Primjena aluminijskih bušaćih šipki u izradi horizontalnih bušotina velikog dosega

Luburić, Ivan

Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:006345

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-04

Repository / Repozitorij:

Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb

SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Diplomski studij naftnog rudarstva

PRIMJENA ALUMINIJSKIH BUŠAĆIH ŠIPKI U IZRADI HORIZONTALNIH BUŠOTINA VELIKOG DOSEGA Diplomski rad

Ivan Luburić N-252

Zagreb, 2019.

Diplomski rad

Rudarsko-geološko-naftni fakultet

PRIMJENA ALUMINIJSKIH BUŠAĆIH ŠIPKI U IZRADI HORIZONTALNIH BUŠOTINA VELIKOG DOSEGA IVAN LUBURIĆ

Diplomski rad izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za naftno inženjerstvo Pierottijeva 6, 10002 Zagreb

Sažetak

Upotrebom aluminija u izradi bušaćih šipki ostvarene su brojne prednosti i pogodnosti za njihovu primjenu u izradi bušotina velikog dosega u usporedbi s primjenom čelika u izradi bušaćih šipki. Ovim diplomskim radom opisana je primjena aluminijskih bušaćih šipki u izradi bušotina velikog dosega, te su uspoređena svojstva aluminijskih legura s legurama čelika i titana odnosno aluminijskih i čeličnih bušaćih šipki. Provedenim istraživanjem od strane Legartha i suradnika, korištenjem bušaćeg niza sastavljenog isključivo od aluminijskih šipki potvrđena je učinkovitost primjene aluminijskih bušaćih šipki kod izrade bušotina velikog dosega.

Ključne riječi: aluminij, aluminijske bušaće šipke, bušotine velikog dosega, naprezanja, težina niza bušaćih alatki

Diplomski rad sadrži: 53 stranice, 24 slike, 9 tablica i 16 referenci

Diplomski rad pohranjen: Knjižnica Rudarsko-geološko-naftnog fakulteta

Pierottijeva 6, Zagreb

Voditelj: Dr.sc. Borivoje Pašić, docent RGNF-a

Ocjenjivači: 1. Dr.sc. Borivoje Pašić, docent RGNF-a

- 2. Dr.sc. Nediljka Gaurina-Međimurec, redovita profesorica RGNF-a
- 3. Dr.sc. Zdenko Krištafor, redoviti profesor RGNF-a

Datum obrane: 21. veljače 2019.

Faculty of Mining, Geology and Petroleum Engineering

APPLICATION OF ALUMINIUM DRILL PIPES INTO DRILLING OF HORIZONTAL EXTENDED REACH WELLS IVAN LUBURIĆ

Thesis completed in: University of Zagreb Faculty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering Pierottijeva 6, 10002 Zagreb

Abstract

By using aluminium in the manufacture of drill pipes, numerous adventages and benefits have been achieved for their application in the drilling of extended reach well compared to the use of steel in the manufacture of drill pipes. This paper introduces the use of aluminium drill pipes in the drilling of extended reach wells and compares the properties of aluminium alloys with alloys of steel and titanium, and application of aluminium and steel drill pipes. The research carried out by Legarth and its associates, using a drill string made exclusively of aluminium drill pipes, confirms the effectivness of the use of aluminium drill pipe in drilling of extended reach well.

Keywords: aluminium, aluminium drill pipes, extended reach wells, stress, drill string weight

Thesis contains: 53 pages, 24 figures, 9 tables and 16 references

Thesis deposited in:Library of Faculty of Mining, Geology and Petroleum Engineering Pierottijeva 6, Zagreb

Supervisor: Dr.sc. Borivoje Pašić, assistant professor at RGNF

Evaluators: 1. PhD Borivoje Pašić, assistant professor at RGNF

2. PhD Nediljka Gaurina-Međimurec, professor at RGNF

3. PhD Zdenko Krištafor, professor at RGNF

Date of defense: February 21, 2019.

SADRŽAJ

POPIS SLIKAI
POPIS TABLICAIII
POPIS OZNAKA I ODGOVARAJUĆIH SI JEDINICAIV
POPIS KRATICAV
1. UVOD 1
2. SVOJSTVA ALUMINIJSKIH LEGURA KAO MATERIJALA ZA IZRADU BUŠAĆIH ŠIPKI
2.1. Osnovna svojstva legura koja su potrebna za kvalitetnu izradu bušaćih šipki
2.1.1. Specifična čvrstoća materijala4
2.1.2. Otpornost materijala na dinamička naprezanja i savijanje7
2.1.3. Otpornost na koroziju9
2.1.4. Abrazivno trošenje materijala9
2.2. Osnovne značajke aluminijskih legura 10
3. ALUMINIJSKE BUŠAĆE ŠIPKE 14
3.1. Spojnice aluminijskih bušaćih šipki15
3.1.1. Svojstva i čvrstoća spoja16
3.2. Aluminijske bušaće šipke izrađene iz laganih legura s poboljšanom sigurnosti
3.3. Aluminijske bušaće šipke s debelim stjenkama izrađenih iz laganih legura
poboljšane sigurnosti
3.4. Aluminijske bušaće šipke s integralnom spojnicom
3.5. Plutajuće aluminijske bušaće šipke27

4. BUŠOTINE VELIKOG DOSEGA	29
4.1. Sastav bušaćeg niza	
4.1.1. Osnovne značajke primjene aluminijkih šipki u sastavu bušaćeg	niza za izradu
bušotina velikog dosega	35
5. ALUMINIJSKE BUŠAĆE ŠIPKE U HORIZONTALNIM B	UŠOTINAMA
VELIKOG DOSEGA – PRIMJER IZ PRAKSE	
5.1. Druga faza istraživanja – izrada bušotina velikog dosega s	aluminijskim
bušaćim nizom	
5.1.1. Karakteristike bušotine	39
5.1.2. Smanjenje torzije i natega	
	43
6. ZAKLJUČAK	43

POPIS SLIKA

Slika 2-1. Maksimalne dubine bušotina za primjenu bušaćih šipki izrađenih od različitih
materijala i uronjenih u fluide različite gustoće6
Slika 2-2. Naprezanja pri savijanju bušaćih šipki nominalnog promjera D= 146 mm (5 ³ / ₄ ")
u kanalima bušotina različitog promjera8
Slika 3-1. Ojačanja bušaćih šipki15
Slika 3-2 . Spoj aluminijske bušaće šipke i čelične spojnice16
Slika 3-3. Kritična točka loma kod aluminijskih šipki s čeličnom spojnicom17
Slika 3-4. Dizajn LAIDP s različitim ojačanjima19
Slika 3-5. Presjek bušaće šipke veće pouzdanosti s debelim stjenkama izrađenih iz laganih
legura poboljšane sigurnosti23
Slika 3-6. HWLAIDP s užljebljenim spiralnim utorima
Slika 3-7. Aluminijska bušaća šipka s integralnom spojnicom24
Slika 3-8. Tipični dizajn aluminijske bušaće šipke s integralnom spojnicom25
Slika 3-9. Dizajn tijela plutajućih aluminijskih bušaćih šipki27
Slika 4-1 Usporedba moguće primjene aluminijskih (Al) i čeličnih (St) bušaćih šipki
prilikom izrade različitih tipova bušotina velikog dosega
Slika 4-2. Opći model određivanja sastava bušaćeg niza za bušotine velikog
dosega
Slika 5-1. Trajektorije postojećih i nove bušotine velikog dosega na razmatranom
polju
Slika 5-2. Trajektorija bušotine <i>Well #3</i> 41
Slika 5-3. KPI usporedba za bušotine Well#1 i Well #3 u dijelu kanala promjera 0,2159 x
0,2286 m (8 ¹ / ₂ " x 9")
Slika 5-4. Očekivano i stvarno smanjenje natega44

POPIS TABLICA

Tablica 2-1. Mehanička svojstva materijala koji se koriste za izradu bušaćih
šipki4
Tablica 2-2. Kemijski sastav aluminijskih legura11
Tablica 2-3. Fizikalna i mehanička svojstva aluminijskih legura
Tablica 3-1. Minimalni tehnički zahtjevi kod izrade čelične spojnice za spajanje aluminijskih bušaćih šipki
5 1
Tablica 3-2. Dimenzije i mehanička svojstva aluminijskih bušaćih šipki veće pouzdanost
izrađenih iz laganih legura21
Tablica 3-3 . Karakteristike aluminijskih bušaćih šipki s integriranom spojnicom
Tablica 3-4. Karakteristike čvrstoće aluminijskih bušaćih šipki s integriranom spojnicom za
četiri različite legure aluminija26
Tablica 3-5. Karakteristike čvrstoće aluminijskih bušaćih šipki s integriranom spojnicom za četiri različite legure aluminija (nastavak tablice 3-4.)
Tablica 4-1. Parametri dizajna i maksimalne duljine bušaćih nizova za tri tipa ERW za sluča
prinjene aluminijskih i celičnih busačih sipki

POPIS OZNAKA I ODGOVARAJUĆIH SI JEDINICA

- A površina presjeka bušaće šipke, (m²)
- d unutarnji promjer bušaće šipke, (m)
- Dk.b. promjer kanala bušotine, (m)
- dv vanjski promjer bušaće šipke, (m)
- E Youngov modul elastičnosti, (Pa)
- fo faktor savijanja, (m)
- Lo poluduljina izvijenog bušaćeg niza, (m)
- n sigurnosni faktor
- γ_l specifična težina bušotinskog fluida, (N/m³)
- γ_m specifična težina materijala, (N/m³)
- ρ_l gustoća fluida u kojem je bušaći niz uronjen , (kg/m³)
- ρ_m gustoća bušaće šipke, (kg/m³)
- L specifična čvrstoća materijala, (m)
- σ_b naprezanje zbog savijanja, (Pa)
- σ_t granica tečenja materijala, (Pa)

POPIS KRATICA

ADP (engl. Aluminium drill pipe) – aluminijske bušaće šipke

BADP (engl. Bouyant Aluminium Drill Pipe) – plutajuće aluminijske bušaće šipke

BHA (engl Bottom Hole Assembly) - sklop alatki na dnu

BHA L/D (engl. *Bottom Hole Assembly Lay Down*) – vrijeme potrebno za rastavljanje sastava krutog alata

BHA M/U (engl. *Bottom Hole Assembly Make Up*) – vrijeme potrebno za sastavljanje sastava krutog alata

ERD (engl. Extended Reach Drilling) - bušenje bušotina velikog dosega

ERW (engl. Extended Reach Well) - bušotina velikog dosega

HWLAIDP (engl. Heavy-Wall Light Alloy Improved Dependability Drill Pipe) – aluminijske bušaće šipke veće pouzdanosti s debelim stjenkama izrađenih iz laganih legura

KPI (engl. Key Performance Indicator) - indikator učinkovitosti

LAIDP (engl. *Light Alloy Improved Dependability Drill Pipe*) – aluminijske bušaće šipke veće pouzdanosti izrađene iz laganih legura

ROB (engl. Rotating Off Bottom) - rotacija zadignutog bušaćeg niza

ROP (engl. Rate Of Penetration) - napredak/brzina bušenja

TMD (engl. True Measured Depth) - stvarna mjerenena dubina

TVD (engl. Total vertical depth) - stvarna uspravna dubina

1. UVOD

Kontinuirano smanjivanje rezerevi nafte i plina koje se nalaze u konvencionalnim ležištima, tj. smanjivanje lako pridobivih rezervi ugljikovodika prisiljava naftnu industriju na razradu ležišta koja se nalaze na velikim dubinama i velikim udaljenostima od lokacije bušaćeg postojenja.

