Razvoj rotirajućih upravljivih sustava za bušenje i njihova primjena u praksi

Hudoletnjak, Marina

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:159606

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-05

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU

RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET

Diplomski studij naftnog rudarstva

RAZVOJ ROTIRAJUĆIH UPRAVLJIVIH SUSTAVA ZA BUŠENJE I NJIHOVA PRIMJENA U PRAKSI

Diplomski rad

Marina Hudoletnjak

N-195

Zagreb, 2018.

RAZVOJ ROTIRAJUĆIH UPRAVLJIVIH SUSTAVA ZA BUŠENJE I NJIHOVA PRIMJENA U PRAKSI

MARINA HUDOLETNJAK

Diplomski rad izrađen:	Sveučilište u Zagrebu
	Rudarsko-geološko-naftni fakultet
	Zavod za naftno inženjerstvo
	Pierottijeva 6, 10000 Zagreb

Sažetak

U ovom radu obrađen je kronološki razvoj rotirajućih upravljivih sustava za bušenje. Razlog razvoja inovativnih sustava za lakše i preciznije usmjeravanje dlijeta bilo je istraživanje novih područja i potreba za sve češćom izradom usmjerenih i horizontalnih bušotina. U radu su opisani dijelovi sustava te principi njihovog rada. Kronološkim redom opisani su sustavi koji su izrađeni i korišteni od njihove pojave sredinom 90-ih godina prošlog stoljeća do danas kako bi se pokazale njihove prednosti i mane te napredak tehnologije. Također su opisani i rotirajući upravljivi sustavi za različite primjene trenutno prisutni na tržištu. Naposljetku, obrađena su dva primjera primjene rotirajućih upravljivih sustava u praksi koji dokazuju njihovu primjenjivost i superiornost u danim uvjetima.

Ključne riječi: rotirajući upravljivi sustavi, usmjerena bušotina, kut otklona od vertikale, smjer kanala bušotine, kanal bušotine, putanja

Diplomski rad sadrži: 87 stranica, 11 tablica, 43 slike i 53 reference.

Jezik izvornika: hrvatski

Diplomski rad pohranjen:	Knjižnica Rudarsko-geološko-naftnog fakulteta
	Pierottijeva 6, 10000 Zagreb

Mentorica: dr. sc. Nediljka Gaurina-Međimurec, redovita profesorica RGNF

Ocjenjivači: dr. sc. Nediljka Gaurina-Međimurec, redovita profesorica RGNF dr. sc. Zdenko Krištafor, redoviti profesor RGNF dr. sc. Borivoje Pašić, docent RGNF

Datum obrane: 11.07.2018. Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu

ROTARY STEERABLE SYSTEMS DEVELOPMENT AND THEIR FIELD APPLICATIONS

MARINA HUDOLETNJAK

Thesis completed at: University of Zagreb Faculty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering Pierottijeva 6, 10000 Zagreb

Abstract

This Thesis elaborates the chronological development of rotary steerable systems. The motive for the development of innovative systems for easier and more accurate routing of the drill bit was the exploration of new areas and the need for construction of directional and horizontal wells. The thesis describes the components of the system and their operational principles. Different rotary steerable systems that have been developed and used since their appearance in the mid-1990s to date are described in chronological order to show their strengths and weaknesses and also advances in technology. Rotary steerable systems for different applications currently present on the market are also described. Finally, two examples of application of rotary steerable systems in practice have been described in detail to demonstrate their applicability and superiority under given conditions.

Keywords: rotary steerable systems, directional well, deflection angle, azimuth, wellbore, trajectory

Thesis contains: 87 pages, 11 tables, 43 pictures and 53 references.

Original in: Croatian

Thesis deposited at: The Library of Faculty of Mining, Geology and Petroleum Engineering Pierottijeva 6, Zagreb

Supervisor: Full Professor Nediljka Gaurina-Međimurec, PhD

Reviewers: Full Professor Nediljka Gaurina-Međimurec, PhD Full Professor Zdenko Krištafor, PhD Assistant Professor Borivoje Pašić, PhD

Date of defense: July 11th, 2018. Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb

SADRŽAJ

POPIS	S SLIKA	I
POPIS	S TABLICA	III
POPIS	S KORIŠTENIH KRATICA	IV
1. UV	OD	1
1.1.	Usmjereno bušenje	2
1.2.	Problemi kod usmjerenog bušenja	6
1.2	2.1. Postizanje planirane putanje kanala bušotine	6
1.2	2.2. Blizina drugih bušotina	8
1.2	2.3. Postojanje "koljena"	8
1.2	2.4. Stvaranje "ključanica"	8
1.2	2.5. Nestabilnost kanala bušotine	9
1.2	2.6. Diferencijalni prihvat	9
1.2	2.7. Skretanje kanala bušotine	10
1.3.	Načini izrade usmjerenih bušotina	11
2. RA	ZVOJ ROTIRAJUĆIH UPRAVLJIVIH SKLOPOVA ZA BUŠENJE	13
2.1.	Rotirajući upravljivi sustav koji "gura" dlijeto	16
2.2.	Rotirajući upravljivi sustav koji usmjerava dlijeto putem zglobne osovine	18
3. KR	ONOLOŠKI RAZVOJ KOMERCIJALNO DOSTUPNIH ROTIRAJU	ĆIH
UPI	RAVLJIVIH SUSTAVA	20
3.1.	Rotirajući upravljivi sustav za bušenje tvrtke Camco	21
3.2.	Rotirajući upravljivi sustav za bušenje tvrtki Baker Hughes i Agip S.p.A	25
3.3.	Rotirajući upravljivi sustav tvrtke Phoenix	28
3.4.	Razvoj ekonomski pristupačnijeg rotirajućeg upravljivog sustava	31
3.5.	Prvi rotirajući upravljivi sustav primjenjiv za izradu bušotina s na	glim
	skretanjem kanala	36
3.6.	Razvoj rotirajućeg upravljivog sustava za izradu kanala bušotine m	alog
	promjera	38
4. DA	AČI NAŠNJI ROTIRAJUĆI UPRAVLJIVI SUSTAVI ZA BUŠENJE	42
4.1.	Rotirajući upravljivi sustavi kompanije Halliburton	43
4.2.	Rotirajući upravljivi sustavi kompanije Schlumberger	46
4.3.	Rotirajući upravljivi sustav kompanije Baker Hughes	54

5. PRIMJI	ENA ROTIRAJUĆIH UPRAVLJIVIH SUSTAVA ZA	BUŠENJE U
PRAKS	I	
5.1. Prin	njena rotacijskog upravljivog sustava za izradu bušotin	e u Sjevernom
mor	าน	
5.1.1.	Tehničke karakteristike bušotine	
5.1.2.	Izrada bušotine	
5.2. Prin	njena rotacijskog upravljivog sustava pri izradi bušotine v	elikog dosega u
dub	okom moru uz zapadnu obalu Afrike	75
5.2.1.	Tehničke karakteristike bušotine	
5.2.2.	Izrada bušotine	77
6. ZAKLJ	UČAK	
7. LITERA	ATURA	

POPIS SLIKA

Slika 1-1. Primjer putanje usmjerene bušotine
Slika 1-2. Oblici usmjerenog dijela kanala bušotine4
Slika 1-3. Višekanalne bušotine prikazane u 3D softveru (Sysdrill)5
Slika 1-4. Dozvoljeno odstupanje od planirane putanje bušotine7
Slika 1-5. "Koljeno" i "ključanica" u kanalu bušotine9
Slika 1-6. Vremenska crta razvoja tehnike za bušenje usmjerenih bušotina12
Slika 2-1. Tortuozitet kanala bušotine14
Slika 2-2. Inačice rotirajućih upravljivih sustava za usmjeravanje dlijeta15
Slika 2-3. Dijelovi rotirajućeg upravljivog sustava koji "gura" dlijeto16
Slika 2-4. Upravljački dio rotirajućeg upravljivog sustava koji "gura" dlijeto17
Slika 2-5. Upravljački dio rotirajućeg upravljivog sustava koji dlijeto usmjerava preko
zglobne osovine
Slika 2-6. Rotirajući upravljivi sustav koji dlijeto usmjerava preko zglobne osovine u dva
načina rada19
Slika 3-1. Presjek podesivog mehanizma za upravljanje rotirajućeg upravljivog sustava
tvrtke Camco21
Slika 3-2. Shema jednog od prvih rotirajućih upravljivih sustava za bušenje tvrtke
Camco
Slika 3-3. Eksperimentalni rotirajući upravljivi sustav za usmjereno bušenje tvrtke
Camco
Slika 3-4. Rotirajući upravljivi sustav za bušenje "zatvorene petlje" tvrtki Baker Hughes i
Agip26
Slika 3-5. Rotirajući upravljivi sustav za usmjereno bušenje tvrtke Phoenix
Slika 3-6. Ekonomski pristupačniji rotirajući upravljivi sustav za usmjereno bušenje31
Slika 3-7. Dva načina rada razvijenog ekonomski pristupačnijeg rotirajućeg upravljivog
sustava
Slika 3-8. Različiti položaji papučica ekonomski pristupačnijeg rotirajućeg upravljivog
sustava35
Slika 3-9. Rotirajući upravljivi sustav za bušenje kanala promjera 120,7 mm (4 ³ / ₄ ")39
Slika 3-10. Sastavi donjeg dijela bušaćeg niza koji se mogu primijeniti s rotirajućim
upravljivim sustavom malog promjera41

Slika 4-1. Rotirajući upravljivi sustav Dirigo tvrtke Halliburton44
Slika 4-2. Rotirajući upravljivi sustav Geo-Pilot® GXT TM tvrtke Halliburton45
Slika 4-3. Rotirajući upravljivi sustav PowerDrive Orbit tvrtke Schlumberger47
Slika 4-4. Princip rada hibridnog rotirajućeg upravljivog sustava PowerDrive Archer tvrtke
Schlumberger48
Slika 4-5. Rotirajući upravljivi sustav PowerDrive X6 tvrtke Schlumberger50
Slika 4-6. Rotirajući upravljivi sustav AutoTrak Curve tvrtke Baker Hughes55
Slika 4-7. Rotirajući upravljivi sustav AutoTrak eXpress tvrtke Baker Hughes56
Slika 5-1. Uvjeti bušenja u različitim područjima istraživanja nafte i plina59
Slika 5-2. Položaj naftnog polja Statfjord u Sjevernom moru60
Slika 5-3. Geološki profil Sjevernog mora i polja Statfjord61
Slika 5-4. Raspored platformi na polju Statfjord na Sjevernom moru62
Slika 5-5. Planirana putanja kanala bušotine 33/9-C-16A na polju Statfjord63
Slika 5-6. Sastav alata za izradu sekcije kanala bušotine promjera 444,5 mm (17 ¹ / ₂ ")67
Slika 5-7. Promjena kuta otklona kanala bušotine od vertikale tijekom izrade dijela kanala
bušotine promjera 311,2 mm (12 ¹ / ₄ ")68
Slika 5-8. Sastavi alata korišteni pri izradi sekcije kanala bušotine promjera 311,2 mm
(12 ¼")
Slika 5-9. Sastav alata korišten pri izradi sekcije kanala bušotine promjera 215,9 mm
(8 1/2 ")
Slika 5-10. Sastav alata korišten pri izradi sekcije kanala bušotine promjera 152,4 mm
(6")
Slika 5-11. Područja s rezervama ugljikovodika uz zapadnu obalu Afrike75
Slika 5-12. Putanja kanala bušotine uz zapadnu obalu Afrike76
Slika 5-13. Donji dio bušaćeg niza korišten pri izradi sekcije kanala bušotine promjera
444,5 mm (17 ¹ / ₂ ")
Slika 5-14. Donji dio bušaćeg niza korišten za izradu sekcije kanala bušotine promjera
311,2 mm (12 ¼")79

POPIS TABLICA

Tablica 4-1. Rotirajući upravljivi sustavi Geo-Pilot tvtke Halliburton i njihova
namjena45
Tablica 4-2. Radne karakteristike sustava PowerDrive Archer
Tablica 4-3. Rotirajući upravljivi sustavi PowerDrive tvrtke Schlumberger i njihove
karakteristike51
Tablica 4-4. Radne karakteritike PowerDrive sustava
Tablica 4-5. Rotirajući upravljivi sustavi AutoTrak tvrtke Baker Hughes i njihove
karakteristike
Tablica 4-6. Radne karakteristike AutoTrak sustava
Tablica 5-1. Podaci o dlijetima, kolonama i putanji kanala bušotine64
Tablica 5-2. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 444,5
mm (17 ½")66
Tablica 5-3. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 311,2
mm (12 ¼")69
Tablica 5-4. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 215,9
mm (8 ½")71
Tablica 5-5. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 152 mm
(6")73

POPIS KORIŠTENIH KRATICA

- BHA donji dio bušaćeg niza (engl. Bottom Hole Assembly)
- DLS porast kuta otklona dionice kanala (engl. Dog-Leg Severity)
- HIA način rada rotirajućeg upravljivog sustava u kojem on zadržava postignuti kut otklona od vertikale i kut smjera (azimut) dlijeta (*engl. Hold Inclination and Azimuth mode*)
- KOP točka skretanja kanala bušotine (engl. Kick-Off Point)
- LCM materijali za zatvaranje mjesta gubljenja isplake (engl. Lost Circulation Materials)
- LWD uređaji za mjerenje geoloških parametara stijena tijekom bušenja (*engl. Logging While Drilling*)
- MD mjerena dubina kanala bušotine (engl. Measured Depth)
- MWD uređaji za kontinuirano mjerenje bušaćih parametara tijekom bušenja (*engl. Measurement While Drilling*)
- PDC polikristalinsko dijamantno dlijeto (engl. Polycrystalline Diamond Compact bit)
- PDM dubinski volumetrijski isplačni motori (engl. Positive Displacement Mud motors)
- PRSS rotirajući upravljivi sustavi pogonjeni dubinskim volumetrijskim isplačnim motorima (*engl. Powered Rotary Steerable Systems*)
- RCLS sustav "zatvorene petlje" (engl. Rotary Closed Loop System)
- RSS rotirajući upravljivi sustavi (engl. Rotary Steerable Systems)
- TEM sustav za praćenje torzije (engl. Torsional Efficiency Monitor)
- TF relativni kut pomaka lica alata u ravnini okomitoj na os bušotine (engl. Tool Face)
- TVD stvarna vertikalna dubina kanala bušotine (engl. Total Vertical Depth)
- WAG metoda povećanja iscrpka u kojoj se naizmjence utiskuju voda i plin (*engl. Water Alternating Gas*)

1. UVOD

S razvojem naftne industrije, prvenstveno u smislu širenja područja istraživanja na nepristupačne terene, duboko more te nekonvencionalna nalazišta nafte i plina, razvijali su se i načini izrade bušotina. Tako se danas sve češće izrađuju horizontalne i usmjerene bušotine velikog dosega čija izrada nije moguća bez korištenja posebnih alata, uređaja i opreme.

U ovom radu navedeni su razlozi izrade usmjerenih i horizontalnih bušotina, prikazani tipični oblici putanja (trajektorija) usmjerenih bušotina te opisani problemi s kojima se susreće tijekom njihove izrade. Obzirom na to, s vremenom su se razvijali novi, bolji sustavi za usmjeravanje kanala bušotine. Jedni od takvih sustava su i rotirajući upravljivi sustavi (*engl. Rotary Steerable Systems, RSS*).

Rotirajući upravljivi sustavi za usmjeravanje kanala bušotine razlikuju se prema metodama usmjeravanja putanje kanala bušotine, a to su: metoda guranja dlijeta (*engl. Push the bit*) i metoda usmjeravanja dlijeta (*engl. Point the bit*) (Gaurina-Međimurec i drugi, 2017).

Ovi sustavi počeli su se razvijati sredinom 90-ih godina prošlog stoljeća. Jedan od prvih rotirajućih upravljivih sustava bio je sustav tvrtke Camco (Barr i drugi, 1995). Primjenom ovakvih sustava u praksi prepoznate su njihove prednosti, ali i nedostaci koji su se daljnjim razvojem pokušali svladati, što je prikazano kronološkim pregledom rotirajućih upravljivih sustava različitih kompanija.

Današnji komercijalno dostupni rotirajući upravljivi sustavi proizvode se za različite uvjete bušenja kao što su bušenje visokotemperaturnih bušotina i abrazivnih stijena, te izradu različitih dijelova kanala bušotina, kao što su vertikalni dijelovi kanala, dijelovi kanala velikog kuta otklona od vertikale i dijelovi kanala malog promjera. Opisani su rotirajući upravljivi sustavi triju najpoznatijih servisnih kompanija: Halliburton, Schlumberger i Baker Hughes.

Primjenom rotirajućih upravljivih sustava u praksi dokazana je njihova učinkovitost i izdržljivost pri izradi kanala bušotina različith stupnjeva zakrivljenosti u velikom rasponu tvrdoća stijena, temperatura i tlakova (Hussain i drugi, 2017).

1.1. Usmjereno bušenje

Razlozi izrade usmjerenih bušotina su sljedeći (Chen, 2006):

- izrada grma bušotina s jedne lokacije na površini radi smanjenja troškova i utjecaja na okoliš;
- nepristupačan teren ili naseljena mjesta iznad ciljanog dijela ležišta ili cijelog ležišta ugljikovodika;
- postojanje višeslojnih ležišta iz kojih se želi pridobivati ugljikovodike;
- skretanje kanala bušotine radi prepreka ili premještanja ciljane točke ulaska bušotine u ležište ugljikovodika;
- izrada rasteretnih bušotina.

Usmjerene bušotine prema obliku putanje dijele se na nekoliko glavnih tipova. To su (Gaurina-Međimurec, 2014):

- usmjerene bušotine velikog dosega čija je glavna karakteristika omjer mjerene (*engl. Measured Depth, MD*) i stvarne (*engl. True Vertical Depth, TVD*) dubine veći od 2;
- horizontalne bušotine kod kojih postoji kut otklona kanala bušotine od vertikale veći od 85°;
- višekanalne bušotine kod kojih se iz jedne glavne bušotine izrađuje više usmjerenih kanala.

Većina usmjerenih bušotina ima uvodnu dionicu koja je vertikalna. Na određenoj dubini, koja se zove točka sretanja (*engl. Kickoff point – KOP*) započinje se s povećanjem kuta otklona i skretanjem kanala bušotine od vertikale u željenom smjeru (azimut kanala) (*engl. azimuth*), odnosno prema i kroz ležište ugljikovodika (Gaurina-Međimurec i drugi, 2017). Putanja usmjerenih bušotina dijeli se na 3 sekcije – uvodnu sekciju, usmjereni dio i sekciju ulaska kanala bušotine u ležište, kao što je prikazano na slici 1-1.

Slika 1-1. Primjer putanje usmjerene bušotine

Prilikom bušenja uvodne sekcije ograničavajući čimbenik je blizina drugih bušotina. Zbog toga je potrebno planirati putanju bušotine od površine do ležišta na način koji ne zahtijeva kompleksno upravljanje dlijetom unutar grma bušotina. Većinom se uvodna sekcija bušotine izrađuje vertikalno ili s vrlo malim kutom otklona od vertikale (*engl. inclination*) kako bi se izbjegli problemi prevelikog natega gornjeg dijela bušaćeg niza i trošenja uvodne kolone zaštitnih cijevi zbog trenja s bušaćim alatom prilikom izrađe dubljih dijelova kanala bušotine (Chen, 2006).

