paludina*, determiniranim prema asocijaciji slatkovodnih/močvarnih puževa roda *Viviparus* (prvotno determinirane kao rod *Paludina*). Naslage su izgrađene od šljunaka, pijesaka i glina s proslojcima ugljena (BUCKOVIĆ, 2006; CVETKOVIĆ, 2013). Na *Slici 3-4.* prikazane su opisane formacije u Savskoj depresiji.



Slika 3-4. Formacije u Savskoj depresiji (SAFTIĆ et al., 2003)

### 3.2. Neogensko-kvartarni taložni megaciklusi

U središnjem dijelu Savske depresije debljine neogenskih sedimenata dosežu do 5500 metara. U svojim radovima autori FILJAK et al. (1969) te kasnije ŠIMON (1980) i VELIĆ et al. (2002) navode kako naslage neogena pokazuju značajke cikličnosti, tj. ritmičke sedimentacije te se prema tome mogu podijeliti u tri različita sedimentacijska megaciklusa. Svaki megaciklus se sastoji od slijedova dobro definiranih stratigrafskih jedinica koje odgovaraju statusu formacija. Prema MITCHUM (1977) svaki megaciklus obuhvaća stijene taložene tijekom jednog superciklusa promjene relativne razine vode. Dakle, u prvom dijelu se sastoji od postupnog porasta, a u drugom dijelu od razmjerno naglog pada (VELIĆ, 2007).

Ono što je karakteristično za hrvatski dio Panonskog bazena jest da su izdvojene tri bitno različite litološko – genetske asocijacije obzirom na njihov period trajanja i debljinu naslaga. One su odraz tektonskog okvira taloženja (ekstenzije i kompresije), ali i lokalnih čimbenika kao što su donos materijala, relativno spuštanje dna bazena, eustatičke promjene

u bazenu te klimatski uvjeti (VELIĆ, 2007). Potrebno je naglasiti kako se sva tri megaciklusa mogu pouzdano izdvojiti i pratiti na seizmičkim profilima s obzirom na debljine naslaga svakog megaciklusa.

Najstariji megaciklus zbio se za vrijeme donjeg i srednjeg miocena (VELIĆ, 2007; VELIĆ i MALVIĆ, 2011). U Savskoj depresiji obuhvaća sedimente formacije Prečec. Tada je započela sinriftna (sinekstenzijska) faza. Predstavnici sedimentnih stijena su: krupni klastiti (breče, konglomerati, arkozni pješčenjaci te pješčenjaci s proslojcima bentonitnih glina) i sitni klastiti (gline, lapori, klacitni lapori te pješčenjaci unutar *naslaga Tripoli*) te karbonati (vapnenci, biogeni vapnenci – litotamnijski vapnenac, kalkarenitni biogeni pješčenjak) i mjestimice proslojci ugljena (VELIĆ i MALVIĆ, 2011). Kao dokaz vulkanske aktivnosti tijekom donjeg miocena (egera i egenburga) mogu se pronaći i tufovi na području Hrvatskog zagorja te efuzivne stijene (rioliti, daciti, andeziti, bazalti) (ĆORIĆ et al., 2009). Pretežno se krupniji klastiti nalaze po rubovima depresije, a sitniji klastiti i karbonati u središnjim dijelovima. Stijene egerskog kata su obilježene paraličkim facijesima, a sve do sarmata se izmijenjuju taložine prijelaznih okoliša (otnang) i morskih okoliša (egenburg, karpat i baden) (LUČIĆ et al., 2001; ĆORIĆ, 2009). Početak prave sedimetacije molasnog karaktera smatra se otnang. Period trajanja megaciklusa je oko 6,8 Ma (geokronološki podaci prema RÖGL, 1996; VELIĆ, 2007; VELIĆ i MALVIĆ, 2011).

Drugom megaciklusu u Savskoj depresiji pripadaju gornjomiocenski (panon i pont) sedimenti formacija Ivanić-Grad, Kloštar Ivanić i Široko Polje (VELIĆ i MALVIĆ, 2011). Ovaj megaciklus odraz je kraja ekstenzije. Karakterizira ga jednoličan slijed sivih pijesaka, pješčenjaka (subgrauvaka), silta i lapora s prijelaznim varijetetima (VELIĆ, 2007). U brakičnim uvjetima su nastale panonske naslage, a pontski sedimenti u jezerskoj sredini. Zaključeno je da je riječ o dubljoj niskoenergetskoj sredini s izraženim podvodnim reljefom. Glavni izvor klastičnog materijala donošenih turbiditnim strujama bile su Istočne Alpe (VRBANAC, 2002; VELIĆ i MALVIĆ, 2011). Vrijeme njegovog taloženja iznosi oko 5,9 milijuna godina (RÖGL, 1996).

Treći i najmađi megaciklus obuhvaća sedimente pliocensko – holocenske starosti, tj. formaciju Lonja u Savskoj depresiji (prema VELIĆ i MALVIĆ, 2011). Trajanje ovog megaciklusa je oko 5,333 Ma (prema ICS), a u to vrijeme zbila se i kompresija u neotektonskoj fazi. Prema litološkom sastavu, bitno je različit od prva dva megaciklusa. Definira ga izmjena sivih i slabo konsolidiranih pijesaka i sivozelenih ili plavičastih

mekanih glina s rijetkim proslojcima lignita (ŠIMON, 1980; VELIĆ, 2007; CVETKOVIĆ, 2013). U gornjim dijelovima se nalaze šljunci, prapori i rastresiti materijal terigenog podrijetla (LUČIĆ et al., 2001). Ukupna debljina neogensko–kvartarnih sedimenata u hrvatskom dijelu Panonskog bazena prikazana je na *Slici 3-5*. Najveće vrijednosti debljina neogensko–kvartarnih sedimenata odnose se na područja Savske i Dravske depresije.



Slika 3-5. Debljine neogenskih i kvartarnih stijena u hrvatskom dijelu Panonskog bazena (SAFTIĆ et al., 2003)

#### 3.3. Postanak hrvatskog dijela Panonskog bazenskog sustava

Postanak PBS- a je vezan za alpsku orogenezu. Prihvaćen model njegovog stvaranja zasniva se na konceptu "riftinga", tj. na formiranju dugog, uskog kontinentalnog korita ograničenog strmim normalnim rasjedima. Strukturne jedinice objedinjene su u tri veće strukturne zone – to su: zapadni rubni dio (od zone medvedničkog rasjeda pa dalje prema sjeverozapadu), južni rubni dio (od Karlovca do Slavonskog Broda – južno od Savskog rasjeda) i središnji dio (Savska i Dravska depresija (LUČIĆ et al., 2001; VELIĆ, 2007). Prva faza razvoja, tj. početak ekstenzije dogodio u rasponu oligocen – rani miocen, kada je ujedno zabilježena i pojava andezitnog vulkanizma (prema VELIĆ, 2007). 1. transtenzijski

događaj započeo je u badenu (ĆORIĆ et al., 2009; MALVIĆ i VELIĆ, 2011). Dominiraju *strike-slip* pokreti i taloženje unutar tih prostora. Duž aktivnih, velikih transkurentnih rasjeda s pravcem pružanja SZ – JI stvaraju se mali *pull – apart* bazeni. Ovu fazu inicijalne ekstenzije karakterizira usjedanje dna bazena na transtenzijskim dionica spomenutih rasjeda te brza sedimentacija (VELIĆ i MALVIĆ, 2011). Na to upućuju zapunjeni bazeni i depresije sa sintektonskim krupno – do srednjezrnastim klastitima, uz koje je vezana izrazita promjena bočnih facijesa.

Tijekom ranog i srednjeg miocena (egenburg – sarmat) nastupila je glavna ekstenzijska faza. Prema PRELOGOVIĆ et al. (1998) dolazi do regionalne promjene orijentacije najveće osi horizontalnog stresa na SSI – JJZ, što uzrokuje aktiviranje lijevih transkurentih rasjeda (VELIĆ, 2007). Pomicanjem koherentnih tektonskih blokova po navedenim rasjedima prema sjeveroistoku, stvoreni su uvjeti za otvaranjem regionalnih i lokalnih ekstenzijskih zona između tih blokova. Primjeri regionalnih zona su Savska depresija te zapadni dio Dravske depresije, dok su lokalni pull – apart bazeni povezani s transkurentnim rasjedima pružanja SI – JZ. PAVELIĆ (2001) zaključuje da su se u otnangu taložili jezerski sedimenti duž Perijadransko – dravske i Savske rasjedne zone na području sjeverne Hrvatske i Slovenije. Najveći doseg marinske transgresije zabilježen je u kasnom badenu, a rezultat je nastanak velikih dubokomorskih područja u kojima se talože lapori, a u plićim sredinama biogeni vapnenci i pješčenjaci. Aktivnost ekstenzijske faze završava od sarmata do ponta te tada nastupa postriftna faza. U sarmatu počinje 1. transpresijska faza. Nakon serije transgresivno – regresivnih ciklusa u badenu, započinje regionalna regresija tijekom sarmata (VELIĆ i MALVIĆ, 2011). MALVIĆ (2006) navodi kako u sarmatu dolazi i do pada salineta, kao uvod u stvaranje brakičnih sredina tijekom panona i posebice ponta. 2. transtenzijska faza u dijelovima hrvatskog dijela PBS-a odvijala se već tijekom donjeg panona, a na cijelom tom prostoru u gornjem panonu (VELIĆ i MALVIĆ, 2011). Taloženje je obuhvatilo brojne turbiditne događaje, kojim su uneseni klastiti dalje preneseni prema I i JI. Takav materijal bio je donosen iz Istočnih Alpi kao izvornišnog područja, snažnoga izdizanja te erozije i denudacije (VELIĆ i MALVIĆ, 2011). Gornji pont, pliocen i kvartar periodi su 2. transpresijske faze, u kojima se orijentacija regionalnog stresa mijenja na sjever – jug te dolazi do desnih transkurentih pomaka i kompresije s velikim vodoravnim pomacima (transpresije) područja između velikih rasjeda s horizontalnim pomakom (PRELOGOVIĆ et al. 1998; MAVLIĆ & VELIĆ, 2011). Na *Slici 3-6.* prikazana je vremenska skala sa popratnim glavnim

tektonskim i taložnim događajima u hrvatskom dijelu Panonskog bazenskog sustava. Treba naglasiti kako su brojne dionice rasjeda reaktivirane s reversnim karakterom pomaka. SAFTIĆ (1998) navodi da su najvažniji rasjedi između kojih se dogodila transpresija Perijadransko – Dravski i Južni rubni rasjed. Poprečni profil kroz Savsku depresiju pravca JZ – SI prikazan je na *Slici 3-7*.