Većina tih struktura se nalazi ispod mora, te je za njihovo dosezanje s kopna ili određene lokacije na moru potrebno izraditi kanal bušotine velike duljine. U tu svrhu razvijena je tehnologija izrade bušotina velikog dosega, koja uz današnje sve zahtjevnije operacije i uz dosezanje svojih tehničkih i tehnoloških limita pokazuje zapanjujuće rezultate. Jednu takvu bušotinu izradila je kompanija Maersk, a naziv bušotine je BD-04A i izrađena je u svibnju 2008. godine s mjerenom duljinom kanala bušotine (engl. True Measured Depth - TMD) 12 290 m, horizontali doseg kanala od 11 569 m. Također, ostale bušotine s manjom mjerenom duljinom dosega jednako su komplicirane za izradu kao i BD-04A, a neka od njih su: bušotina Z-11 koju je izradila kompanija ExxonMobil na polju Chayvo (projekt Sakhalin-1) u Rusiji (TMD=11282 m), bušotina M-16 koju je izradila kompanija BP na polju Wytch Farm u Velikoj Britaniji (TMD=11278 m, uz horizontalni doseg 10728 m),te bušotina CN-1 koju je izradila kompanija Total na polju Ara u Argentini (TMD=11184 m, uz horizontalni doseg 10585 m) (Gelfgat et al., 2009), ali najveće postignuće je ostvareno izradom bušotine na Sakhalinu na polju Odopto. Ukupna mjerena duljina kanala bušotine iznosi 12 344 m uz horizontalni doseg kanala bušotine od 11 475 m (Lee et al., 2012).

Jedan od najvećih izazova prilikom izrade bušotina velikog dosega predstavlja povećanje težine bušaćeg niza, što rezultira značajnim povećanjem vlačnih i torzijskih naprezanja. Kod ultra dugačkih bušotina, sila trenja između stijenki kanala bušotine i bušaćeg niza može vrlo brzo doseći vrijednost koja će onemogućiti daljnu izradu kanala bušotine. Kako bi se ovakvi slučajevi izbjegli potrebna je primjena bušaćeg niza manje težine, što će utjecati na smanjenje sile trenja i gravitacijske komponente težine niza koja djeluje na kontaktnu površinu bušaćeg niza i stijenki kanala bušotine.

Jedno od rješenja navedenih problema prilikom izrađe bušotine velikog dosega je zamjena postojećih čeličnih bušaćih šipki sa šipkama izrađenim od lakših legura, kojima bi se ostvarile brojne prednosti, a najvažnija je smanjenje tozije i natega u horizontalnom dijelu kanala bušotine.

Primjenom aluminijskih bušaćih šipki ostvaren je svijetski rekord pri bušenju ultra duboke bušotine Kola SG-3 1990. godine, kada je dosegnuta stvarna uspravna dubina od 12 262 m (Gelfgat et al., 2003). Bušenje ove bušotine provedeno je korištenjem dubinskih motora uz istovremenu rotaciju cijelog bušaćeg niza, koji je uglavnom bio sastavljen od aluminijskih šipki. Izradom ove bušotine dobivena su brojna operativna iskustva i podatci, koji su se kasnije učinkovito primjenjivali pri izradi drugih bušotina, a neka od njih su navedena u ovom radu.

Cilj ovog rada je prikazati i opisati svojstva aluminijskih bušaćih šipki i materijala za njihovu izradu, te usporediti ih s čeličnih bušaćim šipkama. Također, prikazati primjer primjene aluminijskih bušaćih šipki u izradi horizontalnih bušotina velikog dosega.

2. SVOJSTVA ALUMINIJSKIH LEGURA KAO MATERIJALA ZA IZRADU BUŠAĆIH ŠIPKI

U današnje vrijeme aluminijske legure postale su izrazito važan i učinkovit materijal, koji se koristi u sve većem broju industrija, pa tako i u naftnoj industriji. Legure aluminija posjeduju brojna fizikalna i mehanička svojstva koja u određenom pogledu nadilaze svojstva čelika, koji se tradicionalno koristi u izradi bušaćih šipki, a neka od tih svojstava su: manja gustoća, dobra otpornost na koroziju u različitim uvjetima, nemagnetičnost, stabilnija mehanička svojstva, itd (Aquatic Company, 1999).

Primjenom aluminijskih legura kao materijala za izradu bušaćih šipki i brojnim istraživanjima unaprijeđena je izrada usmjerenih, horizontalnih i bušotina velikog dosega. Njihova prednost vidiljiva je prilikom bušenja na moru i u područjima ekstremnih radnih uvjeta s ograničenom infrastrukturom gdje je potrebno ostvariti smanjenje transportnih troškova materijala i opreme.

U ovom poglavlju biti će navedena i ukratko opisana svojstva pojedinih aluminijskih legura te usporedba njenih svojstava odnosno prednosti i nedostataka spram čelika i titana.

2.1. Osnovna svojstva legura koja su potrebna za kvalitetnu izradu bušaćih šipki

Prilikom sastavljanja niza bušaćih alatki potrebno je posebnu pažnju obratiti na materijal od kojega su alatke izrađene, kako bi se osigurala čvrstoća, pouzdanost i vijek trajanja niza. Osnovni zahtjevi za materijale odnosno legure koje će se primjeniti za izradu bušaćih šipki su (Aquatic Company, 1999):

- velika specifična čvrstoća (engl. specific strenght),
- optimalni moduli elastičnosti (engl. modul of elasticity E) i smicanja (engl. share modul G),
- otpornost na koroziju,
- otpornost na abraziju.

U tablici 2-1. prikazana su osnovna mehanička svojstva materijala koji se širom svijeta koriste za izradu bušaćih šipki. Pomoću ove tablice moguće je dobiti grubu procjenu ovih materijala s obzirom na već navedene zahtjeve i njihova svojstva.

Tablica 2-1. Mehanička svojstva materijala koji se koriste za izradu bušaćih šipki (Aquatic Company, 1999)

Materijal	Gustoća	Modul	Modul	Poissonov	Koeficijent	Specifični
	(kg/m³)	elastičnosti	smicanja	koeficijent	termičkog	toplinski
		(10 ⁴ MPa)	(104		širenja	kapacitet
			MPa)		(10 ⁻⁶ /°C)	(J/kg °C)
Čelik	7850	21,0	7,9	0,27	11,4	500
Aluminij	2780	7,1	2,7	0,30	22,6	840
Titan	4540	11,0	4,2	0,28	8,4	460

2.1.1. Specifična čvrstoća materijala

Težina bušaćeg niza je funkcija gustoće materijala iz kojeg su izrađene bušaće alatke, te njegovih dimenzija (promjer, duljina) i dubine bušotine. Ona također diktira veličinu naprezanja koje uzrokuje istezanje niza u bušotini. Specifična čvrstoća materijala se koristi kako bi se procjenila mogućnost upotrebe određenih materijala za izradu bušaćih šipki. Specifična čvrstoća materijala je omjer granice tečenja (engl. *yield stress*) i specifične težine (eng. *specific weight*) materijala (Gelfgat et al., 2003):

$$L = \sigma_{\rm t} / \gamma_{\rm m} \tag{2-1}$$

Gdje su :

- L specifična čvrstoća materijala, (m)
- σ_t granica tečenja materijala, (Pa)
- γ_m specifična težina materijala, (N/m³)

Specifična čvrstoća materijala definirana formulom (2-1) opisana je kao duljina loma materijala, te je zato izražena u jedinici duljine. Okarakterizirana je kao maksimalna duljina jednodimenzionalnog bušaćeg niza koji visi u zraku sve dok ostvareno naprezanje ne dosegne maksimalnu granicu tečenja materijala.

Budući da bušaći niz uronjen u isplaku postaje lakši zbog djelovanja uzgona, potrebno je to djelovanje uzeti u obzir. Stoga je potrebno u formulu specifične čvrstoće materijala uključiti sigurnosni faktor ili faktor uzgona (n):

$$L = \frac{\sigma_{\rm t}}{n(\gamma_{\rm m} - \gamma_{\rm l})} \tag{2-2}$$

Gdje su:

- n-sigurnosni faktor, $n = (1 \frac{\rho_1}{\rho_m})$, gdje su:
 - $\circ~\rho_l$ gustoća isplake u kojem je bušaći niz uronjen, (kg/m³)
 - \circ ρ_m gustoća bušaće šipke, (kg/m³)
- γ_1 specifična težina isplake, (N/m³)

Slika 2-1. prikazuje potencijalne duljine jednodimenzionalnih bušaćih nizova izrađenih od različitih materijala u bušotinama ispunjenim isplakom. Osjenčana područja ukazuju na moguće duljine bušaćih nizova za svaki tip legure. Ove duljine su računate s obzirom na moguće promjene odnosno na mogući raspon granice tečenja materijala i gustoće isplake (1 000-2 000 kg/m³).

Slika 2-1. Maksimalne dubine bušotina za primjenu bušaćih šipki izrađenih od različitih materijala i uronjenih u fluide različite gustoće (Aquatic Company, 1999)

Teoretski s jednodimenzionalnim aluminijskim bušaćim nizom moguće je ostvariti najveću duljinu kanala s obzirom na vlačna naprezanja. Obzirom na ovaj parametar aluminijske legure su najbolja opcija za izradu aluminijskih šipki koje će se koristiti za izradu ekstremno dubokih ili dugačkih kanala bušotine.

2.1.2. Otpornost materijala na dinamička naprezanja i savijanje

Najvažniji parametri za materijale bušaćih šipki su modul elastičnosti i modul smicanja, koji uvelike utječu na naprezanja u bušaćem nizu (Aquatic Company, 1999). Kada bušaći niz rotira u bušotini dolazi do promjenjivog naprezanja koje rezultira savijanjem:

$$\sigma_{\rm b} = \frac{\pi^2 E df_0}{4{L_0}^2} \tag{2-3}$$

Gdje su :

- σ_b naprezanje uslijed savijanja, (Pa)
- E Young-ov modul elastičnosti, (Pa)
- d unutarnji promjer bušaće šipke, (m)
- $f_0 = (D_{k.b.} d_v)/2 faktor savijanja, (m), gdje su:$
 - D k.b. promjer kanala bušotine, (m)
 - dv. vanjski promjer bušaće šipke, (m)
- Lo poluduljina izvijenog bušaćeg niza, (m)

Uz nekoliko manjih aproksimacija može se zaključiti da su promjenjiva naprezanja koja uzrokuju savijanje bušaćih šipki proporcionalna Young-ovom modulu elastičnosti materijala (uz uvijet da su svi drugi faktori jednaki). Njihova proporcionalnost za aluminijske, titanske i čelične šipke je: (Aquatic Company, 1999)

$$E_{\rm a}: E_{\rm t}: E_{\rm s} = 1:1,55:2,96$$
 (2-4)

Prema navedenoj proporcionalnosti može se zaključiti da će naprezanje uslijed savijanja kod aluminijskih šipki biti skoro tri puta manje u usporedbi s čeličnim šipkama istih dimenzija.

Vrijednost modula elastičnosti materijala bušaćih šipki izrazito je bitan prilikom prolaska bušaćeg niza kroz izvijene sekcije kanala bušotine. Što je manja vrijednost modula elastičnoti to se bušaći niz bolje prilagođava izvijenom kanalu bušotine i manji je naprezanje uslijed savijanja.

Slika 2-2. prikazuje rezultate naprezanja pri savijanju izračunatih pomoću jednadžbe (2-3) za aluminijske, titanske i čelične bušaće šipke ovisno o promjeru kanala bušotine.

Slika 2-2. Naprezanja pri savijanju bušaćih šipki nominalnog promjera D= 146 mm (5³/₄") u kanalima bušotina različitog promjera (Aquatic Company, 1999)

Kada je bušaći niz zadignut i cijelom težinom ovješen na elevator ili kada je zaglavljen u vrtaćem stolu prilikom dodavanja novih alatki dolazi do pojave vlačnog dinamičkog naprezanja. Dinamička vlačna naprezanja tijekom operacije izvlačenja proporcionalna su Youngovom modulu elastičnosti i specifičnoj težini materijala, a obrnuto proporcionalna jediničnoj težini bušaćih šipki, uz uvjet da su svi ostali faktori jednaki, a proporcije za materijale bušaćih šipki (aluminijske, titanske, čelične) su 1:1,6:2,9 (Gelfgat et al., 2003).

Materijali bušaćih šipki s manjim modulom elasičnosti, po pravilu, imaju manju specifičnu gustoću γ_m , obzirom na tu činjenicu moguće je zaključiti da takvi materijali bolje podnose vlačna dinamička naprezanje.