U usmjerenom dijelu kanala, putanja bušotine smješta se u najpovoljniji položaj za ulazak u ležište. Postoje 3 glavna oblika usmjerenog dijela kanala bušotine: oblik kod kojeg se kut otklona od vertikale održava konstantnim do određene točke te se nastavlja bušiti uz zadržavanje postignutog kuta otklona i smjera nakon te točke, zatim S-oblik te oblik putanje gdje se kut otklona putanje kanala od vertikale povećava do ležišta (Chen, 2006). Navedeni oblici zornije su prikazani na slici 1-2.

Slika 1-2. Oblici usmjerenog dijela kanala bušotine (Chen, 2006)

U praksi se ti općeniti oblici mijenjaju ovisno o lokalnim uvjetima prilikom izrade kanala bušotine, kao što su prisutnost rasjeda, oblik i vrsta podzemnih stijenskih struktura i troosna naprezanja u stijenama. Kod izrade dijela kanala bušotine koji ulazi u ležište, putanja mora biti precizno isplanirana kako bi se u ležište ušlo na ciljanom mjestu. Taj dio kanala može biti izrađen kao vertikalna, horizontalna dionica ili dionica otklonjena pod određenim kutom, o čemu zajednički odlučuju geolozi, razradni inženjeri i bušači (Chen, 2006).

Horizontalne bušotine su tip usmjerenih bušotina s velikim kutom otklona putanje kanala bušotine od vertikale, u pravilu većim od 85°. Razlika između bušotina velikog dosega i horizontalnih bušotina je u tome što se horizontalne bušotine izrađuju kroz proizvodni sloj da bi se povećala proizvodnost iste bušotine, dok bušotine velikog dosega svojom duljinom dosežu lateralno udaljeno ležište, odnosno ciljanu točku ulaska u ležište. Izrada horizontalnih bušotina postala je učestalija nakon 1985. godine. Kao što je ranije navedeno, u usmjerene bušotine spadaju i višekanalne bušotine, izrađene tako da se iz jednog glavnog kanala bušotine širi više lateralnih, usmjerenih kanala, kao što je prikazano na slici 1-3. S napretkom tehnologije bušenja, prvenstveno što se tiče razvoja modernih računalnih tehnologija, geoupravljanja i rotirajućih upravljivih bušaćih sklopova omogućena je izrada kompleksnijih putanja kanala bušotine, takozvanih "dizajnerskih" bušotina (*engl. design wells*) (Chen, 2006).

Slika 1-3. Višekanalne bušotine prikazane u 3D softveru (Sysdrill) (Emerson Paradigm Holding LLC, 2012)

1.2. Problemi kod usmjerenog bušenja

Osim problema koji se obično susreću kod izrade vertikalnih bušotina, prilikom izrade usmjerenih bušotina javljaju se i dodatni specifični problemi. Ti specifični problemi uzrokovani su oblikom putanje i utjecajem težine alata duž zakrivljenog dijela kanala bušotine (Inglis, 1987). S povećanjem kuta otklona putanje bušotine od vertikale, navedeni problemi postaju jače izraženi, što se odražava na vremenu potrebnom za izradu kanala bušotine i posljedično na ukupne troškove njene izrade. Razvoj tehnike i tehnologije bušenja usmjerenih bušotina usko je vezan uz nalaženje rješenja za probleme opisane u ovom poglavlju.

1.2.1. Postizanje planirane putanje kanala bušotine

Kako bi se postigla maksimalna proizvodnost bušotine, putanja kanala usmjerene bušotine treba prolaziti kroz planiranu točku ulaska u ležište, a bušotina mora biti prikladno zacijevljena i opremljena ovisno o ležišnim uvjetima. Stvarna putanja zbog toga mora u najvećoj mogućoj mjeri odgovarati projektiranoj putanji. Čimbenici koji mogu utjecati na promjenu smjera u kojem dlijeto buši su: svojstva stijena (granice slojeva, raspucanost stijena, rasjedi i slično), preveliko opterećenje na dlijeto ili pogrešan odabir sklopa alatki neposredno iznad dlijeta (Inglis, 1987). Dozvoljena su određena odstupanja putanje kanala bušotine, čija je veličina određena tako da se konačna točka putanje bušotine ipak nalazi na rubu ciljanog dijela ležišta, kao što je prikazano na slici 1-4. Točka A na slici prikazuje točku u kanalu gdje se planira izvoditi mjerenja parametara kanala, dok točka T označava ciljanu točku ulaska kanala u ležište. Ukupno pogodno područje ulaska kanala u ležište određeno je točkom T u središtu i polumjerom R. Ako se uzme da je Δ H horizontalna udaljenost između točaka A i T, maksimalna devijacija stvarne putanje θ od planirane iznosi:

$$\theta = \sin^{-1} \left(\frac{R}{\Delta H} \right) \tag{1-1}$$

Ako je skretanje putanje kanala bušotine od planirane putanje oblika dijela kružnog luka, porast kuta otklona kanala, t, na 30,48 m (100 ft) duljine kanala iznosi:

$$t = \frac{2\theta}{\Delta H} \times \sin I \times 30,48 \tag{1-2}$$

gdje I označava kut otklona kanala od vertikale. Ukoliko je porast kuta otklona dijela kanala bušotine u stvarnosti veći od izračunane vrijednosti, kanal bušotine neće prolaziti kroz ciljano područje ulaska u ležište (Inglis, 1987).

Slika 1-4. Dozvoljeno odstupanje od planirane putanje bušotine (Inglis, 1987)

Alat koji se koristi pri izradi usmjerene bušotine mora biti pouzdan, čvrst i upravljiv da bi se mogla postići planirana putanja bušotine (Inglis, 1987). Praćenje stvarne putanje bušotine istovremeno s njenom izradom omogućeno je primjenom mjernih uređaja kojima se dobivaju podaci u realnom vremenu (*engl. Measurement While Drilling, MWD*) (Gaurina-Međimurec i drugi, 2017).

1.2.2. Blizina drugih bušotina

Ovaj problem češći je kod odobalnog bušenja, obzirom da se uvodne kolone bušotina radi čim manjeg pomicanja platforme smještaju na maloj udaljenosti, a s bušaćom platformom su povezane uzlaznim cijevima putem otvora na njenom podištu. Izrada početnih sekcija novih kanala bušotina u takvim slučajevima mora biti vrlo precizna kako se ne bi oštetile postojeće bliske bušotine (Inglis, 1987).

1.2.3. Postojanje "koljena"

Koljenom se, prilikom izrade kanala bušotine, smatra nagla promjena u smjeru ili kutu otklona putanje od vertikale (*engl. dog-leg*). Postojanje koljena može uzrokovati naglo povećanje natega ili zapinjanje niza bušaćih alatki. Ukoliko postoji koljeno u kanalu bušotine, bušaće alatke su izložene bočnim naprezanjima. Stijenka niza bušaćeg alata naslonjena na koljeno bit će izložena tlaku, dok će suprotna stijenka biti napregnuta na vlak. Budući da bušaće alatke rotiraju u koljenu kanala, izložene su promjenjivim naprezanjima, što povećava rizik od zamora materijala i smanjuje operativno vrijeme rada bušaćih alatki. Zbog toga se prilikom izrade usmjerenih bušotina primjenom odgovarajućih alata nastoji izbjeći stvaranje koljena u kanalu bušotine (Inglis, 1987).

1.2.4. Stvaranje "ključanica"

Ukoliko bušaće šipke prolaze kroz koljeno u kanalu bušotine one se postepeno urezuju u stijenku kanala zbog natega uzrokovanog težinom ostatka bušaćeg niza ispod njih, te stvaraju oblik kanala koji je u poprečnom presjeku nalik ključanici. Problemi nastaju prilikom vađenja bušaćih alatki iz kanala bušotine, jer će bušaće šipke manjeg promjera proći kroz nastali presjek, ali će teške bušaće šipke, stabilizatori, teške šipke i drugi bušaći alat sigurno zapeti (Inglis, 1987). Koljeno i ključanica prikazani su na slici 1-5.

Slika 1-5. "Koljeno" i "ključanica" u kanalu bušotine (Petro Pedia, 2011)

1.2.5. Nestabilnost kanala bušotine

Nestabilnost kanala bušotine može biti uzrokovana: bubrenjem stijena s velikim udjelom glina, postojećim frakturama u vapnencima, prevelikim diferencijalnim tlakom te prevelikom uzlaznom brzinom isplake u mekim formacijama. Posljednja dva uzroka teže je odrediti i održavati u usmjerenim bušotinama zbog otklonjenosti kanala od vertikale, zbog čega je otežano čišćenje kanala od krhotina razrušenih stijena (Inglis, 1987).

1.2.6. Diferencijalni prihvat

Ukoliko se iz isplake izdvaja prevelika količina filtrata u propusne stijene zbog razlike hidrostatskog i slojnog tlaka (diferencijalni tlak), na stijenkama kanala stvara se debeli isplačni oblog koji može biti uzrok prihvata bušaćih alatki. Taj problem se češće javlja prilikom izrade usmjerenih bušotina jer se bušaće alatke zbog svoje težine oslanjaju na donju stijenku kanala bušotine i "prilijepe" na isplačni oblog. Rizik od diferencijalnog prihvata povećava se u statičkim uvjetima. Oslobađanje bušaćeg alata (bilo kojim načinom) ili njegovo odvrtanje/rezanje od ostatka niza produljuje vrijeme izrade bušotine te povećava ukupne troškove (Inglis, 1987).

1.2.7. Skretanje kanala bušotine

Kada se niz prihvaćenih alatki ne može nategom osloboditi, on se mora odvrnuti ili rezati od ostatka niza, a problematičan dio kanala potrebno je zaobići izradom novog kanala, što također povećava ukupne troškove izrade bušotine (Inglis, 1987). Navedeni problemi pogoršavaju se s povećanjem kuta otklona kanala bušotine od vertikale. Kad je kut otklona veći od 60°, aksijalna komponenta težine alata uslijed djelovanja gravitacije se drastično smanjuje dok se lateralna u istoj mjeri povećava, što rezultira većim trenjem, još težim čišćenjem kanala od krhotina razrušenih stijena te otežanjem kontrole smjera bušenja i primjene opterećenja na dlijeto. Iako se ti problemi mogu nadvladati, cijena izrade bušotina velikog kuta otklona je u konačnici mnogo veća od cijene izrade usporedive vertikalne bušotine (Inglis, 1987.)

Kako bi se prevladali problemi kod izrade usmjerenih bušotina, razvijale su se različite tehnike njihove izrade, a time i alati koji se pritom koriste.

1.3. Načini izrade usmjerenih bušotina

Tijekom izrade usmjerenih bušotina potrebno je usmjeriti dlijeto u smjeru u kojem se želi bušiti i održavati projektirane parametre putanje kanala bušotine kako bi se postigao konačni cilj izrade bušotine, odnosno doseglo ciljano ležište ugljikovodika. Usmjeravanje dlijeta, a time i kanala bušotine može se postići na različite načine, odnosno korištenjem (Gaurina-Međimurec i drugi, 2017):

- klina za skretanje (*engl. whipstock*),
- mlaza isplake,
- rotirajućeg dubinskog bušaćeg sklopa (engl. Bottom Hole Assembly, BHA),
- dubinskog motora i kosog prijelaza, te
- rotirajućeg upravljivog sustava.

Pritom se moraju kontrolirati 2 bušaća parametra - opterećenje na dlijeto i brzina rotacije (Gaurina- Međimurec, 2014). Iako je najčešći način izrade usmjerenih bušotina prije razvoja rotirajućih upravljivih sustava za bušenje bilo bušenje pomoću upravljivih motora, najveći problem kod izrade usmjerenih bušotina tim načinom je nemogućnost rotacije cijelog niza. Naime, kod takvog načina izrade usmjerenih bušotina motor rotira dlijeto dok niz bušaćeg alata miruje. Posljedice toga su manja brzina bušenja, otežano čišćenje kanala bušotine od krhotina razrušenih stijena, manji mogući lateralni doseg kanala bušotine i zbog svega navedenog, dulje vrijeme izrade bušotine. Procjenjuje se da je brzina bušenja s upravljivim motorom u kliznom načinu rada oko 50% manja nego kod izrade kanala rotirajućim upravljivim sustavom za bušenje (Buker, 2001). Upravo zbog tih nedostataka upravljivih motora razvijani su rotirajući upravljivi sustavi za usmjeravanje dlijeta. Na slici 1-6 prikazana je vremenska crta razvoja sustava za bušenje usmjerenih bušotina.

Slika 1-6. Vremenska crta razvoja tehnike za bušenje usmjerenih bušotina (IADC, 2015)

2. RAZVOJ ROTIRAJUĆIH UPRAVLJIVIH SKLOPOVA ZA BUŠENJE

Rotirajući upravljivi sustavi počeli su se razvijati sredinom 90-ih godina prošlog stoljeća uslijed izrade sve većeg broja usmjerenih bušotina velikog dosega s predviđanjem rješavanja određenih problema kod njihove izrade uz ekonomske prednosti (Barr i drugi, 1995). Da bi se postigao željeni kut otklona od vertikale i smjer kanala bušotine, pri njegovoj izradi potrebno je usmjeravati dlijeto. Postoje dva načina usmjeravanja dlijeta: predviđanje i upravljanje. Razlika među njima svodi se na vremenski period između mjerenja u kanalu bušotine (MWD) i provođenja potrebne korekcije kuta otklona i smjera (Barr i drugi, 1995). Ako se predviđa u kojem će smjeru dlijeto bušiti, kut otklona dlijeta namješta se prije bušenja određenog dijela kanala, dok se upravljanje dlijetom odnosi na namještanje položaja dlijeta u bušotini u realnom vremenu, istovremeno s bušenjem.

Rotirajući upravljivi sustavi omogućuju usmjeravanje dlijeta tijekom rotacije, čime se obično postiže veći napredak bušenja i kvalitetnija izrada kanala bušotine radi glatkih stijenki kanala (Gaurina-Međimurec, 2014). Primjenom rotacije s površine poboljšava se i čišćenje kanala bušotine od krhotina razrušenih stijena, što je vrlo važno u dijelovima kanala otklonjenim od vertikale, a posebno u horizontalnim dionicama. Za usporedbu, kod kliznog načina bušenja upravljivim motorom (nema rotacije niza bušaćeg alata iznad motora), probleme stvara trenje između bušaćeg alata i stijenki kanala bušotine. Javlja se i aksijalno i rotacijsko trenje. Aksijalno trenje otežava kontrolu nad stvarnim opterećenjem na dlijeto u usmjerenom kanalu bušotine. Rotacijsko trenje i zakretni moment dlijeta u kombinaciji s uvijanjem bušaćih šipki zbog torzije otežavaju usmjeravanje lica dlijeta (Barr i drugi, 1995). Oba efekta povećavaju se s povećanjem lateralnog dosega bušotine, a u kombinaciji uzrokuju promjene smjera dlijeta što dovodi do tortuoziteta kanala bušotine, odnosno stvaranja čestih zavoja i koljena na malim intervalima duljine kao što je prikazano na slici 2-1. To može predstavljati problem pri daljnjem bušenju jer još više povećava trenje, ali i kod kasnijeg opremanja bušotine i pridobivanja ugljikovodika (Barr i drugi, 1995).

Slika 2-1. Tortuozitet kanala bušotine (Drilling Contractor, 2015)

Postoje dva principa rada rotirajućih upravljivih sustava: sustav koji gura dlijeto (*engl.* "*push the bit*") te sustav koji dlijetom upravlja preko zglobne osovine (*engl.* "*point the bit*"), a prikazani su na slici 2-2. Kod prvog principa dlijeto se usmjerava dodavanjem bočnog opterećenja na dlijeto putem izvlačivih papučica iznad dlijeta, što omogućava bržu reakciju na promjene. Međutim, zbog korištenja kraćih dlijeta koja lakše skreću te mogu stvoriti efekt spiralne bušotine, kod primjene ovog sustava češće postoji potreba za popravljanjem putanje. Sustav koji dlijetom upravlja preko zglobne osovine sporije reagira na promjene jer je lice dlijeta usmjereno u željenom smjeru, ali koristi dulja dlijeta pa je smanjen efekt spiralnog kanala bušotine. Danas se upravljivi sustavi koriste kod izrade horizontalnih i usmjerenih bušotina velikog dosega. Najnovije inačice rotirajućih upravljivih sustava za bušenje ostvaruju konstantnu bočnu silu, slično klasičnim stabilizatorima (Gaurina-Međimurec, 2014). Također, danas su razvijeni i rotirajući upravljivi sustavi koji su prema načinu usmjeravanja hibridi ova osnovna dva tipa, a ujedinjuju prednosti i jednih i drugih.

Slika 2-2. Inačice rotirajućih upravljivih sustava za usmjeravanje dlijeta (Saavedra, 2014)

2.1. Rotirajući upravljivi sustav koji "gura" dlijeto

Rotirajući upravljivi sustav koji "gura" dlijeto se sastoji od upravljačkog i kontrolnog dijela, kao što je prikazano na slici 2-3. Upravljački dio smješten je odmah iza dlijeta te služi za prenošenje sile na dlijeto u kontroliranom smjeru dok istovremeno cijeli niz alata rotira. Kontrolni dio koji se nalazi iza upravljačkog, sadrži elektroničke komponente s vlastitim pogonom, senzore i kontrolni mehanizam koji daju podatke o prosječnoj jačini i smjeru bočnih opterećenja na dlijeto potrebnih za bušenje u željenom smjeru.

Slika 2-3. Dijelovi rotirajućeg upravljivog sustava koji "gura" dlijeto (Downton i drugi, 2000)

Upravljački dio sustava usmjerava dlijeto pomoću papučica koje svojim izvlačenjem i upiranjem o stijenke kanala uzrokuju skretanje dlijeta u suprotnom smjeru. Jedan od načina upravljanja papučicama izvodi se kontroliranim protokom isplake kroz ventil. Ventil reagira na razliku u tlaku isplake unutar upravljačkog dijela sustava i izvan njega. Na slici 2-4 prikazan je upravljački dio ovog tipa rotirajućeg upravljivog sustava.