|                                           |      |                           |                                                                  |    |    |                   | Miliju                    | ni gc                                                     | odina | u pro             | šlost ( | (Ma)                      |                                                                                           |        |   |         |         |   |
|-------------------------------------------|------|---------------------------|------------------------------------------------------------------|----|----|-------------------|---------------------------|-----------------------------------------------------------|-------|-------------------|---------|---------------------------|-------------------------------------------------------------------------------------------|--------|---|---------|---------|---|
| 9                                         | 18   | 17                        | 16                                                               | 15 | 14 | 13                | 12                        | 11                                                        | 10    | 9                 | 8       | 7                         | 6                                                                                         | 5      | 4 | 3       | 2       | 1 |
| Otnang                                    | Kar- | -                         | Padan                                                            |    | G  | Sarmat            |                           | Panon                                                     |       |                   |         | nt                        | Pliocen                                                                                   |        |   | Holocen |         |   |
| Othang                                    |      | pat                       | bauen                                                            |    |    |                   | Saimat                    |                                                           | onji  | onji Gornji Donji |         |                           | Gornji                                                                                    | Gornji |   |         | Kvartar |   |
| Moguće sporadične<br>ekstenzije u HPBS-u? |      | 1. transtenzijska<br>faza |                                                                  |    |    | trans-<br>presija | 2. transtenzijska<br>faza |                                                           |       |                   |         | 2. transpresijska<br>faza |                                                                                           |        |   |         |         |   |
|                                           |      |                           | Lokalno trošenje<br>i taloženje aluvijalnih<br>lepeza saliniteta |    |    |                   |                           | Udaljeni izvor klastita donošenih<br>turbiditnim tokovima |       |                   |         |                           | Završno formiranje struktura,<br>migracija ugljikovodika,<br>konačan kontinentalni okoliš |        |   |         |         |   |

Slika 3-6. Vremenska skala i glavni tektonski i taložni događaji u hrvatskom dijelu PBS- a (MALVIĆ i VELIĆ, 2011)



Slika 3-7. Poprečni profil kroz Savsku depresiju pravca JZ – SI (PRELOGOVIĆ et al., 1998)

### 3.4. Strukturno – tektonski odnosi modeliranog područja

Tektonska građa i strukture modeliranog područja u zapadnom dijelu Savske depresije predočene su pomoću potpovršinskih strukturnih karata konstruiranih po plohama elektrokarotažnih (EK) repera Tg te EK-markera: Rs7, Rs5, Z',  $R\varphi$  i  $\alpha'$ . Prema VELIĆ

(1980) za izradbu i realizaciju tih karata koristili su se podaci geološkog kartiranja i geomorfologije terena, gravimetrijskih, geoelektričnih i seizmičkih mjerenja, kao i podaci dobiveni bušenjem. Dubinske strukturne karte je ručno izradila prof. dr. sc. Josipa Velić, u okviru svoje doktorske disertacije pod naslovom *Geološka građa zapadnog dijela Savske depresije*.

Područje modeliranja karakteriziraju vrlo složeni strukturno-tektonski odnosi. VELIĆ (1980) ističe kako se početak razvoja struktura dogodio vrlo rano ili je uvjetovan oblikom paleoreljefa. Prevladavajuća je tektonika blokova (ili radijalna tektonika) s nizom antiklinala, sinklinala, strukturnih noseva, terasa i strukturnih sedala. Najzastupljeniji su normalni rasjedi s vrlo strmim paraklazama oko 80° (VELIĆ, 1980). Reversni rasjedi su uočeni samo na području Dugog Sela i Kloštra (VELIĆ, 1980). Područjem modeliranja dominiraju tri sustava rasjednih ploha koji se razlikuju prema pravacu pružanja:

- sjeverozapad jugoistok,
- jugozapad sjeveroistok,
- sjever jug.

Četiri najvažnija rasjeda koja se nalaze na modeliranom području imaju pravce pružanja SZ – JI (Lonjski rasjed i Glavni sjeverni depresijski rasjed) te JZ – SI, tj. poprečni rasjedi (Ilički rasjed i rasjed Donja Kupčina-Prevlaka-Marča) (*Slika 3-8.*).



Slika 3-8. Pregledna tektonska karta s najvažnijim definiranim rasjedima

Prema VELIĆ (1980) rasjedi se mogu razvrstati u tri grupe obzirom na deformacije repernih površina i dužinu raprostiranja:

- rasjedi koji odjeljuju najveće blokove ili geotektonske jedinice (glavni depresijski rasjedi),
- rasjedi koji odjeljuju najveće strukture unutar bloka ili geotektonske jedinice,
- rasjedi koji odjeljuju manje jedinice ili lokalne strukture.

Strukturno-tektonski odnosi modeliranog područja bit će opisani u nastavku teksta idući od najstarijeg prema najmlađem strukturnom nivou.

Na strukturnoj karti po plohi EK-repera Tg predočen je izgled paleoreljefa. EK-reper Tg je ploha tektonsko-erozijske diskordancije koja predstavlja kontakt između stijena podloge  $(Temelino \ gorie - Tg)$  i transgresivno neogensko – kvartarnih naslaga. Temelino gorie u užem smislu odnosi se na čvrste, konsolidirane i kompaktne stijene koje su podložne kidanju i pucanju, ali ne i boranju. Iz tog razloga se ne mogu definirati klasični tipovi struktura kao što su antiklinale, sinklinale i dr. (VELIĆ, 1980). Osim definiranih rasjeda, uočavaju se strukture u blizini Dugog Sela i Ivanić-Grada, dok je strukturna terasa određena na području Brckovljani – Štakorovec. Skupina rasjeda s pravcem pružanja S – J dominira u najzapadnijem dijelu te u široj okolici Zeline. Sa sjeverne strane strukture Dugo Selo je definiran reversni rasjed s paraklazom nagntom u smjeru jug – jugozapad, dok se kod Kloštar Ivanića mijenja u smjer nagiba paraklaze prema sjeveroistoku. Dalje, u produžetku prema sjeverozapadu reversni rasjed Dugog Sela se ustrmljuje te postaje vertikalan i konačno normalan (VELIĆ, 1980). Na području modeliranja, odnosno uz sjeveroistočni rub depresije, mogu se uočiti Glavni sjeverni depresijski rasjed i Lonjski rasjed. Glavnu zonu spuštanja ili utonjavanja dna čine Glavni sjeverni depresijski, Lonjski i Ilički rasjed (prema VELIĆ, 1980). U nastavku će posebna pozornost biti usmjerena na veće strukture i pojave diskordancija jer rasjedni sustavi, uleknuća i uzvišenja ostaju vidljivi na plićim strukturnim nivoima.

Po EK-markeru *Rs7* osim istaknute antiklinale Dugo Selo, uočava se i antiklinala Šumečani (VELIĆ, 1980). Strukturna terasa Brckovljani – Štakorovec ovdje se mijenja u strukturni nos (VELIĆ, 1980). Najniža područja zapadnog dijela Savske depresije predstavlja niz sinklinala, smještenih zapadno od Ivanić-Grada. Mreža rasjednog sustava

gotovo je jednakog oblika kao i na prethodnoj strukturnoj karti. VELIĆ (1980) zaključuje da su sve manje izraženi tektonski pokreti što se može zaključiti po ujednačenoj debljini formacije Prečec, koja postupno zadebljava prema najdubljim dijelovima depresije.

Ploha EK-markera *Rs5* ima najmanju površinu u usporedbi s ostalim plohama EK-repera i markera, a to je odraz regresivnih tendencija za vrijeme njenog taloženja (VELIĆ, 1980). VELIĆ (1980) ističe kako Vrbovečko–moslavački prag označava otočno područje, bez sedimentacije ili plitko podvodno uzvišenje s tankim naslagama. Pomoću takvih područja postavljena je međuformacijska diskordancija koja ukazuje na regionalna tektonska gibanja, posebice izražena na prijelazu starijeg u mlađi panon (VELIĆ, 1980). Na području se i dalje se može pratiti antiklinala Dugo Selo i antiklinala Brckovljani – Štakorovec.

Dubinska strukturna karta po plohi EK-markera Z' daje uvid u dobro izražene antiklinale Dugo Selo, Brckovljani – Štakorovec i Ivanić koje su nastale dezintegracijom jedinstvenog horsta Odra – Oborovo – Martinska Ves (VELIĆ, 1980).

Strukture su najjasnije prikazane po plohi EK-markera  $R\varphi$ . Tako se kod sjeveroistočnog ruba depresije i dalje jasno opažaju antiklinale Dugo Selo, Brckovljani – Štakorovec, Kloštar i Šumečani. Struktura Ivanić se preoblikovala u strukturni nos (VELIĆ, 1980). Na području između Zagreba, Dugog Sela i Ivanić-Grada se može primjetiti kako manji broj rasjeda više ne dopire do EK-markera  $R\varphi$  (prema VELIĆ, 1980).

Na posljednjoj strukturnoj karti po plohi EK-markera  $\alpha'$  strukturno-tektonski odnosi postaju sve jednostavniji. Uočava se kako strukture Dugo Selo i Ivanić više nemaju formu antiklinale ili strukturnog nosa, već su "zaravnjene" i najviše sliče monoklinama (VELIĆ, 1980). Progresivna redukcija rasjeda primjećuje se u okolici Ivanić-Grada.

#### 3.5. Naftnogeološke značajke

Pomoću pregledne karte eksploatacijskih polja može se vidjeti da se na području modeliranja nalazi šest naftnoplinskih polja te jedno polje s geotermalnom vodom (Ivanić). Naftnoplinska polja poredana su od sjeverozapada prema jugoistoku sljedećim redom: Dugo Selo, Lupoglav, Ježevo, Kloštar, Ivanić i Šumečani (*Slika 3-9.*). Slijedi kratki opis dvaju najvažnijih naftnoplinskih polja – Kloštar i Ivanić koja se nalaze unutar područja modeliranja.