U slučajevima zaglave dlijeta, alatki na dnu ili dijela bušaćeg niza uslijed rotiranja javljaju se dinamička torzijska naprezanja. Za istu brzinu vrtnje i promjer bušaćih šipki, torzijska naprezanja za aluminijske, titanske i čelične šipke bit će proporcionalna modulu smicanja (G) i specifičnoj težini materijala, a obrnuto proporcionalna jediničnoj težini bušaćih šipki. Tijekom izvođenja operacija oslobađanja zaglavljenih alatki, torzijski kut niza se koristi za kontrolu zakretnog momenta, koji je obrnuto proporcionalan modulu smicanja.

Sva ova razmatranja dovode do zaključka kako modul elastičnosti i modul smicanja daju aluminijskim legurama veliku prednost naspram čeličnih i titanskih legura.

2.1.3. Otpornost na koroziju

Bušaće šipke izložene su brojnim agresivnim sredstvima i sredinama koji izazivaju njihovu koroziju ne samo u bušotini već i na površini. Tipovi korozija kojima su bušaće šipke izložene su: rupičasta, izolirana, interkristalinska i slojevita korozija pa tako i njihove kombinacije, a najčešći uzrok ovih korozija je prisustvo sljedećih agensa: kisika (O₂), ugljikovog dioksida (CO₂), otopljenih soli, sumporovodika (H₂S) te organskih kiselina. Kombinirane korozije rezultiraju brzim habanjem šipki, smanjenjem čvrstoće navojnih spojeva što dovodi do preuranjenog loma bušaćih šipki. Najkritičnije su izolirane, interkristalinske i slojevite korozije (Aquatic Company, 1999).

Istraživanja otrpornosti legura na koroziju su pokazala da legure titana i čelika imaju bolju otpornost od aluminijskih legura za osnovne tipove korozija, jedina iznimka je H₂S korozija gdje je aluminijska legura pokazalaveću otpornost.

2.1.4. Abrazivno trošenje materijala

Trenje ostvareno između bušaćih šipki i kanala bušotine rezultira abrazivnim trošenjem. Veličina abrazivnog trošenja ovisi o tvrdoći površine šipke, veličini prstenastog prostora, abrazivnim svojstvima stijena i podmazujućim svojstvima isplake.

Tvrdoća aluminijskih legura prema Mohsovoj ljestvici iznosi od 2,5 do 3, što je oko 1,5 puta manje nego površinska tvrdoća čeličnih legura, što ukazuje na to da su aluminijske šipke podložnije abrazivnom trošenju nego čelične ili šipke od titana (tvrdoća prema Mohsovoj ljestvici iznosi 6) (hr.wikipedia.org, 2019).

Abrazivne čestice u isplaci cirkuliraju pri velikim brzinama unutar bušaćih šipki što uzrokuje trošenje unutarnjih stijenki. Ovaj proces trošenja intenziviraniji je unutar bušaćeg niza zbog turbulentnog protoka isplake ostvarenog promjenom unutarnjeg promjera, te je ovaj proces trošenja istaknutiji kod aluminijskih šipki za razliku od čeličnih i šipki od titana (Aquatic Company, 1999).

2.2. Osnovne značajke aluminijskih legura

Aluminijske legure koje se koriste za izradu bušaćih šipki sastoje se od 90 do 95% aluminija, dok druge kovinske primjese (tablica 2-2.) čine 5 do 10%. Dodavanjem različitih primjesa u sastav legure poboljšava njena mehanička svojstva, osobito naprezanja na vlak i torziju.

U ovom poglavlju istaknute su osnovne značajke tri tipa aluminijskih legura koje se najčešće koriste u izradi aluminijskih bušaćih šipki. U današnje vrijeme za izradu aluminijskih bušaćih šipki najčešće korištene aluminijske legure označene su kao: D16T, 1953T1 i AK4-1T1 (Sabo, 2009.).

Legura AK4-1T1 koristi se za izradu aluminijskih bušaćih šipki za primjenu u izradi bušotina u visokotemperaturnim ležištima, te se isključivo koristi za izradu termalno stabilnih šipki koje podnose temperature ležišta veće od 160 °C.

Aluminijske bušaće šipke izrađene legurama preostalih dviju kategorija puno su popularnije u upotrebi za razliku od AK4-1T1 legure jer fizikalna i mehanička svojstava ove aluminijske legure odoljevaju velikim promjenama dinamičkih naprezanja koja se mogu pojaviti u određenim djelovima bušaćeg niza, što osigurava pouzdanost aluminijskih bušaćih šipki. Neka od tih svojstava su: izdržljivost, osjetljivost na koncentrična naprezanja, uzdužna i poprečna plastična deformabilnost i dr.

Sve komercijalne aluminijske legure svrstane su u grupe u kojima pojedina fizikalna i mehanička svojstva ovise o osnovnim primjesama legure, odnosno osnovna svojstva pojedine legure ovise o dodanim primjesama. U svijetu tako postoji trinaest sustava aluminijskih legura. Podjeljene su u sustave radi bolje determinacije primjesa koje se nalaze u leguri i samim time lakšeg određivanja karakteristika aluminijskih legura. Ranije spomenute legure također se svrstavaju u pojedine sustave (Aquatic Company, 1999):

- D16T sustav legura Al-Cu-Mg,
- AK4-1T1 sustav legura Al-Cu-Mg-Si-Fe,
- 1953T1 sustav legura Al-Zn-Mg.

U tablici 2-2. prikazani su kemijski sastavi najčešće korištenih aluminijskih legura za izradu aluminijskih bušaćih.

Oznaka legure	Sustav legura	Osnovne primjese	Maksimalne
		(%)	nečistoće (%)
D16T	Al-Cu-Mg	Cu 3,8-4,9	Fe 0,5
		Mg 1,2-1,8	Si 0,5
		Mn 0,3-0,9	Zn 0,3
			Ti 0,1
			Ni 0,1
			Ostale 0,1
AK4-1T1	Al-Cu-Mg-Si-Fe	Cu 1,9-2,5	Zn 0,3
		Mg 1,4-1,8	Mn 0,2
		Fe 0,3-0,8	Ostale 0,1
		Ni 0,8-1,3	
		Si 0,8-1,4	
		Ti do 0,1	
1953T1	Al-Zn-Mg	Zn 5,5-6,0	Fe 0,2
		Mg 2,4-3,0	Si 0,2
		Cu 0,4-0,8	Ostale 0,1
		Mn 0,1-0,3	
		Cr 0,1-0,2	
		Ti do 0,1	

Tablica 2-2. Kemijski sastav aluminijskih legura (Aquatic Company, 1999)

Osim u naftnoj industriji, gdje se koristi za izradu bušaćih šipki, legure koje pripadaju sustavu Al-Cu-Mg imaju široku primjenu i u drugim industrijama kao npr. avionska industrija, industrija vezana za istraživanje svemira, brodogradnja, itd.

Svojstva Al-Cu-Mg-Si-Fe sustava uz dodatak male količine nikla jako su slična svojstvima Al-Cu-Mg sutava, pri visokim temperaturama, zbog prisutnosti nikla (Ni) i željeza (Fe) ostvaruju manje gubitke čvrstoće uslijed povećanja temperature za razliku od legura bez ovih primjesa. Legure iz sustava Al-Zn-Mg su prema kompaniji Aquatic najbolje za izradu bušaćih šipki, jer imaju 30% veću granicu tečenja u usporedbi s ostala dva sustava. U Tablici 2-3. prikazana su fizikalna i mehanička svojstva spomenutih legura.

Tablica 2-3. Fizikalna i mehanička svojstva aluminijskih legura (Aquatic Company, 1999)

Svojstva	D16T	1953T1	AK4- 1T1
Minimalna granica tečenja (MPa)	330	490	350
Minimalna vlačna čvrstoća (MPa)	450	530	410
Tvrdoća po Brinellu (HB)	120	120- 130	130
Produljenje (%)	11	7	12
Gustoća (kg/m ³)	2 800	2 800	2 800
Modul elastičnosti, E (MPa)	72 000	70 000	73 000
Modul smicanja, G (MPa)	26 000	27 500	27 500
Poissonov koeficijent	0,33	0,31	0,31
Koeficijent termičkog širenja (1/°C·10 ⁻⁶)	22,5	23,8	23,8
Maksimalna dopuštena radna temperatura (°C)	160	110	220

Na temelju provedenih istraživanja o korozivnom trošenju aluminijskih bušaćih šipki i metodama prevencije, kompanija Aquatic (1999) došla je do sljedećih zaključaka:

 korozivno trošenje aluminijskih šipki primarno ovisi o sastavu, agresivnosti i temperaturi isplake kao i o vremenu izloženosti bušaćeg niza;

- pH vrijednost isplake uvelike utječe na proces korozivnog trošenja aluminijskih šipki. Ono je značajno već pri pH 7,0-9,5 i ubrzano raste kada pH vrijednost prijeđe 10,5;
- korozivno trošenje aluminijskih šipki se ubrzava pri višim temperaturama;
- oksidni film stvoren na površini cijevi prilikom izloženosti kisiku ostvaruje pouzdanu korozivnu zaštitu aluminijskih šipki, a u slučaju prisutnosti veće količine abrazivnih čestica u isplaci one u područjima turbulentnog protoka oštećuju oksidni film što rezultira povećanim abrazivnim trošenjem šipki;
- povećanjem temperature isplake, posebice one koja sadrži kloride, dolazi do ubrzanog korozivnog trošenja šipki;
- aluminijske bušaće šipke su pokazale veliku otpornost na koroziju u uvjetima visokog sadržaja H₂S;
- osnovna metoda zaštite aluminijskih šipki od korozije je dodavanje inhibitora korozije u isplaku, pri čemu se natrijevi polifosfati i inhibitori na bazi kalija najčešće koriste;
- premazivanjem unutarnje površine šipke katranom i vanjske površine tankim anodnim premazom također se ostvaruje dobra zaštita šipki od korozije.

3. ALUMINIJSKE BUŠAĆE ŠIPKE

Aluminijske bušaće šipke (engl. *Aluminium drill pipe – ADP*) imaju dugu povjest upotrebe u SSSR-u, a danas u Rusiji. Koristile su se za izradu bušotina još krajem 1950ih. Sve od tada, njihova svojstva osigurala su im daljnju primjenu od strane drugih kompanija. Početkom 90-ih godina prošlog stoljeća aluminijske šipke koristile su se za izradu bušotina na 70 do 80% svih naftnih i plinskih ležista u Sovjetskom savezu (Gefgat et al., 2009).

Dizajn modernih aluminijskih šipki bazira se na dizajnu aluminijskih šipki iz 1970ih koje su prvi put korišten za bušenje ranije spomenute ultra-duboke bušotine Kola, gdje je u zadnjoj fazi bušenja 92% bušaćeg niza bilo sastavljeno od aluminijskih šipki. Također je bitno naglasiti da Kola i danas drži svjetski rekord kao najdublja bušotina čija je stvarna uspravna dubina (engl. *Total vertical depth – TVD*) 12 262 m (Gefgat et al., 2009). Od tada je ovaj dizajn postao osnova za moderne aluminijske bušaće šipke, koje se izrađuju prema zahtjevima ISO standarda 15546.

Devedesetih godina prošlog stoljeća kompanija *Aquatic* proizvela je aluminijske bušaće šipke s čeličnom spojnicom, dok su se prije koristile aluminijske spojnice, no zbog velikog trošenja navojnih spojeva prilikom navrtanja i odvrtanja šipki, te kraćeg radnog vijeka zamjenjene su s čeličnim. Čelične spojnice produljuju trajnost spojeva, a čelični navoji mogu izdržati tri puta više navrtanja i odvrtanja od aluminijskih (Gelfgat et al. 2005). Čelični navoj s tijelom aluminijske šipke teži manje od odgovarajuće čelične šipke, što smanjuje trošenje spojnica, zbog manje ukupne težine niza. Važno svojstvo aluminijskih bušaćih šipki jest da je njihov koeficijent trenja 15-20% manji nego kod čeličnih šipki, što smanjuje ukupne gubitke uslijed trenja u bušotini (Sabo, 2009).