Slika 2-4. Upravljački dio rotirajućeg upravljivog sustava koji "gura" dlijeto (Downton i drugi, 2000)

Trostrani ventil oblika diska usmjerava tok isplake u košuljicu cilindra pojedine papučice u trenutku kada se, zbog rotacije, papučica poravna s točkom na stijenci kanala suprotno od željenog smjera putanje bušotine te se ona upire o stijenku. Kada papučica više nije u točki upiranja, trostrani ventil sprječava dotok isplake u košuljicu cilindra te papučice te se ona uvlači, a isplaka istječe kroz posebno dizajnirani otvor. Papučice se izvlače oko 10 mm izvan kućišta sustava kod svake pune rotacije upravljačkog dijela sustava. Ulazno vratilo povezuje trostrani ventil s kontrolnim dijelom sustava kako bi se moglo kontrolirati gdje se nalazi točka upiranja. Kontrolni dio sustava održava odgovarajući kutni položaj ulaznog vratila ovisno o formaciji. S kućištem je povezan ležajevima da bi mogao rotirati oko osi bušaćeg alata. Opremljen je i turbinama koje proizvode električnu struju za pogon elektroničkih uređaja. Sustav se može unaprijed programirati na površini za željene smjerove i kuteve otklona. Praćenje smjera i kuta otklona kanala izvodi se pomoću MWD alata i također putem senzora u kontrolnom dijelu sustava. Ukoliko je potrebno, signali o promjeni parametara prenose se s površine do sustava u obliku promjena u protoku isplake (Downton i drugi, 2000).

2.2. Rotirajući upravljivi sustav koji usmjerava dlijeto putem zglobne osovine

Prethodno opisan tip rotirajućih upravljivih sustava za bušenje usmjerava dlijeto upiranjem papučica o stijenke kanala bušotine. Međutim, ako stijenke kanala nisu glatke ili su podložne ispiranju isplakom, može se dogoditi da željeni smjer ili kut otklona nije postignut. Zato su razvijeni rotirajući upravljivi sustavi koji dlijeto usmjeravaju pomoću zglobne osovine.

Eksperimentalni prototip ovih sustava napravljen je 1998. godine s postojećim MWD alatkama, te je primjenom u nekoliko bušotina dokazano da je funkcionalan. Zbog toga se nastojalo poboljšati postojeći koncept. Razvijeni su softverski algoritmi za bolju kontrolu sustava u teškim uvjetima bušenja, elektroničke komponente napravljene su izdržljivijima, a poboljšan je i mehanički dizajn sustava radi veće pouzdanosti.

Sustav se može podijeliti u 3 komponente: upravljački dio, kontrolni dio i dio za proizvodnju električne energije potrebne za pogon elektroničkih uređaja. Upravljački dio prikazan je na slici 2-5.

Slika 2-5. Upravljački dio rotirajućeg upravljivog sustava koji dlijeto usmjerava preko zglobne osovine (Schaaf i drugi, 2000)

Upravljački dio sustava sadrži univerzalni spoj koji omogućava prijenos okretnog momenta i opterećenja na dlijeto, ali dopušta osi dlijeta da bude pomaknuta pod nekim kutom u odnosu na os ostatka alata. Taj pomak omogućava kontrolu smjera putem kontakta s kanalom bušotine u 3 točke. Osovinu dlijeta pod kutom održava vreteno. Vreteno se održava stacionarnim tijekom rotacije teških šipki pomoću elektromotora koji rotira u suprotnom smjeru. Kontrola i povratna veza s elektromotorom ostvaruju se putem kontrolnog dijela sustava koji se sastoji od elektroničkih uređaja za mjerenje i senzora. Senzori prate i rotaciju niza teških šipki i rotaciju elektromotora, te pružaju povratne informacije o smjeru i kutu otklona izrađivanog kanala bušotine. Dio sustava za proizvodnju električne energije sastoji se od turbine i alternatora (Schaaf i drugi, 2000).

Svi dijelovi ovog sustava, uključujući one koji su u kontaktu sa stijenkom kanala bušotine konstantno rotiraju, što uvelike poboljšava čišćenje kanala od krhotina razrušenih stijena, te smanjuje opasnost od diferencijalnog prihvata alata. Ukoliko se želi održavati smjer kanala bušotine (bez skretanja kanala), pogonska osovina dlijeta rotira brzinom različitom od brzine rotacije ostatka niza (Schaaf i drugi, 2000). Na slici 2-6. prikazan je sustav u položaju za izradu zakrivljenog dijela kanala te dijela kanala bušotine bez porasta kuta otklona od vertikale.

Slika 2-6. Rotirajući upravljivi sustav koji dlijeto usmjerava preko zglobne osovine u dva načina rada (Schaaf i drugi, 2000)

3. KRONOLOŠKI RAZVOJ KOMERCIJALNO DOSTUPNIH ROTIRAJUĆIH UPRAVLJIVIH SUSTAVA

S pojavom tehnologije rotirajućih upravljivih sustava za bušenje, tvrtke koje se bave izradom sustava i opreme za bušenje, počele su u suradnji s drugim tvrtkama bliskog područja interesa izrađivati, razvijati i testirati rotirajuće upravljive sustave. Kako su sustavi bili primjenjivani u različitim bušotinama, otkrivale su se njihove prednosti i mane te su prilagođavani budućim primjenama. Današnji sustavi umnogome su poboljšani u usporedbi s prvim primjercima.

Razvoj rotirajućih upravljivih sustava od početka njihove primjene bit će razrađen u ovom poglavlju. Prikazani su rotirajući upravljivi sustavi tvrtke Camco (razvijen 1995. godine), tvrtke Baker Hughes u suradnji s tvrtkom Agip S.p.A. (razvijen 1998. godine) te tvrtke Phoenix (razvijen 2001. godine). Također su prikazani sustavi izrađeni sa svrhom rješavanja specifičnih problema kao što su ekonomski prihvatljiviji rotirajući upravljivi sustav iz 2004. godine, rotirajući upravljivi sustav za izradu kanala bušotina s velikim porastom kuta otklona kanala od vertikale iz 2009. te rotirajući upravljivi sustav za izradu kanala malog promjera izrađen 2010. godine.

Svaki od prikazanih sustava sadrži neke komponente ili svojstva inovativna za vrijeme u kojem je izrađen.

3.1. Rotirajući upravljivi sustav za bušenje tvrtke Camco

Tvrtka Camco Drilling Group Ltd. je u suradnji s tvrtkom Russell Sub-surface Systems Ltd. 1995. godine razvila i izgradila jedan od prvih rotirajućih upravljivih sustava za bušenje. Novi koncept potpune dvoosne upravljivosti u rotacijskom načinu bušenja predstavljao je veći konstrukcijski izazov nego upravljivost dubinskih motora (Barr i drugi, 1995).

Autori Barr, Clegg i Russell su razmotrili različite načine upravljanja konstantno rotirajućeg bušaćeg sustava i praćenja rezultirajućeg smjera bušenja. Pritom je za upravljanje korišten statički ili podesivi sklop za usmjeravanje dlijeta, a senzori za procjenu parametara bušotine pričvršćeni ili ugrađeni u sklop. Statički upravljački sklop (*engl. bias unit*) je nerotirajući mehanizam s rotirajućom pogonskom osovinom koja kroz njega prolazi sve do dlijeta. Alternativna mogućnost je mehanizam koji rotira s dlijetom te upravlja njime sinkrono s rotacijom dlijeta (podesivi sklop). Važno je primijetiti da je rotirajući mehanizam (podesivi sklop) imao nerotirajuću komponentu - kontrolni ventil, kao što je prikazano na slici 3-1 (Barr i drugi 1995).

Slika 3-1. Presjek podesivog mehanizma za upravljanje rotirajućeg upravljivog sustava tvrtke Camco (Barr i drugi, 1995)

Aktuatori kod ovog sustava pokreću papučice za usmjeravanje dlijeta, čime se sustav svrstava u rotirajuće upravljive sustave koji "guraju" dlijeto. U oba slučaja, aktuatori u upravljačkom mehanizmu su kontrolirani signalima ovisno o željenom rezultatu. Statički sklop za usmjeravanje dlijeta ima 3 do 4 aktuatora koji se pomiču periodično i polako za postizanje promjene smjera. Podesivi mehanizam funkciju obavlja s jednim ili više aktuatora, pri čemu njihovo djelovanje fluktuira pri svakom punom okretaju dlijeta. Autori su smatrali da je verzija s više aktuatora (višefazni mehanizam) prikladnija opcija. Na slici 3-2. prikazana je shema statičkog i podesivog upravljačkog sklopa.

Slika 3-2. Shema jednog od prvih rotirajućih upravljivih sustava za bušenje tvrtke Camco (Barr i drugi, 1995)

Što se tiče odluke o odabiru i pričvršćivanju senzora, odlučeno je da oni budu postavljeni na nosač poravnat s osi dlijeta oko koje može slobodno rotirati. Druga opcija postavljanja senzora bilo je pričvršćivanje nosača senzora na tešku šipku i rotacija s njom.

Teoretski dizajn sustava potom je proveden u eksperimentalni, prema nacrtima na slici 3-3.

Eksperimentalni sklop alatki za usmjereno bušenje

Slika 3-3. Eksperimentalni rotirajući upravljivi sustav za usmjereno bušenje tvrtke Camco (Barr i drugi, 1995)

Zbog inovativnog dizajna, eksperimentalni rotirajući upravljivi sustav je bio podložan određenim problemima, kao što su vibracije, promjenjiva opterećenja na aktuatorima, vrludanje dlijeta i povećani promjer kanala bušotine, te utjecaj isplake i čvrstih čestica u njoj na sustav. Mnoge potrebne komponente za izgradnju sustava nisu bile još dostupne već su morale biti razvijene posebno za ovaj sustav, kao aktuatori, kontrolni ventili, impeleri i prijenosnici zakretnog momenta na servouređaj i ležajeve (Barr i drugi, 1995).

Sustav je izgrađen tek nakon opsežnih laboratorijskih ispitivanja svih navedenih komponenti. Korišten je za izradu usmjerene bušotine te je dokazano da je funkcionalan. Na temelju prednosti i nedostataka sustava nastavljen je daljnji razvoj rotirajućih upravljivih sustava za bušenje.

3.2. Rotirajući upravljivi sustav za bušenje tvrtki Baker Hughes i Agip S.p.A

Rotirajući upravljivi sustav opisan u daljnjem tekstu razvijen je 1998. godine pod pokroviteljstvom tvrtke Statoil, čiji su rukovoditelji odlučili ubrzati razvoj rotirajućih upravljivih sustava zbog vlastitih potreba pri izradi bušotina velikog dosega. Glavni cilj bio je razviti sustav koji će imati visoki omjer korisnosti pri istovremenom usmjeravanju i bušenju (bez zastoja) te izrađivati kvalitetnije kanale bušotina. Tako je nastao tzv. rotirajući upravljivi sustav "zatvorene petlje" (*engl. Rotary Closed Loop System, RCLS*). Sustav je trebao ispuniti sljedeće zahtjeve (Andreassen i drugi, 1998):

- imati sposobnost promjene smjera bušenja bez zaustavljanja rotacije niza bušaćeg alata;
- biti integriran sustav, eliminirajući upotrebu zasebne MWD jedinice i isplačnog motora;
- osigurati komunikaciju s površinom tijekom bušenja;
- imati sposobnost promjene smjera bušenja prema zahtjevima s površine bez izvlačenja sustava na površinu na temelju mjerenja u bušotini.

Kut otklona i smjer bušotine za vrijeme rotacije bušaćeg niza kontrolira nerotirajući rukavac za upravljanje, otpojen od rotirajućeg pogona sustava. U nerotirajućem rukavcu za upravljanje smješteni su: inklinometar, kontrolni elektronički uređaji i kontrolni ventili (Andreassen i drugi, 1998), kao što je prikazano na slici 3-4.

Slika 3-4. Rotirajući upravljivi sustav za bušenje "zatvorene petlje" tvrtki Baker Hughes i Agip (Andreassen i drugi, 1998)

Naredbe o smjeru bušenja šalju se proizvoljnim raspoređivanjem hidrauličkih tlakova isplake na svaku od 3 izvlačive papučice, što i ovaj sustav svrstava u "push the bit" sustav. Prilikom kontrole pomaka rukavca za upravljanje, sustav održava vektor sile potreban za upravljanje donjeg dijela niza bušaćeg alata željenom putanjom. Učestalost stvaranja "koljena" u kanalu bušotine ovisi o sili primijenjenoj na papučicama za usmjeravanje, a rezultantni vektor sile podešava se kombinacijom kontrolnih bušotinskih elektroničkih uređaja i odaslanih hidrauličkih impulsa s površine. Bilo kakva odstupanja od projektirane putanje odmah se ispravljaju putem sustava "zatvorene petlje". To znači da alat usmjerava dlijeto i istovremeno se mjere parametri izrađenog dijela kanala (kut otklona, smjer itd.), rezultati mjerenja se procjenjuju i, ukoliko je potrebno, parametri se korigiraju. Nove naredbe o promjeni parametara bušenja mogu biti primijenjene bez prestanka bušenja. Sustav ima mogućnost geoupravljanja zahvaljujući podacima: senzora kuta otklona dlijeta, gama karotaže i raspodjele otpora u blizini dlijeta u realnom vremenu. Osim toga, rezultati standardnih mjerenja smjera i kuta otklona putanje kanala bušotine odašilju se u realnom vremenu na površinu.
Rotirajući upravljivi sustav "zatvorene petlje" ima dva načina rada tijekom bušenja (Andreassen i drugi, 1998):

- 1.) Održavanje smjera i otklona putanje kanala od vertikale, koje se povezuje s 3 parametra: sila povećanja ili smanjenja kuta otklona (vertikalna sila), sila usmjeravanja ulijevo ili udesno (horizontalna sila) i željeni kut otklona putanje kanala od vertikale. Kad je postignut zadani kut otklona, sustav automatski prelazi u ovo stanje rada da bi se održao zadani smjer, sve dok ne dobije novu naredbu o promjeni smjera. Programirana vertikalna sila održavanja kuta otklona kontrolira stvaranje "koljena" u kanalu bušotine sve dok se ne postigne željeni kut otklona kanala. Sustav može djelovati i horizontalnom protusilom (ulijevo ili udesno) radi utjecaja stijena ili utjecaja donjeg dijela niza bušaćeg alata na održavanje smjera bušenja, ili zbog namjere lateralnog skretanja kanala. Horizontalne i vertikalne sile mogu biti primjenjene istodobno.
- Upravljački način, koji je sličniji upravljanju klasičnim upravljivim motorima. Sustav se usmjerava programiranjem sile usmjeravanja i smjera usmjeravanja lica alata, tj. vektora smjera.

Primjenom u praksi sustav se pokazao uspješnim, smanjujući vrijeme potrebno za izradu višekanalne bušotine.

3.3. Rotirajući upravljivi sustav tvrtke Phoenix

Još jedna u nizu inovacija u povijesti razvoja rotirajućih upravljivih sustava za bušenje bio je sustav naziva Well Director Automatic Directional Drilling System tvrtke Phoenix Technology Services LP. Iako je navedeni sustav već bio korišten u rudarskim projektima diljem Europe od sredine 80-ih godina prošlog stoljeća, tek je 2001. godine zahvaljujući određenim tehnološkim poboljšanjima postao komercijalno isplativ za korištenje u izradi usmjerenih bušotina u naftnom rudarstvu (Buker, 2001). Sustav se sastoji od dvije komponente, kao što je prikazano na slici 3-5.

Slika 3-5. Rotirajući upravljivi sustav za usmjereno bušenje tvrtke Phoenix (Buker, 2001)

Rotirajuća osovina prolazi kroz centar presjeka alata te konstantno rotira kada je sustav u funkciji. Druga glavna komponenta sustava je nerotirajući rukavac, koji je za vrijeme bušenja stacionaran. Nerotirajući rukavac sadrži MWD sustav s uređajem za proizvodnju pozitivnih impulsa. Osim toga, on sadrži i računalni sustav koji kontrolira sve funkcije alata, i četiri hidraulička klipa koji kontroliraju izvlačenje i uvlačenje 4 rebra za usmjeravanje (Buker, 2001). Ovaj sustav spada u sustave koji "guraju" dlijeto pri usmjeravanju.

Računalni sustav ovog rotirajućeg upravljivog sustava programira se na površini preko izravne veze uređajima koji mjere kut otklona putanje od vertikale i smjer putanje kanala bušotine. Zatim se alat spušta na nizu bušaćeg alata u bušotinu do predviđene točke skretanja kanala. Prilikom spuštanja, sva 4 rebra za usmjeravanje alata su u kontaktu sa stijenkama kanala bušotine. Kada bušaći niz počne rotirati brzinom većom od 50 okretaja u minuti, sustav za proizvodnju energije ukomponiran u "Well Director" sustav za usmjereno bušenje počinje proizvoditi energiju potrebnu za pogon MWD uređaja i računalnog sustava alata. MWD sustav odmah šalje signal računalu s podacima o trenutnom kutu otklona putanje od vertikale i smjeru kanala bušotine. Računalo zatim uspoređuje mjerene podatke s podacima o kutu otklona putanje od vertikale i smjeru zadanim na površini, te iz tih informacija određuje koje rebro za usmjeravanje (ili više njih) je potrebno izvući da bi se kanal izrađivao pod zadanim kutem otklona i smjerom. Orijentacija rebara za usmjeravanje se neprekidno prati. Podaci između MWD uređaja i računalnog sustava alata kolaju neprekidno, u realnom vremenu, kako bi sustav u svakom trenutku mogao pratiti putanju zadanu na površini. "Well Director" sustav za usmjereno bušenje slijedi zadane parametre sve dok se ne izvadi iz bušotine ili dok se ne zadaju novi parametri.

Kako bi "Well Director" sustav za usmjereno bušenje bio čim isplativiji, moguće je unositi nove i mijenjati postojeće parametre kanala bušotine (u smislu kuta otklona kanala bušotine od vertikale i smjera) bez vađenja alata na površinu. U stojku na površini ugrađuje se hidraulički kontrolni ventil koji može preusmjeriti dio toka isplake izvan bušaćeg niza na površini što rezultira kao smanjenje tlaka isplake (impuls tlaka) u bušotini na razini alata. "Well Director" sustav za usmjereno bušenje prepoznaje niz impulsa kao naredbe o promjeni kuta otklona putanje od vertikale i/ili smjera putanje kanala bušotine pomoću pretvarača tlaka koji pretvara tlačne impulse u binarni kod prepoznatljiv računalu. Računalo "čita" binarni kod kao novi kut otklona kanala od vertikale i/ili smjer. Čim alat

Uz neke izvedene mehaničke preinake sustava kao što su: zamjena čeličnih dijelova nemagnetskim da bi se dodao magnetometar, poboljšanje sustava za kompenzaciju tlaka u bušotini, povećanje protočnog kapaciteta i količini proizvedene energije za pogon uređaja, bio je potreban i razvoj softvera. Obzirom da razvoj u tom pogledu ovisi o drugoj industriji, rješavanje tog problema trebalo je pričekati (Buker, 2001). Međutim, principi na kojima radi ovaj sustav bili su dobri temelji za nadogradnju i poboljšanje rotirajućih upravljivih sustava te predstavljaju jedan od koraka u razvoju prema današnjim sustavima.

3.4. Razvoj ekonomski pristupačnijeg rotirajućeg upravljivog sustava

Problem kod rotirajućih upravljivih sustava na početku njihova razvoja kao nove tehnologije bilo je to što su oni bili skupi i što je njihovo korištenje bilo ekonomski opravdano samo u odobalnim bušotinama koje su izrađivale velike, bogate naftne kompanije. Drugim riječima, sustavi su bili preskupi za manje, neovisne operatorske kompanije i primjenu u bušotinama s manje ekstremnim uvjetima izrade, iako bi njihova izrada pomoću rotirajućih upravljivih sustava bila jednostavnija i brža.