Slika 3-9. Prikaz naftnoplinskih polja te polja s geotermalnom vodom na modeliranom području

Polje Kloštar svrstava se u hrvatska najstarija polja u Savskoj depresiji. Godine 1952. načinjena je prva bušotina Kloštar-1 (Klo-1) na temelju korištenja tada nove geofizičke metode – seizmičkog istraživanja te gravimetrijskog mjerenja i interpretacije rezultata. Bušotina je dosegla dubinu od 1272 metra, a dobivene su i ekonomski značajne količine nafte. Na temelju toga je utvrđeno postojanje novog polja unutar strukture Križ (VELIĆ, 2007). Pridobivanje nafte je započelo 1954. godine. Intenzivna razradba polja odvijala se od 1953. do 1961. godine. Velić (2007) tumači kako strukturnu zamku predstavlja antiklinala dinarskog pružanja koja je ispresjecana uzdužnim, normalnim rasjedom. Kolektorske stijene su pješčenjaci s prosječnom poroznosti od 25 %, dok prosječna efektivna debljina iznosi 5 metara. Na polju je ukupno izrađeno 196 bušotina (CVETKOVIĆ, 2007).

Drugo naftnoplinsko polje Ivanić, nalazi se 35 km jugoistočno od Zagreba, u Ivanićkoj zoni, unutar Savske depresije. 1954. godine na području Ivanić-Grada su provedena seizmička istraživanja, a kasnije i ostale geofizičke metode. Prva bušotina Posavski Bregi-

1 (PB-1) postavljena je na temelju cjelovite interpretacije geofizičkih rezultata te su njome potvrđeni samo tragovi ugljikovodika unutar miocenskih pješčenjaka. Također, ni bušotina Iva-1 nije dala bolje rezultate jer nije probušila ležišne stijene u odgovarajućoj strukturi. Ležišta polja Ivanić otkrivena su bušotinom Iva-2 (VELIĆ, 2007). Razradno bušenje odvijalo se od 1962. do 1966. godine. Prema VELIĆ (1980) ležišne stijene čine smeđi srednjo- do sitnozrnati litoareniti formacije Ivanić-Grad odnosno stariji dio pješčenjaka Iva. Efektivna debljina ovih gornjopanonskih pješčenjaka iznosi od 160 do 260 metara. Naftonosni pješčenjaci izgrađuju sedam paketa odvojenih slojevima lapora. Zamku čini antiklinala s amplitudom zatvaranja od oko 80 m. Naime, na strukturnim se kartama po različitim EK-reperima i markerima zapravo iskazuju dvije antiklinale sa strukturnim sedlom smještenim između njih (VELIĆ, 2007). Osim sekundarnih metoda, na polju su primjenjene i tercijarne (EOR - Enchaned Oil Recovery) metode s utiskivanjem CO<sub>2</sub>.

### 4. METODOLOGIJA RADA

Za provedbu digitalizacije te kasniju izradbu geološkog modela građe podzemlja koristilo se šest dubinskih strukturnih karata iz doktorskog rada prof. dr. sc. Josipe Velić. Svaka od tih strukturnih karata je konstruirana po plohi određenog EK-repera ili markera, počevši od erozijske diskordancije Tg (*Temeljno gorje*) pa sve do EK-markera  $\alpha'$ . Za izradbu tih karata koristili su se podaci geološkog kartiranja i geomorfologije područja, podaci gravimetrijskih, geoelektričnih i seizmičkih mjerenja, kao i svi podaci dobiveni bušenjem. Metodologija rada podijeljena na dvije faze: digitalizacija podataka te sistematiziranje ulaznih podataka i izradba potpovršinskog modela područja, za što su korišteni računalni programi ArcMap 10.1 i Petrel<sup>TM</sup> 2013.

### 4.1. Računalni program ArcMap

ArcMap je glavna komponenta programskog paketa ArcGIS instituta ESRI. Računalni program ArcMap se koristi za pregled, uređivanje te obradu geoprostornih podataka. Također, ima mogućnost kreiranja i analiziranja geografskih podataka te njihovog kompletiranja u geodata bazu. Dobiveni digitalizirani podaci mogu poslužiti kao ulazni podaci za druge programe, u ovom slučaju za računalni program Petrel<sup>TM</sup>.

Na *Slici 4-1*. prikazano je sučelje ArcMap – a verzije 10.1 s ulaznim podacima.



Slika 4-1. Sučelje računalnog programa ArcMap 10.1

### 4.2. Digitalizacija podataka

Digitalizaciji podataka prethodilo je skeniranje karata te njihovo spremanje u .tif format (*engl. Tagged Image File Format*). Tako pospremljeni podaci uneseni su u računalni program ArcMap 10.1. Na taj način dobiveni su ulazni podaci koje je bilo potrebno točno locirati u prostoru kako bi se očuvala kompatibilnost s mogućnostima geolociranja drugih softvera poput Petrela<sup>TM</sup>. S obzirom na navedeno, korišten je referentni koordinatni sustav WGS84. Potom je uslijedilo postavljanje okvira za modelirano područje na kojem će se izvršiti digitalizacija svake karte pojedinačno.

Svrha digitalizacije svih šest strukturnih karata je pretvaranje njihovih analognih oblika u digitalni format. Na taj način su digitalizirani sljedeći podaci: izobate i stratoizohipse, rasjedi te granice rasprostiranja EK- repera i markera.

Prilikom digitaliziranja svakog analognog oblika potrebno je za svaki posebno stvoriti *Feature Class* (klasu). Tako je npr. za rasjede ucrtane na strukturnoj karti po plohi EK-repera *Tg* stvorena klasa pod nazivom "rasjedi\_Tg". Ukupno je stvoreno 18 klasa za sva tri analogna tipa podataka po šest strukturnih karata.

Digitalizacija izobata i stratoizohipsi odnosi se na pažljivo iscrtavanje linija s pripadajućim vrijednostima apsolutne dubine (Z) preko strukturnih karata. Prilikom iscrtavanja linija

rasjeda bilo je potrebno pripaziti da se rasjedi ne dodiruju ili ne sijeku. Time su se izbjegli određeni problemi koji su mogli nastati u kasnijoj fazi rada, tj. tijekom geomodeliranja u računalnom programu Petrel<sup>™</sup>. Granice rasprostiranja pojedninih EK- repera i markera su napravljene kao zatvoreni poligoni. Površine granica rasprostiranja EK-repera i markera ovise o samoj naravi određenog EK-repera ili markera.

Digitalizirano područje uokvirenog dijela Savske depresije obuhvatilo je površinu od 758,765 km<sup>2</sup>. Primjer provedene digitalizacije podataka na okonturenom području strukturne karte po plohi EK-markera *Rs7* vidi se na *Slici 4-2*.



Slika 4-2. Digitalizirani dio potpovršinske strukturne karte po plohi EK-markera Rs7

Zadnja faza rada u ArcMap – u odnosi se na izvoz i spremanje digitaliziranih podataka u .shp format (*engl. Shape file format*). Na taj način izlazni podaci postaju ulazni podaci za daljnji rad u Petrel<sup>TM</sup> – u.

## 4.3. Računalni program Petrel<sup>TM</sup>

Računalni program Petrel<sup>TM</sup> tvrtke Schlumberger pruža mnoge mogućnosti: izradu karata, obradu i analiziranje seizmičkih podataka, interpretiranje karotažnih dijagrama, određivanje strukturnih odnosa, kreiranje modela građe podzemlja i dr. Budući da je izuzetno složen i sofisticiran računalni program, ima opciju i razrade ležišta ugljikovodika u čijem radu sudjeluju brojni inženjeri s bogatim radnim iskustvom: naftni geolozi, geofizičari te inženjeri naftnog rudarstva. Računalni program Petrel<sup>TM</sup> doniran je Rudarsko-geološko-naftnom fakultetu od strane tvrtke Schlumberger. Prikaz sučelja računalnog programa Petrel<sup>TM</sup> 2013 vidi se na *Slici 4-3*.



*Slika 4-3. Sučelje računalnog programa Petrel*<sup>TM</sup> 2013

# 4.4. Sistematiziranje ulaznih podataka i izradba potpovršinskog modela

Druga faza rada započinje unosom podataka u Petrel<sup>TM</sup> 2013 pri čemu su dobiveni ulazni podaci za izobate i stratoizohipse, rasjede i granice rasprostanjenosti svakog EK-repera i markera, koji su se sistematizirali određenim redoslijedom. Ulazni podaci za izobate i
stratoizohipse poslužili su za izradbu površina po plohama EK-repera i markera pomoću alata *Izradba/preinaka površine (engl. Make/edit surface)*. Na svim kartama površina može se uočiti raspon boja s odgovarajućim dubinama u gornjem lijevom kutu, strelica zelene boje koja označava smjer sjevera te referentni koordinatni sustav.

Kao jedan od primjera je površina stratoizohipsa po EK - markeru *Rs7* prikazana na *Slici* 4-4.



Slika 4-4. Karta stratoizohipsi po EK-markeru Rs7

Potom su obrađeni i ulazni podaci za granice rasprostiranja svakog EK-repera i markera koji se napravljeni i spremljeni u obliku zatvorenih poligona. Koristeći se alatom *Izračun (engl. Calculations),* zatvoreni poligoni granica rasprostiranja EK-repera translatirani su na površine odgovarajućih karata i to pomoću opcije Z = A, što znači da je Z koordinata jednaka površini karte. Podešavanjem odnosa tih dviju ploha, "izrezani" su oni dijelovi površine karte koji su bili prekriveni zatvorenim poligonima. Tako su se dobile stvarne granice rasprostiranja EK-repera i markera na području modeliranja.

Ulazni podaci za rasjede u Petrel<sup>TM</sup> - u 2013 nalaze se u obliku poligona. Obrada poligona započinje njihovim translatiranjem na površine pripadujućih karata pomoću alata *Calculations* na način da je njihova Z koordinata jednaka površini karte (Z = A). Alatom *Jednaki razmak (engl. Equal space)*, u odjeljku *Operacije poligona (engl. Polygons operations)*, translatiranim poligonima je dodijeljen jednak broj točaka, a pomoću alata *Razdvajanje (engl. Split)* poligoni su rastavljeni na zasebne poligone kako bi se mogli sistematizirati u određene grupacije. Na *Slici 4-5.* vide se pregupirani poligoni, dok je na *Slici 4-6.* prikazano svih 107 grupacija sistematiziranih poligona, tj. rasjeda.