Izrazito mala težina aluminijskih šipki daje im veliku prednost naspram čeličnih šipki. Aluminijske šipke, u horizontalnim sekcijama bušotine, ostvaruju manju silu kod povlačenja niza i torziju u usporedbi s čeličnim šipkama. Ovo svojstvo omogućuje produljenje bušaćih limita s postojećim bušaćim postrojenjima čija su ograničenja vezana primarno uz maksimalna opterećenja i zakretni moment, te smanjenje ukupne potrošnje energije tijekom procesa bušenja.

3.1. Spojnice aluminijskih bušaćih šipki

Spojnice (engl. *tool joint*) su dijelovi bušaćih šipki koji omogućuju njihovo spajanje u bušaći niz pomoću muškog (engl. *pin*) i ženskog navojnog spoja (engl. *box*). Prilikom izrade bušaćih šipki odnosno prilikom spajanja tijela bušaće šipke i spojnice kritičan dio predstavlja upravo spoj tijela bušaće šipke i spojnice. Kako bi se umanjila mogućnost neželjenih oštećenja ili lomova, bušaćim šipkama dodana su ojačanja: unutarnje odebljanje, vanjsko odebljanje ili kombinacija unutarnjeg i vanjskog odebljanja. Jednostavno rečeno ojačanja su područja gdje su stjenke bušaćih šipki deblje u svrhu podnošenja većih naprezanja koja djeluju na to područje bušaće šipke (Anderson, 2009). Na slici 3-1. prikazana su ojačanja bušaćih šipki.

Slika 3 -1. Ojačanja bušaćih šipki (Anderson 2009)

Spojnice čeličnih bušaćih šipki izrađuju se od čelika te su spojene s tijelom bušaće šipke metodom inertnim zavarivanjem trenjem ili metodom konstantne rotacije. Spojnice aluminijskih bušaćih šipki su također izrađene u potpunosti od čelika prema ISO standardu 15546. Spoj dviju čeličnih spojnica može izdržati kontinuirano navrtanje i odvrtanje bušaćih šipki, dok kod spoja čelične spojnice i aluminijske može doći do zaglave odnosno nemogućnosti odvrtanja spojnica. Slika 3-2. prikazuje spoj aluminijskih šipki s čeličnim spojnicama.

Aluminijska bušaća šipka

Slika 3-2. Spoj aluminijske bušaće šipke i čelične spojnice (Anderson, 2009)

3.1.1. Svojstva i čvrstoća spoja

Aluminijske bušaće šipke su zbog svoje fleksibilnosti izrazito pogodne za usmjereno bušenje, dok su spojnice u takvim uvjetima izložene zamoru materijala tijekom rotacije, a posebice su izložene zamoru tijekom savijanja u zakrivljenim dionicama kanala bušotine. Stoga je spojnica aluminijskih bušaćih šipki najčešći razlog loma šipki, najkritičnije mjesto je na kraju čelične spojnice koja potpomaže površinsko trošenje tijela aluminijske šipke (mjesto trošenja prikazano je na slici 3-3) (Anderson, 2009). Sve veća primjena aluminijskih bušaćih šipki u raznim bušaćim operacijama povećala je potrebu za većim brojem istraživanja s ciljem određivanja mogućih spajanja tijela šipki i spojnica. Tablica 3-1. prikazuje minimalne zahtjeve i mehaničke karakteristike materijala od kojeg se izrađuje čelična spojnica za aluminijske bušaće šipke.

Slika 3-3. Kritična točka loma kod aluminijskih šipki s čeličnom spojnicom (Anderson, 2009)

Tablica 3-1. Minimalni tehnički zahtjevi kod izrade čelične spojnice za spajanje aluminijskih bušaćih šipki (Aquatic Company, 1999)

Karakteristike	Mjerne jedinice	Vrijednosti
Vlačna čvrstoća	N/mm ²	880
Granica tečenja	N/mm ²	735
Produljenje	%	13
Otpornost na udarce	J/m ²	$685 \cdot 10^{3}$
Tvrdoća po Brinell-u	HB	280 - 340

Istraživanje koje su proveli Santus i suradnici 2008. godine bazira se na određivanju otpornosti spoja čelične spojnice i aluminijske šipke na torzijska naprezanja za dvije metode spajanja. Prva metoda spajanja je tradicionalna metoda vrućeg spajanja (engl. *hot assembling method*) bušaćih šipki i spojnica. Ova metoda uključuje zagrijavanje čelične spojnice do temperature koja će omogućiti njeno širenje i eliminirati trenje između čelične spojnice i aluminijske šipke jer se brzo povezuju. Temperaturna razlika između čelične spojnice i aluminijske šipke dovoljno je velika kako bi se prevladala sila trenja. To omogućuje spajanje s minimalnim zakretnim momentom. Kako bi se ostvarila temperaturna razlika, unutrašnjost aluminijske šipke

se hladni do sobne temperature pomoću mlaza vode usmjerenog prema unutrašnjem dijelu cijevi. Kada se čelik ohladi, sužava se i čvrsto zahvaća aluminijske navoje, pošto se spajanje ostvaruje pomoću navoja, te u tom trenutku vrijednost koeficijent statičkog trenja je otprilike 0,3. Rezultati ispitivanja, provedenog u svrhu određivanja otpornosti bušaće šipke na torzijsko naprezanje ove metode spajanja spojnice i šipke ukazuju na to da spojnica ima manju otpornost na torzijsko naprezanje (Mtmax $\approx 64~000$ Nm) nego tijelo bušaće šipke (Mtmax = 76 500 Nm). Na temelju toga se može zaključiti da je spoj čelične spojnice i aluminijske šipke kod ovog načina spajanja najslabija točka.

Druga metoda spajanja čelične spojnice i aluminijske šipke naziva se hladno spajanje (engl. *cold assembling method*). Ova metoda zahtjeva upotrebu specijalnih tekućih smjesa, a za ovo istraživanje upotrebljena je epoksidna smola. Smjesa se nanosi što je moguće jednoličnije na sve kontaktne površine, dok se spoj polako sastavlja, smjesa smanjuje trenje između kontaktnih površina metala. Nakon što je spoj montiran smjesa se stvrdnjava gotovo izotermički, pri tom temperatura ne prelazi 70 °C, i ostvaruje koeficijnet statičkog trenja veći od 0,3. Stoga smjesa ima dvostruku ulogu, jer smanjuje trenje tijekom sastavljanja spoja, a zatim se ostvaruje visoka torzijska čvrstoće nakon stvrdnjavanja. Test otpornosti na torzijsko naprezanje spojnice kod ove metode spajanja kao rezultat daje maksimalnim dopuštenim momentom torzije većim od 90 000 Nm. Kako dobiveni rezultati ukazuju na to da je otpornost spoja na torzijska naprezanja veća od otpornosti tijela aluminijske bušaće šipke na torzijska naprezanja tako spoj aluminijske šipke i čelične spojnice više nije najslabija točka.

Vlačna čvrstoća oba načina spajanja ispitana je koristeći metodu konačnih elementa (engl. *finite element method*). Metoda vrućeg spajanja rezultirala je približno istom vlačnom čvrstoćom spoja kao i tijelo cijevi, a što se tiče metode hladnog spoja, došlo je do loma prvog navoja (onog najbližeg tijelu bušaće cijevi) djelovanjem aksijalnog opterećenja manjeg od vlačne čvrstoće tijela šipke. Potrebno je naglasiti da su rezulatit aksijalnog testiranja dobiveni samo modelom konačnih elementa, a ne stvarnim eksperimentom.

3.2. Aluminijske bušaće šipke veće pouzdanosti izrađene iz laganih legura

Kratica za ove aluminijske šipke je LAIDP (slika 3-4.) (engl. *Light Alloy Improved Dependability Drill Pipe*) i označava ime brenda aluminijskih bušaćih šipki proizvodenih od strane Aquatic kompanije (Gelfgat et al., 2009). Izrađene su metodom vrućeg spajanja čeličnih spojnica s tijelom aluminijske šipke. Takav način spajanja pokazao se pouzdanim u proizvodnji LAIDP je ostvaruje povećanje otpornosti aluminijskih šipki prema zamoru materijala tijekom godina terenske primjene u različitim bušotinskim uvjetima (Gelfgat et al., 2005).

Slika 3-4. Dizajn LAIDP s različitim ojačanjima (Gelfgat et al., 2005)

Na slici 3-4. prikazan je dizajn LAIDP s različitim ojačanjima: (a) prikazana je LAIDP 147x11 (prva brojka označava vanjski promjer (mm), a druga debljinu stijenke (mm) bušaćih šipki) s unutarnjim ojačanjem, (b) prikazuje LAIDP 131x13 s vanjskim ojačanjem, (c) prikazuje LAIDP 147x11 s unutarnjim ojačanjem i zaštitnim odebljanjem. Kao što je vidljivo na slici 3-4. LAIPD mogu biti napravljene s unutarnjim i vanjskim ojačanjima, također i sa zaštitnim odebljanjima u sredini ili duž cijele cijevi čime se spriječava trošenje cijele cijevi uslijed rotacije niza. Zaštitna odebljanja također služe za centriranje cijevi u bušotina s velikim opterećenjima pri izvijanju.

Prvobitna proizvodnja LAIDP-a započela je 1998. godine na eksperimentalnom polju Aquatic kompanije. Proizvodnja se bazirala na proizvodnji i dizajnu sličnih cijevi u znanstvenom proizvodnom centru Kolskaya Sverkhglubokaya (Kola ultraduboka), a tek 2003. godine počela je serijska proizvodnja. Ove šipke uspješno se primjenjuju u izradi ultradubokih, dubokih, usmjerenih i horizontalnih bušotina (Gelfgat et al., 2005). Tablica 3-2. prikazuje glavne karakteristike LAIDP koje se proizvode i njihova mehanička svojstva.

Parametri	Ši	pka s unuta	rnjim ojačan	Šipka s vanjskim ojačanjima				
Vanjski								
promjer x	LAIDP	LAIDP	LAIDP	LAIDP	LAIDP	LAIDP	LAIDP	LAIDP
debljina	90 x 9	103 x 9	147 x 11	147 x 13	147 x 15	131 x 13	164 x 9	168 x 11
stijenke,								
(mm)								
Duljina Xialao (m)	9,17	9,21	12,23	12,23	12,23	9,22	9,00	9,01
Deblina								
stienke (mm)	9	9	11	13	15	13	9	11
Debljina					22	~	20	20
ojacanog kraja,	10	10	17	20	22	21	20	20
(mm)								
Vanjski								
promjer,	90	130	147	147	147	130	164	168
(mm)								
Unutarnji		85	125	121	117	105	146	146
promjer, (mm)								
Vanjski								
promjer	108	127	178	178	178	178	203	203
specijalne							200	200
spojnice, (mm)								
Unutarnii								
promier								
specijalne	54	70	107	107	107	107	127	127
spojnice, (mm)								
Taxing Xister								
n zrałan (N)	784,8	931,95	2 099,34	2 374,02	2 619,27	1 805,04	1 863,90	2 060,10
Tin navoia	NC 31	NC 38	5 ¼ FH	5 ½ FH	5 ½ FH	5 ½ FH	6 % FH	6 % FH
Tip navoja	110 51	Parametri	čvrstoće LA	IDP legura	D16T/1953	3T1	0 /0111	• /• • •
			Sila ki	danja (kN)				
Demitteres	588/	691/	1 221/	1 423/	1 618/	1 253/	1 358/	1 410/
Dopusteno	890	1 020	1 805	2 102	2 389	1 850	1 900	2 083
Granica loma	735/	864/	1 527/	1 779/	2 022/	1 566/	1 607/	1 763/
Granica Ionia	1 113	1 276	2 256	2 627	2 986	2 313	2 250	2 604
			Moment	torzije (kNm)			
Dopušteno	10,3/	13,7/	35,4/	40,2/	44,5/	30,9/	44,0/	47,6/
	15,4	20,2	52,3	59,4	60,2	45,6	61,0	70,3
Granica loma	12,9/	17,17	44,3/	50,2/	25,0/	38,0/	52,0/	59,5/
	19,1	23,3	03,4	74,2	15,2	57,0	72,0	87,9
Tlak gnječenja,	41,3/	40,9/	31,4/	41,7/	51,4/	49,4/	22,0/	24,3/
(MPa)	54,0	53,4	38,9	54,6	70,0	66,9	33,0	28,7
Tlak	15.01	20.01		10.01		47.41	20.01	20.01
rasprskavanja,	45,0/	39,8/	34,1/	40,2/	46,4/	45,1/	29,0/	29,8/
(MPa)	50,5	30,7	30,5	33,4	50,0	50,7	40,0	