Da bi rotirajući upravljivi sustavi bili primjenjivi u takvim bušotinama, bilo je potrebno prilagoditi njihovu konstrukciju izazovnim uvjetima u bušotinama, ali uz smanjenje troškova njihove izgradnje. To je postignuto 2004. godine kombinacijom jedinstvenog dizajna hidrauličkih i elektroničkih dijelova sustava i korištenjem izdržljivih, ali jeftinijih materijala za izradu (Moody i drugi, 2004).

Rotirajući upravljivi sustav opisan u ovom poglavlju bio je jedan od prvih takvih cjenovno pristupačnijih sustava, a može biti korišten i kao sustav koji "gura" dlijeto i kao sustav koji dlijeto usmjerava pomoću zglobne osovine. Međutim, ovaj sustav nema stvarnu zglobnu osovinu, već se u tu svrhu iznad dlijeta dodaje stabilizator koji služi kao točka oslonca. Što se tiče konstrukcije, sustav ima 3 aktivne i neovisne papučice (*engl. blades*) za usmjeravanje kanala bušotine koje su smještene blizu dlijeta. Papučice sustava osiguravaju konstantnu protusilu na formaciju kroz koju se buši. Pomicanje papučica mjeri se kako bi se ostvario pomak donjeg dijela niza alata (BHA) u željenom smjeru. Ovaj rotirajući upravljivi sustav prikazan je na slici 3-6.

Slika 3-6. Ekonomski pristupačniji rotirajući upravljivi sustav za usmjereno bušenje (Moody i drugi, 2004)

Sila stezanja sustava (*engl. clamping force of the tool*) u kanalu bušotine stabilizira donji dio niza kako bi se kompenzirale vibracije uzrokovane radom dlijeta. Kroz niz testova u bušotinama dokazano je da optimizacija sastava donjeg dijela niza (pritom se misli na dodavanje stabilizatora) ima veliki utjecaj na konačnu kvalitetu izrađenog kanala bušotine. To uvelike poboljšava ponašanje donjeg dijela niza u kanalu bušotine i kvalitetu kanala, te povećava brzinu bušenja i produljuje vijek trajanja dlijeta (Moody i drugi, 2004).

Razvijeni rotirajući upravljivi sustav karakterističan je upravo po sastavu donjeg dijela niza alata koji je različit od svih dotad primijenjenih sastava s rotirajućim upravljivim sustavima. Kao što je već spomenuto, sustav ima dva načina rada - kao sustav koji "gura" dlijeto i sustav koji usmjerava dlijeto. Kada sustav radi na način da "gura" dlijeto, dlijeto je pričvršćeno direktno na rotirajuću osovinu sustava. Kada se sustav želi koristiti kao sustav koji usmjerava dlijeto, neposredno iznad dlijeta postavlja se stabilizator koji služi kao točka oslonca (kruta točka niza). Na slici 3-7 prikazan je sastav donjeg dijela bušaćeg niza za oba načina rada: sustav koji usmjerava dlijeto pomoću osovine (A) i sustav koji "gura" dlijeto (B).

Slika 3-7. Dva načina rada razvijenog ekonomski pristupačnijeg rotirajućeg upravljivog sustava (Moody i drugi, 2004)

Sustav radi na drugačiji način nego prijašnji razvijeni rotirajući upravljivi sustavi. Razlika je u tome što je sila koja drži papučice u izvučenom položaju konstantna, neovisno o smjeru bušenja. Takav način rada poboljšava učinak dlijeta i upravljivost donjeg niza bušaćeg alata. Velika i konstantna sila na papučicama stabilizira donji dio bušaćeg niza, što osigurava stabilniji rad dlijeta bez vrludanja i vibracija. Sva energija rotacije niza tako se usmjerava na izradu kanala bušotine (Moody i drugi, 2004).

Svaka od 3 papučice kontrolirana je pojedinačno. Također, svaka od njih sadrži mjerni uređaj koji precizno mjeri izbočenost papučice od kućišta sustava. Uzimajući u obzir izbočenost sve tri papučice, može se izračunati promjer bušotine u realnom vremenu.

Rotirajući upravljivi sustav se predprogramira na površini prije spuštanja u bušotinu, a podaci koji se zadaju odnose se na broj okretaja u minuti potreban za aktivaciju sustava, vrijeme uvlačenja papučica, interval bilježenja mjerenja, relativni kut pomaka lica alata u ravnini okomitoj na os bušotine i pomak lica alata od osi bušotine. Kad su ti podaci uneseni, sustav je u stanju pripravnosti i papučice se ponašaju rutinski u vremenu koje je unaprijed određeno (Moody i drugi, 2004).

Kad je rotirajući upravljivi sustav spušten u bušotinu blizu njenog dna, on nekoliko minuta rotira brže od zadanog broja okretaja u minuti potrebnog za aktivaciju. Nakon aktivacije, papučice se izboče i oslone na stijenke kanala bušotine kako bi se spriječila rotacija nerotirajućeg tijela sustava. Pomoću uređaja za mjerenje stupnja izbočenosti papučica na svakoj papučici mjeri se promjer bušotine i sustav prelazi u usmjerivi način rada u kojem se kontinuirano prilagođava da bi održao zadani relativni kut pomaka lica alata u ravnini okomitoj na os bušotine (*engl. Gravity Toolface, TF*) i pomak lica alata od osi bušotine (*engl. Offset*). Tada se dvije papučice zaključavaju u svom položaju, a treća ostaje pokretna pri konstantnom predodređenom hidrauličkom tlaku (može se uvlačiti i izvlačiti). Time se omogućava konstantan dodir sa stijenkama izrađivane bušotine ovisno o promjenjivom promjeru i protusilama na formaciju (Moody i drugi, 2004). Mogući položaji papučica u različitim načinima rada sustava prikazani su na slici 3-8.

Papučice pozicionirane tako da se održava započeta trajektorija bušotine

Papučice su kontrolirane neovisno jedna o drugoj; na prikazu iznad pozicionirane su različito te usmjeravaju dlijeto tako da izrađuje kanal bušotine po krivulji konstantnog radijusa

Slika 3-8. Različiti položaji papučica ekonomski pristupačnijeg rotirajućeg upravljivog sustava (Moody i drugi, 2004)

Sustav kontinuirano prati svoj položaj u prostoru i mijenja ga sukladno zadanim parametrima naizmjence uvlačeći i izvlačeći odgovarajuće papučice. Vrijednosti parametara koje sustav prati mogu se mijenjati s površine, bez izvlačenja alata. Kod ovog sustava to se ne izvodi pomoću promjena tlaka isplake, već putem promjena brzine rotacije niza za vrijeme bušenja. Stvaran i mjereni položaj sustava prikazani su operateru na podištu tornja kako bi se mogli provjeravati (Moody i drugi, 2004).

3.5. Prvi rotirajući upravljivi sustav primjenjiv za izradu bušotina s naglim skretanjem kanala

Iako su rotirajući upravljivi sustavi pogodniji za izradu bušotina velikog dosega zbog kvalitetnije i brže izrade kanala, dubinski volumetrijski isplačni motori (*engl. Positive Displacement Mud Motors, PDM*) većinom su ipak bili korišteni u bušotinama u kojima je planirano naglo skretanje kanala. Porast kuta otklona dionice kanala (*engl. Dog-Leg Severity, DLS*) mjeri se u °/30,48 m (°/100 ft). Korištenjem rotirajućih upravljivih sustava bilo je moguće izraditi dionicu kanala bušotine promjera npr. 215,9 mm (8 ½") čiji kut otklona od vertikale ne iznosi više od 6 do 8° na 30,48 metara (100 ft) duljine dionice. Za izradu zakrivljenijih dionica bilo je potrebno koristiti dubinske isplačne motore. Osim toga, efikasnost izrade zakrivljenih dionica kanala rotirajućim upravljivim sustavima uvelike je ovisila i o tipu formacije te promjeru bušotine (Bryan i drugi, 2009).

Potpuno rotirajući upravljivi sustavi imaju više prednosti nad dubinskim volumetrijskim isplačnim motorima i sustavima s nerotirajućim dijelovima. Neke od njih su izrada kvalitetnijeg kanala bušotine, još bolje čišćenje kanala od krhotina razrušenih stijena zbog rotacije svih dijelova niza bušaćih alatki, te bolji rezultati kasnijih mjerenja i lakša ugradnja zaštitnih cijevi u kvalitetnije izrađen kanal bušotine.

Iz navedenih razloga 2009. godine razvijen je rotirajući upravljivi sustav za bušenje pomoću kojeg se mogu izraditi zakrivljene dionice kanala bušotine s kutom otklona kanala u rasponu od 0 do 15° na 30,48 metara (100 ft) duljine kanala u svim tipovima stijena. Sposobnost izrade kanala većeg stupnja zakrivljenosti omogućava smještanje točke skretanja kanala dublje, gledano od površine, što ubrzava izradu bušotine zbog duljeg vertikalnog dijela. Osim toga, sustav omogućava skretanje kanala bušotine od vertikale na manjoj horizontalnoj udaljenosti i kontrolu putanje ranije spomenutom "zatvorenom petljom". Korištenjem razvijenog sustava moguće je izraditi bušotinu bez izvlačenja alata, što donosi velike uštede u ukupnim troškovima izrade bušotine. Budući da su dotadašnji rotirajući upravljivi sustavi koji "guraju" dlijeto bili osjetljivi na promjene promjera kanala i mekoću formacije zbog oslanjanja na stijenke kanala da bi usmjeravali dlijeto, a sustavi koji usmjeravaju dlijeto bili mehanički kompleksni iako su manje ovisni o promjeru i tipu stijene, razvijen je rotirajući upravljivi sustav koji objedinjuje pozitivne značajke oba sustava (Bryan i drugi, 2009).

Sve komponente sustava rotiraju skupa s nizom bušaćeg alata. Za vrijeme usmjerenog bušenja, elektronički uređaji stabiliziraju geostacionarni ventil koji preusmjerava male količine isplake na klipove u upravljačkom dijelu sustava. Klipovi zatim iznutra potiskuju rukavac za usmjeravanje. Pomak rukavca za usmjeravanje kontroliran je elektronički i mehanički. On je šarkama učvršćen na univerzalni zglob koji služi kao točka skretanja i usmjerava dlijeto u željenom smjeru. Kad je sustav u neutralnom načinu rada (smjer bušenja se ne mijenja), elektronički uređaji kontinuirano okreću geostacionarni ventil pa je sila rotacije niza raspoređena ravnomjerno po licu dlijeta, zbog čega dlijeto ne skreće. Nakon testiranja sustav se pokazao efikasnim u rješavanju prethodno navedenih problema (Bryan i drugi, 2009). Time je premošćena još jedna prepreka u korištenju rotirajućih upravljivih sustava pri izradi jako zakrivljenih dionica kanala bušotine.

3.6. Razvoj rotirajućeg upravljivog sustava za izradu kanala bušotine malog promjera

Prvi komercijalno dostupni rotirajući upravljivi sustavi za bušenje bili su izrađeni za izradu kanala bušotina promjera 215,9 mm (8 ½ ") i 311,2 mm (12 ¼ "). Kako se tehnologija razvijala, bilo je potrebno proširiti raspon promjera kanala bušotine koje je njima moguće izraditi. Budući da su rotirajući upravljivi sustavi vrlo kompleksni sustavi koji sadrže elektroničke, mehaničke i hidrauličke dijelove koji se međusobno nadopunjavaju, smještanje svih tih komponenti u kućište manjeg promjera utjecalo je na pouzdanost i izdržljivost cjelokupnog sustava (Jones i drugi, 2010). Međutim, razvojem drugih tehnologija postalo je moguće smanjiti dimenzije sustava uz zadržavanje njegove pouzdanosti.

Izgradnja rotirajućeg upravljivog sustava za bušenje malog promjera kompleksna je zbog veličine komponenti, mehaničke snage, zahtjeva otpornosti na djelovanje temperature i tlaka, ugrađenih senzora i cjelokupnog integriteta sustava. Sustav je napravljen tako da su moguće buduće prilagodbe donjeg dijela niza za geoupravljanje i pogon rotirajućeg upravljivog sustava dubinskim volumetrijskim isplačnim motorima (*engl. PDM Powered RSS, PRSS*).

Promjer rotirajućeg upravljivog sustava izrađenog 2010. godine iznosi 120,7 mm (4 ³/₄"). Glavna razlika između rotirajućih upravljivih sustava malog i velikog promjera je u promjeni položaja baterija izvan upravljačkog dijela sustava i pogon hidrauličke pumpe elektromotorom umjesto korištenja mehaničke pumpe (Jones i drugi, 2010).

Kontrolni dio rotirajućeg upravljivog sustava za izradu kanala bušotine malog promjera dizajniran je isto kao i kod sustava za izradu bušotina većeg promjera. Sustav usmjerava dlijeto pomoću 3 papučice smještene na nerotirajućem kućištu pod kutovima od 120° jedna od druge, što sustav svrstava u sustave koji "guraju" dlijeto. Svaka papučica kontrolira se pojedinačno pomoću hidrauličkog ulja smještenog u akumulatoru. Protok ulja, a time i uvlačenje/izvlačenje papučica, kontrolira se putem direktno djelujućih elektromagnetskih ventila. Intenzitet pomicanja papučica mjeri se preciznim mjernim uređajem kako bi osoba koja upravlja sustavom mogla pratiti djelovanje sustava. Sustav je prikazan na slici 3-9.

Slika 3-9. Rotirajući upravljivi sustav za bušenje kanala promjera 120,7 mm (4 ³/₄") (Jones i drugi, 2010)

Ulazni podaci za procesor sustava za ručno upravljanje odnose se na relativni kut pomaka lica alata u ravnini okomitoj na os bušotine i pomak lica alata od osi bušotine. Smjer sekcije za usmjeravanje dlijeta mjeri se korištenjem akcelerometara i određivanja položaja prve papučice. Procesor izračunava položaj prve papučice u odnosu na relativni kut pomaka lica alata u ravnini okomitoj na os bušotine i pomak lica alata od osi bušotine te tako određuje potrebne pomake svih papučica. Kontroler upravlja elektromagnetskim ventilima i koristeći povratnu informaciju dobivenu od pozicijskih senzora pomiče upravljačku sekciju sustava u željenom smjeru. Taj pomak je proporcionalan stupnju zakrivljenosti izrađivane dionice kanala (Jones i drugi, 2010).

Kod automatiziranog upravljanja sustavom, ulazni podaci za procesor sustava odnose se na kut otklona putanje od vertikale i smjer kanala bušotine. Upravljanje se odvija u zatvorenoj petlji: akcelerometri za mjerenje kuta otklona putanje od vertikale i MWD uređaji za mjerenje smjera koriste se za zadržavanje smjera tangente i horizontalnih dijelova kanala. U tom načinu rada kontroler sam namješta relativni kut pomaka lica alata u ravnini okomitoj na os bušotine i pomak lica alata od osi bušotine da bi se zadržao postignuti smjer izrade kanala bušotine. Kut otklona putanje od vertikale i smjer ciljanog dijela ležišta mogu se povećavati ili smanjivati za 0,5° radi precizne kontrole i promjena planirane putanje bušotine (Jones i drugi, 2010).

Papučice sustava mogu se koristiti za usmjeravanje alata, ali i kao anti-rotirajući uređaji. Prednosti takve izvedbe sustava su smanjen broj komponenti te mogućnost uvlačenja antirotacijskog sustava unutar upravljačke sekcije prilikom izrade "prozora" u zaštitnim cijevima za skretanje kanala ili prolaska sustava kroz dijelove kanala bušotine suženog promjera. Papučice su smještene neposredno iza dlijeta što omogućuje "guranje" i naginjanje dlijeta, te samim time olakšava izbor dlijeta (Jones i drugi, 2010).

Da bi sustav manjeg promjera imao mogućnost geoupravljanja i bolje bušaće performanse, struktura sustava ne može biti jednaka onoj većih sustava. Razlika je u tome što su u većim sustavima elektronički, hidraulički uređaji i sustav za proizvodnju energije bili smješteni unutar nerotirajućeg rukavca sustava. Da bi se smanjila ukupna duljina sustava, sustav za proizvodnju energije morao je biti pomaknut izvan sklopa. Mogućnost korištenja baterija i/ili turbinskih generatora kao vanjskih izvora energije proširio je raspon mogućih sklopova donjeg dijela niza bušaćeg alata. Baterije su pomaknute u šipku iznad upravljačke sekcije, a prijenos energije upravljačkoj sekciji sustava odvija se putem kliznog prstena. Osim baterija, u šipci su smješteni i gama senzori. Takva izvedba omogućava i korištenje dubinskog volumetrijskog isplačnog motora zajedno s rotirajućim upravljivim sustavom. Hidraulički i elektronički uređaji zadržani su unutar upravljačke sekcije radi pouzdanosti sustava. Na slici 3-10 prikazani su sastavi donjeg dijela niza alata primjenjivi s ovim sustavom (Jones i drugi, 2010).

Slika 3-10. Sastavi donjeg dijela bušaćeg niza koji se mogu primijeniti s rotirajućim upravljivim sustavom malog promjera (Jones i drugi, 2010)

4. DANAŠNJI ROTIRAJUĆI UPRAVLJIVI SUSTAVI ZA BUŠENJE

Svaki od razvijenih sustava opisanih u prethodnim poglavljima na neki je način pridonio poboljšavanju rotirajućih upravljivih sustava. Neka od najvećih unaprjeđenja odnose se na korištenje sustava zatvorene petlje pri upravljanju sustavom, neovisnost učinkovitosti sustava o kvaliteti stijenki kanala bušotine, povećanje stupnja otklona kanala od bušotine koji je moguće izraditi ovim sustavima, povećanje raspona promjera u kojem u sustavi dostupni i slično.

Iako su današnji sustavi umnogome unaprijeđeni od svoje prve pojave na tržištu, sigurno će se razvijati i dalje usporedno s razvojem drugih industrija i uređaja koji se pri njihovoj izgradnji koriste. U ovom će poglavlju biti opisani rotirajući upravljivi sustavi poznatih kompanija trenutno prisutni na tržištu kako bi se zornije prikazalo njihovo unaprjeđenje u posljednjih 20-ak godina.

4.1. Rotirajući upravljivi sustavi kompanije Halliburton

Rotirajući upravljivi sustavi tvrtke Halliburton registrirani su pod imenom Geo-Pilot, a ima ih nekoliko vrsta ovisno o njihovoj prilagodbi različitim uvjetima bušenja. To su Geo-Pilot, Geo-Pilot XL, Geo-Pilot Dirigo, Geo-Pilot Duro, Geo-Pilot GXT i SOLAR Geo-Pilot XL (Halliburton, 2017a).

Geo-Pilot i **Geo-Pilot XL** spadaju u sustave koji usmjeravaju dlijeto pomoću osovine ("point the bit"). Sustavi precizno usmjeravaju kanal bušotine uz istovremenu rotaciju bušaćeg niza kako bi se povećala brzina bušenja i smanjilo vrijeme potrebno za izradu bušotine. Ugrađeni servisni sustav pruža mogućnost kontinuirane kontrole upravljanja dlijetom u realnom vremenu te procjene stijena kako bi se u svakom trenutku moglo pratiti putanju kanala bušotine (Halliburton, 2017b).