Slika 4-5. Pregrupirani poligoni



Slika 4-6. 107 grupacija sistematiziranih poligona odnosno rasjeda

Neophodna radnja prije samog modeliranja izdvojenog područja bilo je postavljanje strukturnog okvira (*engl. Structural framework*). Strukturni okvir podrazumijeva određivanje geometrije područja modeliranja te stvaranje i interperetiranje dobivenih rasjednih ploha. Geometrija modeliranog područja (*engl. Geometry definition*) definirana je prema površini izobata EK-repera *Tg* te prema određenoj granici područja modeliranja. *Slika 4-7.* prikazuje definiranu geometriju za modelirano područje.

| Ceometry       | definition |               |                                                                                                   |           |                | ×   |
|----------------|------------|---------------|---------------------------------------------------------------------------------------------------|-----------|----------------|-----|
| Crea<br>@ Edit | existing:  | Structural fr | amework 1<br>amework                                                                              | Domain: C |                |     |
|                |            | Get geon      | netry from selected                                                                               | Automatic | tic coarsening | ?   |
| Geometry -     |            |               |                                                                                                   | Inline:   | Crossline:     | ?   |
| Origin:        | 583266.45  | 58433862      | 5055531.6422961                                                                                   |           |                |     |
| laxis:         | 623066.45  | 58433862      | 5055531.6422961                                                                                   |           |                |     |
| Jaxis:         | 583266.45  | 58433862      | 5096731.6422961                                                                                   |           |                | 5   |
| Width:         | 39800.000  | 000000        | Z extents                                                                                         |           |                | - 🔼 |
| Height:        | 41200.000  | 000000        | Shallowest:                                                                                       | 0         |                |     |
| Rotation:      | 0.00       | <b></b>       | Deepest:                                                                                          | 0         |                |     |
|                | Jaxis      | h-laxis       | Boundary:                                                                                         | -         | podrucje_kart  | ?   |
|                | 1994-      | Rotation      | The boundary polygon is currently<br>ignored when the VBM method is<br>used for horizon modeling. |           |                |     |
| Grid increr    | nent       |               |                                                                                                   |           |                | - ? |
| Lincreme       | ent: 100   |               | Coarsening                                                                                        | ı: 1      | ÷              |     |
| J increme      | ent: 100   |               | Nodes:                                                                                            | 399 x 413 |                |     |
|                |            |               | Apply                                                                                             | ✓ OF      | Can            | cel |

Slika 4-7. Definirana geometrija modeliranog područja

Kao ulazni podaci za kreiranje rasjednih ploha u alatu *Okvir rasjednih ploha (engl. Fault framework modelling)* koristili su se sistematizirani poligoni u 107 grupacija. Svaki poligon predstavlja rasjed po plohi jednog od šest EK-repera i markera, pa se iz tog razloga poligoni razlikuju i po dubini u prostoru. Koristeći se alatom *Fault framework modelling* svaka pojedina grupacija poligona objedinjuje se u rasjednu plohu. Alat *Okvir rasjednih ploha (engl. Fault framework modelling)* s razvrstanim rasjedima prikazan je na *Slici 4-8.*, dok se rasjedne plohe na području modeliranja vide se na *Slici 4-9.* 

|             | sting: Structu | ral framewo | rk 🔻     |        |                  |           |                   |   |                                   |                           |                   |           |             |              |              |                   |
|-------------|----------------|-------------|----------|--------|------------------|-----------|-------------------|---|-----------------------------------|---------------------------|-------------------|-----------|-------------|--------------|--------------|-------------------|
| mputef      | auts Edit rela | ationships  | Settings |        |                  |           |                   |   |                                   |                           |                   |           |             |              |              |                   |
| 📮 📲 🖷 📲 📲 📲 |                |             |          |        |                  |           |                   |   |                                   |                           |                   |           |             |              |              |                   |
| ndex        | Fault          | Color       | Size     | Status | Grid<br>interval | Smoothing | Tip loop<br>style |   | Tip loop<br>sculpting<br>diameter | Extrapolation<br>distance | Gridding<br>plane | Fault top | Input #1    | Input #2     | Input #3     | Input #4          |
| 4           | RA1            |             | 78       | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🖊 Polygon. | Polygon.     | -                 |
| 1           | RA2            |             | 309      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | A Polygon.   | 🔿 🦯 Polygon. | 🔿 🦯 Polygon       |
|             | RA3            | -           | 702      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | 🔿 🦯 Polygon | 🔿 🦯 Polygon. | 🔿 🖊 Polygon. | 🔿 🖊 Polygon       |
|             | RA4            |             | 234      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | 🔿 🦯 Polygon | 🔿 🦯 Polygon. | 🔿 🖊 Polygon. | 🔿 🖊 Polygon       |
|             | RA5            |             | 580      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🦯 Polygon  | Polygon.     | Polygon           |
| 1           | RA6            | -           | 132      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🖊 Polygon. | 🔿 🦯 Polygon. | 🔿 🦯 Polygon       |
| 1           | RA7            | -           | 96       | 🗸 Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🦯 Polygon. | 🔿 🦯 Polygon. | 🔿 🦯 Polygor       |
|             | RA8            |             | 923      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🖊 Polygon. | Polygon.     | 🔿 🖊 Polygor       |
| 1           | RA9            |             | 956      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🖊 Polygon. | 🔿 🖊 Polygon. | 📄 🖊 Polygon       |
| -           | RA10           | -           | 597      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | • 🔿       | Polygon     | 🔿 🦯 Polygon  | 🔿 🦯 Polygon. | Polygor 🦯 Polygor |
| 1           | RA11           | -           | 236      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🦯 Polygon  | 🔿 🦯 Polygon. | Polygon           |
|             | RA12           |             | 701      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | A Polygon.   | A Polygon.   | Polygon           |
|             | RA13           | -           | 607      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🖊 Polygon. | 🔿 🖊 Polygon. | 📄 🦯 Polygon       |
|             | RA14           |             | 552      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | • 🔿       | Polygon     | 🔿 🖊 Polygon. | 🔿 🖊 Polygon. | 🔿 🦯 Polygon       |
| -           | RA15           | -           | 131      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | - 🔿       | Polygon     | Polygon      | 🔿 🦯 Polygon. | Polygon           |
| 1           | RA16           |             | 189      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | Polygon.     | A Polygon.   | Polygon           |
| 1           | RA17           |             | 174      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | A Polygon.   | A Polygon.   |                   |
|             | RA18           |             | 506      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1 •          | •         | Polygon     | 🔿 🦯 Polygon. | A Polygon.   | 🔿 🦯 Polygon       |
|             | RA19           | -           | 144      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | 🔿 🦯 Polygon  | A Polygon.   | Polygor           |
|             | RA20           | •           | 302      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | A Polygon.   | 🔿 🖊 Polygon. | Polygon           |
| 1           | RA21           |             | 240      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1 •          | •         | Polygon     | 🔿 🦯 Polygon  | 🔿 🖊 Polygon. | Polygon           |
|             | RA22           | -           | 333      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | • 🔿       | Polygon     | 🔿 🦯 Polygon  | 🔿 🦯 Polygon. | 🔿 🦯 Polygon       |
|             | RA23           | -           | 693      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1            | - 🔿       | Polygon     | 🔿 🖊 Polygon  | 🔿 🖊 Polygon. | Polygon           |
|             | RA24           | •           | 173      | ✓ Done | 150.00           | 2         | Convex hull       | • | 400.00                            | 200.00                    | Plane1            | •         | Polygon     | Polygon.     | Polygon.     | Polygon           |
|             | RA25           | -           | 249      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1 •          | •         | Polygon     | 🔿 🖊 Polygon. | Polygon.     | Polygon           |
|             | RA26           |             | 213      | ✓ Done | 150.00           | 2         | Convex hull       | - | 400.00                            | 200.00                    | Plane1 .          | •         | Polygon     | A Polygon.   | A Polygon.   | 🔿 🦯 Polygon       |

*Slika 4-8.* Alat Okvir rasjednih ploha (engl. Fault framework modelling) s razvrstanim rasjedima



Slika 4-9. Rasjedi modeliranog područja

Nakon stvaranja 107 rasjednih ploha uslijedila je njihova interpretacija. Važno je naglasiti kako bijele linije između rasjednih ploha označavaju njihove potpune "kontakte". Budući da na nekim mjestima nisu ostvareni potpuni kontakti, bilo je nužno odrediti međuodnose rasjeda te izgladiti neke vrlo zakrivljene (krivulje 3. reda) i nepravilne rasjedne plohe. Navedene situacije svrstavaju se u pogreške nastale prije izradbe samog modela. *Slika 4-10.* prikazuje žutim krugovima nepotpune kontakte i nedefinirane međuodnose rasjeda (*engl. inconsistent faults contacts*), dok su zelenim krugovima označene vrlo zakrivljene, nepravilne plohe rasjeda (*engl. kinked or sharp truncations*).



*Slika 4-10.* Prikaz nepotpunih kontakata i nedefiniranih međuodnosa vrlo zakrivljenih rasjednih ploha

Odnosi između rasjednih ploha definirani su alatom *Fault framework modelling* pod opcijom *Izmjena odnosa (engl. Edit relationships)*. Pomoću opcije *Edit relationships* podešeni su odnosi glavnih (*engl. major*) i sporednih (*engl. minor*) rasjeda kako bi se upotpunili kontakti rasjednih ploha (*Slika 4-11.*).