Tablica 3-2. Dimenzije i mehanička svojstva LAIPD (Sabo, 2009)

Iskustvo koje Aquatic kompanije ima u dizajnu, izradi i terenskoj primjeni LAIPD-a, dobiveno je poglavito prilikom bušenja usmjerenih i horizontalnih bušotina u sjevernom Sibiru. Na temelju tog iskustva izvedeni su sljedeći zaključci vezani za LAIPD (Gelfgat et al., 2005):

- korištenjem LAIDP moguće je povećanje dubine bušenja sa sadašnjim dostupnim kapacitetima bušaćih postrojenja;
- u usporedbi s čeličnim bušaćim šipkama izvedbe LAIPD su tijekom vremena značajno unaprijeđene, što se ponajviše odnosi na radni vijek i izvedbe spojnice koje se vrednuju prema broju uspješnih navrtanja i odvrtanja. Ova unaprijeđenja se pripisuju velikom omjeru čvrstoće i težine (engl. *strength-to-weight ratio*) legure aluminija i kontinuiranom unaprijeđivanju tehnologije proizvodnje aluminijskih šipki;
- sve dok se zadovoljavaju uvjeti određeni u specifikacijama za kontroliranje pH vrijednosti isplake ili bilo kojeg drugog medija koji bi mogao biti u kontaktu s LAIPD-om, te dok se zadovoljavaju operativni zahtjevi i uvjeti za skladištenje, korozija ne bi trebala značajno utjecati na radni vijek aluminijskih bušaćih šipki;
- kada se LAIDP koristi kod izrade bušotina ostvaruje se veliki pad potrošnje energije, zbog značajnog smanjenja težine bušaćeg niza;
- prilikom bušenja u zabačenim i ekološki osjetljivim područjima, mala bušaća postrojenja trebala bi biti uglavnom dovoljna za dostizanje željene dubine upotrebom LAIDP. Također smanjenje troškova transporta prilikom promjene lokacije bušaćeg postrojenja s LAIDP-om na neku novu lokaciju može biti značajno.

3.3. Aluminijske bušaće šipke veće pouzdanosti s debelim stjenkama izrađenih iz laganih legura

U daljnjem tekstu HWLAIDP (engl. *Heavy-Wall Light Alloy Improved Dependability Drill Pipe*) (slika 3-5.). Proizvode se s integriranom ili s čeličnom spojnicom, dok je tijelo izrađeno iz aluminija s debljinom stjenke jednakom debljini šipke s zaštitnim odebljanjem. Mogu se primjenjivati u izradi horizontalnih i usmjerenih bušotina, a u sklopu alatki na dnu (engl. *Botttom Hole Assembly - BHA*) služe za laganiji prijelaz između teških bušaćih šipki i bušaćih šipki (Aquatic Company, 1999).

Slika 3-5. Presjek bušaće šipke veće pouzdanosti s debelim stjenkama izrađenih iz laganih legura (HWLAIDP) (Sabo, 2009)

U bušaćoj praksi također se naširoko primjenjuju HWLAIDP šipke s užljebljenim spirlanim ili ravnim utorima (slika 3-6.). Njihovom upotrebom smanjuje se kontaktna površina između šipki i kanala bušotine, dok je prstenasti prostor između šipki i kanala bušotine isti ili veći od prstenastog prostora kod primjene cilindričnih HWLAIDP, čime se smanjuje mogućnost da dođe do diferencijalnog prihvata bušaćeg niza. Spiralni utori na tijelu šipke pospješuju turbulentno protjecanje isplake u prstenastom prostoru, što utječe na bolje čišćenje kanala bušotine i samim time veći napred bušenja.

Slika 3-6. HWLAIDP s užljebljenim spiralnim utorima (Aqutic Company, 1999)

Terenska iskustva sa HWLAIDP-om, od kompanija Samaraneft i Mangyshlakneft, pokazala su njihove prednosti u smislu (Aquatic Company, 1999):

- paramagnetičkih svojstva,
- otpornosti na vibracije,
- stabilizacije sklopa alatki na dnu,
- smanjenja broja zaglava alatki na dnu i boljeg čišćenja kanala bušotine zbog užljebljenog spiralnog dizajna.

3.4. Aluminijske bušaće šipke s integralnom spojnicom

Specijalna fizikalna i mehanička svojstva aluminijskih legura (kao što su mala površinska tvrdoća i mogućnost lakog bušenja kroz leguru) omogućila su izradu aluminijskih bušaćih šipki s integralnom spojnicom. Ove šipke nemaju čelične već aluminijske spojnice koje su izrađene iz iste cijevi kao i tijelo aluminijske šipke što je prikazano na slici 3-7.. Slika 3-8. prikazuje dizajn šipke s integralnom spojnicom. Glavni izazovi, prilikom proizvodnje ovakvog tipa šipke, su ostvarivanje visokog stupnja otpornosti i čvrstoće, te oblikovanje tijela šipke i ojačanih krajeva.

Slika 3-7. Aluminijska bušaća šipka s integralnom spojnicom (Gelfgat et al., 2005)

Slika 3-8. Tipični dizajn aluminijske bušaće šipke s integralnom spojnicom (Aquatic Company 1999)

Šipke s integralnom spojnicom najviše se primjenjuju prilikom izrade usmjerenih i horizontalnih bušotina, kao i prilikom ugradnje lajnera pomoću bušaćeg niza. Tijekom bušenja usmjerenih i horizontalnih bušotina potreban je konstantni nadzor napretka bušenja odnosno položaja kanala bušotine u podzemlju. Za tu svrhu koriste se aluminijske šipke s integralnom spojnicom, zbog svojih ne-magnetičkih svojstava i odsustva čeličnih spojnica čime se omogućava provođenje geofizičkih mjerenja direktno kroz bušaći niz, uz smanjeno vrijeme provođenja ove operacije.

Također se primjenjuju prilikom ugradnje lajnera u bušotinu, gdje postoji velika mogućnost zaglave bušaćeg niza tijekom provođenja cementacije, jer cementna kaša u prstenastom prostoru ulazi u područje oko šipki (Aquatic Company, 1999). U slučaju neuspjeha, aluminijske bušaće šipke s integralnom spojnicom lako su bušive, što smanjuje vrijeme potrebno za nastavak bušenja. Tablice 3-3., 3-4., 3-5. prikazuju karakteristike aluminijskih bušaćih šipki s integralnom spojnicom.

Vanjski promjer (mm)	Debljina stijenke (mm)	Vanjski promjer ojačanja (mm)	Unutarnji promjer ojačanja (mm)	Duljina šipke (m)	Duljina ženskog navoja (mm)	Duljina muškog navoja (mm)	Poprečna površina tijela šipke (cm ²)	Polarni moment, (cm⁴)	Masa šipke (kg)	Tip navoja
146,0	11,0	174,0	106,0	12,4	350,0	350,0	46,6	293,0	189,0	5½ FH
128,0	11,0	155,0	95,0	12,4	350,0	350,0	40,4	218,0	163,4	NC 50

Tablica 3-3. Karakteristike aluminijskih bušaćih šipki s integriranom spojnicom (Sabo, 2009)

Tablica 3-4. Karakteristike čvrstoće aluminijskih bušaćih šipki s integriranom spojnicom za četiri različite legure aluminija (Sabo, 2009)

Vaniski Deblijna			Maksimalno opterećenje na tijelo šipke do granice elastičnosti										
nromior	ctiionko		Sila kida	nia (KNI)		Deterni mement neurtenia cijevi (kNm)				Zkretni moment navrtanja cijevi i			
promjer (mm)	Sujenke		Sila kiuarija (KN)				Dotezhi moment havitanja cijevi (kivin)				specijalne spojnice (kNm)		
(mm)	(mm)	1	2	3	4	1	2	3	4	1	2	3	4
146,0	11,0	1 514	2 236	1 584	1 631	66,6	98,3	69,7	71,8	18,9	27,9	19,8	20,3
128,0	11,0	1 313	1 938	1 374	1 414	49,6	73,2	51,9	53,4	17,4	25 <i>,</i> 6	18,2	18,7

Tablica 3-5. Karakteristike čvrstoće aluminijskih bušaćih šipki s integriranom spojnicom za četiri različite legure aluminija (nastavak tablice 3-4.) (Sabo, 2009)

Vanjski	Debljina	Maksimalno opterećenje na tijelo šipke do granice elastičnosti								
promjer	stijenke		Tlak gnječ	enja (MPa)		Т	lak rasprska	avanja (MPa	a)	
(mm)	(mm)	1	2	3	4	1	2	3	4	
146,0	11,0	29,7	36,0	30,5	31,0	49,0	72,3	51,3	52,8	
128,0	11,0	38,0	48,6	39,3	40,2	55 <i>,</i> 8	82,5	58,0	60,2	

3.5. Plutajuće aluminijske bušaće šipke

Plutajuće aluminijske bušaće šipke (engl. *Bouyant Aluminium Drill Pipe – BADP*) izrađuju se iz aluminijskih legura velike čvrstoće, imaju šupljine unutar stjenke tijela šipke u svrhu ostvarivanja efekta uzgona. Slika 3-9. prikazuje dizajn tijela BADP- a koja je sačinjena od dvije koncentrične cijevi i jednoliko postavljenih pregrada po obodu između njih.

Slika 3-9. Dizajn tijela BADP (Balandin et al., 2010)

Ovakav dizajn moguće je proizvesti postupkom isprešavanja primjenom različitih geometrijskih poprečnih presjeka i aluminijskih legura. Aluminijske legure velike čvrstoće (grupa II, ISO 15546) koriste se za izradu LAIDP-a (Balandin et al., 2010).

Tehnološka mogućnost izrade ojačanja na oba kraja unutarnje cijevi, kod ove strukture s puno ćelija, pojavila se tek nedavno. Odebljanja na krajevima tijela cijevi imaju dvostruku ulogu prva je da omogućuju izradu koničnih navojnih spojeva, a druga kao ojačanje koje omogućuje smanjenje debljine stijenke tijela cijevi (Balandin et al., 2010).

Obzirom na karakteristike i svojstva BADP-a postoji veliki potencijal za rješavanje dva ključna problema vezana za izradu bušotina velikog dosega, a oni su:

- velika torzija i sila natega moraju biti nadvladani kako bi se bušaći niz mogao pomicati kroz dugačku horizontalnu sekciju;
- savijanje sekcije bušaćeg niza u trenutku djelovanja aksijalnog opterećenja primjenjenog u svrhu ostvarivanja opterećenja na dlijeto tijekom bušenja ili kod potiskivanja niza zbog zakrivljenosti kanala što je posljedica odstupanja stvarne putanje kanala od projektirane. Savijanje uzrokuje dodatno povećanje sile trenja između niza i stijenki kanala bušotine, te samim time rezultira i većim aksijalnim i torzijskim naprezanjima.

4. BUŠOTINE VELIKOG DOSEGA

Jedna od najučinkovitijih i najprepoznatljivijih metoda, razvijenih s ciljem otkrivanja i lakšeg pridobivanja zaliha plina i nafte je usmjereno bušenje, te u novije vrijeme bušenje s velikim dosegom, uključujući bušenje horizontalnih sekcija kroz samo ležište (Gelfgat et al., 2003). Izrada bušotina velikog dosega (engl. *Extended Reach Drilling – ERD*) je metoda koja omogućava dosezanje željenih lokacija ležišta sa značajne udaljenosti u svrhu povećanja kontaktne površine kanala bušotine i ležišta. Izrada bušotina velikog dosega sve se više primjenjuje u naftnoj industriji, jer omogućuju iskorištavanje rezervi nafte i plina, koje su se ranije smatrale preskupim za eskploataciju, primjenom konvencionalnih metoda bušenja.