Geo-Pilot XL je inačica sustava Geo-Pilot s ojačanim kućištem sustava. Opremljen je TEMTM sustavom (*engl. Torsional Efficiency Monitor, TEM*) za praćenje torzije koji odmah šalje upozorenje operateru ukoliko dođe do promjena u brzini rotacije dlijeta i bušaćeg niza. Zbog toga je pogodan za rad i u najtežim uvjetima. Geo-Pilot i Geo-Pilot XL opremljeni su senzorima za mjerenje geoloških parametara tijekom bušenja (*engl. Logging While Drilling, LWD*) i sustavom upravljanja informacijama (Halliburton, 2017b).

Kako su s vremenom uvjeti bušenja postajali još i više ekstremni nego oni za koje je napravljen Geo-Pilot XL, tvrtka je razvila još izdržljiviji rotirajući upravljivi sustav, **SOLAR Geo-Pilot XL**. Konkretno, maksimalna temperatura pri kojoj sustav može biti primijenjen u ovom slučaju iznosi 347 °C, a maksimalni tlak 207 MPa (Halliburton, 2017c).

Geo-Pilot Dirigo je sustav namijenjen postizanju velikih kutova otklona kanala na kratkim dionicama pri izradi kanala bušotine velikog promjera, što je donedavno bilo izvedivo samo pomoću konvencionalnih upravljivih motora. Geo-Pilot Dirigo spaja pogodnosti upravljivih motora i rotirajućih upravljivih sustava zbog čega je njegovim korištenjem moguće izraditi kanal velikog promjera sa stupnjem zakrivljenosti od 10°/30,48 m, ili kanal manjeg promjera sa stupnjem zakrivljenosti od 15°/30,48 m (Halliburton, 2017d). To omogućuje smještanje točke skretanja kanala dublje gledano s površine, što produljuje

vertikalnu dionicu kanala i smanjuje troškove izrade kanala bušotine. Sustav je prikazan na slici 4-1.

Slika 4-1. Rotirajući upravljivi sustav Dirigo tvrtke Halliburton (Halliburton, 2016)

Geo-Pilot® DuroTM je rotirajući upravljivi sustav namijenjen izradi bušotina u teškim uvjetima gdje je od najveće važnosti optimalna brzina bušenja, vrijeme trajanja manevra alatkama te kontrola gubitka isplake u okolne stijene. Sustav je robustan te je najpogodniji za izradu kanala bušotine u dubokom moru te za bušotine velikog dosega. Ograničenja sustava za usmjeravanje kanala s kojima se operateri susreću kod izrade bušotina u takvim uvjetima uključuju prekratku trajnost alatki, izradu kanala bušotine promjera većeg od projektiranog, tortuozitet izrađenog kanala, premali kapacitet sustava za visoku koncentraciju materijala za sprečavanje gubljenja isplake (*engl. Lost Circulation Material, LCM*), nemogućnost preciznog upravljanja sustavom i premala površina za protjecanje fluida uz sustav za usmjeravanje. Geo-Pilot DuroTM je "point-the-bit" rotirajući upravljivi ustav čiji se upravljački sustav ne oslanja na stijenu kroz koju se buši, što je prednost kod bušenja kroz mekane i nestabilne stijene. Osim toga, mjerači kuta otklona putanje od vertikale kanala i sustav za gama karotažu smješteni su vrlo blizu dlijeta, a sustav ima i velik protočni kapacitet što omogućava primjenu isplake s visokom koncentracijom materijala za zatvaranje zona gubljenja isplake (Halliburton, 2017e).

Uz navedene sustave, Halliburton je patentirao i **Geo-Pilot® GXTTM** sustav koji kombinira upravljivi rotirajući sustav s upravljivim motorom, ima povećanu snagu te veći broj okretaja u minuti primijenjen direktno na dlijeto. Motor je smješten između upravljivog rotacijskog sustava i sustava za mjerenje tijekom bušenja (LWD sustava), a namjena mu je dvostruko povećanje snage sustava u odnosu na konvencionalne upravljive sustave. Samim time više se snage primjenjuje na dlijeto, što povećava efikasnost razrušavanja stijena i brzinu bušenja, istovremeno smanjujući vjerojatnost zaglave alata.

Konstrukcija sustava s dlijetom odvojenim od ostatka bušaćeg niza smanjuje prijenos vibracija od dlijeta na sustav za mjerenje tijekom bušenja i ostale alatke u donjem dijelu niza, što produljuje njihov životni vijek. Primjenom ovog sustava mogu se koristiti različite brzine rotacije bušaćeg niza i samog dlijeta, odnosno brzina rotacije bušaćeg niza može se smanjiti kako bi se smanjilo trošenje zaštitnih cijevi trenjem, dok istovremeno dlijeto može rotirati optimalnom brzinom za postizanje velike brzine bušenja (Halliburton, 2017f). Sustav je prikazan na slici 4-2. Karakteristike rotirajućih upravljivih sustava tvrtke Halliburton zbirno su prikazane u tablici 4-1.

Slika 4-2. Rotirajući upravljivi sustav Geo-Pilot® GXTTM tvrtke Halliburton (Halliburton, 2017f)

Tablica 4-1. Rotirajući upravljivi sustavi Geo-Pilot tvrtke Halliburton i njihova namjena (Halliburton, 2017a-f)

Naziv sustava	Način rada	Namjena
Geo-Pilot		Precizno usmjeravanje kanala
		bušotine uz rotaciju bušaćeg niza
Geo-Pilot XL		Ojačano kućište sustava za rad u
		teškim uvjetima
Geo-Pilot		Postizanje velikog stupnja
Dirigo		zakrivljenosti kanala bušotine
	Usmjeravanje dlijeta pomoću	velikog promjera
Geo-Pilot	osovine	Duboko more i bušotine velikog
Duro		dosega
Geo-Pilot		Velika brzina bušenja
GXT		
SOLAR Geo-		Ekstremni uvjeti tlaka i
Pilot XL		temperature (do 347 °C i 207 MPa)

4.2. Rotirajući upravljivi sustavi kompanije Schlumberger

Rotirajući upravljivi sustavi tvrtke Schlumberger nazvani su zajedničkim imenom PowerDrive, a razvijeni su za niz različitih uvjeta. Njihove su opće karakteristike potpuno rotirajući način rada, samostalna proizvodnja energije za rad i fleksibilnost u pogledu korištene isplake. Razvijeno je 9 konfiguracija sustava od kojih je svaki namijenjen izradi kanala bušotine u specifičnim uvjetima: PowerDrive Xcel, PowerDrive Orbit, PowerDrive vorteX Max, PowerDrive ICE UltraHT, PowerDrive Archer High Build Rate, PowerV Vertical Drilling, PowerDrive Xceed Ruggedized, PowerDrive vorteX Powered i PowerDrive X6 (Schlumberger, 2017a). Svaki od njih bit će ukratko opisan u ovom podpoglavlju.

Schlumbergerov **PowerDrive Xcel** je rotirajući upravljivi sustav namijenjen izradi kompliciranih usmjerenih bušotina. Za razliku od mnogih rotirajućih upravljivih sustava čija je kontrola upravljanja vezana uz mjerenje jačine magnetskog i gravitacijskog polja, PowerDrive Xcel omogućava inercijsku kontrolu smjera bušenja u zakrivljenim sekcijama kanala. Funkcija se može uključiti i isključiti putem podatkovne veze s alatom, te omogućuje preciznu kontrolu alata čak i u područjima magnetskih smetnji. Također ima sposobnost registriranja magnetskih i inercijalnih fluktuacija rotacijske brzine alata, kao i udaraca i vibracija na tri osi, što omogućuju potpunu kontrolu alata u svim uvjetima bušenja. Žiroskopska jedinica alata može se koristiti kao alternativni mjerni sustav magnetskom sustavu. Ovaj rotirajući upravljivi sustav ima automatizirani sustav "zatvorene petlje" za mjerenje parametara izrađenog dijela kanala. Gama senzor ukomponiran je u sustav tako da se nalazi blizu dlijeta, što omogućava rano prepoznavanje slojeva koji potencijalno sadrže ugljikovodike te daje preciznije rezultate mjerenja za lakše praćenje u realnom vremenu (Schlumberger, 2017b).

Rotirajući upravljivi sustav **PowerDrive Orbit** vrlo je prilagodljiv, čvrst i pouzdan sustav koji smanjuje vrijeme bušenja te povećava učinkovitost zbog mogućnosti usmjeravanja kanala pri velikim rotacijskim brzinama, do 350 min⁻¹, što smanjuje mogućnost fluktuacije rotacijskih brzina (*engl. stick-slip*). Brtvljenje papučica ostvareno je kontaktom metal na metal kako bi se spriječilo štetno djelovanje agresivnih bušaćih fluida i ekstremnih uvjeta u bušotini. Zahvaljujući dvostrukim vezama s alatom u bušotini, ispunjava sve naredbe s površine, omogućuje odlučivanje u realnom vremenu, te preciznu kontrolu putanje

bušotine. Automatizirani sustav "zatvorene petlje" provodi kontinuirana mjerenja parametara kanala bušotine, a ima i način rada u kojem samostalno održava smjer i kut otklona kanala od vertikale (*engl. Hold Inclination and Azimuth, HIA mode*) (Schlumberger, 2017c). PowerDrive Orbit je prikazan na slici 4-3.

Slika 4-3. Rotirajući upravljivi sustav PowerDrive Orbit tvrtke Schlumberger (Schlumberger, 2016)

PowerDrive vorteX Max je jedini rotirajući upravljivi sustav čije sve komponente rotiraju, te omogućava veće brzine bušenja s više snage, poboljšanom reakcijom na promjene u bušotini i preciznijom kontrolom usmjeravanja dlijeta. Sadrži jedinstveni način samoupravljanja i za smjer i za kut otklona putanje od vertikale. Robusnog je dizajna koji omogućava veće brzine rotacije i veći okretni moment. Sustav koristi napredne automatizirane algoritme za održavanje smjera i kuta otklona putanje od vertikale koji se mogu podesiti prema individualnim uvjetima. Promjene smjera lica alata mogu se mijenjati jednom u sekundi, što omogućava kontinuiranu kontrolu nad putanjom bušotine koja se izrađuje (Schlumberger, 2017d).

PowerDrive ICE UltraHT je također potpuno rotirajući sustav konstruiran za primjenu u visokotemperaturnim bušotinama koji normalno funkcionira i pri temperaturi od 200 °C. Elektronički uređaji sustava očvrsnuti su te je dokazana njihova izdržljivost od 2 000 sati rada pri temperaturama većim od 200 °C i 35 000 sati rada pri 200 °C dok obični elektronski uređaji mogu otkazati već nakon 6 sati rada pri 200 °C. Sustav usmjerava

dlijeto automatski te pruža preciznu kontrolu nad putanjom bušotine zbog kontinuiranog mjerenja (Schlumberger, 2017e).

PowerDrive Archer još je jedan od potpuno rotirajućih sustava kompanije Schlumberger. Konstruiran je za izradu kompleksnih bušotina uz veliku brzinu bušenja i kvalitetu izrađenog kanala. Sustav može izraditi i dijelove kanala s velikim stupnjem povećanja kuta otklona (DLS), i do 18°/30 m, što znači da točka skretanja može biti dublje. Osim toga, ovaj sustav može skrenuti kanal iz nezacijevljenog kanala bušotine bez vađenja iz bušotine, što skraćuje vrijeme izrade kanala bušotine. Posebnost u konstrukciji ovog sustava je ta što su njegove pomične komponente smještene unutar kućišta, tj. papučice sustava odupiru se o unutarnji rukavac sustava, koji zbog toga usmjerava univerzalnu spojnicu, a time i samo dlijeto. Sustav je ustvari hibrid između sustava koji "guraju" dlijeto i sustava koji ga usmjeravaju. Zahvaljujući takvoj konstrukciji, ovim sustavom moguće je izraditi bušotine čija je izrada ranije bila moguća jedino korištenjem motora (Schlumberger, 2017f). Sustav je prikazan na slici 4-4.

Slika 4-4. Princip rada hibridnog rotirajućeg upravljivog sustava PowerDrive Archer tvrtke Schlumberger (Hawkins i drugi, 2013.)

Rotirajući upravljivi sustav PowerDrive Archer konstruiran je tako da je pomoću njega moguće izraditi kanal bušotine s porastom kuta otklona od vertikale od 15°/30,48 m i promjera od 149,2 mm (5 7/8") do 171,5 mm (6 ³/4"). Maksimalan porast kuta otklona kanala može se ograničiti promjenom veličine udarnog prstena na upravljačkom dijelu sustava. Udarni prsten ograničava nagib vanjskog usmjernog rukavca sustava. Operativne karakteristike sustava prikazane su u tablici 4-2.

Maksimalan porast kuta otklona kanala	15°/30,48 m		
Raspon protočnih kapaciteta sustava	10,73 do 22,08 dm ³ /s		
Maksimalni radni tlak	137,9 MPa		
Maksimalna radna temperatura	150 °C		
Brzina rotacije	40 do 350 min ⁻¹		
Maksimalno opterećenje na dlijeto	Ovisno o specifikaciji dlijeta		
Maksimalni okretni moment dlijeta	Ovisno o specifikaciji dlijeta		
Maksimalni nateg	1209,92 kN		
Maksimalna koncentracija materijala za	99,85 kg/m ³ orahovih ljuski srednje		
zatvaranje mjesta gubljenja isplake u isplaci	veličine čestica		
Koncentracija pijeska	1 %		
Raspon gustoća isplake	994,56 do 2156,88 kg/m ³		
Raspon promjera kanala bušotine	149,225 do 171,45 mm (5 7/8" do 6 ³ / ₄ ")		
Duljina RSS PowerDrive Archer	4,45 m		
Vanjski promjer usmjernog rukavca	3,175 mm manji od promjera dlijeta		

Tablica 4-2. Radne karakteristike sustava PowerDrive Archer (Hawkins i drugi, 2013)

Rotirajući upravljivi sustav **PowerV** namijenjen je izradi vertikalnih bušotina. Obzirom da je potpuno rotirajući, poboljšava čišćenje kanala bušotine i kvalitetu stijenki vertikalnog kanala. Automatski usmjerava dlijeto da buši vertikalan kanal bušotine, bez obzira na smjer pada ili kut nagiba prisutnih slojeva stijena. Sustavu nije potreban MWD sustav da bi funkcionirao, a najpogodniji je za bušenje kroz tvrde stijene te slojeve s velikom kutom nagiba (Schlumberger, 2017g).

PowerDrive Xceed Ruggedized je rotirajući upravljivi sustav namijenjen izradi kanala bušotina u abrazivnim stijenama, mekim stijenama i uvjetima visokih temperatura. Njegova će primjena biti opisana kasnije u ovom radu u poglavlju o izradi bušotine na obali Zapadne Afrike. Primjenjiv je pri izradi bušotina velikog dosega unatoč ograničenjima postrojenja jer njegov mehanizam za usmjeravanje lica alata ne zahtijeva pad tlaka kroz dlijeto. Karakteristike elektoničkih komponenti sustava provjerene su na terenu. Odziv usmjeravanja je pod minimalnim utjecajem promjera kanala bušotine što opravdava njegovu primjenu kod bušenja i u mekim, jednako kao i u tvrdim ili abrazivnim stijenama. U slučaju odstupanja, sustav "zatvorene petlje" automatski ispravlja kut otklona putanje od vertikale i smjer lica alata. Ovim sustavom mogu se izrađivati kanali bušotina velikog stupnja promjene kuta otklona te bočni kanali bušotine (Schlumberger, 2017h).

PowerDrive vorteX Powered pogodan je za primjenu s velikim opterećenjem na dlijeto i okretnim momentom. Njegova pogonska sekcija pretvara hidrauličku snagu isplake u mehaničku energiju, prenosi dodatnu rotacijsku brzinu na dlijeto te povećava mogućnost bušenja tvrdih stijena. Kompatibilan je s modulom za samoupravljanje i održavanje kuta otklona od vertikale i smjera (HIA modul) za automatizirano bušenje horizontalnih i tangentnih sekcija, omogućujući veću preciznost i brzinu bušenja (Schlumberger, 2017i).

PowerDrive X6 je rotirajući upravljivi sustav primjenjiv je za izradu kompleksnih bušotina. Sustavi za mjerenje parametara bušotine smješteni su blizu dlijeta, a njihovi podaci dostupni u realnom vremenu. Namijenjen je za potpunu kontrolu smjera bušenja uz rotaciju bušaćeg niza i efikasniji je od dubinskih volumetrijskih isplačnih motora (Schlumberger, 2017j). Sustav je prikazan na slici 4-5.

Slika 4-5. Rotirajući upravljivi sustav PowerDrive X6 tvrtke Schlumberger (Meli i drugi, 2014)

Navedeni rotirajući upravljivi sustavi kompanije Schlumberger i njihove karakteristike navedeni su u tablicama 4-3 i 4-4. Za pojedine sustave navedeni su rasponi vrijednosti određenih parametara jer ti sustavi dolaze u više inačica, koje se većinom razlikuju po promjeru sustava.