| Edt minimu     | Character and Ameri | nounde - | 1           |             |            |      |            |               |             |           |                      |
|----------------|---------------------|----------|-------------|-------------|------------|------|------------|---------------|-------------|-----------|----------------------|
| Cont existing. | Edt celetionel      | Hework + | 1           |             |            |      |            |               |             |           |                      |
| ompute faults  | Eat relations       | Settings |             |             |            |      |            |               |             |           |                      |
| Recalculat     | e all relationshi   | ips      |             |             | Visible: 🔽 | Inpu | it: 🕜 🛛 Ma | ajor/minor: 🕜 | Truncation: | Verified: | Right mouse options: |
| Fault pair     | Visible             | Input    | Major fault | Minor fault | Truncation |      | Verified   |               |             |           |                      |
| 1              | 7                   |          | RA3         | RA1         | Below      | -    | [111]      |               |             |           |                      |
| 2              | 1                   |          | RA108       | RA1         | Below      | -    |            |               |             |           |                      |
| 3              | 1                   |          | RA2         | RA1         | Remove tru | -    | 1          | _             |             |           |                      |
| 4              | 1                   |          | RA3         | RA2         | Above      | -    | [TT]       | _             |             |           |                      |
| 5              | 1                   |          | RA12        | RA3         | Above      | -    | (1111)     |               |             |           |                      |
| 6              | 1                   |          | RAS         | RA4         | Above      | -    |            |               |             |           |                      |
| 7              | 1                   |          | RA8         | RA5         | Above      | -    | 1          | _             |             |           |                      |
| 8              | 1                   |          | RA8         | RA6         | Below      | -    |            |               |             |           |                      |
| 9              | 1                   |          | RA13        | RA6         | Above      | -    |            |               |             |           |                      |
| 10             | 1                   |          | RA36        | RA6         | Remove tru | -    | (F***)     |               |             |           |                      |
| 11             | 1                   |          | RA8         | RA7         | Below      | -    | (m)        |               |             |           |                      |
| 12             |                     |          | RA13        | RA7         | Above      | -    |            |               |             |           |                      |
| 13             | <b>v</b>            |          | RA14        | RAS         | Below      | -    | (*****     |               |             |           |                      |
| 14             | 1                   |          | RA8         | RA9         | Above      | -    | (1000)     |               |             |           |                      |
| 15             | 7                   |          | RA12        | RA9         | Below      | -    |            |               |             |           |                      |
| 16             | <b>V</b>            |          | RA14        | RA10        | Below      | -    | (*****     |               |             |           |                      |
| 17             | 1                   |          | RA9         | RA10        | Below      | -    | (****      |               |             |           |                      |
| 18             | 1                   |          | RA12        | RA11        | Below      | -    | (100)      |               |             |           |                      |
| 19             | 1                   |          | RA10        | RA11        | Below      | -    |            |               |             |           |                      |
| 20             | 1                   |          | RA3         | RA11        | Remove tru | -    | (****      |               |             |           |                      |
| 21             | 1                   |          | RA14        | RA12        | Below      | -    | (F***)     |               |             |           |                      |
| 22             | 1                   |          | RA14        | RA13        | Below      | -    | [[[]]      |               |             |           |                      |
| 23             |                     |          | RA55        | RA13        | Remove tru | -    | 1          |               |             |           |                      |
| 24             | 1                   |          | RA118       | RA13        | Remove tru | -    | (F***)     |               |             |           |                      |
| 25             | 1                   |          | RA5         | RA13        | Remove tru | -    | [111]      |               |             |           |                      |
| 26             | 1                   |          | RA46        | RA14        | Above      | -    | 100        |               |             |           |                      |
| 27             | 1                   |          | RA76        | RA14        | Remove tru | -    | 1          |               |             |           |                      |
| 28             | 1                   |          | RA74        | RA14        | Remove tru | -    |            |               |             |           |                      |
| 29             | 1                   |          | RA32        | RA15        | Below      | -    |            |               |             |           |                      |
| 30             |                     | 100      | RA14        | BA16        | Above      | -    | 1          |               |             |           |                      |

Slika 4-11. Opcija Izmjena odnosa (engl. Edit relationships) s odnosima rasjednih ploha

Za ispravljanje nepravilnih i vrlo zakrivljenih ploha rasjeda poslužio je alat *Izradba/preinaka poligona (engl. Make/edit polygons)* kojim je omogućeno pomicanje poligona u prostoru. Na taj način su izravnane i izglađene (*engl. smoothing*) određene rasjedne plohe. Primjer rasjednih ploha (označenih crvenim krugovima) koje je bilo potrebno korigirati, vidi se na *Slici 4-12*.



Slika 4-12. Nekorigirane plohe rasjeda

Nakon što program Petrel<sup>TM</sup> 2013 napravi model po svim strukturnim horizontima, opet se pojavljuju određene pogreške koje je potrebno ispraviti kako bi se dobio ispravan model. Te pogreške odnose se na: iskrivljene plohe rasjeda, neravne i nepotpune kontakte ploha dvaju rasjeda te na netočno određene odnose dvaju rasjeda. Primjeri pogrešaka vidljivi su na *Slici 4-13*. Pogreške se ispravljaju ili prehodno opisanim i navedenim postupcima ili na način da se alatom *Udaljenost ekstrapolacije (engl. Extrapolation distance)* poveća vrijednost broja koji označava ekstrapolaciju određenog rasjeda u prostoru. Tako će se kontakt ploha dvaju rasjeda upotpuniti u alatu *Fault framework modelling* pod opcijom *Edit relationships*.

| Struc  | tura | al frame | ework Structural framew | work 🔹    | 8          | <b>F</b>                                            |             | Filter All 🔹 👔                                                                                   |
|--------|------|----------|-------------------------|-----------|------------|-----------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|
| Faults | Н    | lorizon  | s Zones                 |           |            |                                                     |             |                                                                                                  |
| С      | at   | Show     | Object #1               | Object #2 | Show Error | Description                                         | Autoresolve | Recommendation                                                                                   |
|        |      |          |                         |           | Locations  |                                                     |             |                                                                                                  |
| 1 💧    |      |          | RA54                    | RA73      | _          | Potentially inconsistent truncations between faults | <b>v</b>    | Use Autoresolve option or remove/change truncations manually                                     |
| 2      |      |          | RA59                    | RA60      |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 3      |      |          | RA46                    | RA64      |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 4      |      |          | RA57                    | RA102     |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 5 🥼    |      |          | RA90                    | RA91      |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 6 🥼    |      |          | RA90                    | RA92      |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 7 🥼    |      |          | RA91                    | RA92      |            | Potentially inconsistent truncations between faults | 1           | Use Autoresolve option or remove/change truncations manually                                     |
| 8 🤅    | 3    |          | RA14                    |           |            | Inconsistent faults contacts                        |             | Check/correct fault inconsistencies and connected faults. If issue persist, change slightly Grid |
| 9 🤅    | 3    |          | RA13                    |           |            | Inconsistent faults contacts                        |             | Check/correct fault inconsistencies and connected faults. If issue persist, change slightly Grid |
| 10 🌔   | 3    |          | RA118                   |           |            | Inconsistent faults contacts                        |             | Check/correct fault inconsistencies and connected faults. If issue persist, change slightly Grid |
| 11 🌘   | 3    |          | RA47                    |           |            | Inconsistent faults contacts                        |             | Check/correct fault inconsistencies and connected faults. If issue persist, change slightly Grid |
| 12 🌘   | 3    |          | RA108                   |           |            | Potentially duplicated faults                       |             | Check identical or similar inputs for the same fault around the error location                   |
| 13 🌘   | 3    |          | RA14                    |           |            | Potentially duplicated faults                       |             | Check identical or similar inputs for the same fault around the error location                   |
| 14 🧯   | 3    |          | RA13                    |           |            | Problem detected on the tip loop of fault(s)        |             | Check/correct fault(s) and connected ones around error location. If issue persists, change sl    |
| 15 🌔   | 3    |          | RA14                    |           |            | Problem detected on the tip loop of fault(s)        |             | Check/correct fault(s) and connected ones around error location. If issue persists, change sl    |
| 16 🧯   | 3    |          | RA108                   |           |            | Problem detected on the tip loop of fault(s)        |             | Check/correct fault(s) and connected ones around error location. If issue persists, change sl    |
| 17 🕻   | 3    |          | RA118                   |           |            | Problem detected on the tip loop of fault(s)        |             | Check/correct fault(s) and connected ones around error location. If issue persists, change sl    |
| 18 🄇   | 3    |          | RA47                    |           |            | Problem detected on the tip loop of fault(s)        |             | Check/correct fault(s) and connected ones around error location. If issue persists, change sl    |
| 19 🌔   | 3    |          | RA118                   |           |            | Kinked or sharp truncations                         |             | Check/correct fault(s) and connected ones. If issue persists, change slightly Grid interval and  |
| 20 🔇   | 3    |          | RA13                    |           |            | Kinked or sharp truncations                         |             | Check/correct fault(s) and connected ones. If issue persists, change slightly Grid interval and  |
| 21 🕻   | 3    |          | RA14                    |           |            | Kinked or sharp truncations                         |             | Check/correct fault(s) and connected ones. If issue persists, change slightly Grid interval and  |
| 22 🌔   | 3    |          | RA77                    |           |            | Kinked or sharp truncations                         |             | Check/correct fault(s) and connected ones. If issue persists, change slightly Grid interval and  |
| 23 🕻   | 3    |          | RA14                    |           |            | Unsplit faults                                      |             | Check the contacts between involved fault(s)                                                     |
| 24 🧯   | 3    |          | RA47                    |           |            | Unsplit faults                                      |             | Check the contacts between involved fault(s)                                                     |

4-13. Primjer javljenih pogrešaka

Stvaranje potpovršinskog modela područja posljednja je faza rada u Petrel<sup>TM</sup> – u 2013. Alat *Izradba modela horizonata (engl. Horizon modelling)* poslužio je za izradbu potpovršinskog modela po horizontima. Ulazni podaci koji su se koristili za kreiranje geološkog modela su površine izobata i stratoizohipsi po plohama svih šest EK-repera i markera te 107 interpretiranih rasjeda. Pritom je važno istaknuti da se koristila i opcija *Izglađivanje i kreiranje trodimenzionalog modela (engl. Refine and create 3D model)* koja je još kvalitetnije definirala odnose ploha rasjeda i dobivenih modeliranih horizonata. Površina po EK-reperu Tg postavljena je kao baza modela jer predstavlja podinu neogensko-kvartarnih sedimenata, dok su sve ostale površine po EK-markerima Rs7, Rs5, Z',  $R\varphi$  i  $\alpha'$  prilagođene (*engl. conformable*) bazi (podlozi) modela. Izgled alata *Izradba modela horizonata* (*engl. Horizon modeling*) s ulaznim podacima prikazan je na *Slici 4-14*.