Prema Blikra i suradnicima (1994.) bušotine velikog dosega (engl. *Extended Reach Well - ERW*) su bušotine čiji je omjer mjerene duljine i uspravne dubine veći od 2,0, dok je prema Gelfgatu i suradnicima (2007) taj omjer veći od 3,0.

Obzirom na stvarnu dubinu i duljinu bušotina velikog dosega (u daljnjem tekstu ERW) postoje tri tipa bušotina (Aquatic Company 1999):

- Tip 1 (za plitka ležišta sa stvarnom uspravnom dubinom od 1 500 do 2 000 m) s velikim produljenjem horinzontalne dionice. Kod izrade ovakvih bušotina ograničena je mogućnost primjene težine bušaćeg niza za ostvarivanje opterećenja na dlijeto, zbog čega je ograničena i duljina horizontalnog dijela kanala bušotine. Ova ograničenja se javljaju zbog velikog natega koji se javlja prilikom manevriranju alatkama u horizontalnom dijelu kanala;
- Tip 2 (za usmjerene bušotine stvarne uspravne dubine od 3 000 do 3 500 m) s velikim kutom otklona kanala bušotine od vertikale (50-60°). Maksimalno povećanje duljine kanala ovog tipa bušotine, primarno ovisi o maksimalno dopuštenom torzijskom naprezanju bušaćeg niza i motora, a ograničavajući faktor je djelovanje velike sile natega na rotirajući bušaći niz;
- Tip 3 (za duboke usmjerene bušotine sa stvarnom uspravnom dubinom od 5 000 do 6 000 m) s kutom otklona kanala bušotine od vertikale 30-40°. Glavni ograničavajući faktor povećanja duljine kanala u izradi ovih bušotina je maksimalno vlačno naprezanje koje se javlja u bušaćem nizu u trenutku kada se niz zadigne s dna bušotine i izvuče prvih nekoliko šipki.

Slika 4-1. jedan prikazuje usporedbu aluminijskih i čeličnih bušaćih šipki prilikom njihove primjene u izradi bušotine velikog dosega, a tablica 4-1. prikazuje parametrdizajna i maksimalne duljine bušaćeg niza za ova tri tipa bušotina velikog dosega za slučaj primjene aluminijskih i čeličnih bušaćih šipki. Kao što je prikazano na slici 4-1. i u tablici 4-1. primjenom aluminijskih šipki za izradi bušotine velikog dosega ostvaruje se mogućnost izrade duljih kanala bušotine bez povećanja opterećenja na kuki ili povećanja snaga pogonskih motora.

Slika 4-1. Usporedba moguće primjene aluminijskih (Al) i čeličnih (St) bušaćih šipki prilikom izrade različitih tipova bušotina velikog dosega (Aquatic Company, 1999)

Tablica 4-1. Parametri dizajna i maksimalne duljine bušaćih nizova za tri tipa ERW za slučaj primjene aluminijskih i čeličnih bušaćih šipki (Aquatic Company, 1999)

	Jedinice	Tipovi bušotina					
Tehničke karakteristike		Tip 1		Tip 2		Tip 3	
		Čelične	Aluminijske	Čelične	Aluminijske	Čelične	Aluminijske
Vanjski promjer cijevi	mm	140	168/140	168	168	140	168/140
Debljina stjenke	mm	10	13/13	10	13	10	13/13
Jedinična težina u zraku	N/m	319,5	272/163	369	272	319,5	272/163
Gustoća isplake	kg/m ³	944	944	1093	1093	1530	1530
Jedinična težina u isplaci	N/m	281	196/115	316	168	257	147/78
Maksimalna duljina bušaćeg niza uz faktor sigurnosti 1,6	m	8200	9400	8600	9000	6400	9600

Prilikom izrade i planiranja bušotina velikog dosega potrebna je analiza ekonomskih i tehničkim parametara, a ona obuhvaća (Gupta, 2006):

- optimiranje putanje kanala bušotine;
- analizu stabilnosti kanala bušotine te u tu svrhu odabir isplake odgovarajuće gustoće;
- pripremu isplake u svrhu ostvarivanja odgovarajućih podmazujućih svojstava, kemijske stabilnosti kanala bušotine, te reoloških svojstava koja će omogućiti kvalitetno čišćenje kanala bušotine;
- proračunavanje očekivanih naprezanja te njihovo uspoređivanje s dobivenim vrijednostima tijekom izrade bušotine;
- odabir komponenti postrojenja koje će osigurati učinkoviti sustav za manevriranje alatkama bušaćeg niza, odgovarajuću rotaciju niza, dovoljnu dobavu odnosno odgovarajući protok isplake za učinkovito čišćenje kanala bušotine te odgovarajući površinskih sustav za čišćenje isplake;
- odabir alatki u sastav bušaćeg niza koji će smanjiti gubitke tlaka te omogućiti veći protok isplake.

Prilikom izrade bušotina velikog dosega javlja se sila trenja bušaćih alatki o stijenke kanala bušotine, nastala zbog zakrivljenosti kanala bušotine. Posljedica toga je veliki zakretni moment i nateg u nizu bušaćih alatki. Stoga je potrebno napraviti proračun očekivanih torzijskih i vlačnih naprezanja u bušotini. Za točan proračun potrebno je uzeti u obzir bočne sile na svaki pojedini element niza te kut pod kojim se bočne sile dijeluju na elemente niza. Upotrebom navedenih podataka provodi se proračun naprezanja za cijeli bušaći niz, pri čemu je najvažnije odrediti opterećenje na kuki te torziju na površini zbog usporedbe s mjerenim podatcima tijekom bušenja. Ako se dobiveni podatci popudaraju s mjerenim, tada je potvrđena pouzdanost modela te se on može koristiti za predviđanje torzije i natega koji će se javljati u tijeku izrade novih bušotinama na razmatranom polju.

Na smanjenje torzije i natega alatki može se utjecati (Aquatic Company, 1999):

- projektiranjem optimalne putanje kanala bušotine;
- kontorolom putanje u svrhu smanjenja zavojitosti kanala;

- bušenje uz rotaciju cijelog niza bušaćih alatki;
- ostvarivanjem kvalitetnog čišćenja kanala bušotine;
- upotreba stabilizatora kako bi se ostvarila suosnost alatki i osi kanala bušotine.

Osim navedenim postupcima kod savladavanja torzije i natega koriste se podmazivači koji se dodavaju u isplaku, specijalne mehaničke alatke te teške šipke koje se dodaju u vertikalni dio kanala bušotine. Zato se pri izradi bušotina velikog dosega uglavnom primjenjuju uljne ili sintetičke isplake, dok se rjeđe koriste isplake na bazi vode. Postavljanjem teških šipki u vertikalni dio kanala bušotine ostvaruje se potrebno opterećenje na dlijeto pri kliznom načinu rada.

Prilikom izrade bušotina velikog dosega, osim torzijskih vibracija, javljaju se i bočne vibracije, pri čemu je važno da se sve vibracije registriraju u stvarnom vremenu. Budući da bočne vibracije slabe prema površini, za njihovo registriranje upotrebljava se akcelerometar u telemetrijskom sklopu. Prijenos podataka u stvarnom vremenu omogućuje pravovremeno podešavanje parametara bušenja.

Usprkos velikom broju rješenja koja olakšavaju izradu bušotine i dosezanje konačne dubine, uspješnost izrade kanala bušotine u velikoj mjeri ovisi o pravilnom sastavu alatki bušaćeg niza.

4.1. Sastav bušaćeg niza

Puzdanost bušaćeg niza igra vrlo važnu ulogu u izradi bušotina velikog dosega. Pravilan odabir fizikalnih i mehaničkih svojstava bušaćeg niza ponajviše ovisi o litologiji i uvjetima u bušotini. Svojstva bušaćih alatki imaju utjecaj na tehničke i ekonomske karakteristike bušaćeg niza samim time na izradu kanala bušotine, kao na primjer gustoća materijala koji se koristi za izradu bušaćih šipki, modul elastičnosti koji utječe na deformabilna svojstva (engl. *Stress-Strain State – SSS*) bušaćeg niza i dr. Također je potrebno modelirati naprezanja uslijed torzije kako bi se utvrdilo da li dozvoljena torzijska naprezanja spojnica odnosno komponenti niza dozvoljavaju primjenu odabranog bušaćeg niza. Primjena modela tozijskih naprezanja niza omogućava isključivanje neželjenih situacija tijekom izrade kanala bušotine kao što su zaglava uslijed izvijanja, zamor materijala i sl. Težina bušaćeg niza jedna je od najvažnijih parametara koji utječe na karakteristike bušaćeg niza i ekonomičnost izrade kanala bušotine, a ovisi o gustoći legura, koje se koriste za izradu bušaćih šipki, o geometrijskim karakteristikama cijevi (promjer, duljina) i dubini bušotine. Također na težinu bušaćeg niza utječe i gustoća isplake u kojem se niz nalazi.

Prilikom određivanja je li neka legura pogodna za primjenu u izradi bušaćih šipki neophodno je odrediti specifičnu čvrstoću materijala. Kao što je definirano formulom (2-1) specifična čvrstoća materijala koristi se za definiranje najveće moguće duljine jednodimenzionalnog bušaćeg niza ovješenog u zraku, dok naprezanje na vrhu niza doseže granicu elastičnosti materijala.

Također prilikom odabira sastava niza potrebno je obratiti pažnju na module elastičnosti i smicanja. Ova dva modula su najvažnija svojstva legure koja se primjenjuje za izradu šipki, koja direktno utječu na deformabilnost bušaćeg niza.

Slika 4-2 prikazuje opći model prema kojem se dizajnira niz bušaćih alatki za izradu bušotine velikog dosega. Prvo je potrebno procjeniti očekivana naprezanja kojima će bušaći nizi biti izložen, a potom je, kao drugi korak, potrebno odabrati komponente niza koje će izdržati očekivana naprezanja. Pošto su ova dva koraka uzajamno ovisna jedan o drugom, ovo je iterativni postupak, stoga su strelice nacrtane u oba smjera. Na konačni odabir sastava bušaćeg niza, osim djelujućih naprezanja, utječu brojni drugi parametri. Zbog međusobne ovisnosti parametri su često u suprotnosti odnosno poboljšanje jednog parametra može utjecati na pogoršanje drugog. Na primjer, ispiranje kanala bušotine i ograničenja kapaciteta isplačne pumpe ukazuju da bi upotreba bušaćih šipki promjera 0,1683 m (6 5/8") bila optimalna u odnosu na bušaće šipke promjera 0,127 m (5"). Međutim, povećanje ekvivalentne cirkulacijske gustoće te ograničenja skladišnog prostora mogu zahtijevati upotrebu šipki manjeg promjera. Konačni odabir sastava bušaćeg alata s kojim će se postići željena dubina kanala bušotine, bez oštećenja i unutar zadanog proračuna, biti će kompromis između svih navedenih parametara.

4.1.1. Osnovne značajke primjene aluminijkih šipki u sastavu bušaćeg niza za izradu bušotina velikog dosega

Ograničenja prilikom izrade bušotine velikog dosega vezana su uz teške uvjete u horizontalnoj sekciji bušotine, stvaranje aksijalnih opterećenja zbog nalijeganja bušaćeg niza na donju stijenku kanala bušotine i razvoj velikog zakretnog momenta uslijed povećanja natega prilikom izvlačenja i rotiranja bušaćeg niza.

Težina bušaćeg niza je kritični parametar za ostvarivanje protusile tijekom pomicanja i rotiranja niza, također utječe na kontaktnu silu na stijenke kanala i silu trenja. Aluminijske bušaće šipke imaju tri puta manju težinu od čeličnih šipki što im daje prednost kod sastavljanja bušaćeg niza kojim će se izrađivati bušotina velikog dosega. Pravilni dizajn i uporaba aluminijskih bušaćih šipki u izradi bušotine velikog dosega omogućuje (Scaruffi et al., 2013):

- smanjenje operativnih troškova za 10-20% (ušteda za povećanje kapaciteta postrojenja, ušteda transporta, energije i vremena za manevriranje);
- povećanje horizontalnog dosega kanala bušotine za 10-30% (manji zakretni moment i sila natega, manji pad tlaka i veća otpornost na izvijanje);
- povećanje pridobivih rezervi nafte i plina iz određenog ležišta odnosno povećanje davanja bušotina;
- smanjenje operativnog rizika.