Tablica 4-3. Rotirajući upravljivi sustavi PowerDrive tvrtke Schlumberger i njihove karakteristike (prema Schlumberger, 2017a-j)

Naziv sustava	Način rada	Namjena	
Vool	Usmjeravanje dlijeta	Visokoprofilirane	
Λιεί	pomoću osovine	usmjerene bušotine	
Orbit	Guranje dlijeta	Velike brzine rotacije	
		Cjelokupno rotirajući	
vortoV Mov	Kombinacija oba načina	sustav, veće brzine	
VOLICA IVIAX	rada	rotacije i veći okretni	
		moment	
ICE UltraHT	Guranje dlijeta	Uvjeti visoke temperature	
Archer	Kombinacija oba načina	Bušotine kompleksnih	
	Romoniacija Oba nacina	putanja, velikog stupnja	
	Taua	zakrivljenosti	
PowerV	Guranje/usmjeravanje	Vertikalne bušotine	
100011	dlijeta	vertikume busotine	
Vceed Ruggedized	Usmjeravanje dlijeta	Abrazivne i meke stijene,	
Acceu Ruggeuizeu	pomoću osovine	uvjeti visoke temperature	
vorteX Powered	Kombinacija oba načina	Veliko opterećenja na	
	rodo	dlijeto i velik okretni	
	Taua	moment	
V6	Curania dijiata	Bušotine kompleksnih	
Λυ	Ouranje unjeta	putanja	

Parametar	Xcel	Orbit	vorteX Max	ICE UltraHT	Archer
Promjer (mm)	171,5-228,6	120,7-279,4	120,7- 244,0	171,5	120,7-171,5
Duljina (m)	7,60-8,50	4,11-4,63	-	10,44	4,56-4,922
Maks. porast kuta otklona kanala (°/30,48 m)	6,5-8	2-10	5-10	8	15-18
Maks. nateg (kN)	4 448	1 512- 11 121	320-1 557	4 448	1 210- 1 779
Maks. opterećenje na dlijeto (kN)	245-334	138-1001	133-534	670	156-245
Maks. brzina rotacije (min ⁻¹)	350	220/350	350	350	350
Dobava (L/min)	984-6 183	454-7 571	455-4 548	1 040- 3 028	492- 2 464
Maks. gustoća isplake (kg/m ³)	Nema ograničenja	2880	2880	2520	2160
Maks.konc. LCM* u isplaci (kg/m ³)	190	130-190	130-190	190	130-190
Maks. radni tlak (MPa)	137,9	137,9	137,9	206,8	137,9
Maks. radna temperatura (°C)	150	150	150	200	150

Tablica 4-4. Radne karakteristike PowerDrive sustava (prema Schlumberger, 2017a-j)

*LCM- materijali za zatvaranje mjesta gubljenja isplake (engl. Lost Circulation Material)

Parametar	PowerV	Xceed	vorteX Powered	X6
Promjer (mm)	120,7-279,4	171,5-228,6	171,5-279,4	120,7-279,4
Duljina (m)	4,16-4,64	7,62-8,53		4,16-4,63
Maks. porast kuta otklona kanala (°/30,48 m)	*vertikalne bušotine	6,5-8	2-10	2-10
Maks. nateg (kN)	1 512- 11 121	4 488	259-1 504	1 512-11 121
Maks. opterećenje na dlijeto (kN)	138-1 646	245-334	111-334	138-1 646
Maks. brzina rotacije (min ⁻¹)	125/220	350	125/220	125/220
Dobava (L/min)	643-7 571	1 097-6 183	643-5 685	643-7571
Maks. gustoća isplake (kg/m ³)	2880	2880	2880	2880
Maks. konc. LCM (kg/m ³)	190	190	190	130-190
Maks. radni tlak (MPa)	137,9	137,9	137,9	137,9
Maks. radna temperatura (°C)	150	150	150	150

Tablica 4-4. Radne karakteristike PowerDrive sustava (prema Schlumberger, 2017a-j) (nastavak)

4.3. Rotirajući upravljivi sustav kompanije Baker Hughes

Kompanija Baker Hughes također izrađuje rotacijske upravljive sustave za bušenje u komercijalne svrhe. Njihovo zajedničko ime je AutoTrak, a dolaze u 6 različitih konstrukcija koje će biti opisane u ovom poglavlju.

AutoTrak sustavi koriste kontinuirano proporcionalno usmjeravanje dlijeta i prema načinu rada spadaju u sustave koji "guraju" dlijeto. Usmjeravanje se vrši putem papučica koje su precizno kontrolirane te daju kontinuirani proporcionalni vektor smjera bušenja kanala bušotine. Radi toga izrađeni kanal ima kvalitetnije stijenke, manje koljena te bez proširenja. Mjerni uređaji sustava svake milisekunde mjere kut otklona kanala od vertikale i smjer kanala blizu dlijeta. Iz rezultata navedenih mjerenja sustav automatski određuje je li potrebna promjena smjera dlijeta jer svi AutoTrak sustavi rade na principu "zatvorene petlje", a promjena smjera dlijeta moguća je jednom u sekundi. Budući da kod izrade kanala ovim sustavima konačna putanja potpuno odgovara planiranoj, ne postoje koljena ni proširenja kanala, olakšana je kasnija ugradnja zaštitnih cijevi i opremanje bušotine. Zbog bušenja kanala nominalnog promjera bolji su i rezultati mjerenja u kanalu bušotine, manje krhotina treba iznijeti iz bušotine te je poboljšano čišćenje kanala od krhotina, što pozitivno utječe na brzinu bušenja i ukupno vrijeme izrade kanala bušotine.

Papučice ili rebra sustava smještene su na odvojenom spororotirajućem rukavcu i pogonjene su unutarnjom hidraulikom sustava. Zahvaljujući takvom sustavu rada papučica, usmjeravanje dlijeta ne ovisi o dinamici bušenja, tlaku isplake kroz dlijeto, brzini toka isplake niti njenim svojstvima. Posljedično je omogućeno korištenje velikog raspona različitih dlijeta, te bušenje svih vrsta stijena, od mekih do tvrdih (Baker Hughes, 2017a).

AutoTrak eXact je rotirajući upravljivi sustav namijenjen za bušenje u gotovo svim uvjetima. Odlika mu je sposobnost izrade kratkih dionica kanala velike zakrivljenosti, s porastom kuta otklona kanala od vertikale od 12°/30 m (12°/100 ft). Time se omogućuje izrada dulje horizontalne sekcije i veća otkrivenost ležišta (Baker Hughes, 2017b).

AutoTrak Curve namijenjen je izradi bušotina u nekonvencionalnim ležištima. U takvim uvjetima eliminira fluktuacije u brzinama rotacije dijelova niza i omogućuje veću brzinu bušenja. Stupanj otklona kanala od vertikale koji je ovim sustavom moguće postići iznosi

15°/30,48 m (15°/100 ft) (Baker Hughes, 2017c). Sustav AutoTrak Curve prikazan je na slici 4-6.

Slika 4-6. Rotirajući upravljivi sustav AutoTrak Curve tvrtke Baker Hughes (Baker Hughes, 2017d)

AutoTrak Curve je sustav primjenjiv za izradu zakrivljenih i horizontalnih sekcija bez vađenja alata iz kanala. Omogućuje preciznu izradu kanala bušotine uz kontinuiranu rotaciju bušaćeg niza s površine te promjenu smjera kanala bez prekida bušenja. Kućište sustava dodatno je ojačano za primjenu u abrazivnim stijenama te omogućuje korištenje isplaka s visokom koncentracijom materijala za zatvaranje mjesta gubljenja isplake (Baker Hughes, 2017d).

AutoTrak G3 je integrirani donji dio bušaćeg niza u koji su ukomponirani rotirajući upravljivi sustav te MWD i LWD uređaji kompanije Baker Hughes s dvosmjernom komunikacijom i pogonom. Sustav normalno funkcionira pri visokim temperaturama i tlakovima, točnije pri temperaturi do 175 °C i tlaku od 2 068 bar pa je pogodan za duboke visokotemperaturne bušotine. Mjerni uređaji šalju i primaju informacije o izrađivanom kanalu putem telemetrijskog pulsnog sustava, odnosno putem promjena u tlaku isplake. Senzori za mjerenje smjera, kuta otklona kanala od vertikale, električne otpornosti, vibracija i tlaka smještene su u prijelazu iznad upravljačke sekcije sustava zbog čega daju točne i precizne rezulate mjerenja blizu dlijeta. Sustav može usmjeravati dlijeto u željenom smjeru uz kontinuiranu rotaciju bušaćeg niza s površine što poboljšava čišćenje kanala bušotine od krhotina razrušenih stijena (Baker Hughes, 2013).

AutoTrak eXtreme je rotirajući upravljivi sustav s integriranim isplačnim motorom kako bi se povećala snaga sklopa i broj okretaja dlijeta, što omogućava brže bušenje uz preciznu izradu kanala rotirajućim upravljivim sustavom. Dodavanjem motora u sustav, smanjuje se naprezanja bušaćeg niza, trošenje bušaćeg niza i zaštitnih cijevi, uz istovremeno povećavanje snage na dlijetu. Osim navedenog, ovaj sustav ima sve prethodno opisane prednosti AutoTrak sustava kao što su MWD i LWD senzori blizu dlijeta i sustav mjerenja "zatvorene petlje" (Baker Hughes, 2017e).

Rotirajući upravljivi sustav **AutoTrak eXpress** je automatizirani sustav "zatvorene petlje" koji omogućava poboljšanje efikasnosti bušaćeg postrojenja, trodimenzionalnu kontrolu smjera bušenja i mogućnost raskrivanja malih ležišta ugljikovodika u ekonomski osjetljivim projektima. U sustav je ukomponiran očvrsnuti prijelaz koji sadrži uređaje za mjerenje tijekom bušenja. Sustav automatski usmjerava dlijeto pri kontinuiranoj rotaciji s površine, a informacije od površine do sustava i obrnuto prenose se putem promjena vrijednosti tlaka isplake. Sustav može usmjeravati dlijeto pod bilo kojim smjerom te postići porast kuta otklona kanala bušotine od vertikale od 10°/30 m (Baker Hughes, 2009). Sustav je prikazan na slici 4-7.

Slika 4-7. Rotirajući upravljivi sustav AutoTrak eXpress tvrtke Baker Hughes (Baker Hughes, 2009)

Rotirajući upravljivi sustav **AutoTrak V** namijenjen je izradi vertikalnih dionica kanala bušotine uz kontinuiranu rotaciju s površine. Vertikalnost se postiže i održava automatski zahvaljujući sustavu mjerenja "zatvorene petlje". Sustav se može koristiti i s isplačnim motorom kako bi se povećala efikasnost bušenja (Baker Hughes, 2017f).

U tablicama 4-4. i 4-5. prikazani su dostupni podaci o opisanim rotirajućim upravljivim sustavima. U tablici 4-5. za pojedine parametre za svaki od sustava naveden je raspon vrijednosti jer postoji više inačica koje se najčešće razlikuje po promjeru sustava. Podaci za sustav AutoTrak eXtreme nisu uvršteni u tablicu jer nisu dostupni na web stranici proizvođača.

Tablica 4-5. Rotirajući upravljivi sustavi AutoTrak tvrtke Baker Hughes i njihove karakteristike (Baker Hughes, 2017a-f)

Naziv sustava	Način rada	Namjena
AutoTrak eXact		Svi uvjeti
AutoTrak Curve		Vrlo zakrivljene dionice
		kanala
AutoTrak G3		Uvjeti visoke
	Sustavi koji "guraju" dlijeto	temperature i tlaka,
		duboke bušotine
AutoTrak eXtreme		S integriranim motorom
		za povećanje snage na
		dlijetu
AutoTrak eXpress		Raskrivanje malih
		ležišta
AutoTrak V		Vertikalne dionice
		kanala bušotine

Tablica 4-6. Radne karakteristike AutoTrak sustava (prema Baker Hughes, 2017a-f)

Parametar	AutoTrak eXact	AutoTrak Curve	AutoTrak G3
Promjer (mm)	120,7-171,5	171,5	120,7-269,9
Duljina (m)	2,93-3,19	11,5 (duljina BHA)	3,75-17,7
Maks. porast kuta	13-15	15	3-10
otklona kanala			
(°/30,48 m)			
Maks. nateg (kN)	2 100-3 100	3 400	2 100- 6 800
Maks. opterećenje	156-250	250	67-450
na dlijeto (kN)			
Maks. brzina	400	250	300-400
rotacije (min ⁻¹)			
Dobava (L/min)	475-3 407	1 135-2 840	300-6 050
Maks. konc. LCM	114	143	114
(kg/m^3)			
Maks. radni tlak	172,5-207	138	138-207
(MPa)			
Maks. radna	150-165	150	125-175
temperatura (°C)			

Parametar	AutoTrak eXpress	AutoTrak V
Promjer (mm)	120,7-241,3	120,7-241,3
Duljina (m)	17,35-19,7	6-7
Maks. porast kuta otklona kanala (°/30,48 m)	5-10	-
Maks. nateg (kN)	250-6 700	1 000-6 700
Maks. opterećenje na dlijeto (kN)	100-450	100-450
Maks. brzina rotacije (min ⁻¹)	300-400	250
Dobava (L/min)	475-6 050	475-6 050
Maks. konc. LCM (kg/m ³)	114	114
Maks. radni tlak (MPa)	138	138
Maks. radna temperatura (°C)	150	150

Tablica 4-6. Radne karakteristike AutoTrak sustava (prema Baker Hughes, 2017a-f) (nastavak)

5. PRIMJENA ROTIRAJUĆIH UPRAVLJIVIH SUSTAVA ZA BUŠENJE U PRAKSI

Rotirajući upravljivi sustavi do danas su primijenjeni za izradu bušotina u velikom rasponu različitih uvjeta bušenja. Iako su ispočetka najčešće korišteni kod odobalnog bušenja zbog svoje visoke cijene, razvojem tehnologije omogućena je njihova jeftinija izrada te su postali pristupačniji i za korištenje pri bušenju na kopnu. Način rada rotirajućih upravljivih sustava u principu je isti, međutim, sama konstrukcija alata mora biti prilagođena različitim uvjetima bušenja, kao što su tvrde stijene, visok tlak, visoka temperatura itd. Proizvođači se trude savladati navedene uvjete. U ovom poglavlju bit će opisana primjena rotirajućih upravljivih sustava pri izradi konkretnih bušotina, i to u različitim regijama svijeta. Razlog tome je upravo raznolikost uvjeta bušenja u najpoznatijim područjima na kojima se vrši pridobivanje ugljikovodika, kao što su Sjeverno more, Meksički zaljev, Zapadna Afrika ili Atlantski ocean (sl. 5-1).

Slika 5-1. Uvjeti bušenja u različitim područjima istraživanja nafte i plina (Rey-Fabret, 2015)

5.1. Primjena rotacijskog upravljivog sustava za izradu bušotine u Sjevernom moru

Primjena rotirajućih upravljivih sustava za bušenje pri izradi bočne (*engl. re-entry*) bušotine 33/9-C-16-A na Sjevernom moru opisana je u radu Gibbonsa i njegovih suradnika (2003). Bušotina je smještena na polju Statfjord u području Tampen na granici norveškog i britanskog eksploatacijskog sektora, kao što je prikazano na slici 5-2.

Slika 5-2. Položaj naftnog polja Statfjord u Sjevernom moru (Wikipedia, 2018)

Polje Statfjord jedno je od najstarijih i najvećih naftnih polja na Sjevernom moru s više od 400 bušotina. Dubina vode iznosi 150 metara, dok je dubina ležišta 2500 do 3000 metara (Norsk Petroleum, 2017). Na početku pridobivanja nafte polje je proizvodilo pomoću WAG metode (*engl. Water Alternating Gas, WAG*), odnosno naizmjeničnim utiskivanjem vode i plina. Kasniji radovi na polju predstavljaju projekt produljenja proizvodnog vijeka polja i pokušaje povećanja iscrpka.

Nafta na polju Statfjord zarobljena je rasjednom plohom koja se proteže u smjeru zapad-sjeverozapad. Šejlovi podrijetlom iz srednje i gornje jure te krede nadliježu slojeve rasjeda koji datiraju iz razdoblja jure i trijasa pa je zamka i startigrafska i strukturalna. Rezerve nafte se nalaze u 3 odvojena ležišta: deltnim sedimentima grupe Brent, marinskim pješčenjacima i siltovima grupe Dunlin, te fluvijalnim sedimentima formacije Statfjord. Sedimenti formacije Statfjord imaju vrlo dobra ležišna svojstva: poroznost 20-30% te propusnost i do nekoliko µm² (Gibbons i drugi, 2003). Na slici 5-3 je prikazan geološki profil Sjevernog mora, uključujući i profil polja Statfjord.

Slika 5-3. Geološki profil Sjevernog mora i polja Statfjord (Gibbons i drugi, 2003)

Na polju su smještene 3 platforme: Statfjord A, B i C. Na platformi Statfjord C smješten je i ulazni separator za 3 manja polja: Statfjord Øst, Statfjord Nord i Sygna, koja gravitiraju polju Statfjord. Svaka od 3 platforme ima 42 otvora za izradu bušotina, od kojih je svaki pojedinačno povezan s 3 ili više izrađenih bušotina (Hussain i drugi, 2017). Kao što je spomenuto u uvodnom dijelu ovog rada, izrada novih bušotina na već

razrađenim ležištima u odobalnim područjima kompliciranija je zbog ove činjenice jer je potrebno precizno navođenje bušaćeg alata pri izradi nove uvodne sekcije kako se ne bi oštetile postojeće uvodne kolone bušotina. Također, kod izrade bušotina velikog dosega kao u ovom slučaju., starije bušaće platforme ne koriste se često. Razlog tome su većinom ograničenja vezana za karakteristike tornja te hidrauličkih komponenti (Hussain i drugi, 2017). Na slici 5-4 prikazan je raspored platformi na polju Statfjord kojima upravlja kompanija Statoil.

Slika 5-4. Raspored platformi na polju Statfjord na Sjevernom moru (Gibonns i drugi, 2013)
5.1.1. Tehničke karakteristike bušotine

Bušotina 33/9-C-16A koja je ovdje opisana zapravo je tzv. re-entry bušotina, što znači da se zakrivljena sekcija izrađivala skretanjem iz postojećeg vertikalnog dijela kanala bušotine. Bušotina je planirana tako da crpi ugljikovodike iz donjeg dijela Brent grupe ležišta. Postojeća bušotina bila je izrađena s platforme Statfjord C. Iz postojeće bušotine odrezane su i uklonjene zaštitne cijevi promjera 339,7 mm (13 3/8") kako bi se otvorio "prozor" duljine 50 metara za skretanje kanala. Uklonjenoj koloni zaštitnih cijevi prethodila je kolona promjera 508,0 mm (20") iz koje se nastavilo bušiti prvu zakrivljenu sekciju promjera 445,4 mm (17 $\frac{1}{2}$ "). Planirana putanja bušotine prikazana je na slici 5-5, a sastoji se od 4 dijela kanala i to promjera 445,4 mm (17 1/2 "), 311,2 mm (12 $\frac{1}{4}$ "), 215,9 mm (8 $\frac{1}{2}$ ") i 152,4 mm (6") opisane u tablici 5-1. Tijekom cijele putanje bušotine ne mijenja se njen smjer, već samo kut otklona od vertikale. Smjer bušotine iznosi 52,17° u odnosu na sjever.

Slika 5-5. Planirana putanja kanala bušotine 33/9-C-16A na polju Statfjord (Hussain i drugi, 2017)

Promjer dlijeta		MD	TVD	Promjer zaštitnil	kolone n cijevi	Smjer kanala	Kut otklona od vertikale
mm	inch	m	m	mm	inch	0	0
-	-	330,10	333,10	750	30	259,50	0,83
-	-	769,00	768,97	508	20	268,71	0,37
444,5	17 1/2	2 215,00	1 884,96	339,725	13 3/8	52,17	78,85
311,15	12 1/4	7 784,00	2 155,09	244,475	9 5/8	52,17	40,39
215,9	8 1/2	8 225,00	2 417,00	177,8	7	52,17	34,8
152,4	6	8 331,00	2 504,50	-	-	52,17	34,8

Tablica 5-1. Podaci o dlijetima, kolonama i stvarnoj putanji kanala bušotine (Hussain i drugi, 2017)

Prva točka skretanja planirana je između dubine ugradnje kolone promjera 508,0 mm (20") i dubine neizvađenog dijela kolone promjera 339,7 mm (13 3/8"), odnosno od cementnog čepa s maksimalnim porastom kuta otklona (DLS) od 2,5°/30 m. Ta sekcija kanala bušotine izrađena je dlijetom promjera 445,4 mm (17 ¹/₂") do planirane dubine bez vađenja alata, koristeći upravljivi rotirajući sustav koji usmjerava dlijeto (engl. point the bit). Planirana duljina sekcije bila je 1 450 m, a trebala je doprijeti ispod zone ugljikovodika u propusnu formaciju Lista (šejlovi, pijesci) s kutom otklona od vertikale od 79°. Porast kuta otklona kanala bušotine od 2,5°/30 m procijenjen je kao optimalan kako bi se smanjio nateg i torzija alata u blizini točke skretanja te bočne sile i trošenje zaštitnih cijevi tijekom bušenja sljedeće sekcije kanala bušotine duljine 6 000 m. Problemi kod izrade ove sekcije bili su uzrokovani nepouzdanošću cementne veze u gornjoj sekciji, magnetskim međudjelovanjem bliskih bušotina što otežava praćenje putanje, te ograničenom mogućnošću skretanja kanala bušotine zbog blizine drugih bušotina. Osim toga, taj dio kanala bušotine prolazi kroz nestabilne Rogaland i Utsira formacije koje su uspješno probušene zahvaljujući primjeni odgovarajuće isplake. Kolona zaštitnih cijevi promjera 339,7 mm (13 3/8") ugrađena je, uz manje poteškoće, do 2 215 m mjerene dubine.