| 🗑 н      | orizoi | n modeling               |                  |            |             |              |       |                |                 |               |             |              |     |                   | X    |
|----------|--------|--------------------------|------------------|------------|-------------|--------------|-------|----------------|-----------------|---------------|-------------|--------------|-----|-------------------|------|
| Mod      | del ho | rizons Hints             |                  |            |             |              |       |                |                 |               |             |              |     |                   |      |
| 1        | Edit e | existing: Struc          | ctural framework |            | •           | Refine an    | d cre | ate zone model |                 | 2             |             |              |     |                   |      |
| Ho       | rizon  | modeling techr           | nique: Volume ba | sed modeli | na 🔻        |              |       |                |                 | -             |             |              |     |                   |      |
|          | mnute  | e horizons C             |                  | out action | a Algorithm | acttiona     |       |                |                 |               |             |              |     |                   |      |
|          | •      | <b>≣ -</b> ₹ <b>8</b> ∞( |                  |            |             | radunga      | Seq   | uence: 🛜 H     | lorizon type: ? | Conforms to:  | Smoothness: | i 👔 Input: 👔 |     |                   |      |
| ŀ        | ndex   | Horizon                  | Sequence         | Color      | Status      | Horizon type |       | Conforms to    | Smoothness      | Well top:     | Non-filtere | d Isochore   |     | Input #1          |      |
| 1        |        | karta_stra               | 1                | -          | ✓ Done      | Conformable  | •     | None 🔻         | 35              |               | <b>\</b>    |              | ⇒ ⊕ | alfa_strato       |      |
| 2        | Ų.     | karta_stra               | 1                | -          | ✓ Done      | Conformable  | •     | None 🔻         | 35              |               | <b></b>     |              | 🔿   | karta_strato_Rfi  |      |
| 3        | Ų      | karta_stra               | 1                | -          | ✓ Done      | Conformable  | •     | None 🔻         | 35              |               |             |              | 🔿 🚑 | karta_strato_Z    |      |
| 4        | Ų      | karta_stra               | 1                | -          | ✓ Done      | Conformable  | •     | None 🔻         | 35              | $\Rightarrow$ | -           |              | 🔿 🤀 | karta_strato_Rs5  |      |
| 5        | Ų      | karta_stra               | 1                | •          | ✓ Done      | Conformable  | •     | None 🔻         | 35              |               |             |              | 🔿 🕼 | karta_strato_Rs7  |      |
| 6        | Ų.     | karta_stra               | 2                | -          | ✓ Done      | Base         | •     | None 🔻         | 35              |               |             |              | 🔿 🐗 | karta_strato_Tg   |      |
|          |        |                          |                  |            |             |              |       |                |                 |               |             |              |     |                   |      |
|          |        |                          |                  |            |             |              |       |                |                 |               |             |              |     |                   |      |
|          |        |                          |                  |            |             |              |       |                |                 |               |             |              |     |                   |      |
|          |        |                          |                  |            |             |              |       |                |                 |               |             |              |     |                   |      |
|          |        |                          |                  |            |             |              | -     |                |                 |               |             |              |     |                   |      |
| <u> </u> |        |                          |                  |            |             |              |       |                |                 |               |             |              | _   |                   |      |
|          |        |                          |                  |            |             |              |       |                |                 |               |             |              |     | ∕Apply ✓ OK 🗡 Car | ncel |

Slika 4-14. Izgled alata Izradba modela horizonata (engl. Horizon modeling) s ulaznim podacima

Model je gotov ukoliko računalni program Petrel<sup>TM</sup> 2013 nakon njegova kreiranja više ne javlja pogreške.

#### **5. REZULTATI**

U ovom poglavlju biti će opisani strukture i rasjedi dobivenog potpovršinskog modela po svim strukturnim horizontima te statistička obrada podataka. Potrebno je naglasiti kako u okviru ovog diplomskog rada nije obavljena detaljna sinteza strukturno – tektonskih odnosa koja zahtjeva kompleksna dubinska geološka, paleostrukturna i paleotektonska istraživanja.

#### 5.1. Strukturni okvir

Za dobivanje potpovršinskog modela s izraženim strukturama i rasjedima po plohama svih šest strukturnih repera i markera bilo je potrebno prvo postaviti strukturni okvir. Strukturni okvir je postavljen i određen prema definiranoj geometriji – površina izobata po plohi EK-repera Tg. Važno je napomenuti kako je program Petrel<sup>TM</sup> 2013 napravio ekstrapolaciju područja i izvan samog područja modeliranja zbog načina modeliranja (*Volume based modelling*).

Prema ručno nacrtanim strukturnim kartama (VELIĆ, 1980) definirano je i napravljeno 107 rasjednih ploha pomoću alata *Fault framework modeling*. Može se uočiti kako je svaki rasjed prikazan s različitom bojom što olakšava njihovo raspoznavanje. Pojava rasjeda povijenih ploha na krajnjem istočnom dijelu istraživanog područja ukazuje na rubni dio Savske depresije (VELIĆ, 1980). Treba napomenuti kako se svi rasjedi ne protežu kroz sve strukturne nivoe pa tako neki rasjedi ne dosežu do EK-markera  $R\varphi$  (VELIĆ, 1980). Iz istoga navedenog razloga mogu se primijetiti sve jednostavniji odnosi po strukturnom nivou  $\alpha'$ . Kako je već ranije spomenuto, područjem modeliranja dominiraju tri rasjedna sustava različita po pravcu pružanja:

- sjeverozapad jugoistok,
- jugozapad sjeveroistok,
- sjever jug.

Također, ovim područjem brazde i četiri najvažnija rasjeda, a to su Lonjski, Glavni sjeverni depresijski, Ilički rasjed te rasjed Donja Kupčina – Prevlaka – Marča. Rasjedi dinarskog pružanja (SZ – JI) su Lonjski rasjed i Glavni sjeverni depresijski rasjed, dok su poprečni rasjedi: Ilički rasjed i rasjed Donja Kupčina – Prevlaka – Marča. Lonjski rasjed proteže se cijelim područjem modeliranja. U njegovom gornjem dijelu presjeca ga Ilički rasjed, orijentacije JZ – SI. Glavni sjeverni depresijski rasjed s pravcem pružanja SZ – JI također brazdi cijelim područjem. U donjem dijelu modeliranog područja dominira poprečni rasjed Donja Kupčina – Prevlaka – Marča. Na *Slici 5-1.* uočavaju se sva tri rasjedna sustava te četiri najvažnija rasjeda modeliranog područja.



Slika 5-1. Strukturni okvir s četiri najvažnija rasjeda

#### 5.2. Potpovršinski model (3D karte)

Postupkom modeliranja podzemne građe područja pomoću alata *Horizon modeling*, napravljen je potpovršinski model po svim strukturnim nivoima (Tg, Rs7, Rs5, Z',  $R_{\phi}$  i  $\alpha'$ ). Na svakom od horizonata modela mogu se primjetiti strukture (antiklinala, sinklinala i dr.), rasjedni sustavi te granica rasprostiranja svakog EK-repera i markera, osim po plohi EKrepera Tg koja predstavlja paleoreljef pa se ne može govoriti o klasičnim tipovima struktura. Raspon boja, vidljiv u lijevom gornjem kutu, označava vrijednosti dubina dobivenog horizonta potpovršinskog modela. Šest horizonata potpovršinskog modela po određenom EK-reperu i markeru mogu se vidjeti na *Slikama 5-2., 5-3., 5-4., 5-5., 5-6.* i *5-*7. te u *Prilozima I -VI*.



Slika 5-2. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-repera Tg



Slika 5-3. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera Rs7



Slika 5-4. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera



Slika 5-5. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera Z'



Slika 5-6. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera



Slika 5-7. Potpovršinski model (karta u trodimenzionalom prikazu) po plohi EK-markera  $\alpha'$ 

Na području modeliranja pozicionirano je šest naftnoplinskih polja, a položaj njihovih struktura prikazan je na *Slici 5-8*.



Slika 5-8. Položaj struktura naftnoplinskih polja po plohi EK-markera Rs5

Prije opisa struktura od sjeverozapada prema jugoistoku, potrebno je naglasiti kako se kod opisivanja stuktura po plohi EK-repera Tg ne može govoriti o klasičnim tipovima struktura kao što su antiklinala, sinklinala i dr. jer Tg (*Temeljno gorje*) predstavlja paleoreljef (*Prilog I*). Drugim riječima, to je ploha tektonsko – erozijske diskordancije između stijena podloge (*Temeljno gorje*) i neogensko – kvartarnih naslaga (*Prilozi VII - IX*).

U gornjem dijelu područja modeliranja nalazi se struktura Brckovljani – Štakorovac. Ovu strukturu odlikuje promjenjivost njena karaktera. Naime, po strukturnom nivou Tg iskazuje se kao strukturna terasa (*Prilog I*), dok se po plohi EK-markera *Rs7* preoblikuje u strukturni nos (*Prilog II*). Po plohama svih ostalih EK-markera očituje se kao antiklinala (*Prilozi III -VI*). Razvoj ove strukture prate i rasjedi pretežito orijentacije SZ – JI. Na *Slici 5-9*. prikazana je antiklinala Brckovljani – Štakorovec po plohi EK-markera *Rs7* i EK-markera *Rs5*.



Slika 5-9. Brckovljani – Štakorovec - strukturni nos po plohi EK- markera Rs7 i antiklinala Brckovljani – Štakorovac po plohi EK-markera Rs5

Stuktura Dugo Selo nalazi se jugozapadno od strukture Brckovljani – Štakorovac. Prema strukturnom horizontu *Rs7*, može se zaključiti da strukura Dugo Selo predstavlja reversno rasjednutu brahiantiklinalu pravca pružanja istok – zapad (*Prilog II*). Struktura Dugo Selo uočava se na svim strukturnim horizontima. Jasno se iskazuje kao izdužena antiklinala s pravcem pružanja I – Z koja je ispresjecana poprečnim rasjedima te rasjedima pravca pružanja SZ – JI. Izražajnost brahiantiklinale se smanjuje u plićim strukturnim markerima  $R\phi$  i  $\alpha'$  kada dolazi do "zaravnjenja" i preoblikovanja struktura (u *Prilogu VII* na profilu A – A' između reversnog i normalnog rasjeda na SZ dijelu profila). Antiklinala se mijenja u monoklinu po plohi EK-markera  $\alpha'$  (*Prilozi I – VI*). Strukurni razvoj strukture Dugo Selo detaljno je prikazan na *Slikama 5-10. a*), *b*), *c*), *d*), *e*) i *f*).



a)

b)



c)

d)



e) f) Slika 5-10. Prikaz strukture Dugo Selo po plohama EK-repera i markera: a) Tg, b) Rs7, c) Rs5, d) Z', e) Rφ i f) α'

Struktura Lupoglav najjasnije se očituje kao antiklinala po plohi EK-markera *Rs7* (*Prilog II*). Ovom antiklinalom dominiraju poprečni rasjedi te rasjedi orijentacije SZ-JI (*Prilog IX*). Na strukturno izdignuće Lupoglav, u nastavku se proteže struktura jednog od najstarijih hrvatskih naftnoplinskih polja – Kloštar. Naime, svi strukturni nivoi potvrđuju da se radi o još jednoj antiklinali koja je ispresjecana rasjedima jednakih karaktera kao u prethodno dvjema opisanim strukturama (*Prilozi I - VI* i *VIII*). *Slika 5-12.* Prikazuje antiklinale naftnoplinskih polja Lupoglav, Kloštar, Ivanić i Šumečani.