Podaci dobiveni bušenjem Totalove bušotine CN-1 u Argentini 1999, potkrepljuju prethodne navode (Gelgat et al., 2003). Bušotina CN-1 je izrađena pomoću kopnenog postrojenja, a polje je bilo smješteno odoblano. Ukupna mjerena duljina kanala bušotine (engl. *Total Mesured Depth – TMD*) iznosila je 11184 m, uz horizontalni doseg od 10585 m i stvarnu uspravnu dubinu od 1656 m.

Bušotina CN-1 je izrađena pomoću modificiranog bušaćeg potrojenja N1625/3. Za potrebe izrade obe bušotine instalirana je treća isplačna pumpa National 12P160 i dodano je šest rezervnih generatora. Ukupna snaga modificiranog bušaćeg postrojenja dosezala je 5 450 kW. Površinski sustav za čišćenje isplake sastojao se od pet vibratora kako bi se ostvario veliki protočni kapacitet pri iznošenju velikog volumena krhotina razrušenih stijena. Ukupni volumen isplačnih bazena je bio 1400 m³, a korištena je isplaka na bazi ulja gustoće 1 250 kg/m³. Vršni pogon (engl. *Top drive*) instaliran na postojenje imao je zakretni moment od 61 011,81 Nm (45 000 ft-lb).

Glavni problem tijekom izrade bušotine je bio veliki zakretni moment prilikom rotiranja bušaćeg niza što je uzrokovalo nemogućnost daljnjeg nastavka bušenja. Problem je rješen poboljšavanjem podmazujućih svojstava isplake, što je rezultiralo smanjenjem koeficijenta trenja između bušaćeg niza i stijenki kanala bušotine. Prilikom dizajniranja bušaćeg niza sastavljenog od aluminijskih bušačih šipki za izradu bušotine velikog dosega CN-1, sljedeće činjenice i ograničenja su uzete u obzir, a neke od njih je moguće koristiti kao praktične preporuke u izradi novih bušotina velikog dosega (Gelfgat et al., 2003):

- sekcije sastava bušaćeg niza dizajnirane su kako bi se zadržala njihova otpornost na vlačnu silu i savijanje, uzimajući u obzir i opterećenja uslijed izvijanja tijekom pomicanja bušaćeg niza, te tlačna opterećenja na dlijeto;
- neophodno je ostvariti tlačno opterećenje pomoću gornjeg dijela bušaćeg niza kako bi se omogućilo spuštanje bušaćeg niza prema dnu bošotine;
- sve teške komponente telemetrijskog sustava (engl. *Mesurement Wihle Driling*) potrebno je zamjeniti aluminijskim komponentama kako bi se smanjila sila trenja. Pri kutu otklona od 80 do 85°, zamjenom postojećih komponenti s aluminijskim ostvaruje se smanjenje sile trenja za 10-12 kN;
- teške aluminijske bušaće šipke koriste se kao prijelaz između LAIDP i čeličnih šipki na vrhu i na dnu niza;
- kraća sekcija čeličnih teških bušaćih šipki se postavlja na vrh bušaćeg niza kako bi se ostvarilo bolje pomicanje LAIDP-a. Duljina ove sekcije ne bi trebala biti veća od duljine vertikalnog dijela kanala bušotine;

Kritična sila izvijanja aluminijskih šipki iznosi otprilike 60% vrijednosti tlačne sile koja će uzrokovati izvijanje čeličnih šipki (Legarth et al. 2015), što znači da će se niz sastavljen od aluminijskih šipki spiralno izviti pri manjoj vrijednosti tlačne sile od bušaćeg niza sastavljenog od čeličnih šipki. No tlačno opterećenje aluminijskih šipki uzrokovano trenjem klizanja tijekom spuštanja niza uglavnom je manje u usporedbi s tlačnim opterećenjem čeličnim šipkama, zbog manje jedinične težine šipki. Spiralno izvijanje aluminijskih šipki pojaviti će se pri manjim opterećenjima na dlijeto za razliku od čeličnih šipki, a ovaj problem se može ublažiti odabirom kombiniranog bušaćeg niza kojim će se istaknuti prednosti aluminijske legure male težine i velike otpornosti čeličnih bušaćih šipki na izvijanje.

5. ALUMINIJSKE BUŠAĆE ŠIPKE U HORIZONTALNIM BUŠOTINAMA VELIKOG DOSEGA – PRIMJER IZ PRAKSE

Aluminijske bušaće šipke su uglavnom korištene kao sastavni dio kombiniranog bušaćeg niza (aluminijske/čelične bušaće šipke) u svrhu smanjenja naprezanja koja se javljaju tijekom bušenja vertikalnih i horizontlanih bušotina. Kako bi se unaprijedio proces izrade bušotina velikog dosega Legarth i suradnici preveli su istraživanje, koje je obuhvaćalo upotrebu bušaćeg niza sastavljenog isključivo od aluminijskih šipki velike čvrstoće za izradu plitke bušotine velikog dosega. Ovo istraživanje predstavlja drugu fazu procjene potencijala aluminijskih šipki u unaprijeđenju tehnologije izrade bušotina velikog dosega. Procjena potencijala odnosi se na unaprijeđenje u smislu smanjenja vlačnih i torzijskih naprezanja i opterećenja bušaćeg postrojenja. Prva faza istraživanja odnosila se na procjenu potencijala kombiniranog niza sastavljenog od aluminijskih (22% duljine bušaćeg niza) i čeličnih bušaćih šipki. Rezultati prve faze pokazali da su aluminijske šipke izrazito pogodne za primjenjivati u izradi bušotina velikog dosega te da imaju dobru otpornost na spiralno izvijanje.

Druga faza istraživanja predstavlja po prvi put primjenu bušaćeg niza sastavljenog isključivo od aluminijskih šipki u svim dijelovima kanala bušotine velikog dosega. Istraživanje je osmišljeno s ciljem određivanja vrijednosti smanjenja natega i torzije primjenom aluminijskog bušaćeg niza te da se stekne više operativnog iskustva u svrhu boljeg optimiziranja primjene aluminijskih bušaćih šipki u praksi.

5.1. Druga faza istraživanja – izrada bušotina velikog dosega s aluminijskim bušaćim nizom

Ciljevi ovog istraživanja bili su:

 terensko istraživanje primjenjivosti aluminijskog bušaćeg niza sastavljenog od šipki promjera 0,14922 m (5 7/8") s čeličnim spojnicama otpornim na veliku torziju za primjenu u izradi bušotina velikog dosega s velikim promjerom kanala bušotine. Istraživanje se odnosilo na određivanje učinkovitosti niza koristeći matricu indikatora učinkovitosti (engl. *Key Performance Indicator – KPI*) za određivanje učinkovitosti bušenja, uključujući smanjenje natega i torzije;

- usporedba primjene aluminijskih bušaćih šipki u kombiniranom nizu i bušaćeg niza sastavljenog isključivo do alatki izrađenih od aluminija;
- procjena mogućnosti primjene bušaćeg niza sastavljenog isključivo od aluminijskih alatki u svrhu smanjenja natega i torzije;
- procjena rezultata modeliranja natega i torzije dobivenih prilikom sastavljanja bušaćeg niza.

5.1.1. Karakteristike bušotine

Plitka bušotina velikog dosega izrađena je s postojeće platforme s koje su već izbušene dvije bušotine koristeći konvencionalni čelični bušaći niz i isti sastav alatki na dnu. Već izbušene bušotine *Well #1* i *Well #2* su također bušotine velikog dosega s TVD manjim od 1 000 m. Slika 5-1. prikazuje trajktorije navedenih bušotina.

Slika 5-1. Trajektorije postojećih i nove bušotine velikog dosega na razmatranom polju (Legarth et al., 2015)

Bušotina u kojoj je primjenjen aluminijski bušaći niza u daljnjem tekstu bit će označena kao *Well #3*. Konstrukcija bušotine *Well #3* ista je kao i prethodno dvije izrađene bušotine te je korišten isti sastav alatki na dnu i isti dizajn isplake. Horizontalni

dio kanala bušotine duljine 1 300 m počinje na uspravnoj dubini od 940 m (slika 5-2.). Zadnja dionica kanala bušotine koji prolazi ležištem proširen je tijekom bušenja koristeći alatku za proširivanje promjera 0,2159 x 0,2286 m ($8\frac{1}{2}$ "x9"). Prilikom izrade svih dionica kanala bušotine korišten je upravljivi rotirajući sastav (engl. *Rotary Steerable System – RSS*) alatki na dnu, osim gornjih dijelova promjera 0,5842 m (23") i 0,4445 m ($17\frac{1}{2}$ ") koje su izrađene upotrebom upravljivih isplačnih motora.

Bušaći niz sastavljen isključivo od aluminijskih bušaćih šipki ostvario je 50% manja torzijska i vlačna naprezanja prilikom bušenja u usporedbi s čeličnim bušaćim nizom. Opterećenje bušaćeg postrojenja prilikom vađenja alatki smanjeno je za 24%, te je također povećan napredak bušenja (engl. *Rate Of Penetration – ROP*) za 36% u usporedbi s bušotinom *Well #1*, zbog boljeg prijenosa opterećenja na dlijeto i lakšeg manevriranja alatkama u usporedbi s čeličnim šipkama.

Jedna od glavnih zadaća bušotine *Well #3* je bila usporedba izrade kanala bušotine velikog dosega primjenom aluminijskih bušaćih šipki i izrade kanal bušotine *Well #1* na kojoj je korišten konvencionalni bušaći niz, što je urađeno pomoću usporedbe indikatora učinkovitosti (KPI). Indikator učinkovitosti koristi se za usporedbu parametara i karakterisitka bušaćeg postrojenja i bušotine (slika 5-3.).

Slika 5-2. Trajektorija bušotine Well #3 (Legarth et al., 2015)

Well#1

6

Slika 5-3. KPI usporedba za bušotine Well#1 i Well #3 u dijelu kanala promjera 0,2159 x 0,2286 m (8¹/₂" x 9") (Legarth et al., 2015)

16

5.5

9

5.0

15.0

8.0

Unaprijeđenja su vidljiva kroz sve stavke indikatora učinkovitosti, posebice kod operacija izvlačenja i spuštanja alatki. Kod operacije spuštanja alatki vidljiva je značajna razlika u prosječnoj brzini spuštanja alumninijskog i kombiniranog bušaćeg niza što ukazuje na bolju pokretljivost i jednostavnije manevriranje aluminijskim bušaćim nizom. Također, bolja pokretljivost aluminijskog bušaćeg niza može ukazivati na smanjenje trenja u kanalu bušotine što je izrazito važnu u horizontalnim dionicama kanala bušotine. Lakše manevriranje aluminijskim bušaćim šipkama vidiljivo je kroz vrijeme potrebno za navrtanje i odvrtanje bušaćih šipki. Vrijeme potrebno za sastavljanje krutog alata (engl. *BHA make up – BHA M/U*) mjeri se od trenutka dohvaćanja alatki s njihovog odlagališta do trenutka spuštanja na željenu dubinu, isto tako se mjeri i vrijeme rastavljanja sastava krutog alat (engl. *BHA lay down – BHA L/D*) od trenutka početka izvlačenja do trenutka kada su alatke odložene na odlagalištu alatki.

5.1.2. Smanjenje torzije i natega

Za predviđanje vrijednosti torzije i natega aluminijskih šipki korišten je software koji se pokazao primjenjivim u prvoj fazi istraživanja. Kao što je prikazano na slici 5-4., stvarno smanjenje natega je uglavnom bilo bolje od modeliranog. Težine zadizanja i rotirajućeg zadignutog bušaćeg niza (engl. *Rotating Off Bottom – ROB*) značajno su manje nego što je bilo predviđeno, dok je smanjenje težine tijekom izvlačenja alatki ispod očekivanog u dijelovima kanala bušotine 0,3111 m (12 ¼") i 0,2159 x 0,2286 m ($8\frac{1}{2}$ " x 9").