Sljedeća sekcija kanala bušotine promjera 311,2 mm (12 ¹/4") planirana je s gotovo horizontalnom putanjom kroz Lista i Shetland (marinski šejl i bazalni vapnenci) formacije, s mjerenom duljinom od gotovo 6 000 m. Ova sekcija izrađena je s povećanjem kuta otklona od vertikale od 79° na 87° na početku sekcije te konstantnim kutem otklona do točke ulaska u srednji dio Shetland formacije.

Ta točka je ujedno i druga točka skretanja kanala, a kut otklona se tijekom bušenja smanjuje na 37° u zadnjoj dionici kanala bušotine. U ovoj sekciji kanala bušotine najveći rizik predstavljalo je čišćenje gotovo horizontalnog kanala zbog ograničenja isplačnih pumpi na platformi Statfjord C. Zbog navedenog su od najveće važnosti tijekom izrade ovog dijela kanala bili efikasnost upravljivog rotacijskog sustava, primjena bušaćih šipki (promjera 168,3 mm (6 5/8")) te vrijednosti reoloških svojstava povratnog toka isplake. Vrijednosti torzije i natega bušaćeg alata praćene su na svakoj spojnici i podešavane dodavanjem podmazivača u isplaku. Ova sekcija kanala bušotine je nakon izrade zacijevljena ugradnjom lajnera promjera 244,5 mm (9 5/8"), zbog čega je bilo važno održati nizak tortuozitet bušotine. Glavnu ulogu u tome imao je upravljivi rotirajući sustav kojim se sekcija izrađivala u HIA modulu rada koji omogućuje automatsko održavanje i eventualno popravljanje smjera i kuta otklona kanala u slučaju utjecaja drugih čimbenika na smjer bušenja. Kad je alat po završetku izrade ove sekcije izvađen, na njemu nije bilo većih oštećenja. Sekcija je izrađena s 3 različita sastava donjeg dijela niza bušaćeg alata,

Sljedeća sekcija kanala bušotine, promjera 215,9 mm (8 ½") planirana je kroz preostali dio Shetland formacije te iscrpljene Ness (pješčenjak i madston) i Etive (pješčenjak) formacije. U bušotinama velikog dosega problem često predstavlja bušenje kroz cementacijsku petu prethodne kolone zaštitnih cijevi pri kojem često dolazi do savijanja i pucanja bušaćih šipki uslijed torzije i trenja sa zaštitinim cijevima. Kako bi se to izbjeglo, korišteni su podmazivači, a bušaći niz je rotiran neposredno prije postizanja konačne dubine. U ovaj dio kanala bušotine, od 8 170 do 8 225 m mjerene dubine, ugrađen je lajner promjera 177,8 mm (7") i cementiran.

Posljednja sekcija kanala bušotine izrađena je dlijetom promjera 152,4 mm (6") do mjerene dubine od 8 331 m, odnosno do konačne vertikalne dubine od 2 504,5 m kako bi se izbjegao kontakt nafta-voda.

5.1.2. Izrada bušotine

Za izradu opisane bušotine korišteni su, između ostalog alata, Schlumbergerovi PowerDrive Xceed rotirajući upravljivi sustavi opisani u prethodnom poglavlju. U kombinaciji s dijamantnim dlijetima različitih promjera (*engl. Polycrystalline Diamond Compact, PDC*) izrađene su sve sekcije kanala bušotine osim početne vertikalne sekcije koja je već postojala te posljednje sekcije kanala, promjera 152,4 mm (6").

Pri izradi prve sekcije kanala promjera 444,5 mm (17 $\frac{1}{2}$ ") korišten je upravljivi rotirajući sustav PowerDrive Xceed 900. Probušeno je 40 metara cementnog kamena u koloni promjera 508,0 mm (20") pri brzini rotacije od 60 do 80 min⁻¹ i 49,05 do 98,1 kN (5 do 10 t) opterećenja na dlijeto. Brzina bušenja iznosila je 10 m/h uz dobavu sisaljke od 3 000 do 3 200 L/min. Tijekom bušenja opterećenje na dlijeto je variralo, što je pokazatelj nejednake čvrstoće cementnog kamena. Planirana točka skretanja kanala nalazila se 2 m ispod pete kolone zaštitnih cijevi promjera 508,0 mm (20"). Prije promjene sastava donjeg dijela bušaćeg niza, kanal bušotine ispran je isplakom pri dobavi od 4 400 L/min te je postavljen novi cementni čep. Nakon stvrdnjavanja cementne kaše u cementni kamen, skretanje kanala bušotine postignuto je uz brzinu rotacije od 60 min⁻¹, opterećenje na dlijeto od 98,1 kN (10 t) te protok isplake od 2 700 L/min. Tanki proslojci na koje se naišlo nisu utjecali na upravljanje dlijetom te je bušenje nastavljeno s planiranim povećanjem kuta otklona od vertikale (0°) do 79°. Bušaći parametri korišteni pri izradi ove sekcije navedeni su u tablici 5-2. Sastav donjeg dijela bušaćeg niza korištenog pri izradi ove sekcije prikazan je na slici 5-6.

Tablica 5-2. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 444,5 mm (17 ¹/₂") (prema Hussain i drugi, 2017)

Dobava (L/min)	Brzina rotacije (min ⁻¹)	Opterećenje na dlijeto (kN)			
Bušenje cementnog čepa u postojećoj koloni zaštitnih cijevi promjera 508 mm (20")					
brzinom od 10 m/h (769 - 820 m MD)					
3 000 - 3 200	60 - 80	49,05 - 98,1			
Ispiranje kanala prije vađenja alata (priprema za novi cementni čep)					
4 400	-	-			
Skretanje kanala bušotine (820-2 215 m MD)					
2 700	60	98,1			
Proširivanje kanala prilikom izvlačenja alata					
4 200	160	_			

Slika 5-6. Sastav alata za izradu sekcije kanala bušotine promjera 444,5 mm (17 ¹/₂") (Hussain i drugi, 2017)

Sljedeća sekcija kanala bušotine promjera 311,2 mm (12 ¼") izrađena je primjenom tri različita sastava donjeg dijela bušaćeg niza. Na mjerenoj dubini od 2 360 m, upravljivi rotirajući sustav stavljen je u HIA modul rada, što znači da održava postignuti kut otklona kanala od vertikale i smjer sve do promjene tih parametara. Brzina bušenja iznosila je 45-50 m/h uz opterećenje na dlijeto od 19,62 do 78,48 kN (2 do 8 t) iako se kasnije smanjila zbog korištenja neodgovarajuće isplake. Nailaskom na proslojke tvrdih stijena te povećanjem opterećenja na dlijeto, kut otklona kanala malo se povećao, no automatski je vraćen na planirani zahvaljujući HIA načinu rada upravljivog rotacijskog sustava. Slika 5-7 prikazuje promjenu kuta otklona ovog dijela kanala bušotine.

Slika 5-7. Promjena kuta otklona kanala bušotine od vertikale tijekom izrade dijela kanala bušotine promjera 311,2 mm (12 ¼") (Hussain i drugi, 2017)

Nakon postizanja mjerene dubine od 4 662 metra promijenjen je sastav donjeg dijela bušaćeg niza zbog navedenih problema. Nakon spuštanja alata u bušotinu, bušenje je nastavljeno uz brzinu rotacije od 160 do 180 min⁻¹, opterećenje na dlijeto od 19,62 do 78,48 kN (2 do 8 t) te dobavu od 3 500 do 3 850 L/min. Tangencijalna sekcija bušotine izrađena je u HIA načinu rada sve do početka smanjenja kuta otklona na 7 668 m mjerene dubine kanala bušotine. Zbog straha od nemogućnosti vađenja alata iz kanala bušotine, kanal bušotine izrađen je do mjerene dubine od 7 784 m, to jest 438 m manje od planiranog uz brzinu rotacije od 150 do 185 min⁻¹, opterećenje na dlijeto od 49,05 do 176,58 kN (5 do 18 t) te dobavu od 3 540 L/min.

Sastav donjeg dijela niza opet je promijenjen nakon dostizanja mjerene dubine od 7 784 m s ciljem čišćenja bušotine prije ugradnje i vješanja lajnera promjera 244,5 mm (9 5/8"). Planirana mjerena dubina od 8 222 m ipak nije postignuta, no lajner je uspješno ugrađen do mjerene dubine od 7 784 m te se dalje nastavilo bušiti iduću sekciju dlijetom promjera 215,9 mm (8 1/2 "). Bušaći parametri korišteni tijekom izrade ove sekcije kanala prikazani su u tablici 5-3. Sva tri sastava alata korištena pri izradi ove sekcije kanala bušotine prikazana su na slici 5-8.

Tablica 5-3. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 311,2 mm (12 ¼") (prema Hussain i drugi, 2017)

Dobava (L/min)	Brzina rotacije (min ⁻¹)	Opterećenje na dlijeto (kN)		
Bušenje prvim sastavom alata (2 215 - 4 662 m MD)				
3 500 - 3 850	160 - 180	19,62 - 78,48		
Bušenje drugim sastavom alata (4 662 – 7 784 m MD)				
3 540	150 - 185	147,15 - 176,58		

Slika 5-8. Sastavi alata korišteni pri izradi sekcije kanala bušotine promjera 311,2 mm (12 ¹/₄") (Hussain i drugi, 2017)

Sekcija kanala bušotine promjera 215,9 mm (8 ½") također je izrađena pomoću rotirajućeg upravljivog sustava zbog nemogućnosti postizanja planirane mjerene dubine u prethodnoj sekciji. Zbog nesigurnosti u vezi kvalitete cementne veze oko ugrađenog i cementiranog lajnera i oko cementacijske pete, te ograničenja vezana za ekvivalentnu cirkulacijsku gustoću isplake, ovaj dio kanala izrađen je uz kontroliranu brzinu bušenja od 20 m/h, brzinu rotacije 160-180 min⁻¹, opterećenje na dlijeto od 49,05 do 58,86 kN (5 do 6 t) te dobavu od 1360 L/min. Postignuta je mjerena dubina sekcije kanala od 8 225 m, odnosno konačna vertikalna dubina sekcije od 2 417 m. Mjerni sustav upravljivog rotacijskog sustava pokazao je da je kut otklona od vertikale na postignutoj dubini iznosio 34,8°. U izrađeni kanala promjera 215,9 mm (8 ½") uspješno je ugrađen lajner promjera 177,8 mm (7"). U tablici 5-4 prikazani su bušaći parametri korišteni pri izradi ove sekcije kanala. Sastav bušaćeg niza korišten pri izradi ove sekcije prikazan je na slici 5-9.

Tablica 5-4. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 215,9 mm (8 ¹/₂") (prema Hussain i drugi, 2017)

Dobava (L/min)	Brzina rotacije (min ⁻¹)	Opterećenje na dlijeto (kN)		
Bušenje sekcije kanala promjera 215,9 mm (8 1/2 ") (7 784 – 8 225 m MD)				
1360	160 - 180	49,05 - 58,86		

Slika 5-9. Sastav alata korišten pri izradi sekcije kanala bušotine promjera 215,9 mm (8 1/2 ") (Hussain i drugi, 2017)

Posljednja sekcija kanala promjera 152,4 mm (6") nije izrađena primjenom rotirajućeg upravljivog sustava, već na klasičan način uz primjenu cirkulacijske spojnice iznad dlijeta promjera 152,4 mm (6"). Brzina rotacije iznosila je 50 min⁻¹, opterećenje na dlijeto 49,05 kN (5 t), a dobava 1 200 L/min. Konačna dostignuta mjerena dubina iznosila je 8 331 m, odnosno duljina ove sekcije (od 8 225 do 8 331 m) iznosi 106 m. Konačna vertikalna dubina bušotine iznosi 2 504,5 m. U tablici 5-5 prikazani su navedeni bušaći parametri korišteni pri izradi ove sekcije kanala.

Tablica 5-5. Bušaći parametri korišteni pri izradi sekcije kanala bušotine promjera 152 mm (6") (prema Hussain i drugi, 2017)

Dobava (L/min)	Brzina rotacije (min ⁻¹)	Opterećenje na dlijeto (kN)		
Bušenje sekcije promjera 152,4 mm (6") (8 225 – 8 331 m MD)				
1200	50	49,05		

Bušotina je izrađena prema planiranoj putanji uz korištenje rotacijskog upravljivog sustava u zahtjevnim uvjetima bušenja. Kontrola smjera bušenja tijekom izrade bušotine izvršena je na više različitih načina radi povećanja točnosti, uključujući mjerni sustav rotirajućeg upravljivog sustava. Nakon gotovo 500 sati rada u bušotini, rotirajući upravljivi sustav nije bio pretjerano oštećen niti mu je smanjena funkcionalnost, što pokazuje njegovu izdržljivost. Također, zahvaljujući HIA načinu rada, tangentna sekcija kanala bušotine izrađena je bez većih promjena kuta otklona kanala bušotine. Sastav alata korišten pri izradi posljednje sekcije bušotine promjera 152,4 mm prikazan je na slici 5-10.

Slika 5-10. Sastav alata korišten pri izradi sekcije kanala bušotine promjera 152,4 mm (6") (Hussain i drugi, 2017)

5.2. Primjena rotacijskog upravljivog sustava pri izradi bušotine velikog dosega u dubokom moru uz zapadnu obalu Afrike

Istraživanje i proizvodnja nafte i plina u zapadnoj Africi započeli su 1960-ih godina. Bušotine su najčešće smještene u dubokom moru, prosječne dubine oko 2 000 m. Duž sjeverozapadne i centralno zapadne obale nalaze se četiri geološke regije s ležištima nafte, plina i kondenzata, kao što je prikazano na slici 5-11 (United States Geological Survey, 2016).

Slika 5-11. Područja s rezervama ugljikovodika uz zapadnu obalu Afrike (Crossed Crocodiles, 2011)

5.2.1. Tehničke karakteristike bušotine

Bušotina koja je opisana u ovom poglavlju je naftna bušotina velikog dosega, mjerene dubine 6 800 m i vertikalne dubine 2 700 m (Jerez i drugi, 2013). Izrađena je u moru dubine 1 000 m, a svrha njene izrade bilo je crpljenje nafte iz nedosegnutog dijela ležišta koji ne bi bilo moguće iscrpiti konvencionalnom bušotinom. Tijekom izrade kanala bušotine dlijetom promjera 444,5 mm (17 1/2 ") kroz plitke meke formacije stijena kut otklona kanala od vertikale povećan je do 85°. U tangentnoj sekciji kanala promjera 311,2 mm (12 ¹/4"), donji dio bušaćeg alata treba zadržavati kut otklona kanala te ga skrenuti uzduž rasjednutog šejla, a zatim promijeniti smjer u odnosu na sjever za više od 60° te istovremeno smanjiti kut otklona od vertikale na 70°. Tangentna sekcija ove bušotine najdulja je izrađena na zapadnoj obali Afrike do 2013. godine, a njena duljina iznosi 3 400 m (Jerez i drugi, 2013). Planirana putanja bušotine prikazana je na slici 5-12.

Slika 5-12. Putanja kanala bušotine uz zapadnu obalu Afrike (Jerez i drugi, 2013)

Problemi koje je trebalo svladati prilikom izrade ove bušotine uključuju mogućnost postizanja dovoljno velikog kuta otklona kanala bušotine od vertikale bez bušenja kanala povećanog promjera u mekim stijenama. Također, pri kraju tangencijalne sekcije vrlo je bitna i precizna kontrola opterećenja na kuki, torzije i natega kako bi se postigla planirana promjena smjera i kuta otklona kanala bušotine. Osim toga, trebalo je pomno pratiti i brzinu bušenja zbog utjecaja na ekvivalentnu cirkulacijsku gustoću isplake čije su primjenjive vrijednosti imale mali raspon (Jerez i drugi, 2013).

Kako bi se spriječila izrada bušotine prevelikog promjera te postigla planirana putanja, korišten je rotirajući upravljivi sustav koji usmjerava dlijeto pri bušenju svih usmjerenih dijelova kanala bušotine (Jerez i drugi, 2013). Korišten je rotirajući upravljivi sustav tvrtke Halliburton, GeoPilot čije su karakteristike opisane u poglavlju 4.1.

5.2.2. Izrada bušotine

Pri planiranju pojedinih faza izrade kanala bušotine korišten je softver za odabir sastava donjeg dijela bušaćeg niza. Primijenjene su i različite iteracije kako bi se uzelo u obzir potencijalna proširenja kanala bušotine, utjecaj vrste stijena na povećanje kuta otklona, vibracije prilikom bušenja i čišćenje kanala bušotine od krhotina razrušenih stijena.

Proširenje kanala bušotine pri bušenju kroz meke stijene jedan je od čimbenika koji može jako utjecati na ponašanje donjeg dijela bušaćeg niza. Pri bušenju sekcije u kojoj se kut otklona od vertikale povećava, proširenja kanala mogu se izbjeći smanjivanjem bočnih opterećenja na točkama kontakta donjeg dijela bušaćeg niza i stijenki kanala bušotine. Bočna opterećenja na dlijeto uzrokovana djelovanjem rotacijskog upravljivog sustava mogu se smanjiti i kontrolirati dodavanjem kontaktnih točaka duž nerotirajućeg kućišta. To se može postići podešavanjem geometrije donjeg dijela bušaćeg niza. Ukoliko se buši kanal povećanog promjera, te točke će smanjiti bočna opterećenja na dlijeto te time ograničiti daljnje povećanje promjera kanala (Jerez i drugi, 2013).

Konstrukcija ove bušotine podijeljena je u 5 sekcija koje su izrađene korištenjem 6 različitih sastava donjeg dijela bušaćeg niza. Pri bušenju sekcije kanala promjera 444,5 mm (17 ¹/₂") korišten je sastav donjeg dijela niza prikazan na slici 5-13.

Odabranom sastavu niza dodana je još jedna kontaktna točka udaljena 1,44 metara od dlijeta koja smanjuje bočno opterećenje u točki oslonca rotacijskog upravljivog sustava, te se time smanjuje mogućnost bušenja kanala povećanog promjera. Prilikom bušenja ovog intervala nije došlo do vibracija uzrokovanih nasjedanjem alata na stijenke kanala. Na slici 5-13 prikazani su i iznosi bočnih opterećenja ovakvog sastava te udaljenost pojedinih dijelova bušaćeg niza od dlijeta.