Slika 5-11. Lupoglav, Kloštar, Ivanić i Šumečani po plohi EK-markera Rs7

U produžetku, ovim područjem istraživanja, većim dijelom je zahvaćeno i naftnoplinsko polje Šumečani. Također, struktura Šumečana određen je kao antiklinala. Jasno izražena antiklinala Šumečani po plohi EK-markera Z' vidi se na *Slici 5-13*. te u *Prilogu IV i VII* na JI dijelu profila A - A'.



Slika 5-12. Antiklinala Šumečani po plohi EK-markera Z'

Malo zapadnije od polja Kloštar, nalazi se naftnoplinsko polje Ježevo. Strukturu Ježevo predstavljaju dvije blago izdignute antiklinale sa strukturnim sedlom između njih. Struktura se najbolje očituje po plohama EK-markera *Rs7* i EK-markera *Rs5* (*Slika 5-14.* te na *Prilozima II, III i IX*).



Slika 5-13. Struktura Ježevo po plohama EK-markera Rs7 i EK-markera Rs5

Struktura Ivanić nalazi se jugozapadno od polja Kloštar. Naime, po plohama prvih četiriju EK-repera i markera može se primjetiti kako se zapravo radi o dvjema antiklinalama između kojih se nalazi strukturna terasa. Strukture su ispresjecane s poprečnim rasjedima te s rasjedima dinarskog pružanja (*Prilog VII*). Najbolje se uočavaju po strukturnim nivoima *Rs7, Rs5 i Z'*. Strukture postaju sve manje izraženi i uočljivi na mlađim horizontima. Tako struktura Ivanić poprima oblik strukturnog nosa po plohi EK-markera  $R\varphi$ , a na strukturnom nivou  $\alpha'$  se iskazuje kao monoklina (*Prilozi I – VI*).



a)

b)



c)

d)



Slika 5-14. Razvoj strukture Ivanić po plohama EK-repera i markera: a) Tg, b) Rs7, c) Rs5, d) Z', e)  $R\varphi i f \alpha'$ 

Napravljeni su i trodimenzionalne zone prostora između EK-repera i markera. Primjer jedne takve zone, koja predstavlja prekenozojski paleoreljef (podlogu neogensko-kvartarnih sedimenata) područja modeliranja prikazan je po plohi EK-repera Tg, može se vidjeti na *Slici 5-15*.



Slika 5-15. Trodimenzionalna zona prekenozojskog paleoreljefa prikazana po plohi EKrepera Tg

### 5.3. Izračun statističkog odstupanja na mreži od 590 točaka između modeliranih i polaznih karata

Za izračun statističke vrijednosti odstupanja modela, napravljenog po šest EK-repera i markera, od ručno izrađenih strukturnih karata (VELIĆ, 1980) korištene su usporedbe vrijednosti apsolutne dubine s pojedinih karata. To su vrijednosti apsolutnih dubina 590 prostorno raspoređenih točaka koje su očitane s karte modela i odgovarajuće strukturne karte. Također, broj odabranih točaka je jednak po svih šest strukturnih karata. Za odabranu prostornu točku zadanih koordinata (x i y) očitava se i vrijednost z (treća koordinatna os) koja predstavlja vrijednost dubine na modelu i na ručno nacrtanoj karti. Na strukturnim kartama vrijednosti dubina određene su izobatama ili startoizohipsama, tako da su sve prostorno određene točke namjerno postavljene na izobate ili stratoizohipse kako bi se točno i precizno očitale pripadajuće dubine. Za svaku pojedinu točku se računa postotak odstupanja modela od polazne strukturne karte. Vrijednosti x i y koordinata jednake su za svaku zasebnu točku pa se računa samo odstupanje po koordinatnoj osi z (dubina), i to pomoću formule:

$$\left|\frac{Z(A)_i - Z(B)_i}{Z(A)_i}\right| = X \cdot 100$$

(5-1.)

gdje su:

Z (A) - vrijednost očitane dubine pojedine točke s polazne strukturne karte

Z (B) - vrijednost očitane dubine pojedine točke na dobivenom modelu

X - vrijednost odstupanja koja pomnožena sa 100 daje postotak odstupanja.

Potom se pomoću jednadže aritmetičke sredine postotnog odstupanja u svim zbrojenim točkama (" i ") (5-2.) izračunava srednja vrijednost (aritmetička sredina) odstupanja svih

točaka kako bi se dobilo prosječno odstupanje modela od svake pojedinačne strukturne karte.

$$\frac{\left(\sum_{i=1}^{590} \left| \frac{Z(A)_i - Z(B)_i}{Z(A)_i} \right| \right) \cdot 100}{\overline{Z(A)}}$$

(5-2.)

Na kraju se od prosječnih odstupanja ponovno računa aritmetička vrijednost te se dobiva srednja vrijednost ukupnog odstupanja izraženog u postotcima. Budući da dubine imaju negativnu vrijednost, cijela formula postavljena je u apsolutnu vrijednost. Srednje vrijednosti postotka odstupanja modela od ručno izrađenih strukturnih karata prikazani su u *Tablici 5-1*.

*Tablica 5-1.* Srednje vrijednosti postotka odstupanja modela od ručno izrađenih strukturnih karata

| Ploha EK – markera/EK –repera | Srednja vrijednost odstupanja (%) |
|-------------------------------|-----------------------------------|
| α'                            | 1,3583 %                          |
| Rφ                            | 0,5366 %                          |
| Ζ'                            | 0,9668 %                          |
| Rs5                           | 0,3129 %                          |
| Rs7                           | 0,4240 %                          |
| Tg                            | 0,3086 %                          |

Izračunata prosječna vrijednost odstupanja modela od strukturnih karata određena je na četiri decimale te iznosi 0,6512 %. Valja naglasiti kako se veća vrijednost odstupanja odnosi na one točke koje se nalaze u blizini rasjeda ili kontakata rasjeda gdje je model zbog utjecaja rasjeda izdeformiran i vidljivo pomaknut. Točke koje se nalaze na zaravnjenim dijelovima modela, te one koje se ne nalaze u blizini rasjeda ili blizu kontakata između rasjeda pokazuju znatno manje vrijednosti odstupanja modela od strukturnih karata. Uzrok tome su preoblikovani krajnji dijelovi rasjeda prilikom pravljenja strukturnog okvira alatom *Fault framework modelling* nastalih zbog povećanja opcije

ekstrapolacije te ručno pomaknutih kontakata između rasjeda, opisanih u prethodnom poglavlju, prijekopotrebnih da bi računalni program Petrel<sup>TM</sup> 2013 izradio model.

### 6. ZAKLJUČAK

Cilj ovog rada bio je prostorna percepcija modeliranog područja te trodimenzionalni prikaz strukturno – tektonskih odnosa podzemne građe u svrhu planiranja i usmjeravanja budućih regionalnih istraživanja. U okviru zadane teme diplomskog rada provedena je digitalizacija te modeliranje dubinskih strukturno–tektonskih odnosa okolice Ivanić-Grada u Savskoj depresiji (*Slika 1-1.*). Šest potpovršinskih strukturnih karata uspješno je skenirano i prevedeno u digitalni oblik te su iste poslužile kao ulazni podaci za daljnji rad u računalnom programu Petrel<sup>™</sup> 2013. Prije kreiranja potpovršinskog modela po ploha šest EK-repera i markera, bilo je potrebno postaviti digitalni strukturni okvir, stvoriti rasjedne plohe i definirati njihove međuodnose. Kreirani potpovršinski model po strukturnim horizontima prikazuju blokovitu tektonsku građu modeliranog područja. Područjem modeliranja dominiraju tri glavna rasjedna sustava koji razlamaju definirane strukture. Vrlo jasno se uočavaju rasjednute antiklinale koje predstavljaju hrvatska naftnoplinska polja Dugo Selo, Lupoglav, Ježevo, Kloštar, Ivanić i Šumečani.

Statističko odstupanje potpovršinskog modela od ručno načinjenih strukturnih karata s iznosom vrijednosti prosječnog odstupanja od 0,6512 % potvrđuje veliku preciznost i točnost digitalizacije ručno napravljenih karata i kreiranog geološkog modela. Potvrda uspješnosti izadbe geološkog modela je prosječno statističko odstupanje manje od 5 %. Najveće statističko odstupanje dobivenog modela od polaznih karata pretpostavljeno je u zonama rasjeda zbog načina izradbe samoga modela tj., modeliranja odnosa horizonata i rasjednih ploha te samog skoka rasjeda.

Takvi geološki modeli mogu poslužiti za stvaranje složenijih modela gdje se sa poznavanjem litološkog sastava, osim strukturnih zamki, mogu odrediti i stratigrafske zamke. Također, potpovršinski modeli pogodni su za definiranje i utvrđivanje novih potencijalnih ležišta na temelju određenih struktura odnosno za buduće razrade ležišta ugljikovodika.

#### 7. LITERATURA

BEBEK, B. 1958. Geologija strukture Dugo Selo i njen odnos prema strukturi Križ (Kloštar). Zagreb, Nafta, 9/7, str. 187-194.

BOBULA, V. 1958. Istražna i ekploataciona bušenja i proizvodnja nafte u FNRJ od 1945. do danas. – Nafta, 8, str. 249-261.

BUCKOVIĆ, D. 2006. Historijska geologija II. E – knjiga, Sveučilišta u Zagrebu, Prirodoslovno – matematički fakultet, str. 96-101.

CVETKOVIĆ, M., 2006. Petrološke i petrogenetske značajke višestruko metamorfoziranih amfibolita Moslavačke gore (Petrologic and petrogenetic characteristic of polyphase metamorphosed amphibolites from Mt. Moslavačka Gora). Zagreb: Rudarsko – geološki – naftni fakultet, str. 27

CVETKOVIĆ, M. 2007. Naftnogeološka primjena neuronskih mreža na primjeru ležišta u polju Kloštar, Diplomski rad, RGN fakultet, Sveučilišta u Zagrebu, str. 49.

CVETKOVIĆ, M. 2013. Naftnogeološki potencijal i litostratigrafska razradba trećega neogensko-kvartarnog megaciklusa u Savskoj depresiji (Lithostratigraphic Units of the Third Neogene- Quarternary Megacycle in the Sava Depression and Their Petroleum Potential). Doktorski rad. Zagreb: Rudarsko – geološko – naftni fakultet, str. 175.

ĆORIĆ S., PAVELIĆ, D., ROGL, F., MANDIĆ, O., VRBAC S., AVANIĆ, R., JERKOVIĆ, L. & VRANJKOVIĆ, A. 2009. Revised Middle Miocene datum for initial marine flooding of Northern Croatian Basin (Pannonian Basin System, Central Paratethys). Geol. Croat., 62/1, str. 31-43.