Slika 5-4. Očekivano i stvarno smanjenje natega (Legarth et al., 2015)

Stvarna i očekivana smanjenja torzije rotirajućeg zadignutog bušaćeg niza (u daljnjem tekstu ROB - engl. *Rotating Off Bottom*) za četiri različita promjera kanala bušotine prikazana su na slici 5-4. U svim dijelovima kanala smanjenje ROB torzije bilo je veće od očekivanog, osim u jednom dijelu. U dijelu kanala promjera 0,2159 x 0,2286 m (8¹/₂" x 9"), upotreba proširivača uzrokovala je povećanje stvarne torzije u području ispod 1 800 m, a razlog tomu bi mogao biti razmak proširivača koji se nalazi iznad dlijeta i promjene svojstava stijene kroz koju se bušilo.

Slike od 5-6. do 5-9. prikazuju usporedbu između bušotina *Well #2* za čiju izradu su korištene čelične bušaće šipke i *Well #3* za čiju izradu su korištene aluminijske bušaće šipke tijekom bušenja horizontalnog dijela kanala bušotine. Na slikama 5.6 do 5.10. posebno je istaknut i interval od 1 779 m do 1 831 m koji predstavlja prijelaz iz šejla u pješčenjak.

Slika 5-6. Moment torzija, *Gamma ray* i kaliper log podatci dobiveni tijekom izrade kanala promjera 0,2159 x 0,2286 m ($8\frac{1}{2}$ "x9") u bušotinama *Well #2* i *Well #3* (Legarth et al., 2015)

Podatci dobiveni kaliperom, prikazani na slici 5-6., ukazuju na to da je kaliper značajno potkalibriran za dio kanala bušotine promjera 0,2159 x 0,2286 m (8¹/₂"x9"). Smanjeni promjer kanala bušotine kako se čini nije uzrokovan karakteristikama stijene, jer se formacija proteže cijelom duljinom u obje bušotine *Well #2* i *Well #3*. Kod oba kanala, sastav alatki na dnu izvučen je na površinu bez zadnjih proširivača nakon dosezanja ukupne dubine, što može rezultirati smanjenim promjerom kanala bušotine.

Na slici 5-7. može se uočiti da je opterećenje na dlijeto u funkciji izbušene formacije, a napredak bušenja ovisi o momentu torzije i vibracijama. U točci u kojoj dolazi do povećanja momenta torzije, dolazi do smanjenja vibracija, vjerojatno zbog pada napretka bušenja. Primjenjivano opterećenje na dlijeto prilikom izrade bušotina *Well #2* i *Well #3* gotovo je isto u oba slučaja, prilikom bušenja formacije šejla bilo je malo veće nego prilikom bušenja formacije pješčenjaka, te nije imalo utjecaja na torziju. U trenutka kada je dlijeto prodrijelo u pješčenjak na dubini od 1831 m u bušotini *Well #3* ostvaren je veći napredak bušenja bez promjene opterećenja na dlijeto, što ukazuje na to da je dlijeto ušlo u mekšu formaciju u usporedbi s šejlom na prethodnim dubinama.

Slika 5-8. Moment torzije, ostvareno opterećenje na dlijeto i broj okretaja u minuti - podatci dobiveni tijekom izrade kanala promjera 0,2159 x 0,2286 m ($8\frac{1}{2}$ "x9") u bušotinama *Well #2* i *Well #3* (Legarth et al., 2015)

Slika 5-8. prikazuje kako su opterećenje na dlijeto i broj okreta u minuti podešeni kako bi se ostvario maksimalni napredak bušenja s obzirom na odgovarajuću bušivost formacije i kontrolu vibracija. Torzija se u bušotini *Well #3* ustabilila i prati trend opterećenja na dlijeto do dubine od 1831 m kada bušotina ulazi u pješčenjak te tada dolazi do njezinog porasta.

Slika 5-9. Moment torzije, gradijenti gustoće isplake i ekvivalentne gustoće isplake podatci dobiveni tijekom izrade kanala promjera 0,2159 x 0,2286 m ($8\frac{1}{2}$ "x9") u bušotinama *Well #2* i *Well #3* (Legarth et al., 2015)

Slika 5-9. također pokazuje povećanje momenta torzije u bušotini *Well #3* nakon dubine od 1 831 m. Obroci isplake velike viskoznosti upumpani su na tri uzastopna mjesta na intervalu od 1 831 do 1 920 m kako je torzija rasla. U ovom intervalu su također prikazane pojedinosti torzije iznad dna bušotine, koja se pojavljuju zbog ulaska u pješčanu formaciju.

Sveukupno gledano promjenom bušaćeg niza sastavljenog od aluminijskih šipki postiže se brža izrada bušotine velikog dosega. Slika 5-10. prikazuje bolju učinkovitost izrade bušotine velikog dosega za 20% od *Well #1* i 11% od *Well #2*.

VRIJEMENA BUŠENJA (m/danu)

Slika 5-10. Stvarno vrijeme potrebno za izradu pojedinog djela kanala bušotine (Legarth et al., 2015)

6. ZAKLJUČAK

U ovom radu prikazane su karakteristike aluminijskih bušaćih šipki te njihova primjena u praksi. Tehnologija aluminijskih bušaćih šipki u početku je primjenjivana za izradu konvencionalnih bušaćih kanala, a zbog učestalog loma aluminijskih alatki čelične šipke ušle su u široku primjenu. Kako je rasla potreba za izradom bušotina velikog dosega s dugačkim horizontalnim dionicama s primarnom svrhom ostvarivanja boljeg kontakta kanala bušotine i ležišta te nemogućnosti smještanja bušaćeg postojenja bliže ležištu, rasla je i potreba za primjenom bušaćih šipki manje težine odnosno bušaćih šipki povoljnijeg omjera čvrstoće i težine. Na temelju toga razvila se tehnologija primjene aluminijskih bušaćih šipki u izradi bušotina velikog dosega.

Osnovna prednost aluminija u usporedbi s čelikom je mala težina odnosno bolji omjer čvrstoće i težine, samim time imaju veću otpornost na vlačna i torzijska naprezanja u usporedbi s čeličnim šipkama. Ovo svojstvo omogućuje produljenje bušaćih limita s postojećim bušaćim postrojenjima čija su ograničenja vezana primarno uz maksimalna opterećenja i zakretni moment, te smanjenje ukupne potrošnje energije tijekom procesa bušenja. Nadalje, važno svojstvo aluminijskih šipki je smanjeni modul elastičnosti, koji osigurava aluminijskim šipkama skoro tri puta veću otpornost na savijanje i veću otpornost na vlačna naprezanja u usporedbi s čeličnim šipkama. Primjena aluminijskih bušaćih šipki osim navedenog također omogućuje smanjenje troškove transporta, izradu duljih horizontalnih dionica kanala obzirom na čelične šipke uz korištenje postrojenja manjih kapaciteta, što također smanjuje cijenu izrade kanala bušotine.

Rezultati različitih istraživanja pokazuju kako se primjenom aluminijskog bušaćeg niza ostvaruju 50% manja torzijska i vlačna naprezanja prilikom izrade bušotine velikog doesga u usporedbi s čeličnim bušaćim nizom. Opterećenja bušaćeg postrojenja prilikom vađenja alatki smanjena su za 24%, te je također povećan napredak bušenja za 36%. Dosadašnja primjena aluminijskih šipki u izradi bušotina velikog dosega je zadovoljavajuća. No, zbog sve veće potrebe za izradom takvih kompleksih bušotina potrebno je daljnje razvijanje tehnologije primjene aluminijskih bušaćih šipki.

7. LITERATURA

- ANDERSON, E.R., 2009.: ALUMINIUM ALLOY DRILL PIPE IN GEOTHERMAL DRILLING: Tehnical and Economical Opportunities, diplomski rad, School for Renewable Energy, University of Akureyri, Island, str. 31-39
- Aquatic Company Moscow Russia, Maurer Engineering Inc. Texas, 1999.: IMPLEMENT RUSSIAN ALUMINIUM DRILL PIPE AND RETRACTABLE DRILLING BITS INTO THE USA, Volume 1: Development of Aluminium Drill Pipe in Russia, str. 1-87
- BALANDIN, I.Y., 2010.: Buoyant Aluminium Drill Pipes for Extended-reach Drilling, SPE Russian Oil & Gas Technical Conference and Exhibition, Moskva, 26. – 28. October. 2010., SPE 135677
- BLIKRA, H., DREVDAL, K.E., AARRESTAD, T.V., 1994.: Extended Reach, Horizontal, and Complex Design Wells: Challenges, Achievements and Cost-Benefits, 14-th World Petroleum Congress, Stavanger, 29. – 31. August. 1994., SPE 28005, str. 505-517
- 5. GELFGAT, M.Y., BASOVICH, D.V., TIKHONOV, V.S., 2003: Drillstring with aluminium alloy pipes design and practices, SPE 79873
- GELFGAT, M.Y., BASOVICH, V.S., ADELMAN, A., 2005.: Aluminium Alloy Tubulars for Oil and Gas Industry, SPE Annual Technical Conference and Exhibition, Dallas, 9. – 12. October. 2005., SPE 97035
- GELFGAT, M.Y., BASOVICH, V.S., ADELMAN, A., HANSEN, B.R., 2007.: *Aluminium Alloy Tubulars – Assessment for Ultralong Well Construction*, SPE Annual Technical Conference and Exhibition, Kalifornija, 11. – 14. November. 2007., SPE 109722
- GELFGAT, M.Y., VAKHRUSHEV, A.V., BASOVICH, D.V., TIKHONOV, V.S., ODELL, A.C., BRUNNERT, D.J., 2009. : *Aluminium Pipes – A Viable Solution to Boost Drilling and Completion Technology*, International Petroleum Technology Conference, Doha, 7. - 9. December. 2009., IPTC 13758
- GUPTA, A., 2006: Planing and Identifying the Best Technologies for Extended Reach Wells, SPE Technical Symposium of Saudi Arabia Section, 21.-23. May. 2006., SPE 106346

- HILL, T.H., SUMMERS, M.A., GUILD, G.J., 1996: Designing and Qualifying Drillstrings for Extended – Reach Drilling, SPE Drilling & Completion, June 1996, str. 111-117
- LEE, J., CULLUM, D., FRIEDHEIM, J., YOUNG, S., 2012: A New SBM for Narrow Margin Extended Reach Drilling, IADC/SPE Drilling Conference and Exhibition, San Diego, 6. – 8. March. 2012., IADC/SPE 151469
- LEGARTH, B., LEHNER, J., OKIBE, H., KOINKAR, V., MAMMOD, Z., 2015.: *Changing the Game from Steel to Aluminium Drill Pipes: Results from Full String Aluminium Alloy Drill Pipe Deployment to Enhance Extended Reach Drilling Performance*, SPE/IADC Drilling Conference and Exhibition, London, 17. - 19. March. 2015., SPE/IADC-173088-MS
- SABO, K., 2009.: ALUMINIJSKE BUŠAĆE ŠIPKE, diplomski rad, RGN fakultet, Sveučilište u Zagrebu
- SANTUS, C., BERTINI, L., BEHNINI, M., MERLO, A., BARYSHNKOV, A., 2008.: Torsional strenght comparesion between two assembling techniques for aluminium drill pipe to steel tool joint connection, Internatinal Journal of Pressure Vessels and Piping, str. 177-186
- SCARUFFI, W., CRISTOFANELLI, E., YU, S., TROCCHIA, A., MOLASCHI, C., MERLO, A., 2013.: New Generation of Aluminium Drill Pipes Enhanced the ERD Performances in to the Huizhou Field – South China Sea, International Petroleum Technology Conference, Peking, 26. – 28. March. 2013., IPTC 16798
- 16. Wikipedia: Mohsova ljestvica,

URL: https://hr.wikipedia.org/wiki/Mohsova_ljestvica, (13.2.2019)

IZJAVA

Izjavljujem da sam ovaj rad izradio samostalno na temelju znanja stečenih na Rudarsko-geološko-naftnom fakultetu služeći se navedenom literaturom.

Ivan Luburić