Slika 5-13. Donji dio bušaćeg niza korišten pri izradi sekcije kanala bušotine promjera 444,5 mm (17 ¹/₂") (Jerez i drugi, 2013)

Precizno podešen i uravnotežen donji dio niza bio je od presudne važnosti pri bušenju tangencijalne sekcije promjera 311,2 mm (12 ¼") koje je trajalo 115 sati. Prilikom izrade te sekcije, osim smanjivanja bočnih opterećenja, cilj je bio zadržati postignuti kut otklona od vertikale i smjer bušenja s minimalnim promjenama. S tom svrhom opet je dodana još jedna kontaktna točka na donjem dijelu nerotirajućeg kućišta. Uravnoteženje donjeg dijela niza pridonosi i smanjivanju vibracija i naprezanja, što je vrlo poželjno pri bušenju dugih tangentnih sekcija jer poboljšava učinak alata i njegovu dugotrajnost. Na slici 5-14 prikazan je sastav alata korišten pri izradi ove sekcije, udaljenost pojedinih dijelova bušaćeg niza od dlijeta te iznosi bočnih opterećenja za ovaj sastav donjeg dijela bušaćeg niza.

Slika 5-14. Donji dio bušaćeg niza korišten pri izradi sekcije kanala bušotine promjera 311,2 mm (12 ¹/₄") (Jerez i drugi, 2013)

Iako je donji dio bušaćeg niza bio uravnotežen, ipak je došlo do vibracija uzrokovanih promjenama u brzini rotacije donjeg dijela niza. Razlog tome bilo je nasjedanje spojnica alata na stijenke kanala bušotine s kutom otklona od vertikale od 85°. Pritom je korišten senzor praćenja torzije (TEMTM) spomenut u poglavlju o rotirajućim upravljivim sustavima kompanije Halliburton.

Dio kanala u kojem se povećava kut otklona od vertikale (promjera 444,5 mm (17 ¹/₂") izrađen je bez poteškoća s povećanjem kuta otklona od vertikale (DLS) od prosječno 3,5°/30 m. U sljedećoj sekciji postignuto je zadržavanje kuta otklona uz zakrivljenost alata od 35%. Stvarna putanja bušotine odgovarala je planiranoj putanji uz nekoliko podešavanja zakrivljenosti alata radi ispravljanja smjera kanala. Proizvodni interval također je izrađen koristeći rotirajući upravljivi sustav prilagođene geometrije. Prilikom ulaska u ležište, bilo je potrebno ugraditi tehničku kolonu zaštitnih cijevi pod potrebnim smjerom da bi se povećala raskrivenost ležišta. Sve sekcije kanala bušotine zacijevljene su kolonama zaštitnih cijevi odgovarajućeg promjera iz prvog pokušaja i uspješno cementirane.

6. ZAKLJUČAK

Rotirajući upravljivi sustavi razvili su se, nakon dubinskih volumetrijskih isplačnih motora, kao inovativni bušaći sklopovi za lakšu izradu usmjerenih i horizontalnih bušotina.

Porast kuta otklona sekcije kanala bušotine koji je moguće postići dugo je bio jedna od glavnih prednosti dubinskih motora nad rotirajućim upravljivim sustavima. Upotrebom dubinskih volumetrijskih motora pri izradi usmjerenih bušotina u praksi primijećene su mane navedenih sustava. Kut otklona motora od osi teških šipki namješta se na površini, čime je smanjena upravljivost motora. Kod upotrebe dubinskih motora, usmjerena sekcija izrađuje se u kliznom načinu rada tako da motor rotira dlijeto dok ostatak bušaćeg niza do površine miruje. Ako se želi zadržati postignuti kut otklona, cijeli niz rotira zajedno s motorom pa se izrađuje kanal bušotine povećanog promjera. U principu se pri upotrebi dubinskih motora naizmjence buši u rotacijskom i kliznom načinu rada. Takav način rada povlači za sobom probleme s tortuozitetom kanala bušotine, čišćenjem kanala bušotine, diferencijalnim prihvatima alatki, smanjenom brzinom bušenja te posljedično duljim ukupnim vremenom izrade bušotine.

Primjenom rotirajućih upravljivih sustava u praksi pokazala se njihova superiornost u danim uvjetima izrade bušotina. Konačni pokazatelj primjenjivosti nekog sustava pri izradi bušotine je ukupno vrijeme izrade koje ovisi o nizu čimbenika. Budući da se primjenom ovih sustava poboljšava čišćenje kanala bušotine i smanjuje rizik od prihvata alatki zahvaljujući rotaciji bušaćeg niza, vrijeme izrade bušotine također se smanjuje. Njihova upravljivost pritom također igra važnu ulogu zbog smanjenja broja potrebnih manevara alatom. Konačno, osim smanjenja vremena izrade, izrađeni kanal bušotine ima kvalitetnije stijenke, što olakšava kasniju ugradnju zaštitnih cijevi i druge radove u bušotini.

Velike kompanije u ponudi imaju rotirajuće upravljive sustave za različite primjene, kao što je i opisano u radu. Razvijeni su rotirajući upravljivi sustavi kod kojih cijeli niz bušaćih alatki rotira s površine. Kut otklona kanala i smjer pod kojim sustav usmjerava dlijeto mogu se mijenjati s površine, istovremeno s izradom kanala bušotine, zahvaljujući sustavu prenošenja podataka u "zatvorenoj petlji". Pritom, rotirajući upravljivi sustav usmjerava dlijeto izvlačenjem papučica ili rebara i oslanjanjem na stijenke bušotine ili stijenke rukavca sustava, odnosno putem zglobne osovine, ovisno o konstrukciji samog sustava.

Obzirom na način usmjeravanja, rotirajući upravljivi sustavi svrstavaju se u sustave koji "guraju" dlijeto, sustave koji usmjeravaju dlijeto preko zglobne osovine te hibridne sustave kod kojih se papučice za usmjeravanje umjesto na stijenke kanala oslanjaju na rukavac sustava. Kronološki gledano, prvi razvijeni sustavi bili su sustavi koji "guraju" dlijeto. Nakon primjene u praksi, ispostavilo se da su takvi sustavi manje pouzdani pri bušenju kroz nestabilne stijene sklone bubrenju ili urušavanju zbog oslanjanja na stijenke kanala. Bez obzira na to, češće se koriste u praksi. Zatim su razvijani sustavi koji dlijeto usmjeravaju putem zglobne osovine, kod kojih je pak sporija reakcija na promjene kuta otklona od vertikale i smjera bušenja dok je alat u bušotini. Ovi rotirajući upravljivi sustavi još nisu dovoljno razvijeni da bi istisnuli iz upotrebe sustave koji "guraju" dlijeto. Općenito se naredbe sustavu šalju putem promjena vrijednosti tlaka isplake (hidrauličkih impulsa) ili broja okretaja bušaćih šipki. Konačno, razvijeni su i hibridni sustavi koji objedinjuju značajke obje dosad navedene vrste rotirajućih upravljivih sustava. Također, razvijeni su rotirajući upravljivi sustavi za izradu bušotina manjeg promjera i većeg stupnja zakrivljenosti te za teške uvjete bušenja.

Osim razvoja operativnih principa sustava, razvijali su se i senzori za mjerenje parametara kanala bušotine koji se ugrađuju u rotirajuće upravljive sustave.

Iako su rotirajući upravljivi sustavi danas mnogo napredniji nego na početku svog razvoja, i dalje ima prostora za njihovo poboljšanje. Obzirom na napredak prvenstveno informacijske tehnologije, vjerojatno će se ta poboljšanja odnositi na njihovu daljnju automatizaciju.

7. LITERATURA

- ANDREASSEN, E., BLIKRA, H., HJELLE, A., KVAMME, S. A., HUAGEN, J. 1998. Rotary Steerable System Improves Reservoir Drilling Efficiency and Wellbore Placement in Statfjord Field, IADC/SPE 39329, IADC/SPE Drilling Conference, Dallas, Texas, USA, 3 - 6 Mar 1998.
- BARR, J. D., CLEGG, J. M., RUSSELL, M. K. 1995. Steerable Rotary Drilling With an Experimental System. SPE/IADC 29382, SPE/IADC Drilling Conference, Amsterdam, Netherlands, 28 Feb – 2 Mar 1995.
- BRYAN, S., COX, J., SLAYDEN, F., NAGANATHAN, S. 2009. World's First High Curvature Rotary Steerable System. OMC-2009-014, Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 25 – 27 Mar 2009.
- BUKER, M. 2001. Advancements in Rotary Steerable Technology. 2001-040-EA, Petroleum Society's Canadian International Petroleum Conference, Calgary, Alberta, Canada, 12 – 14 Jun 2001.
- 5) DOWNTON, G., HENDRICKS, A., KLAUSEN, T. S., PAFITIS, D. 2000. New Directions in Rotary Steerable Drilling. Oilfield Review, Schlumberger.
- 6) GAURINA-MEĐIMUREC, N., PAŠIĆ, B., MIJIĆ, P. 2017. Nove tehnologije izrade naftnih i plinskih bušotina. Godišnjak Akademije tehničkih znanosti Hrvatske 2016., Akademija tehničkih znanosti Hrvatske, Zagreb, 2017, str. 101-127.
- GAURINA-MEĐIMUREC, N. 2014. Usmjereno bušenje, materijali iz kolegija Bušenje 2 (neobjavljeno).
- GIBBONS, K. A., JOURDAN, C. A., HESTHAMMER, J. 2003. The Statfjord Field, Blocks 33/9, 33/12 Norwegian sector, Blocks 211/24, 211/25 UK sector, Northern North Sea.
- 9) HAWKINS, R., JONES, S., O'CONNOR, J., SUGIURA, J. 2013. Design, Development, and Field Testing of a High Dogleg Slim-Hole Rotary Steerable System. SPE/IADC 163472, SPE/IADC Drilling Conference and Exhibition, Amsterdam, The Netherlands, 5 – 7 March 2013.
- 10) HUSSAIN, S., DHAHER, K. S., BJOERNELI, H. M, BLACKBURN, J., MONTEROSSA, L., JAKOBSEN, T., MONSEN, G. O., HAALAND, S., DAHL, J., ØSTENSEN, S., FJELDE, K. K. 2017. Drilling an ERD Well on the Statfjord Field, North Sea. SPE-185935-MS, SPE Bergen One Day Seminar, Bergen, Norway, 5 Apr 2017.

- 11) INGLIS, T.A. 1987, Directional Drilling. London, Engleska, str. 172-195.
- 12) JEREZ, H., DIAS, R., TILLEY, J. 2013. Offshore West Africa Deepwater ERD: Drilling Optimization Case History. SPE-163485-MS, SPE/IADC Drilling Conference and Exhibiton, Amsterdam, The Netherlands, 5 – 7 March 2013.
- 13) JONES, S., SUGIURA, J., DAS, P. 2010. Design, Development and Testing of a Slimhole Rotary Steerable System. SPE 130920, CPS/SPE International Oil & Gas Conference and Exhibition, Beijing, China, 8 – 10 Jun 2010.
- 14) MELI, R., SALAS, C., MARTIN, R., ROA, E. R., ZAHEER, V. N. A., DURAIRAJAN, B., HILL, R. 2014. Integrated BHA System Drills Curve/Lateral in One Run at Record ROP Saving Seven Days Rig Time. IADC/SPE 167920, IADC/SPE Drilling Conference and Exhibition, Forth Worth, Texas, 4 – 6 March 2014.
- 15) MOODY, M., JONES, S., LEONARD, P. 2004. Development & Field Testing of a Cost Effective Rotary Steerable System. SPE 90482, SPE Annual Technical Conference and Exhibiton, Houston, Texas, USA, 26 - 29 Sep 2004.
- 16) REY-FABRET, I. 2015. p.4 Offshore, IFP School, online predavanje (neobjavljeno).
- SCHAAF, S., MALLARY, C. R., PAFITIS, D. 2000. Point-the-Bit Rotary Steerable System: Theory and Field Results. SPE 63247, SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, 1-4 Oct 2000.

Internetski izvori:

- BAKER HUGHES, 2017a. URL:https://www.bakerhughes.com/products-and-services/drilling/drillingservices/directional-drilling-services/rotary-steerable-systems (17.07.2017.)
- BAKER HUGHES, 2017b. URL:<u>https://www.bakerhughes.com/products-and-services/drilling/drilling-services/directional-drilling-services/rotary-steerable-systems/autotrak-exact-rotary-steerable-drilling-system</u> (19.07.2017.)
- BAKER HUGHES, 2017c. URL:<u>https://www.bakerhughes.com/products-and-services/drilling/drilling-</u> services/directional-drilling-services/rotary-steerable-systems/autotrak-curve-rotary-<u>steerable-system</u> (29.07.2017.)

4) BAKER HUGHES, 2017d.

URL:https://assets.www.bakerhughes.com/system/14/e24e00dfa911e48fb0e19c75feff d7/ATC-70-01-001.pdf (29.07.2017.)

- 5) BAKER HUGHES, 2017e. URL: https://www.bakerhughes.com/products-and-services/drilling/drillingservices/directional-drilling-services/rotary-steerable-systems/autotrak-x-treme-rotarysteerable-system (21.07.2017.)
- BAKER HUGHES, 2017f.
 URL:<u>https://www.bakerhughes.com/products-and-services/drilling/drilling-services/directional-drilling-services/rotary-steerable-systems/autotrak-v-rotary-steerable-system (22.07.2017.)</u>
- 7) BAKER HUGHES, 2013.
 <u>URL:https://assets.www.bakerhughes.com/system/ec/ac1950dfaf11e4a9f62bdc1ed963</u>
 <u>68/38716.AutoTrak_G3_revision_Overview_HiRes.pdf</u> (29.07.2017.)
- 8) BAKER HUGHES, 2009.
 URL:<u>https://assets.www.bakerhughes.com/system/e4/33b250e20311e4a069ad82e4dd</u>
 <u>2ab5/ATDG-20-60-0475-01.pdf</u> (21.07.2017.)
- 9) CHEN, D., 2006.
 URL: <u>http://petrowiki.org/PEH:Directional_Drilling#Rotary_Assemblies</u>, (7.6.2017.)
- CROSSED CROCODILES, 2011. URL:<u>https://crossedcrocodiles.files.wordpress.com/2011/01/westafricaoilregions.jpg</u> (28.11.2017.)
- 11) DRILLING CONTRACTOR, 2015.
 URL:<u>http://www.drillingcontractor.org/wpcontent/uploads/2015/01/3D_new2.png</u> (15.06.2017.)
- 12) EMERSON PARADIGM HOLDING LLC, 2012.

URL:<u>http://www.pdgm.com/getmedia/7ec39ca5-ad5d-416e-9df3-</u> 7554193f954c/Wells-and-geological-formations-in-Sysdrill-2012-3Dview.jpg.aspx?width=1024&height=650&ext=.jpg (19.5. 2017.)

13) HALLIBURTON, 2017a.

URL:http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/rotarysteerables/rotary-steerable-solutions.page?node-id=hfvq7ixu 14) HALLIBURTON, 2017b.

URL:<u>http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/geo-pilot-and-geo-pilot-xl-rotary-steerable-systems.page</u> (14.7.2017.)

- 15) HALLIBURTON, 2017c. URL:<u>http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/rotary-steerables/solar-geo-pilot-xl-rotary-steerable-system.page (17.08.2017.)</u>
- 16) HALLIBURTON, 2017d. URL:<u>http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/rotary-steerables/geo-pilot-dirigo-rotary-steerable-system.page</u> (14.7.2017.)
- 17) HALLIBURTON, 2017e.
 URL:<u>http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/rotary-steerables/geo-pilot-duro-rotary-steerable-system.page</u> (16.08.2017.)
- 18) HALLIBURTON, 2017f. URL:<u>http://www.halliburton.com/en-US/ps/sperry/drilling/directional-drilling/rotary-steerables/geo-pilot-gxt-rotary-steerable-system.page (17.08.2017.)</u>
- 19) HALLIBURTON, 2016.
 URL:<u>http://www.halliburton.com/premium/ss/contents/Case_Histories/web/Geo-Pilot-</u> <u>Dirigo-Scandinavia-SidetrackHardRock.pdf</u> (14.7.2017.)
- 20) INTERNATIONAL ASSOCIATION OF DRILLING CONTRACTORS (IADC), 2015.

URL: http://www.iadc.org/wp-content/uploads/2015/08/preview-dd.pdf (05.01.2018.)

- 21) SAAVEDRA, L. C., 2014. URL:<u>https://image.slidesharecdn.com/cursodireccional-141130181654-conversion-gate01/95/curso-perforacion-direccional-31-638.jpg?cb=1417554845</u> (15.06.2017.)
- 22) NORSK PETROLEUM, 2017. URL: <u>http://www.norskpetroleum.no/en/facts/field/statfjord/</u>(20.11.2017.)
- 23) PETRO PEDIA, 2011.
 URL:<u>http://petropedia.blogspot.com/2014/01/drilling-problems-pipe-sticking.html</u> (10.6.2017.)
- 24) SCHLUMBERGER, 2017a.
 URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling_servic</u>

25) SCHLUMBERGER, 2017b.

URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_xcel.aspx</u> (03.11.2017.)

26) SCHLUMBERGER, 2017c.

URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/power_drive_orbit_rotary_steerable.aspx (04.11.2017.)</u>

- 27) SCHLUMBERGER, 2017d. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_vortex_max.aspx</u> (05.11.2017.)
- 28) SCHLUMBERGER, 2017e. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_ice.aspx</u> (05.11.2017.)
- 29) SCHLUMBERGER, 2017f. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_archer.aspx</u> (09.11.2017.)
- 30) SCHLUMBERGER, 2017g. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerv.aspx</u> (09.11.2017.)
- 31) SCHLUMBERGER, 2017h. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_xceed.aspx</u> (09.11.2017.)
- 32) SCHLUMBERGER, 2017i. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_family/powerdrive_vortex.aspx (09.11.2017.)</u>
- 33) SCHLUMBERGER, 2017j. URL:<u>http://www.slb.com/services/drilling/drilling_services_systems/directional_drilling/powerdrive_s6.aspx</u> (10.11.2017.)
- 34) SCHLUMBERGER, 2016. URL:<u>http://www.slb.com/resources/publications/industry_articles/subsea/201611-pennwell-shell-slb-oss-stones.aspx</u> (05.11.2017.)
- 35) UNITED STATES GEOLOGICAL SURVEY, 2016. URL:<u>https://pubs.usgs.gov/fs/2010/3006/)</u> (28.11.2017.)

36) WIKIPEDIA, 2018.

URL:<u>https://en.wikipedia.org/wiki/Statfjord_oil_field#/media/File:North_Sea_Fields_</u> Zoom_north.jpg (13.06.2018.)

IZJAVA

Ovom izjavom izjavljujem da sam ovaj rad izradila samostalno na temelju znanja i vještina stečenih na Rudarsko-geološko-naftnom fakultetu Sveučilišta u Zagrebu, služeći se navedenom literaturom.

Marina Hudoletnjak