FILJAK, R., PLETIKAPIĆ, Ž., NIKOLIĆ, D. & AKSIN, V. 1969. Geology of petroleum and natural gas from the Neogene complex and its basement in the southern oart of the Pannonian basin, Yugoslavia. – Conference of the Institute of Petroleum and AAPG, Brighton, str. 113 – 130.

HANICH, M. 1967. O rezultatima fotogeološke obrade područja između Save i Drave, na primjeru šire okolice Dugog Sela, Zagreb, Nafta, 18/1-2, str. 9-11.

ICS (2013): International Chronostratigraphic Chart. International Commission on Stratigraphy, v. 2013/01.

KRANJEC, V., 1972. Subsurface structures in the Sava and Drava river depressions and their classification. – Bulletin scientifique, sec. A, 17/11-12, str. 362-364., Zagreb.

LUČIĆ, D., SAFTIĆ, B., KRIZMANIĆ, K., PRELOGOVIĆ, E., BRITVIĆ, V., MESIĆ, I., TADEJ, J. 2001. The Neogene evolution and hydrocarbon potential of Pannonian basin, Marine and Petroleum Geology 18, str. 133-147.

MALVIĆ T., 2006. Middle Miocene depositional model in the Drava Depression described by geostatistical porosity and thickness maps (case study: Stari Gradac-Barcs Nyugat Field). Rud.-geol.-naft. zbornik, 18: str. 63–70.

MALVIĆ, T. & VELIĆ, J. 2011. Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations. –SCHATTNER, U. (ed.): New Frontiers in Tectonic Research: At the Midst of Plate Convergence, InTech, Rijeka, str. 352.

MITCHUM, R.M., Jr. 1977. Glossary of terms used in seismic stratigraphy. – U: PAYTON C.E. (ur.): Seismic Stratigraphy – Applications to Hydrocarbon Exploration. AAPG Memoir 26, Tulsa str. 205-212.

PAVELIĆ, D., 2001. Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Research, 13, 3, str. 359– 376.

PETRINEC, Z., 2013. Strane i kognatne enklave u krednim granitoidima Moslavačke gore: mikrostrukturni i geokemijski uvid u kompleksnu evoluciju moslavačkog kristalina (Foreign and cognate enclaves inside Cretaceous granitoids: microstructrual and geochemical insight into complex evolution of the Moslavačka Gora crystalline). Doktorska disertacija. Zagreb: Prirodoslovno-matematički fakultet, str.264.

PLETIKAPIĆ, Ž. 1969. Stratigrafija, paleogeogrfija i naftnoplinonosnost Ivanić Grad formacije na obodu Moslavačkog masiva, Disertacija, RGN fakultet, Sveučilišta u Zagrebu, str. 1-70.

PRELOGOVIĆ, E., SAFTIĆ, B., KUK, V., VELIĆ, J., DRAGAŠ, M. & LUČIĆ, D. 1998. Tectonic activity in the Croatian part of the Pannonian basin. Tectonophysics, 297, str. 283–293.

RÖGL, F. 1996. Stratigraphic correlation of the Paratethys Oligocene and Miocene. – Mitt. Ges. Geol. Bergbaustud. Österr., 41, str. 65-73.

SAFTIĆ, B. 1998. Genetska sekvencijska analiza u pontskim naslagama zapadnog dijela Savske depresije. Disertacija, RGN fakultet, Sveučilišta u Zagrebu, str. 136.

SAFTIĆ, B. & MALVIĆ, T., 2008. Dubinsko kartiranje. Fakultetska skripta. Rudarsko geološko naftni fakultet, Sveučilište u Zagrebu, str. 46.

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. 1979. Osnovna geološka karta SFRJ 1:100 000 – tumač za list Zagreb. Inst. geol. istr. Zagreb, Sav. geol. zavod, Beograd, str. 81.

ŠIMON, J., 1973. O nekim rezultatima regionalne korelacije litostratigrafskih jedinica u jugozapadnom području Panonskog bazena. Nafta, 24/(12), str. 623 – 630.

ŠIMON, J. 1980. Prilog stratigrafiji u taložnom sustavu pješčanih rezervoara Sava-grupe naslaga mlađeg tercijara u Panonskom bazenu sjeverne Hrvatske. – Disertacija, RGN fakultet, Sveučilišta u Zagrebu, str. 66.

ŠPELIĆ, M., MALVIĆ, T., SARAF, V., ZALOVIĆ, M. (2014): Remapping of depth of elog markers between Neogene basement and Lower/Upper Pannonian border in the Bjelovar Subdepression. Journal of maps, 10, str. 1-8.

TAJDER, M. 1970. Noviji pogledi sustava i geneze eruptiva i metamorfita Papučko – psunjskog gorja (Slavonija). Zbornik radova Prvog znan. sabora Slavonije i Baranje, Osijek, str. 107-126.

VELIĆ, J. 1980. Geološka građa zapadnog dijela Savske depresije. Disertacija, RGN fakultet, Sveučilišta u Zagrebu, str. 1-136.

VELIĆ, J. 2007. Geologija ležišta nafte i plina, RGN fakultet, Sveučilišta u Zagrebu, str. 342.

VELIĆ, J., WEISSER, M., SAFTIĆ, B., VRBANAC, B. & IVKOVIĆ, Ž. 2002. Petroleum-geological charac-teristics and exploration level of the three Neogene depositional megacycles in the Croatian part of the Pannonian basin. Nafta, 53/6–7, Zagreb, str. 239–249.

VRBANAC, B. 2002. Facies and facies architecture of the Ivanic Grad Formation (late Pannonian)—Sava Depression, NW Croatia. Geologia Croatica, 55, 1, str. 57–77.

ZAGORAC, Ž. 1975. Interpretacija gravimetrijskog reziduala i njena primjena u području Savske i Dravske potoline. Disertacija, Rud.-geol. fakultet, Sveučilišta u Beogradu.

ZAGORAC, Ž., ĐURESAK, S. & RIMAC, I. 1968. Gravimetrija u kompleksu geofizičkih istraživanja nafte tercijara Hrvatske. Simp. o nafti, Jugosl. akad. znan. umjetn., Zagreb, str. 31-40.

#### Radovi iz fondova stručnih dokumenata:

DOMBOVIĆ, D. 1964. Litostratigrafske jedinice polja Dugo Selo. Ibid., Zagreb

KOŠČEC, J. 1969. Litostratigrafske jedinice polja Ježevo. Ibid., Zagreb

PLETIKAPIĆ, Ž. & ŠIMON, J. 1964. Litostratigrafske jedinice Ivanićke zone. Ibid., Zagreb

RADIĆ, J. 1969. Litostratigrafske jedinice polja Dugo Selo. II izd. Fond struč. dokum. INA-Naftaplin, Zagreb

RUKAVINA, Ž. 1969. Strukturne karte Ivanićke zone (s tumačem). Ibid., Zagreb

ŠILOBOD, M. & KOŠČEC, J. 1965. Litostratigrafske jedinice polja Žutica-šuma. Fond struč. dokum. INA-Naftaplin, Zagreb

ŠIMON, J. 1969a. Litostratigrafske jedinice polja Ježevo. Ibid., Zagreb

ŠIMON, J. 1969b. Litostratigrafske jedinice polja Kloštar Ivanić, II izd. Ibid., Zagreb

ŠIMON, J. 1969c. Litostratigrafske jedinice polja Šumečani, II izd. Ibid., Zagreb

ŠIMON, J. 1969d. Litostratigrafske jedinice polja Ivanić-Grad, II izd. Ibid., Zagreb

ŠIMON, J. 1969e. Litostratigrafske jedinice tercijarnog kompleks na području Ivanićke zone. Ibid., Zagreb

VONČINA, Z. 1964a. Litostratigrafske jedinice polja Bunjani. Ibid., Zagreb

VONČINA, Z. 1964b. Litostratigrafske jedinice polja šumečani. Ibid., Zagreb

#### Internetski izvori:

<u>http://www.software.slb.com/products/platform/Pages/petrel.aspx</u> - 13. travnja 2015. u 17 sati

http://www.esri.com/software/arcgis - 12.travnja 2015. u 19 sati

<u>http://www.rgn.hr/hr/istrazivanje/racunalni-programi/popis-racunalnih-programa</u> - 14. travnja 2015. u 14 sati

https://confluence.qps.nl/pages/viewpage.action?pageId=29855173 - 17. svibnja 2015. u 16 sati

# STRUKTURNA KARTA PO PLOHI EK-REPERA Tg





DIPLOMSKI RAD Marija Podbojec Prilog I: Strukturna karta po plohi EK-repera Tg

### STRUKTURNA KARTA PO PLOHI EK-MARKERA Rs7





| 4 | Apso | lutna | dubin | a [m] |      |        |
|---|------|-------|-------|-------|------|--------|
|   |      | - 0   |       |       |      |        |
|   |      | 500   | )     |       |      |        |
|   |      | 100   | 00    |       |      |        |
|   |      | 150   | 00    |       |      |        |
|   |      | 200   | 00    |       |      |        |
|   |      | 250   | 00    |       |      |        |
|   |      | 300   | 00    |       |      |        |
|   |      | 350   | 00    |       |      |        |
|   |      | 400   | 00    |       |      |        |
|   |      |       |       |       |      |        |
| 0 | :    | 2000  | 4000  | 6000  | 8000 | 10000m |
|   |      |       |       |       |      |        |

| a                    |              |               |
|----------------------|--------------|---------------|
| područje modeliranja | $\checkmark$ | trasa profila |
| stratoizohipse       | /            | rasjed        |

| agrebu<br>EOLOŠKO-NAFTNI FAKULTET     | DIPLOMSKI RAD<br>Marija Podbojec |  |  |  |  |  |
|---------------------------------------|----------------------------------|--|--|--|--|--|
| ukturna karta po plohi EK-markera Rs7 |                                  |  |  |  |  |  |
|                                       |                                  |  |  |  |  |  |

### STRUKTURNA KARTA PO PLOHI EK-MARKERA Rs5









### STRUKTURNA KARTA PO PLOHI EK-MARKERA R $\phi$





# STRUKTURNA KARTA PO PLOHI EK-MARKERA $\alpha'$





### PROFIL A - A'


## PROFIL B - B'



## PROFIL C - C'





| -NAFTNI FAKULTET | DIPLOMSKI RAD<br>Marija Podbojec |
|------------------|----------------------------------|
| - C'             |                                  |